Kerian Thuillier
email: kerian.thuillier@irisa.fr

Anne Siegel
email: anne.siegel@irisa.fr

Loïc Paulevé
email: loic.pauleve@labri.fr

CEGAR-Based Approach for Solving Combinatorial Optimization Modulo Quantified Linear Arithmetics Problems

Bioinformatics has always been a prolific domain for generating complex satisfiability and optimization problems. For instance, the synthesis of multi-scale models of biological networks has recently been associated with the resolution of optimization problems mixing Boolean logic and universally quantified linear constraints (OPT+qLP), which can be benchmarked on real-world models. In this paper, we introduce a Counter-Example-Guided Abstraction Refinement (CEGAR) to solve such problems efficiently. Our CEGAR exploits monotone properties inherent to linear optimization in order to generalize counter-examples of Boolean relaxations. We implemented our approach by extending Answer Set Programming (ASP) solver CLINGO with a quantified linear constraints propagator. Our prototype enables exploiting independence of sub-formulas to further exploit the generalization of counter-examples. We evaluate the impact of refinement and partitioning on two sets of OPT+qLP problems inspired by system biology. Additionally, we conducted a comparison with the state-of-the-art ASP solver Clingo[lpx] that handles non-quantified linear constraints, showing the advantage of our CEGAR approach for solving large problems.

Introduction

Satisfiability (SAT) solving has proven to be highly successful in addressing a wide range of real-world combinatorial satisfiability problems across various fields. In the last decades, many applications in bioinformatics have been formulated as complex combinatorial satisfiability and optimization problems according to biological knowledge and data. For decision-aided tasks, life-scientists then take advantage of sampling the full space of solutions in order to prioritize future experiments. Therefore, challenges reside both in solving such complex combinatorial problems on large-scale and real-world instances but also in enumerating part, if not all, the set of solutions.

Traditionally, the problems addressed in life-sciences were either linear programming and optimization (LP) problems [START_REF] Orth | What is flux balance analysis?[END_REF][START_REF] Von Kamp | Enumeration of Smallest Intervention Strategies in Genome-Scale Metabolic Networks[END_REF] or Boolean optimization problems [START_REF] Videla | caspo: a toolbox for automated reasoning on the response of logical signaling networks families[END_REF][START_REF] Chevalier | Synthesis of Boolean Networks from Biological Dynamical Constraints using Answer-Set Programming[END_REF]. In this case, efficient approaches based on Answer Set Programming (ASP), a logic programming framework for symbolic satisfiability problems [START_REF] Baral | Knowledge Representation, Reasoning and Declarative Problem Solving[END_REF], have been developed. They take advantage of the ability of modern ASP solvers, like Clingo [START_REF] Gebser | Multi-shot ASP solving with clingo[END_REF], to support various reasoning modes, Boolean optimization, and model enumeration.

A recent evolution in life-sciences is the emergence of hybrid optimization problems combining Boolean logic and linear constraints [START_REF] Frioux | Hybrid metabolic network completion[END_REF][START_REF] Mahout | Answer Set Programming for Computing Constraints-Based Elementary Flux Modes: Application to Escherichia coli Core Metabolism[END_REF]. ASP solvers handling quantifier-free linear constraints, like Clingo[lpx] [START_REF] Janhunen | Clingo goes linear constraints over reals and integers[END_REF], have been developed to solve such hybrid optimization problems, by extending ASP solver with a DPLL-adapted simplex algorithm [START_REF] Dutertre | Integrating simplex with DPLL (T)[END_REF] used by modern Satisfiability Modulo Theory (SMT) solvers. A new class of complexity appeared recently with the problem of inferring metabolic regulatory rules, which is formulated as a hybrid optimization problem with one level of quantified linear constraints [START_REF] Thuillier | MERRIN: MEtabolic regulation rule INference from time series data[END_REF]) and associated with realworld benchmarks. The goal of this paper is to investigate efficient solutions to solve this new class of hybrid optimization problems, which we denote as OPT+qLP.

The state-of-the-art strategy to solve OPT+qLP problems is to rely on quantifier elimination to get back to quantifierfree hybrid optimization problems. There is an equivalence between universally quantified linear constraints and constraints on the optimum of LP problems. Hence, based on the strong duality theorem, universally quantified linear constraints can be converted into equi-satisfiable quantifier-free linear constraints through a dual transformation. This allows tackling OPT+qLP problems with standard hybrid approaches, as offered by Clingo[lpx] and SMT solvers.

An alternative lies in the Counter-Example-Guided Abstraction Refinement (CEGAR) method [START_REF] Clarke | Counterexample-guided abstraction refinement for symbolic model checking[END_REF]. While sharing similarities with the DPLL algorithm [START_REF] Nieuwenhuis | Solving SAT and SAT modulo theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL (T)[END_REF] used in modern SMT solvers, the CEGAR approach enables to easily compose solvers for different tasks, including for Boolean optimization and enumeration problems. The strength of the CEGAR approach therefore lies in its generic and solverindependent nature, which allows for taking advantage of the structure of linear problems. It has been widely applied for the solving of quantified Boolean formula [START_REF] Janota | Solving QBF with counterexample guided refinement[END_REF], and SMT problems [START_REF] Brummayer | Lemmas on Demand for the Extensional Theory of Arrays[END_REF][START_REF] Barrett | Satisfiability modulo theories[END_REF]. However, CEGAR approaches have not been applied so far to OPT+qLP problems.

In this paper, we introduce a CEGAR-based algorithm to solve and enumerate models of OPT+qLP problems. Our ap-proach refines Boolean abstraction of the OPT+qLP problem using monotone properties on LP problems structures and linear constraints partitioning. We rely on the resolution of a formula, a Boolean abstraction, that subsumes the models of the OPT+qLP problem. If this abstraction is unsatisfiable, then so is the OPT+qLP problem. Otherwise, a model of the Boolean abstraction is found. This model is a solution to the OPT+qLP problem if it satisfies the quantified linear constraints. Otherwise, it is a counter-example, and the abstraction is refined with additional constraints derived from the counter-example. This iterative process continues until either the OPT+qLP problem is proven to be unsatisfiable or all its models have been enumerated. To implement it, we developed a prototype based on ASP and evaluated its performance on real-world benchmarks based on biological models. Additionally, we conducted a comparison with Clingo[lpx] and compared the performance regarding both quantifier elimination and linear constraints partitioning.

Combinatorial Optimization Problems Modulo Quantified Linear Constraints

We focus on combinatorial optimization problems whose constraints merge propositional logic and quantified linear arithmetics (OPT+qLP). The quantified linear constraints are restricted to one level of quantifier. Solving OPT+qLP problems aims at finding variable assignments, or models, satisfying SAT+qLP constraints while minimizing a given objective function.

Let x ∈ B n denotes Boolean variables and y ∈ R m realvalued variables. We consider SAT+qLP formulas of the following form:

c∈C c(x) (1a) ∧ d∈D d(x, y) (1b) ∧ ∀z ∈ R p , e∈E e(x, z) =⇒ h∈H h(x, z) (1c)
where C denotes Boolean clauses of the form i x i j ¬x j , and D (resp. E, H) denotes hybrid clauses of the form " i x i j ¬x j ∨f (y) ≤ 0" (resp. i x i j ¬x j ∨f (z) ≤ 0), with f denoting linear functions over reals. Given a hybrid clause c ∈ D, E, H, we will denote by f c its linear constraint f c (y) ≤ 0 (resp. f c (z) ≤ 0). Universally quantified linear constraints are modeled by Eq. 1c. The first part of the implication (e∈E e(x, z)) defines the domain D(x) of the universal real-valued variables z according to x. The domain D(x) is a subset of R p , and contains all z ∈ R p such that (x, z) satisfy e∈E e(x, z). Eq. 1c is therefore equivalent to ∀z ∈ D(x), h∈H h(x, z).

Let φ be a SAT+qLP formula of the form of Eq. 1. A variable assignment (x, y) ∈ B n × R m is a model of φ if and only if it satisfies φ, i.e. (x, y) |= φ. The formula φ is unsatisfiable, denoted by |= φ, if there is no model ν satisfying φ. Otherwise, φ is satisfiable.

The SAT+qLP satisfiability problem can be extended into an OPT+qLP optimization problem by considering only the models (x, y) of φ that minimize an objective function over Boolean variables g : B n → R:

minimize g(x) (2a) such that: (x, y) |= φ (2b) with x ∈ B n , y ∈ R m
For the rest, let (g, φ) be an instance of an OPT+qLP problem. A pair (x, y) ∈ B n × R m is a model of (g, φ), denoted by (x, y) |= (g, φ), if and only if Eqs. 2a and 2b are verified.

Many applications can benefit from a comprehensive characterization of the solution space of satisfiability and optimization problems. Thus, in addition to searching for a model of an OPT + qLP problem, we will also consider the enumeration up to k different models of it.

Example. Let ψ be the SAT+qLP formula of Fig. 1a over Boolean variables x 1 , x 2 , x 3 . It has no existentially quantified real-valued variables and 2 universally quantified realvalued variables z 1 , z 2 . Using the notations of Eq. 1, ψ has 1 1b gives a graphical representation of the linear constraints.

Boolean (C = {(x 1 ∨ x 2 ∨ x 3)}) and 4 hybrid clauses (D = ∅, E = {(z 2 ≥ 1 ∨ ¬x 1), (z 1 + z 2 ≤ 1 ∨ ¬x 2), (-z 1 + z 2 ≤ 0 ∨ ¬x 3)}, H = {(z 2 ≤ 0.6)}). Fig.
For the rest, we will write a model ν as a set such that a Boolean variable x i belongs to ν if and only if x i = . Among the 8 models of ψ, only 2 satisfy it: ν 1 = {x 2 , x 3 } and ν 2 = {x 1 , x 2 , x 3 }. For the former, the set of hybrid clauses E is true if and only if at least z 1 + z 2 ≤ 1 and -z 1 + z 2 ≤ 0 hold. As shown in Fig. 1b, all assignments of (z 1 , z 2) matching these two constraints satisfy z 2 ≤ 0.6. For the latter, it does not exist an assignment of (z 1 , z 2) that satisfies all hybrid clauses in E.

Let g : B 3 → R be an objective function such that g Let (g, ψ) be an OPT+qLP problem. Its only model is {x 2 , x 3 } (g({x 2 , x 3 }) = 2 and g({x 1 , x 2 , x 3 }) = 3).

(x 1 , x 2 , x 3) = |x 1 | + |x 2 | + |x 3 | with |x i | = 1 if x i = , 0 else.

Contribution: A CEGAR for Solving OPT+qLP

We present a CEGAR-based approach for addressing OPT+qLP problems. Algorithm 1 summarizes the overall procedure. First, we define a Boolean abstraction (g, φ approx) of the OPT+qLP problem (g, φ), such that (g, φ) =⇒ (g, φ approx) (line 2, see details below). Next, we introduce two necessary conditions (lines 3 and 4, see details below) to ensure that there exists a model of (g, φ) given a model of (g, φ approx). If at least one of the two conditions fails, then φ approx is refined by generalizing the counter-examples that fail them (line 8, see details below). Finally, we propose a quantified linear constraints partitioning method to increase the efficiency of refinement functions.

Proofs of the properties, lemmas, and theorems of this section are provided in the technical appendix [START_REF] Thuillier | CEGARbased approach for solving combinatorial optimization modulo quantified linear arithmetics problems -Code and Appendix[END_REF].

Boolean Abstractions of OPT+qLP Problems

Let c be a hybrid clause over Boolean variables x ∈ B n and real-valued variables y ∈ R m of the form " 1: φ approx ← a Boolean abstraction of φ of the form Eq. 4 2: while ∃(x, f) |= (g, φ approx) do

i x i j ¬x j ∨ f c (y) ≤ 0". A Boolean abstraction c of c is a Boolean clause ψ = (x 1 ∨ x 2 ∨ x 3) ∧ ∀z ∈ R 2 , (z 2 ≥ 1 ∨ ¬x 1) ∧ (z 1 + z 2 ≤ 1 ∨ ¬x 2) ∧ (-z 1 + z 2 ≤ 0 ∨ ¬x 3) =⇒ z 2 ≤ 0.6 (a) Example SAT+qLP problem ψ. ψ approx = (x 1 ∨ x 2 ∨ x 3) ∧ (α ∨ ¬x 1) ∧ (β ∨ ¬x 2) ∧ (γ ∨ ¬x 3) ∧ δ (c)
3: if ∃y |= C D x then 4: if |= C E x or ∀h ∈ C H x , f * h (C E x) ≤ 0 then 5: return x, y 6: end if 7: end if 8: φ approx ← φ ∃ r (x) ∧ φ ∀ r (x)
∧ φ approx 9: end while 10: return UNSAT over the Boolean variables x ∈ B n and fc ∈ B. The clause c is defined by Eq. 3.

i x i j ¬x j ∨ fc denoted by c(x, fc) (3)
Let φ be a SAT+qLP formula with C its set of Boolean clauses and D, E, H its sets of hybrid clauses. Let d, ē and h denote Boolean abstractions of the hybrid clauses d ∈ D, e ∈ E and h ∈ H, respectively. We define the Boolean abstraction of φ as the following SAT formula:

c∈C c(x) (4a) ∧ d∈D d(x, fd) (4b) ∧ e∈E ē(x, fe) ∧ h∈H h(x, fh) (4c)
Theorem 1 (φ ⇒ φ approx). Let φ a SAT+qLP problem and φ approx its Boolean abstraction. For any model (x, y)

∈ B n × R m of φ, there exists f ∈ B |D|+|E|+|H| such that (x, f) is a model of φ approx .
From the above theorem, one can remark that the value g(x) of the objective function on any model (x, y) of an OPT+qLP problem (g, φ) is the same on the corresponding model of φ approx . In Algorithm 1, the abstraction (g, φ approx) of the OPT+qLP problem (g, φ) is computed line 1. In line 2, the search for (g, φ approx) models can be performed using a pure Boolean optimization solver. By Theorem 1, if (g, φ approx) is unsatisfiable, then so is (g, φ).

Example. Consider the OPT+qLP problem (g, ψ) from the previous example. Let α, β, γ, δ be four Boolean variables associated with the linear constraints z 2 ≥ 1, z 1 + z 2 ≤ 1, -z 1 + z 2 ≤ 0 and z 2 ≤ 0.6, respectively. The set of Boolean variables associated with linear constraints is f = {α, β, γ, δ}. The Boolean abstraction of ψ is the SAT formula ψ approx defined by Fig. 1c. Formula ψ has two models ν 1 = {x 2 , x 3 } and ν 2 = {x 1 , x 2 , x 3 }. Using the conversion procedure used to prove Theorem 1, ν1 = {x 2 , x 3 , β, γ, δ} and ν2 = {x 1 , x 2 , x 3 , α, β, γ, δ} are two models of ψ approx . The model ν 1 is the only model of (g, ψ). It has the optimal score g * = 2. The model ν1 associated with ν 1 has the same score.

Ensuring Quantified Linear Constraints

Let C be a set of linear constraints of the form f (y) ≤ 0.

A variable assignment y ∈ R m is a model of C, denoted by y |= C, if and only if y |= f ∈C f (y) ≤ 0. Given f : R m → R a linear function, y ∈ R m is a model of the linear optimization problem (f, C) if and only if y |= C and it maximizes the objective function f , i.e. ∀y ∈ R m , y |= C =⇒ f (y) ≤ f (y). The optimum value of (f, C) will be denoted by f * (C) = max y|=C f (y).
Let C h be a set of hybrid clauses and x ∈ B n a Boolean variable assignment. For x to be a model of

C h , it must exist y ∈ R m such that each hybrid clause h ∈ C h is satisfied by either x or y. Let C C h
x be the set of linear constraints of clauses for which x is not a model:

C C h x = {f c (y) ≤ 0|c ∈ C h , x |= c} (5) Hence, given c ∈ C h and (x, fc) |= c(x, fc), if f c ∈ C C h
x then fc = . Otherwise, x would be a model of c(x, fc). Theorem 2. Let φ be a SAT+qLP formula and φ approx its Boolean abstraction. Given x ∈ B n and y ∈ R m , (x, y) |= φ if and only if the following three conditions hold:

(C1) ∃ f , (x, f) |= φ approx ; (C2) y |= C D x ; (C3) (|= C E x) ∨ (h∈C H x f * h (C E x) ≤ 0)
. Theorem 2 can be further extended for OPT+qLP problems. Let (g, φ) be an OPT+qLP problem and (g, φ approx) its Boolean abstraction. Any variable assignment (x, y) ∈ B n × R m minimizing g and satisfying C1, C2 and C3 is a model of (g, φ). Corollary 2.1. Given x ∈ B n and y ∈ R m a real-valued variables assignment, if (C1') ∃ f , (x, f) |= (g, φ approx), C2 and C3 hold, then (x, y) |= (g, φ).

In Algorithm 1, the condition C1' is ensured if a model (x, f) of (g, φ approx) is found (line 2). Condition C2 is ensured in line 3 by finding a model y of the set of linear constraints C D

x using a linear programming (LP) solver. C2 holds only if y exists. Finally, condition C3 is ensured in line 4. If

C E x is satisfiable, a linear optimization problem (f h , C E x) is solved for each f h ∈ C H x .
The linear optimization problems are solved using LP solvers. Each optimum f * h (C E x) is then compared to 0. If at least one optimum is strictly greater than 0, then C3 does not hold. If the three conditions C1', C2 and C3 hold, (x, y) |= (g, φ) is returned. Otherwise, (x, f) is a counter-example.

Example. Consider the OPT+qLP problem (g, ψ) and its Boolean abstraction ψ approx (Fig. 1c) from the previous example. The variable assignment {x 1 , α, δ} is a model of ψ approx that minimize g, with g({x 1 , α}) = 1. By Corollary 2.1, {x 1 } is also a model of (g, ψ) if either |= {z 2 ≥ 1} or if the linear optimization problem (f δ (z 1 , z 2) = z 2 , {z 2 ≥ 1}) has an optimum less or equals to 0.6. From Fig. 1b, we can see that {z 2 ≥ 1} is satisfiable and that f * δ ({z 2 ≥ 1}) is +∞. Therefore, C3 does not hold and {x 1 , δ} is not a model of (g, ψ). The variable assignment {x 1 , α, δ} is a counter-example.

Counter-Examples Generalization

Let φ be a SAT+qLP formula and φ approx its Boolean abstraction. Theorem 2 states that for any model ν = (x, f) of φ approx there is a corresponding model ν of φ if conditions C2 and C3 hold. If either C2 or C3 is not satisfied, then ν is a counter-example. From ν, new Boolean logic constraints φ r (ν) can be deduced and used to refine φ approx . The new Boolean abstraction of φ becomes φ approx ∧ φ r (ν), such that φ =⇒ φ approx ∧ φ r (ν).

Existential counter-example. Suppose that (x, f) does not satisfy C2. The set of linear constraints C D x is unsatisfiable, i.e. |= C D

x . Therefore, any supersets of linear constraints of C D

x will be unsatisfiable too. An unsatisfiable core (C unsat) of a given set of linear constraints C is the smallest subset of C for which |= C unsat . In other words, for all C ⊂ C unsat , there exists a vector y ∈ R m that satisfies C . When C is satisfiable, C unsat is an empty set. Unsatisfiable cores have been widely used in SMT solvers and CEGAR-based approaches for generalizing sets of unsatisfiable constraints [START_REF] Cimatti | Computing small unsatisfiable cores in satisfiability modulo theories[END_REF][START_REF] Khasidashvili | EPRbased k-induction with Counterexample Guided Abstraction Refinement[END_REF].

Let C unsat be an unsatisfiable core of C D

x . The refinement function φ ∃ r (x) is defined by Eq. 6.

φ ∃ r (x) = f ∈Cunsat ¬ f (6)
Note that refinement function φ ∃ r (x) does not generate any constraints if C2 holds (C unsat = ∅). Lemma 3. φ =⇒ φ approx ∧ φ ∃ r (x). Universal counter-example. Suppose that (x, f) does not satisfy C3. This implies that there is at least one hybrid clause h ∈ H such that C E

x is satisfiable and f * h (C E x) > 0. Then, any model (x , y) such that C E x ⊆ C E x will be such f * h (C E x) > 0, as stated by the following property: Property 4. Given a linear objective function f and two linear optimization problems (f , C 1) and

(f , C 2), C 1 ⊆ C 2 =⇒ f * (C 1) ≥ f * (C 2).
Similarly to unsatisfiable cores, we can introduce the notion of optimal cores. Given a linear objective function f and a set of linear constraints C, an optimal core is a biggest superset

C f opt of C such that C f opt is satisfiable and f * (C) = f * (C f opt). Let C f
opt be an optimal core of (f, C E x). The refinement function φ ∀ r (x) is defined by Eq. 7.

φ ∀ r (x) = h∈C H x f * h (C E x)>0 ¬ fh ∨ e∈E fe ∈C f h opt fe (7)
Lemma 5. φ =⇒ φ approx ∧ φ ∀ r (x) Constraints generated by the refinement functions φ ∃ r (x) and φ ∀ r (x) do not involve the same sets of variables. Therefore, φ

∃ r (x) ∧ φ ∀ r (x) ∧ φ approx still subsumes φ. Theorem 6. Given (x, f) |= φ approx , φ =⇒ φ ∃ r (x) ∧ φ ∀ r (x) ∧ φ approx . Corollary 6.1. (g, φ) =⇒ φ ∃ r (x) ∧ φ ∀ r (x) ∧ φ approx . Corollary 6.2. ∀ν * |= (g, φ) =⇒ ∃ν |= φ ∃ r (x) ∧ φ ∀ r (x) ∧ φ approx , g(ν) = g(ν *).
Algorithm 1 refines the Boolean abstraction φ approx in line 8. Corollaries 6.1 and 6.2 ensure that the refined Boolean abstraction is still an overapproximation of (g, φ). Therefore, Corollary 2.1 still holds for the next iteration.

Example. Consider ψ approx as defined in Fig. 1c and the counter-example {x 1 , α, δ} find previously. This counterexample satisfies C2 since there are no existentially quantified linear constraints in ψ. Hence, φ ∃ r ({x 1 }) does not generate any constraints. However, it fails to satisfy C3. A Hasse diagram of all the subsets of the set of linear constraints of ψ is shown in Fig. 1d. It can be seen that {α} has two optimal cores: {α, β} and {α, γ}. The set {α, β, γ} is not an optimal core since it is not satisfiable. All linear optimization problems whose linear constraints are either a subset of {α, β} or of {α, γ} will also fail C3. Suppose that the optimal core {α, β} has been selected by the refinement function φ ∀ r ({x 1 }). It will generate the constraints ¬δ ∨ γ, and it will prohibit selecting any model containing a subset of {α, β}, blue and green boxes in Fig. 1d.

Partitioning Quantified Linear Constraints

Let (g, φ) be an OPT+qLP problems with (g, φ approx) its Boolean abstraction. Linear constraints of φ can be partitioned to exploit the sparsity of the underlying linear optimization problems. Let P = {P 1 , ..., P k } be a partition of the linear constraints of φ such that (i) no two linear constraints share variables among different subsets; (ii) each subset contains either existentially quantified linear constraints or universally quantified linear constraints.

Let (x, f) |= (g, φ approx). The set of linear constraints C D x can be partitioned in P D x according to the partition P. Deciding the satisfiability of C D

x comes down to deciding the satisfiability of each subset P i ∈ P D

x . If at least one subset is unsatisfiable, so is C D

x . Otherwise, it exists a model y i for each subset P i ∈ P D x and

{y i } i |= C D x . Lemma 7. ∃y ∈ R m , C D x ⇐⇒ Pi∈P D x y |= P i .
If (x, f) fails C2, one can exhibit a subset of sets of P D

x that are unsatisfiable. Unsatisfiable cores can be computed independently for each unsatisfiable set, which reduces the computational cost of finding unsatisfiable cores. Let C unsat be the set of unsatisfiable cores associated with the unsatisfiable sets. The existential refinement function φ ∃ r (x) can be reformulated as: Similarly, all linear constraints f h ∈ C H x are partitioned with the linear constraints of C E

φ ∃ r (x) = Cunsat∈Cunsat f ∈Cunsat ¬ f (8)
x that can impact their values. Let P ∈ P be the partitioned containing f h and P E

x the set of all linear constraints of C

E x in P . Lemma 8. If C E x is satisfiable, then f * h (C E x) = f * h (P E x). If (x, f) fails C3, it
is necessarily since there is not enough constraints in P E

x . Since only linear constraints in P have an impact on f * h , the computation of an optimal core P opt can be restricted to the set of linear constraints in P . The universal refinement function φ ∀ r (x) can be reformulated as:

φ ∀ r (x) = h∈C H x f * h (P E x)>0 ¬ fh ∨ e∈E fe ∈P opt fe (9)
It is important to note that Theorem 6 still holds with these new definitions of φ ∃ r and φ ∀ r . They generate smaller refinement constraints and allow reducing the computational cost of finding unsatisfiable and optimal cores.

Experiments

We propose MERRINASP (https://github.com/kthuillier/ merrinasp), an ASP-based implementation of Algorithm 1. It extends the Clingo solver, using its Python API, with a linear constraint propagator, implemented with the Python PULP library and the LP solver COIN [START_REF] Lougee-Heimer | The Common Optimization INterface for Operations Research: Promoting open-source software in the operations research community[END_REF]. Model enumeration is made through the Clingo solver which keeps track of all refinements during the enumeration process. The partitioning is explicitly specified in the input problem.

Benchmark

Problem description. Regulatory flux balance analysis (rFBA) is a common model of dynamics of bacteria [START_REF] Covert | Regulation of gene expression in flux balance models of metabolism[END_REF]. The rFBA framework consists in sequentially solving maximum flow problems on weighted hypergraphs. The hyperedge capacities are updated at each step according to Boolean rules. Capacities are either set to 0 or to their initial value. The metabolic regulatory rules inference problem [START_REF] Thuillier | MERRIN: MEtabolic regulation rule INference from time series data[END_REF]) is an inverse problem. Given a weighted hypergraph and sequences of observed maximum flows, it consists in inferring a set of Boolean rules controlling the hyperedge capacities matching the sequences of observations. For each The four configurations of MERRINASP include a partitioning option (P) and the use of universally quantified linear constraints (Q). Time is given in seconds in log 10 scale. Dashed black horizontal lines represent the total number of instances observation, it must find which capacities were set to 0 for the maximum flow to match the observation. In this problem, Boolean clauses delimit admissible Boolean rules according to biological knowledge. For each observation, existential constraints ensure the existence of a corresponding flow, while universal constraints ensure that no flow is strictly higher than the observed one. We refer the reader to the above-mentioned paper for a formal definition of the problem.

Benchmark description. We conducted experiments using MERRINASP on real-world benchmarks of metabolic regulatory rules inference problems [START_REF] Thuillier | CEGARbased approach for solving combinatorial optimization modulo quantified linear arithmetics problems -Code and Appendix[END_REF]. Our benchmarks are composed of 120 instances divided into 60 small-scale instances and 60 largescale instances. The small-scale benchmark is directly sourced from [START_REF] Thuillier | MERRIN: MEtabolic regulation rule INference from time series data[END_REF], while the large-scale benchmark is generated based on a large-scale regulated metabolic network [START_REF] Covert | Transcriptional Regulation in Constraints-based Metabolic Models of Escherichia coli* 210[END_REF], following the methodology outlined in the aforementioned paper. Benchmarks are described in table 1. Instances of the large-scale benchmarks have approximately 10 times more variables and constraints than instances of the small-scale benchmarks. Linear constraints can be partitioned into about 200 sets for small-scale instances and 140 sets for large-scale instances.

Configuration. Each instance was executed on Haswell Intel Xeon E5-2680 v3 CPU at 2.5GHz and 128GB of RAM and 100 models were enumerated.

Results

We compared MERRINASP with Clingo[lpx], a state-of-theart ASP solver that handles quantifier-free linear constraints [START_REF] Janhunen | Clingo goes linear constraints over reals and integers[END_REF]) by extending Clingo with a DPLLadapted simplex algorithm [START_REF] Dutertre | Integrating simplex with DPLL (T)[END_REF].

Clingo and2d).

As shown in Fig. 2c, MERRINASP excels at finding the first model in large-scale satisfiable instances, outperforming Clingo[lpx] by a factor of 30. The difference in performance between the two solvers heavily depends on the enumeration phase. The CEGAR method requires many checks to ensure that a model of the Boolean abstraction is a model of the original OPT+qLP problem, even after reaching equisatisfiability. Consequently, while MERRINASP is significantly faster than Clingo [lpx] in finding the first model for satisfiable problems, both solvers exhibit similar performance in enumerating the other 99 models.

Impact of partitioning (P). Figs. 2a and2b suggest that linear constraints partitioning (P) increase the performance of MERRINASP by a factor of 1000 on satisfiable instances and a factor of 20 on unsatisfiable instances. No instance of the large-scale benchmark has finished in 48 hours for the not-partitioned configurations. Table 2 shows that while partitioning entails solving a larger number of linear optimization problems, the total number of linear optimization problems solved is reduced by a factor of 10 compared to without partitioning. On the small-scale satisfiable (resp. unsatisfiable) instances, MERRINASP[P, Q] solved in average 501 (resp. 252) linear optimization problems, against 9 944 (resp. 2 039) for MERRINASP[¬P, Q].

Impact of quantified linear constraints (Q). Our counter-example generation for universally quantified linear constraints consistently outperforms quantifier elimination reformulations by a factor of 3 on the small-scale and 20 large-scale benchmarks. From Table 2, we can see that twice fewer refinements are made when using quantified linear constraints (Q) compared to using quantifier elimination (¬Q). For large-scale (resp. small-scale) instances, these refinements were generated using 7 (resp. 2) times fewer calls to the linear solvers when using (Q) compared to (¬Q).

Discussion. These results highlight that both linear constraint partitioning (P) and counter-example generation for universally quantified linear constraints (Q) have significant impacts on performance. Using both of them allows dividing computation time by 2 000 compared to not using any of them. They allow for generating more efficient refinements (gain of 2) while reducing the number of linear solver calls (gain of 7). This reduction is attributed to the partitioning approach, which enables solving independent linear optimization problems with a reduced number of constraints and variables. Their small size leads to faster computation of unsatisfiable and optimal cores for each counter-example, and their independence allows for reducing the number of verifications: a set that has passed the linear checks does not have to be checked again.

MERRINASP is a prototype and does not use efficient approaches to instantiate and solve linear optimization problems. In contrast, Clingo[lpx] and SMT solvers, such as z3 (De Moura and Bjørner 2008), use an incremental implementation of the simplex algorithm to check linear constraints [START_REF] Dutertre | Integrating simplex with DPLL (T)[END_REF]. Our approach is not dependent on the method used to solve linear constraints. This suggests that MERRINASP has the potential to further enhance its performance by integrating these algorithms.

Conclusion and Future Work

In this paper, we presented a novel approach for solving combinatorial optimization problems with Boolean logic and quantified linear constraints (OPT+qLP), based on Counter-Example-Guided Abstraction Refinement (CE-GAR). Our implementation, MERRINASP, was developed using Answer Set Programming.

To evaluate the effectiveness of our approach, we introduced a new benchmark of small-scale and large-scale OPT+qLP problems inspired by systems biology. We compared MERRINASP against a state-of-the-art ASP modulo quantifier-free linear constraints solver, Clingo [lpx]. The results highlight that MERRINASP scales significantly better than Clingo[lpx] on large-scale satisfiable instances, especially for the search of one model on satisfiable instances. The enumeration of models and unsatisfiable instances remain competitive with Clingo[lpx] but suggest room of improvement to improve the CEGAR approach and reduce the number of counter-example checks [START_REF] Brummayer | Effective bit-width and under-approximation[END_REF][START_REF] Lagniez | A Recursive Shortcut for CEGAR: Application To The Modal Logic K Satisfiability Problem[END_REF].

Looking ahead, we plan to automate the linear constraint partitioning process and explore the integration of our approach with the DPLL-based simplex algorithm used in Clingo [lpx]. Moreover, the integration of quantified Linear Real Arithmetics theory (LRA) [START_REF] Reynolds | Solving quantified linear arithmetic by counterexample-guided instantiation[END_REF] could provide complementary refinements using linear constraints, while our approach refines by the means of combinatorial constraints. These future advancements hold the promise of further enhancing the efficiency and applicability of CEGAR-based OPT+qLP solvers.

 Boolean abstraction ψapprox of ψ described in (a). (b) Visual representation of the quantified linear constraints. No assignments of z1 and z2 can satisfy the three linear constraints z2 ≥ 1, z1 + z2 ≤ 1 and -z1 + z2 ≤ 0.(d) Hasse diagram of all the quantified linear constraints subsets of the example OPT+qLP problem (Fig.1a) with their optimums. Red block is unsatisfiable. Blocks with dashed borders are the optimal cores of the green block. Blue blocks are the subsets of {α; β}.

Figure 1 :

 1 Figure 1: Example of SAT+qLP formula ψ (a) over three Boolean variables (x 1 , x 2 , x 3) and two universally quantified realvalued variables (z 1 , z 2). Visual representations of the four linear constraints involved in ψ are shown in (b). In (c) and (d), α, β, γ, δ are Boolean variables associated with the linear constraints z 2 ≥ 1, z 1 + z 2 ≤ 1, -z 1 + z 2 ≤ 0 and z 2 ≤ 0.6, respectively. The Boolean abstraction ψ approx is defined in (c) following Eqs. 4. (d) shows the maximum value of z 2 for each subset of linear constraints.

Figure 2 :

 2 Figure 2: Runtime distribution of 4 configurations of our MERRINASP implementation of the CEGAR-based Algorithm 1 and Clingo[lpx] on OPT+qLP problem instances. All variants were applied to a benchmark built from a small-scale real biological model (Figs. (a) and (b), 60 instances) and a large-scale real biological model (Figs. (c) and (d), 60 instances). Small-scale and large-scale benchmarks contain both satisfiable instances (panels (a) and (c)) and unsatisfiable instances (panels (b) and (d)).The four configurations of MERRINASP include a partitioning option (P) and the use of universally quantified linear constraints (Q). Time is given in seconds in log 10 scale. Dashed black horizontal lines represent the total number of instances

Table 1 :

 1 Benchmarks descriptions. Only the order of magnitude of the number of constraints and variables is given.

	Benchmark	Small-scale Large-scale
	Instances SAT	29	32
	Instances UNSAT	31	28
	Boolean variables	6.5 × 10 4	4 × 10 9
	Existential real variables	2 × 10 3	8 × 10 3
	Universal real variables	2 × 10 3	8 × 10 3
	Boolean constraints	2.7 × 10 5	1.8 × 10 6
	Existential linear constraints	6 × 10 3	25 × 10 3
	Universal linear constraints	6 × 10 3	25 × 10 3

Table 2 :

 2 Comparative analysis of MERRINASP performance under different configurations. Results are presented as average value ± standard deviation. Deciding SAT times denote the time needed to find a first model or to decide unsatisfiable. NA indicates information not available. Bold values indicate the best value among all configurations for the current benchmark.

	Benchmark	Partitioned (P)	Quantified (Q)	Deciding SAT Time (s)	Enumeration Time (s)	LP solver Time (s)	Number of LP solvers calls	Number of refinements
		×	×	18 761 ± 4 759 49 952 ± 18 515 3 812 ± 2 727	16 795 ± 2 364	2 ± 0
	Small-SAT	×		5 528 ± 1 498	2 116 ± 1 044	1 433 ± 223	9 944 ± 1 470	1 ± 0
			×	28 ± 6	40 ± 11	34 ± 7	937 ± 111	5 ± 1
				9 ± 1	15 ± 3	15 ± 2	501 ± 41	6 ± 1
		×	×	5 143 ± 4 395	NA	1 112 ± 766	6 596 ± 3 723	1 ± 0
	Small-UNSAT	×		247 ± 38	NA	137 ± 17	2 039 ± 115	1 ± 0
			×	30 ± 10	NA	24 ± 10	669 ± 221	9 ± 4
				10 ± 2	NA	7 ± 1	252 ± 54	9 ± 4
	Large-SAT		×	3 163 ± 1 538	13 922 ± 1 946	801 ± 236	17 957 ± 5 032	41 ± 16
				183 ± 75	865 ± 112	121 ± 74 3 548 ± 2 184	21 ± 11
	Large-UNSAT		×	739 ± 454	NA	374 ± 248	7 480 ± 4 673	17 ± 8
				135 ± 19	NA	41 ± 11	1 155 ± 307	13 ± 3

 [lpx] supports neither linear constraints partitioning nor universal linear constraints. We further conducted a comparative analysis of MERRINASP under four configurations: with and without partioning of linear constraints (denoted by P and ¬P), using the CEGAR approach over quantified linear constraints (denoted by Q) or using quantifier elimination (¬Q). Note that Clingo[lpx] is equivalent to the configuration [¬P, ¬Q], and that MERRINASP[P, Q] exploits all the properties described in previous sections.Comparison with Clingo[lpx].As shown in Fig.2aand 2b, on small-scale instances, MERRINASP and Clingo[lpx] solve the instances in a similar order of magnitude (10s in average for Clingo[lpx] and 30s in average for MERRINASP). On large-scale instances, MERRINASP outperforms Clingo[lpx] by a factor of 10 (seeFigs. 2c

Acknowledgments

Work of KT and LP is supported by the French Agence Nationale pour la Recherche (ANR) in the scope of the project "BNeDiction" (grant number ANR-20-CE45-0001).