
HAL Id: hal-04420454
https://hal.science/hal-04420454v1

Submitted on 26 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

CEGAR-Based Approach for Solving Combinatorial
Optimization Modulo Quantified Linear Arithmetics

Problems
Kerian Thuillier, Anne Siegel, Loïc Paulevé

To cite this version:
Kerian Thuillier, Anne Siegel, Loïc Paulevé. CEGAR-Based Approach for Solving Combinatorial
Optimization Modulo Quantified Linear Arithmetics Problems. AAAI 2024 - The 38th Annual AAAI
Conference on Artificial Intelligence, Feb 2024, Vancouver, Canada. pp.1-8. �hal-04420454�

https://hal.science/hal-04420454v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

CEGAR-Based Approach for Solving Combinatorial Optimization Modulo
Quantified Linear Arithmetics Problems

Kerian Thuillier1, Anne Siegel1, Loı̈c Paulevé2

1 Univ. Rennes, Inria, CNRS, IRISA, UMR6074, F-35000 Rennes, France
2 Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France

kerian.thuillier@irisa.fr, anne.siegel@irisa.fr, loic.pauleve@labri.fr

Abstract

Bioinformatics has always been a prolific domain for gener-
ating complex satisfiability and optimization problems. For
instance, the synthesis of multi-scale models of biological
networks has recently been associated with the resolution
of optimization problems mixing Boolean logic and univer-
sally quantified linear constraints (OPT+qLP), which can be
benchmarked on real-world models. In this paper, we in-
troduce a Counter-Example-Guided Abstraction Refinement
(CEGAR) to solve such problems efficiently. Our CEGAR
exploits monotone properties inherent to linear optimization
in order to generalize counter-examples of Boolean relax-
ations. We implemented our approach by extending Answer
Set Programming (ASP) solver CLINGO with a quantified lin-
ear constraints propagator. Our prototype enables exploiting
independence of sub-formulas to further exploit the general-
ization of counter-examples. We evaluate the impact of refine-
ment and partitioning on two sets of OPT+qLP problems in-
spired by system biology. Additionally, we conducted a com-
parison with the state-of-the-art ASP solver Clingo[lpx] that
handles non-quantified linear constraints, showing the advan-
tage of our CEGAR approach for solving large problems.

Introduction
Satisfiability (SAT) solving has proven to be highly suc-
cessful in addressing a wide range of real-world combina-
torial satisfiability problems across various fields. In the last
decades, many applications in bioinformatics have been for-
mulated as complex combinatorial satisfiability and opti-
mization problems according to biological knowledge and
data. For decision-aided tasks, life-scientists then take ad-
vantage of sampling the full space of solutions in order to
prioritize future experiments. Therefore, challenges reside
both in solving such complex combinatorial problems on
large-scale and real-world instances but also in enumerating
part, if not all, the set of solutions.

Traditionally, the problems addressed in life-sciences
were either linear programming and optimization (LP) prob-
lems (Orth, Thiele, and Palsson 2010; von Kamp and Klamt
2014) or Boolean optimization problems (Videla et al. 2017;
Chevalier et al. 2019). In this case, efficient approaches
based on Answer Set Programming (ASP), a logic program-
ming framework for symbolic satisfiability problems (Baral
2003), have been developed. They take advantage of the
ability of modern ASP solvers, like Clingo (Gebser et al.

2017), to support various reasoning modes, Boolean opti-
mization, and model enumeration.

A recent evolution in life-sciences is the emergence of
hybrid optimization problems combining Boolean logic and
linear constraints (Frioux et al. 2019; Mahout, Carlson, and
Peres 2020). ASP solvers handling quantifier-free linear
constraints, like Clingo[lpx] (Janhunen et al. 2017), have
been developed to solve such hybrid optimization problems,
by extending ASP solver with a DPLL-adapted simplex al-
gorithm (Dutertre and De Moura 2006) used by modern
Satisfiability Modulo Theory (SMT) solvers. A new class
of complexity appeared recently with the problem of infer-
ring metabolic regulatory rules, which is formulated as a hy-
brid optimization problem with one level of quantified linear
constraints (Thuillier et al. 2022) and associated with real-
world benchmarks. The goal of this paper is to investigate
efficient solutions to solve this new class of hybrid optimiza-
tion problems, which we denote as OPT+qLP.

The state-of-the-art strategy to solve OPT+qLP problems
is to rely on quantifier elimination to get back to quantifier-
free hybrid optimization problems. There is an equivalence
between universally quantified linear constraints and con-
straints on the optimum of LP problems. Hence, based on
the strong duality theorem, universally quantified linear con-
straints can be converted into equi-satisfiable quantifier-free
linear constraints through a dual transformation. This al-
lows tackling OPT+qLP problems with standard hybrid ap-
proaches, as offered by Clingo[lpx] and SMT solvers.

An alternative lies in the Counter-Example-Guided Ab-
straction Refinement (CEGAR) method (Clarke et al.
2003). While sharing similarities with the DPLL algorithm
(Nieuwenhuis, Oliveras, and Tinelli 2006) used in modern
SMT solvers, the CEGAR approach enables to easily com-
pose solvers for different tasks, including for Boolean op-
timization and enumeration problems. The strength of the
CEGAR approach therefore lies in its generic and solver-
independent nature, which allows for taking advantage of
the structure of linear problems. It has been widely applied
for the solving of quantified Boolean formula (Janota et al.
2016), and SMT problems (Brummayer and Biere 2008;
Barrett and Tinelli 2018). However, CEGAR approaches
have not been applied so far to OPT+qLP problems.

In this paper, we introduce a CEGAR-based algorithm to
solve and enumerate models of OPT+qLP problems. Our ap-

proach refines Boolean abstraction of the OPT+qLP problem
using monotone properties on LP problems structures and
linear constraints partitioning. We rely on the resolution of
a formula, a Boolean abstraction, that subsumes the mod-
els of the OPT+qLP problem. If this abstraction is unsatisfi-
able, then so is the OPT+qLP problem. Otherwise, a model
of the Boolean abstraction is found. This model is a solu-
tion to the OPT+qLP problem if it satisfies the quantified
linear constraints. Otherwise, it is a counter-example, and
the abstraction is refined with additional constraints derived
from the counter-example. This iterative process continues
until either the OPT+qLP problem is proven to be unsatisfi-
able or all its models have been enumerated. To implement
it, we developed a prototype based on ASP and evaluated
its performance on real-world benchmarks based on biolog-
ical models. Additionally, we conducted a comparison with
Clingo[lpx] and compared the performance regarding both
quantifier elimination and linear constraints partitioning.

Combinatorial Optimization Problems
Modulo Quantified Linear Constraints

We focus on combinatorial optimization problems whose
constraints merge propositional logic and quantified linear
arithmetics (OPT+qLP). The quantified linear constraints are
restricted to one level of quantifier. Solving OPT+qLP prob-
lems aims at finding variable assignments, or models, satis-
fying SAT+qLP constraints while minimizing a given objec-
tive function.

Let x ∈ Bn denotes Boolean variables and y ∈ Rm real-
valued variables. We consider SAT+qLP formulas of the fol-
lowing form:∧

c∈C
c(x) (1a)

∧
∧
d∈D

d(x, y) (1b)

∧ ∀z ∈ Rp,
∧
e∈E

e(x, z) =⇒
∧
h∈H

h(x, z) (1c)

whereC denotes Boolean clauses of the form
∨
i xi
∨
j ¬xj ,

and D (resp. E, H) denotes hybrid clauses of the form
“
∨
i xi
∨
j ¬xj∨f(y) ≤ 0” (resp.

∨
i xi
∨
j ¬xj∨f(z) ≤ 0),

with f denoting linear functions over reals. Given a hybrid
clause c ∈ D,E,H , we will denote by fc its linear con-
straint fc(y) ≤ 0 (resp. fc(z) ≤ 0).

Universally quantified linear constraints are modeled by
Eq. 1c. The first part of the implication (

∧
e∈E e(x, z)) de-

fines the domain D(x) of the universal real-valued variables
z according to x. The domain D(x) is a subset of Rp, and
contains all z ∈ Rp such that (x, z) satisfy

∧
e∈E e(x, z).

Eq. 1c is therefore equivalent to ∀z ∈ D(x),
∧
h∈H h(x, z).

Let φ be a SAT+qLP formula of the form of Eq. 1. A vari-
able assignment (x, y) ∈ Bn × Rm is a model of φ if and
only if it satisfies φ, i.e. (x, y) |= φ. The formula φ is unsat-
isfiable, denoted by 6|= φ, if there is no model ν satisfying φ.
Otherwise, φ is satisfiable.

The SAT+qLP satisfiability problem can be extended into
an OPT+qLP optimization problem by considering only the

models (x, y) of φ that minimize an objective function over
Boolean variables g : Bn → R:

minimize g(x) (2a)
such that: (x, y) |= φ (2b)

with x ∈ Bn, y ∈ Rm

For the rest, let (g, φ) be an instance of an OPT+qLP prob-
lem. A pair (x, y) ∈ Bn × Rm is a model of (g, φ), denoted
by (x, y) |= (g, φ), if and only if Eqs. 2a and 2b are verified.

Many applications can benefit from a comprehensive
characterization of the solution space of satisfiability and
optimization problems. Thus, in addition to searching for a
model of an OPT + qLP problem, we will also consider the
enumeration up to k different models of it.

Example. Let ψ be the SAT+qLP formula of Fig. 1a over
Boolean variables x1, x2, x3. It has no existentially quanti-
fied real-valued variables and 2 universally quantified real-
valued variables z1, z2. Using the notations of Eq. 1, ψ has 1
Boolean (C = {(x1∨x2∨x3)}) and 4 hybrid clauses (D =
∅, E = {(z2 ≥ 1∨¬x1), (z1 + z2 ≤ 1∨¬x2), (−z1 + z2 ≤
0 ∨ ¬x3)}, H = {(z2 ≤ 0.6)}). Fig. 1b gives a graphical
representation of the linear constraints.

For the rest, we will write a model ν as a set such that
a Boolean variable xi belongs to ν if and only if xi = >.
Among the 8 models of ψ, only 2 satisfy it: ν1 = {x2, x3}
and ν2 = {x1, x2, x3}. For the former, the set of hybrid
clauses E is true if and only if at least z1 + z2 ≤ 1 and
−z1 + z2 ≤ 0 hold. As shown in Fig. 1b, all assignments
of (z1, z2) matching these two constraints satisfy z2 ≤ 0.6.
For the latter, it does not exist an assignment of (z1, z2) that
satisfies all hybrid clauses in E.

Let g : B3 → R be an objective function such that
g(x1, x2, x3) = |x1|+ |x2|+ |x3| with |xi| = 1 if xi = >,
0 else. Let (g, ψ) be an OPT+qLP problem. Its only model is
{x2, x3} (g({x2, x3}) = 2 and g({x1, x2, x3}) = 3).

Contribution: A CEGAR for Solving OPT+qLP
We present a CEGAR-based approach for addressing
OPT+qLP problems. Algorithm 1 summarizes the overall
procedure. First, we define a Boolean abstraction (g, φapprox)
of the OPT+qLP problem (g, φ), such that (g, φ) =⇒
(g, φapprox) (line 2, see details below). Next, we introduce
two necessary conditions (lines 3 and 4, see details below)
to ensure that there exists a model of (g, φ) given a model
of (g, φapprox). If at least one of the two conditions fails, then
φapprox is refined by generalizing the counter-examples that
fail them (line 8, see details below). Finally, we propose a
quantified linear constraints partitioning method to increase
the efficiency of refinement functions.

Proofs of the properties, lemmas, and theorems of this
section are provided in the technical appendix (Thuillier,
Siegel, and Paulevé 2023).

Boolean Abstractions of OPT+qLP Problems
Let c be a hybrid clause over Boolean variables x ∈ Bn and
real-valued variables y ∈ Rm of the form “

∨
i xi
∨
j ¬xj ∨

fc(y) ≤ 0”. A Boolean abstraction c̄ of c is a Boolean clause

ψ = (x1 ∨ x2 ∨ x3)

∧ ∀z ∈ R2,

(
(z2 ≥ 1 ∨ ¬x1)

∧ (z1 + z2 ≤ 1 ∨ ¬x2)
∧ (−z1 + z2 ≤ 0 ∨ ¬x3)

)
=⇒ z2 ≤ 0.6

(a) Example SAT+qLP problem ψ.

ψapprox = (x1 ∨ x2 ∨ x3)

∧ (α ∨ ¬x1) ∧ (β ∨ ¬x2) ∧ (γ ∨ ¬x3) ∧ δ

(c) Boolean abstraction ψapprox of ψ described in (a).

(b) Visual representation of the quantified linear constraints. No
assignments of z1 and z2 can satisfy the three linear constraints
z2 ≥ 1, z1 + z2 ≤ 1 and −z1 + z2 ≤ 0.

(d) Hasse diagram of all the quantified linear constraints subsets of
the example OPT+qLP problem (Fig. 1a) with their optimums. Red
block is unsatisfiable. Blocks with dashed borders are the optimal
cores of the green block. Blue blocks are the subsets of {α;β}.

Figure 1: Example of SAT+qLP formula ψ (a) over three Boolean variables (x1, x2, x3) and two universally quantified real-
valued variables (z1, z2). Visual representations of the four linear constraints involved in ψ are shown in (b). In (c) and (d),
α, β, γ, δ are Boolean variables associated with the linear constraints z2 ≥ 1, z1 + z2 ≤ 1, −z1 + z2 ≤ 0 and z2 ≤ 0.6,
respectively. The Boolean abstraction ψapprox is defined in (c) following Eqs. 4. (d) shows the maximum value of z2 for each
subset of linear constraints.

Algorithm 1: CEGAR for solving OPT+qLP problem

Input: an OPT+qLP problem (g, φ) of the form Eq. 2
Output: a model (x, y) ∈ Bn × Rm s.t. (x, y) |= (g, φ)

1: φapprox ← a Boolean abstraction of φ of the form Eq. 4
2: while ∃(x, f̄) |= (g, φapprox) do
3: if ∃y |= CDx then
4: if 6|= CEx or ∀h ∈ CHx , f∗h(CEx) ≤ 0 then
5: return x, y
6: end if
7: end if
8: φapprox ← φ∃r (x) ∧ φ∀r (x) ∧ φapprox
9: end while

10: return UNSAT

over the Boolean variables x ∈ Bn and f̄c ∈ B. The clause
c̄ is defined by Eq. 3.∨

i

xi
∨
j

¬xj ∨ f̄c denoted by c̄(x, f̄c) (3)

Let φ be a SAT+qLP formula with C its set of Boolean
clauses and D, E, H its sets of hybrid clauses. Let d̄, ē and
h̄ denote Boolean abstractions of the hybrid clauses d ∈ D,
e ∈ E and h ∈ H , respectively. We define the Boolean

abstraction of φ as the following SAT formula:∧
c∈C

c(x) (4a)

∧
∧
d∈D

d̄(x, f̄d) (4b)

∧
∧
e∈E

ē(x, f̄e) ∧
∧
h∈H

h̄(x, f̄h) (4c)

Theorem 1 (φ ⇒ φapprox). Let φ a SAT+qLP problem and
φapprox its Boolean abstraction. For any model (x, y) ∈ Bn×
Rm of φ, there exists f̄ ∈ B|D|+|E|+|H| such that (x, f̄) is a
model of φapprox.

From the above theorem, one can remark that the value
g(x) of the objective function on any model (x, y) of an
OPT+qLP problem (g, φ) is the same on the corresponding
model of φapprox. In Algorithm 1, the abstraction (g, φapprox)
of the OPT+qLP problem (g, φ) is computed line 1. In line 2,
the search for (g, φapprox) models can be performed us-
ing a pure Boolean optimization solver. By Theorem 1, if
(g, φapprox) is unsatisfiable, then so is (g, φ).

Example. Consider the OPT+qLP problem (g, ψ) from the
previous example. Let α, β, γ, δ be four Boolean variables
associated with the linear constraints z2 ≥ 1, z1 + z2 ≤ 1,
−z1 + z2 ≤ 0 and z2 ≤ 0.6, respectively. The set of
Boolean variables associated with linear constraints is f̄ =

{α, β, γ, δ}. The Boolean abstraction of ψ is the SAT for-
mula ψapprox defined by Fig. 1c. Formula ψ has two models
ν1 = {x2, x3} and ν2 = {x1, x2, x3}. Using the conversion
procedure used to prove Theorem 1, ν̄1 = {x2, x3, β, γ, δ}
and ν̄2 = {x1, x2, x3, α, β, γ, δ} are two models of ψapprox.
The model ν1 is the only model of (g, ψ). It has the optimal
score g∗ = 2. The model ν̄1 associated with ν1 has the same
score.

Ensuring Quantified Linear Constraints
Let C be a set of linear constraints of the form f(y) ≤ 0.
A variable assignment y ∈ Rm is a model of C, denoted
by y |= C, if and only if y |=

∧
f∈C f(y) ≤ 0. Given

f : Rm → R a linear function, y ∈ Rm is a model
of the linear optimization problem (f, C) if and only if
y |= C and it maximizes the objective function f , i.e.
∀y′ ∈ Rm, y′ |= C =⇒ f(y′) ≤ f(y). The optimum value
of (f, C) will be denoted by f∗(C) = maxy|=C f(y).

Let Ch be a set of hybrid clauses and x ∈ Bn a Boolean
variable assignment. For x to be a model of Ch, it must exist
y ∈ Rm such that each hybrid clause h ∈ Ch is satisfied
by either x or y. Let CCh

x be the set of linear constraints of
clauses for which x is not a model:

CCh
x = {fc(y) ≤ 0|c ∈ Ch, x 6|= c} (5)

Hence, given c ∈ Ch and (x, f̄c) |= c̄(x, f̄c), if fc ∈ CCh
x

then f̄c = >. Otherwise, x would be a model of c̄(x, f̄c).
Theorem 2. Let φ be a SAT+qLP formula and φapprox
its Boolean abstraction. Given x ∈ Bn and y ∈ Rm,
(x, y) |= φ if and only if the following three conditions
hold: (C1) ∃f̄ , (x, f̄) |= φapprox; (C2) y |= CDx ; (C3)
(6|= CEx) ∨ (

∧
h∈CHx

f∗h(CEx) ≤ 0).

Theorem 2 can be further extended for OPT+qLP prob-
lems. Let (g, φ) be an OPT+qLP problem and (g, φapprox)
its Boolean abstraction. Any variable assignment (x, y) ∈
Bn × Rm minimizing g and satisfying C1, C2 and C3 is a
model of (g, φ).
Corollary 2.1. Given x ∈ Bn and y ∈ Rm a real-valued
variables assignment, if (C1’) ∃f̄ , (x, f̄) |= (g, φapprox), C2
and C3 hold, then (x, y) |= (g, φ).

In Algorithm 1, the condition C1’ is ensured if a model
(x, f̄) of (g, φapprox) is found (line 2). Condition C2 is en-
sured in line 3 by finding a model y of the set of linear con-
straints CDx using a linear programming (LP) solver. C2 holds
only if y exists. Finally, condition C3 is ensured in line 4. If
CEx is satisfiable, a linear optimization problem (fh, CEx) is
solved for each fh ∈ CHx . The linear optimization problems
are solved using LP solvers. Each optimum f∗h(CEx) is then
compared to 0. If at least one optimum is strictly greater than
0, then C3 does not hold. If the three conditions C1’, C2 and
C3 hold, (x, y) |= (g, φ) is returned. Otherwise, (x, f̄) is a
counter-example.

Example. Consider the OPT+qLP problem (g, ψ) and its
Boolean abstraction ψapprox (Fig. 1c) from the previous ex-
ample. The variable assignment {x1, α, δ} is a model of
ψapprox that minimize g, with g({x1, α}) = 1. By Corol-
lary 2.1, {x1} is also a model of (g, ψ) if either 6|= {z2 ≥

1} or if the linear optimization problem (fδ(z1, z2) =
z2, {z2 ≥ 1}) has an optimum less or equals to 0.6. From
Fig. 1b, we can see that {z2 ≥ 1} is satisfiable and that
f∗δ ({z2 ≥ 1}) is +∞. Therefore, C3 does not hold and
{x1, δ} is not a model of (g, ψ). The variable assignment
{x1, α, δ} is a counter-example.

Counter-Examples Generalization
Let φ be a SAT+qLP formula and φapprox its Boolean abstrac-
tion. Theorem 2 states that for any model ν̄ = (x, f̄) of
φapprox there is a corresponding model ν of φ if conditions
C2 and C3 hold. If either C2 or C3 is not satisfied, then ν̄ is
a counter-example. From ν̄, new Boolean logic constraints
φr(ν̄) can be deduced and used to refine φapprox. The new
Boolean abstraction of φ becomes φapprox ∧ φr(ν̄), such that
φ =⇒ φapprox ∧ φr(ν̄).

Existential counter-example. Suppose that (x, f̄) does
not satisfy C2. The set of linear constraints CDx is unsatis-
fiable, i.e. 6|= CDx . Therefore, any supersets of linear con-
straints of CDx will be unsatisfiable too. An unsatisfiable
core (Cunsat) of a given set of linear constraints C is the
smallest subset of C for which 6|= Cunsat. In other words,
for all C′ ⊂ Cunsat, there exists a vector y ∈ Rm that sat-
isfies C′. When C is satisfiable, Cunsat is an empty set. Unsat-
isfiable cores have been widely used in SMT solvers and
CEGAR-based approaches for generalizing sets of unsat-
isfiable constraints (Cimatti, Griggio, and Sebastiani 2011;
Khasidashvili, Korovin, and Tsarkov 2015).

Let Cunsat be an unsatisfiable core of CDx . The refinement
function φ∃r (x) is defined by Eq. 6.

φ∃r (x) =
∨

f∈Cunsat

¬f̄ (6)

Note that refinement function φ∃r (x) does not generate any
constraints if C2 holds (Cunsat = ∅).
Lemma 3. φ =⇒ φapprox ∧ φ∃r (x).

Universal counter-example. Suppose that (x, f̄) does not
satisfy C3. This implies that there is at least one hybrid
clause h ∈ H such that CEx is satisfiable and f∗h(CEx) > 0.
Then, any model (x′, y′) such that CEx′ ⊆ CEx will be such
f∗h(CEx′) > 0, as stated by the following property:
Property 4. Given a linear objective function f and
two linear optimization problems (f , C1) and (f , C2),
C1 ⊆ C2 =⇒ f∗(C1) ≥ f∗(C2).

Similarly to unsatisfiable cores, we can introduce the no-
tion of optimal cores. Given a linear objective function f
and a set of linear constraints C, an optimal core is a biggest
superset Cfopt of C such that Cfopt is satisfiable and f∗(C) =

f∗(Cfopt).
Let Cfopt be an optimal core of (f, CEx). The refinement

function φ∀r (x) is defined by Eq. 7.

φ∀r (x) =
∧
h∈CHx

f∗h(C
E
x)>0

¬f̄h ∨
∨
e∈E

fe 6∈C
fh
opt

f̄e (7)

Lemma 5. φ =⇒ φapprox ∧ φ∀r (x)

Constraints generated by the refinement functions φ∃r (x)
and φ∀r (x) do not involve the same sets of variables. There-
fore, φ∃r (x) ∧ φ∀r (x) ∧ φapprox still subsumes φ.

Theorem 6. Given (x, f̄) |= φapprox, φ =⇒ φ∃r (x) ∧
φ∀r (x) ∧ φapprox.

Corollary 6.1. (g, φ) =⇒ φ∃r (x) ∧ φ∀r (x) ∧ φapprox.

Corollary 6.2. ∀ν∗ |= (g, φ) =⇒ ∃ν′ |= φ∃r (x)∧φ∀r (x)∧
φapprox, g(ν′) = g(ν∗).

Algorithm 1 refines the Boolean abstraction φapprox in
line 8. Corollaries 6.1 and 6.2 ensure that the refined
Boolean abstraction is still an overapproximation of (g, φ).
Therefore, Corollary 2.1 still holds for the next iteration.

Example. Consider ψapprox as defined in Fig. 1c and the
counter-example {x1, α, δ} find previously. This counter-
example satisfies C2 since there are no existentially quanti-
fied linear constraints in ψ. Hence, φ∃r ({x1}) does not gen-
erate any constraints. However, it fails to satisfy C3. A Hasse
diagram of all the subsets of the set of linear constraints of
ψ is shown in Fig. 1d. It can be seen that {α} has two op-
timal cores: {α, β} and {α, γ}. The set {α, β, γ} is not an
optimal core since it is not satisfiable. All linear optimiza-
tion problems whose linear constraints are either a subset of
{α, β} or of {α, γ} will also fail C3. Suppose that the opti-
mal core {α, β} has been selected by the refinement function
φ∀r ({x1}). It will generate the constraints ¬δ ∨ γ, and it will
prohibit selecting any model containing a subset of {α, β},
blue and green boxes in Fig. 1d.

Partitioning Quantified Linear Constraints
Let (g, φ) be an OPT+qLP problems with (g, φapprox) its
Boolean abstraction. Linear constraints of φ can be parti-
tioned to exploit the sparsity of the underlying linear opti-
mization problems. Let P = {P1, ...,Pk} be a partition of
the linear constraints of φ such that (i) no two linear con-
straints share variables among different subsets; (ii) each
subset contains either existentially quantified linear con-
straints or universally quantified linear constraints.

Let (x, f̄) |= (g, φapprox). The set of linear constraints CDx
can be partitioned in PDx according to the partition P . De-
ciding the satisfiability of CDx comes down to deciding the
satisfiability of each subset Pi ∈ PDx . If at least one subset
is unsatisfiable, so is CDx . Otherwise, it exists a model yi for
each subset Pi ∈ PDx and {yi}i |= CDx .
Lemma 7. ∃y ∈ Rm, CDx ⇐⇒

∧
Pi∈PD

x
y |= Pi.

If (x, f̄) fails C2, one can exhibit a subset of sets of PDx
that are unsatisfiable. Unsatisfiable cores can be computed
independently for each unsatisfiable set, which reduces the
computational cost of finding unsatisfiable cores. Let Cunsat
be the set of unsatisfiable cores associated with the unsatis-
fiable sets. The existential refinement function φ∃r (x) can be
reformulated as:

φ∃r (x) =
∧

Cunsat∈Cunsat

∨
f∈Cunsat

¬f̄ (8)

Benchmark Small-scale Large-scale

Instances SAT 29 32
Instances UNSAT 31 28

Boolean variables 6.5× 104 4× 109

Existential real variables 2× 103 8× 103

Universal real variables 2× 103 8× 103

Boolean constraints 2.7× 105 1.8× 106

Existential linear constraints 6× 103 25× 103

Universal linear constraints 6× 103 25× 103

Table 1: Benchmarks descriptions. Only the order of magni-
tude of the number of constraints and variables is given.

Similarly, all linear constraints fh ∈ CHx are partitioned
with the linear constraints of CEx that can impact their values.
Let P ′ ∈ P be the partitioned containing fh and P ′Ex the set
of all linear constraints of CEx in P ′.
Lemma 8. If CEx is satisfiable, then f∗h(CEx) = f∗h(P ′Ex).

If (x, f̄) fails C3, it is necessarily since there is not enough
constraints in P ′Ex . Since only linear constraints in P ′ have
an impact on f∗h , the computation of an optimal core P ′opt
can be restricted to the set of linear constraints in P ′. The
universal refinement function φ∀r (x) can be reformulated as:

φ∀r (x) =
∧
h∈CHx

f∗h(P
′E
x)>0

¬f̄h ∨
∨
e∈E
fe 6∈P′opt

f̄e (9)

It is important to note that Theorem 6 still holds with these
new definitions of φ∃r and φ∀r . They generate smaller refine-
ment constraints and allow reducing the computational cost
of finding unsatisfiable and optimal cores.

Experiments
We propose MERRINASP (https://github.com/kthuillier/
merrinasp), an ASP-based implementation of Algorithm 1. It
extends the Clingo solver, using its Python API, with a linear
constraint propagator, implemented with the Python PULP
library and the LP solver COIN (Lougee-Heimer 2003).
Model enumeration is made through the Clingo solver which
keeps track of all refinements during the enumeration pro-
cess. The partitioning is explicitly specified in the input
problem.

Benchmark
Problem description. Regulatory flux balance analysis
(rFBA) is a common model of dynamics of bacteria (Covert,
Schilling, and Palsson 2001). The rFBA framework con-
sists in sequentially solving maximum flow problems on
weighted hypergraphs. The hyperedge capacities are up-
dated at each step according to Boolean rules. Capacities
are either set to 0 or to their initial value. The metabolic
regulatory rules inference problem (Thuillier et al. 2022) is
an inverse problem. Given a weighted hypergraph and se-
quences of observed maximum flows, it consists in infer-
ring a set of Boolean rules controlling the hyperedge ca-
pacities matching the sequences of observations. For each

0

10

20

30

100 101 102 103 104 105

Time (log10 seconds)

S
o
lv

e
d
 i
n
st

a
n
c
e
s

(a) Benchmark Small-SAT

0

10

20

30

100 101 102 103 104 105

Time (log10 seconds)

S
ol

ve
d

in
st

an
ce

s

(b) Benchmark Small-UNSAT

0

10

20

30

100 101 102 103 104

Time (log10 seconds)

S
o
lv

e
d
 i
n
st

a
n
c
e
s

(c) Benchmark Large-SAT

0

5

10

15

20

100 101 102 103 104

Time (log10 seconds)

S
ol

ve
d

in
st

an
ce

s

(d) Benchmark Large-UNSAT

Solver

Enumeration

clingo[lpx]

merrinASP[P,Q]

merrinASP[P,¬Q]

merrinASP[¬P,Q]

merrinASP[¬P,¬Q]

Total number

of instances

1 model

100 models or

unsatisfiable

Figure 2: Runtime distribution of 4 configurations of our MERRINASP implementation of the CEGAR-based Algorithm 1 and
Clingo[lpx] on OPT+qLP problem instances. All variants were applied to a benchmark built from a small-scale real biological
model (Figs. (a) and (b), 60 instances) and a large-scale real biological model (Figs. (c) and (d), 60 instances). Small-scale and
large-scale benchmarks contain both satisfiable instances (panels (a) and (c)) and unsatisfiable instances (panels (b) and (d)).
The four configurations of MERRINASP include a partitioning option (P) and the use of universally quantified linear constraints
(Q). Time is given in seconds in log10 scale. Dashed black horizontal lines represent the total number of instances

Benchmark Partitioned
(P)

Quantified
(Q)

Deciding SAT
Time (s)

Enumeration
Time (s)

LP solver
Time (s)

Number of LP
solvers calls

Number of
refinements

× × 18 761± 4 759 49 952± 18 515 3 812± 2 727 16 795± 2 364 2± 0
Small-SAT × X 5 528± 1 498 2 116± 1 044 1 433± 223 9 944± 1 470 1± 0

X × 28± 6 40± 11 34± 7 937± 111 5± 1
X X 9± 1 15± 3 15± 2 501± 41 6± 1

× × 5 143± 4 395 NA 1 112± 766 6 596± 3 723 1± 0
Small-UNSAT × X 247± 38 NA 137± 17 2 039± 115 1± 0

X × 30± 10 NA 24± 10 669± 221 9± 4
X X 10± 2 NA 7± 1 252± 54 9± 4

Large-SAT X × 3 163± 1 538 13 922± 1 946 801± 236 17 957± 5 032 41± 16
X X 183± 75 865± 112 121± 74 3548± 2184 21± 11

Large-UNSAT X × 739± 454 NA 374± 248 7 480± 4 673 17± 8
X X 135± 19 NA 41± 11 1155± 307 13± 3

Table 2: Comparative analysis of MERRINASP performance under different configurations. Results are presented as average
value ± standard deviation. Deciding SAT times denote the time needed to find a first model or to decide unsatisfiable. NA
indicates information not available. Bold values indicate the best value among all configurations for the current benchmark.

observation, it must find which capacities were set to 0 for
the maximum flow to match the observation. In this prob-
lem, Boolean clauses delimit admissible Boolean rules ac-
cording to biological knowledge. For each observation, ex-
istential constraints ensure the existence of a correspond-
ing flow, while universal constraints ensure that no flow is
strictly higher than the observed one. We refer the reader
to the above-mentioned paper for a formal definition of the
problem.

Benchmark description. We conducted experiments us-
ing MERRINASP on real-world benchmarks of metabolic

regulatory rules inference problems (Thuillier, Siegel, and
Paulevé 2023). Our benchmarks are composed of 120 in-
stances divided into 60 small-scale instances and 60 large-
scale instances. The small-scale benchmark is directly
sourced from (Thuillier et al. 2022), while the large-scale
benchmark is generated based on a large-scale regulated
metabolic network (Covert and Palsson 2002), following the
methodology outlined in the aforementioned paper. Bench-
marks are described in table 1. Instances of the large-scale
benchmarks have approximately 10 times more variables
and constraints than instances of the small-scale bench-
marks. Linear constraints can be partitioned into about 200

sets for small-scale instances and 140 sets for large-scale in-
stances.

Configuration. Each instance was executed on Haswell
Intel Xeon E5-2680 v3 CPU at 2.5GHz and 128GB of RAM
and 100 models were enumerated.

Results
We compared MERRINASP with Clingo[lpx], a state-of-the-
art ASP solver that handles quantifier-free linear constraints
(Janhunen et al. 2017) by extending Clingo with a DPLL-
adapted simplex algorithm (Dutertre and De Moura 2006).
Clingo[lpx] supports neither linear constraints partitioning
nor universal linear constraints. We further conducted a
comparative analysis of MERRINASP under four configu-
rations: with and without partioning of linear constraints
(denoted by P and ¬P), using the CEGAR approach over
quantified linear constraints (denoted by Q) or using quan-
tifier elimination (¬Q). Note that Clingo[lpx] is equivalent
to the configuration [¬P,¬Q], and that MERRINASP[P,Q]
exploits all the properties described in previous sections.

Comparison with Clingo[lpx]. As shown in Fig. 2a
and 2b, on small-scale instances, MERRINASP and
Clingo[lpx] solve the instances in a similar order of magni-
tude (10s in average for Clingo[lpx] and 30s in average for
MERRINASP). On large-scale instances, MERRINASP out-
performs Clingo[lpx] by a factor of 10 (see Figs. 2c and 2d).

As shown in Fig. 2c, MERRINASP excels at finding the
first model in large-scale satisfiable instances, outperform-
ing Clingo[lpx] by a factor of 30. The difference in perfor-
mance between the two solvers heavily depends on the enu-
meration phase. The CEGAR method requires many checks
to ensure that a model of the Boolean abstraction is a model
of the original OPT+qLP problem, even after reaching equi-
satisfiability. Consequently, while MERRINASP is signif-
icantly faster than Clingo[lpx] in finding the first model
for satisfiable problems, both solvers exhibit similar perfor-
mance in enumerating the other 99 models.

Impact of partitioning (P). Figs. 2a and 2b suggest that
linear constraints partitioning (P) increase the performance
of MERRINASP by a factor of 1000 on satisfiable instances
and a factor of 20 on unsatisfiable instances. No instance
of the large-scale benchmark has finished in 48 hours for
the not-partitioned configurations. Table 2 shows that while
partitioning entails solving a larger number of linear opti-
mization problems, the total number of linear optimization
problems solved is reduced by a factor of 10 compared to
without partitioning. On the small-scale satisfiable (resp. un-
satisfiable) instances, MERRINASP[P,Q] solved in average
501 (resp. 252) linear optimization problems, against 9 944
(resp. 2 039) for MERRINASP[¬P,Q].

Impact of quantified linear constraints (Q). Our
counter-example generation for universally quantified lin-
ear constraints consistently outperforms quantifier elimina-
tion reformulations by a factor of 3 on the small-scale and
20 large-scale benchmarks. From Table 2, we can see that
twice fewer refinements are made when using quantified lin-
ear constraints (Q) compared to using quantifier elimination

(¬Q). For large-scale (resp. small-scale) instances, these re-
finements were generated using 7 (resp. 2) times fewer calls
to the linear solvers when using (Q) compared to (¬Q).

Discussion. These results highlight that both linear con-
straint partitioning (P) and counter-example generation for
universally quantified linear constraints (Q) have significant
impacts on performance. Using both of them allows divid-
ing computation time by 2 000 compared to not using any
of them. They allow for generating more efficient refine-
ments (gain of 2) while reducing the number of linear solver
calls (gain of 7). This reduction is attributed to the parti-
tioning approach, which enables solving independent linear
optimization problems with a reduced number of constraints
and variables. Their small size leads to faster computation
of unsatisfiable and optimal cores for each counter-example,
and their independence allows for reducing the number of
verifications: a set that has passed the linear checks does not
have to be checked again.

MERRINASP is a prototype and does not use efficient ap-
proaches to instantiate and solve linear optimization prob-
lems. In contrast, Clingo[lpx] and SMT solvers, such as
z3 (De Moura and Bjørner 2008), use an incremental im-
plementation of the simplex algorithm to check linear con-
straints (Dutertre and De Moura 2006). Our approach is not
dependent on the method used to solve linear constraints.
This suggests that MERRINASP has the potential to further
enhance its performance by integrating these algorithms.

Conclusion and Future Work
In this paper, we presented a novel approach for solv-
ing combinatorial optimization problems with Boolean
logic and quantified linear constraints (OPT+qLP), based
on Counter-Example-Guided Abstraction Refinement (CE-
GAR). Our implementation, MERRINASP, was developed
using Answer Set Programming.

To evaluate the effectiveness of our approach, we in-
troduced a new benchmark of small-scale and large-scale
OPT+qLP problems inspired by systems biology. We com-
pared MERRINASP against a state-of-the-art ASP modulo
quantifier-free linear constraints solver, Clingo[lpx]. The re-
sults highlight that MERRINASP scales significantly better
than Clingo[lpx] on large-scale satisfiable instances, espe-
cially for the search of one model on satisfiable instances.
The enumeration of models and unsatisfiable instances re-
main competitive with Clingo[lpx] but suggest room of im-
provement to improve the CEGAR approach and reduce the
number of counter-example checks (Brummayer and Biere
2009; Lagniez et al. 2017).

Looking ahead, we plan to automate the linear constraint
partitioning process and explore the integration of our ap-
proach with the DPLL-based simplex algorithm used in
Clingo[lpx]. Moreover, the integration of quantified Lin-
ear Real Arithmetics theory (LRA) (Reynolds, King, and
Kuncak 2017) could provide complementary refinements
using linear constraints, while our approach refines by the
means of combinatorial constraints. These future advance-
ments hold the promise of further enhancing the efficiency
and applicability of CEGAR-based OPT+qLP solvers.

Acknowledgments
Work of KT and LP is supported by the French Agence Na-
tionale pour la Recherche (ANR) in the scope of the project
“BNeDiction” (grant number ANR-20-CE45-0001).

References
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. New York, NY, USA: Cam-
bridge University Press. ISBN 0521818028.
Barrett, C.; and Tinelli, C. 2018. Satisfiability modulo theo-
ries. Springer.
Brummayer, R.; and Biere, A. 2008. Lemmas on Demand
for the Extensional Theory of Arrays. In Proceedings of
the Joint Workshops of the 6th International Workshop on
Satisfiability Modulo Theories and 1st International Work-
shop on Bit-Precise Reasoning, SMT ’08/BPR ’08, 6–11.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781605584409.
Brummayer, R.; and Biere, A. 2009. Effective bit-width and
under-approximation. In International Conference on Com-
puter Aided Systems Theory, 304–311. Springer.
Chevalier, S.; Froidevaux, C.; Paulevé, L.; and Zinovyev,
A. 2019. Synthesis of Boolean Networks from Biological
Dynamical Constraints using Answer-Set Programming. In
2019 IEEE 31st International Conference on Tools with Ar-
tificial Intelligence (ICTAI), 34–41.
Cimatti, A.; Griggio, A.; and Sebastiani, R. 2011. Comput-
ing small unsatisfiable cores in satisfiability modulo theo-
ries. Journal of Artificial Intelligence Research, 40: 701–
728.
Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H. 2003.
Counterexample-guided abstraction refinement for symbolic
model checking. Journal of the ACM (JACM), 50(5): 752–
794.
Covert, M. W.; and Palsson, B. Ø. 2002. Transcriptional
Regulation in Constraints-based Metabolic Models of Es-
cherichia coli* 210. Journal of Biological Chemistry,
277(31): 28058–28064.
Covert, M. W.; Schilling, C. H.; and Palsson, B. 2001.
Regulation of gene expression in flux balance models of
metabolism. Journal of theoretical biology, 213(1): 73–88.
De Moura, L.; and Bjørner, N. 2008. Z3: An efficient
SMT solver. In International conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, 337–
340. Springer.
Dutertre, B.; and De Moura, L. 2006. Integrating simplex
with DPLL (T). Computer Science Laboratory, SRI Interna-
tional, Tech. Rep. SRI-CSL-06-01.
Frioux, C.; Schaub, T.; Schellhorn, S.; Siegel, A.; and
Wanko, P. 2019. Hybrid metabolic network completion.
Theory and Practice of Logic Programming, 19(1): 83–108.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub,
T. 2017. Multi-shot ASP solving with clingo. CoRR,
abs/1705.09811.

Janhunen, T.; Kaminski, R.; Ostrowski, M.; Schellhorn, S.;
Wanko, P.; and Schaub, T. 2017. Clingo goes linear con-
straints over reals and integers. Theory and Practice of Logic
Programming, 17(5-6): 872–888.
Janota, M.; Klieber, W.; Marques-Silva, J.; and Clarke, E.
2016. Solving QBF with counterexample guided refinement.
Artificial Intelligence, 234: 1–25.
Khasidashvili, Z.; Korovin, K.; and Tsarkov, D. 2015. EPR-
based k-induction with Counterexample Guided Abstraction
Refinement. In GCAI, 137–150.
Lagniez, J.-M.; Berre, D. L.; de Lima, T.; and Montmirail,
V. 2017. A Recursive Shortcut for CEGAR: Application To
The Modal Logic K Satisfiability Problem. In Proceedings
of the Twenty-Sixth International Joint Conference on Arti-
ficial Intelligence, IJCAI-17, 674–680.
Lougee-Heimer, R. 2003. The Common Optimization INter-
face for Operations Research: Promoting open-source soft-
ware in the operations research community. IBM Journal of
Research and Development, 47(1): 57–66.
Mahout, M.; Carlson, R. P.; and Peres, S. 2020. Answer
Set Programming for Computing Constraints-Based Ele-
mentary Flux Modes: Application to Escherichia coli Core
Metabolism. Processes, 8(12).
Nieuwenhuis, R.; Oliveras, A.; and Tinelli, C. 2006. Solv-
ing SAT and SAT modulo theories: From an abstract
Davis–Putnam–Logemann–Loveland procedure to DPLL
(T). Journal of the ACM (JACM), 53(6): 937–977.
Orth, J. D.; Thiele, I.; and Palsson, B. Ø. 2010. What is flux
balance analysis? Nature biotechnology, 28(3): 245–248.
Reynolds, A.; King, T.; and Kuncak, V. 2017. Solving quan-
tified linear arithmetic by counterexample-guided instantia-
tion. Formal Methods in System Design, 51: 500–532.
Thuillier, K.; Baroukh, C.; Bockmayr, A.; Cottret, L.;
Paulevé, L.; and Siegel, A. 2022. MERRIN: MEtabolic reg-
ulation rule INference from time series data. Bioinformatics,
38(Supplement 2): ii127–ii133.
Thuillier, K.; Siegel, A.; and Paulevé, L. 2023. CEGAR-
based approach for solving combinatorial optimization mod-
ulo quantified linear arithmetics problems – Code and Ap-
pendix. https://doi.org/10.5281/zenodo.10361533. Ac-
cessed: 2023-12.
Videla, S.; Saez-Rodriguez, J.; Guziolowski, C.; and Siegel,
A. 2017. caspo: a toolbox for automated reasoning on the
response of logical signaling networks families. Bioinfor-
matics, 33(6): 947–950.
von Kamp, A.; and Klamt, S. 2014. Enumeration of Small-
est Intervention Strategies in Genome-Scale Metabolic Net-
works. PLOS Computational Biology, 10(1): 1–13.

