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Abstract A Bayesian optimization-based approach was investigated with data extracted from a live net-
work as part of a field trial to retrieve hard-to-measure equipment parameters. These parameters were
then utilized to improve the accuracy of the Quality of Transmission estimation. ©2023 The Author(s)

Introduction

The Quality of Transmission (QoT) includes all the
metrics that assess the quality of the received op-
tical signal, particularly the Signal-to-Noise Ra-
tio (SNR), the Bit Error Rate (BER) and the Q-
factor. These metrics are crucial during network
design and for assessing the feasibility of a light-
path when establishing a new service between
two nodes in an optical network. The QoT esti-
mation is traditionally performed using analytical
models[1]. These models vary in their accuracy
(i.e. the difference between the measured and
the computed QoT), execution time and working
hypothesis, which leaves room for improvement.

Several studies have suggested using Artificial
Intelligence (AI)-based solutions to estimate or
improve the QoT. In[2], we distinguish three cat-
egories of solutions according to their scope: i)
checking lightpath feasibility; ii) estimating a light-
path’s QoT; and iii) enhancing analytical models.
While the first category focuses on providing a bi-
nary result concerning the feasibility of a path in
terms of a QoT metric, the second category aims
to retrieve the exact value of the QoT. The third
category of solutions instead uses AI to assist the
analytical QoT estimation tools to improve the ac-
curacy of the QoT computation.

Our solution falls into the third category, as we
use an optimization algorithm to refine the values
of a set of parameters considered as uncertain.
Value uncertainty stems from several factors, in-
cluding equipment aging and the difficulty of tak-
ing measurements in the field.

In this paper, we improve our Bayesian
optimization-based model proposed in[3] by using
both SNR and power measurements in the ob-
jective functions. Moreover, we validate this new
model by applying it in a live operational network
as part of a field trial.

Problem Formulation

We denote Qli as the QoT indicator of a can-
didate lightpath li, to be deployed in a network
G = (N,L), where N and L are the set of nodes
and links respectively. Pli represents the set of
parameters related to nodes Ni and links Li com-
posing the li route as well as the equipment con-
figuration Ki (i.e., Pli = (Ni, Li,Ki)). To compute
the QoT of several lightpaths, the analytical model
M relies on a set of input parameters P =

⋃
li
Pli .

We split the parameters P into certain PC , which
represents parameters whose values are trusted,
and uncertain parameters PU , which represents
parameters whose values might be missing or
have changed during the life-cycle of the network,
(i.e., P = PC ∪ PU ).

We assume that we have the measured val-
ues of the QoT of M lightpaths in the network
Q = {Qli : i ∈ [1,M ]}. We compute the esti-
mated QoT of those lightpaths using an analyti-
cal model M to obtain Q̃ = {Q̃li : i ∈ [1,M ]}.
Let fVU

be the parametric function used by M
to compute the QoT of a candidate lightpath li
for some given values of uncertain parameters
VU = {vp : p ∈ PU} such that Q̃li = fVU

(li). As
fVU

is supposed explicitly unknown, we formulate
our problem as a black box multi-objective gen-
eral optimization problem[4] with the goal of deter-
mining VU∗ = argminVU

{Eli =
∣∣Qli − fVU

(li)
∣∣ :

i ∈ [1,M ]}. By finding the uncertain parameters’
values VU∗ that optimize the QoT of a set of light-
paths M , we aim to improve the QoT estimation
of the soon-to-be-deployed lightpaths.

We set up a learning process to optimize net-
work parameters after each service deployment
as follows: after the deployment of the kth service
sk, the network parameters are optimized using
the performance metrics of the services already
deployed SD = {sj : j ∈ [1, k]} as objective func-



Fig. 1: The subnetwork transmission lines used for the
optimization process

tions. The expected performance of the services
not yet deployed SND = {sj : j ∈ [k + 1, N ]}
are then estimated using the new uncertain pa-
rameters’ values. We assess the performance of
our solution by computing the QoT estimation ac-
curacy on SD and SND. In the remainder of this
paper, we refer to the error in the estimated SNR
of deployed services SD as the training error and
the error in the estimated SNR of non deployed
services SND as the validation error.

The learning process described above is ap-
plied to the Bayesian optimization in the same
way as[3]. We consider four uncertain parame-
ters: the noise figure of amplifiers (NF), connec-
tor loss (CL), fused loss in the fiber (FL), and the
power equalization indicator (PEI), which controls
the output power of the Reconfigurable Optical
Add Drop Multiplexer (ROADM). These parame-
ters are not the only source of uncertainty but they
are the most meaningful contributors to noise in
SNR computation. For instance, the NF impacts
on the linear noise, while the CL, FL and PEI im-
pact on signal power, and thereby on non linear
noise. In addition to the SNR, we extend the ob-
jective functions by considering the total output
power from the amplifiers. This constrains the
problems by reducing the degrees of freedom in
the parameter space. The multiple objective func-
tions related to SNRs and the output powers are
aggregated into one using the root mean squared
error (RMSE) operator.

Field Trial Description

Tab. 1: List of monitored services in the two transmission
lines

Line Route List of Service

1
A-B S11

B-C S2, S3, S4, S5, S6, S7, S8, S9

A-C S1, S10, S12

2
D-F S1, S7, S8

D-G S2, S3

D-H S4, S5, S6

The field trial was performed in two optical
transmission lines that belong to a real opera-
tional transport network. The network is managed
by a Network Management System (NMS) and
is composed of 8 ROADMs and extended over
1000 km. These two lines are independent of
each other and have different equipment config-
urations. Each Optical Multiplex Section (OMS)
is composed of fiber spans of different lengths as
depicted in Fig. 1.

We developed a data extractor module to col-
lect data related to the two transmission lines.
The extractor uses the North Bound Interface
(NBI) of the NMS to provide: i) topology-related
data that mainly concern nodes, network ele-
ments cards and links; ii) service-related data
that provide for instance the modulation format,
bit rate and routing of each service; and iii)
performance-related data that provide the output
power of each amplifier and the BER of each
service. The BER is transformed to SNR using
transponder B2B characterization as in[5]. Data
extracted from the NMS are not exhaustive, which
leads us to complete the models with external
information such as equipment characterizations
and specifications. Several services (between 16
and 49) are transmitted through the setup with dif-
ferent source-destination nodes leading to a dif-
ferent spectrum load distribution in each OMS. As
depicted in Tab. 1, we only monitored the perfor-
mance of a selected list of services, 12 services
in Line 1 and 8 services in Line 2.

Since the monitored services already exist in
the field, we emulate a progressive deployment of
services to test the potential effect of the learning
process on QoT estimation. In this scenario, we
assume, at the beginning of each step, that a new
service is deployed (i.e., one service is removed
from SND and added to SD). Then, we perform
the optimization based on performance collected
from SD. Finally, we compute the training error
and the validation error corresponding to the error
between the measured and the estimated SNR in
SD and SND, respectively.

The Gaussian Noise Like Interference model is
considered as the the analytical model M. Thus,
we choose the implementation provided by the
GNPy library[6] to calculate the estimated value
of the SNR of each service (i.e., Q̃), as well as
the power at the output of each amplifier. The
goal of the experiment is to test if our optimization
model is able to minimize the error between the
SNR measured in the field and those computed
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Fig. 2: Optimization results of the progressive deployment scenario. (a) Mean SNR error progression for Line 1. (b) SNR error
per service for Line 1. (c) Mean SNR error progression for Line 2. (d) SNR error per service for Line 2

by GNPy.

Learning Process and Results Discussion
The graphs in Fig. 2a and Fig. 2c depict the pro-
gression of the mean SNR error after each suc-
cessive optimization for Line 1 and Line 2 respec-
tively. The initial error (init-err) shows the ex-
pected performance without the optimization pro-
cess and serves as a benchmark. The training
error (train-err) and validation error (vald-err) are
calculated at each step k by averaging the SNR
error for the SD and SND services respectively.
We note that the initial error is around 2 dB for
Line 1 and 1.5 dB for Line 2. Those errors are
mainly due to the fact that data extracted from the
live network and used to model the two lines in
GNPy are not reliable (e.g., missing or not up-to-
date values). The high initial error stresses the
importance of refining network parameters. After
performing the optimization, the mean SNR er-
ror (i.e., full-err) is reduced by 1.44 dB for Line 1
and 0.52 dB for Line 2. The ability of the algo-
rithm to minimize the error depends on the num-
ber of parameters to optimize and the number
of services already deployed. For instance, the
algorithm needs more iterations to converge to
the correct uncertain parameters’ values in Line 2
than in Line 1 as the topology of Line 2 is more
complex. The training and validation error slightly
fluctuate depending on which service is optimized
first, but the overall trend shows that the error de-
creases proportionally to the number of services

taken into consideration during the optimization.
To better understand the optimization results,

we plot the improvement in SNR estimation for
each service in graphs Fig. 2b and Fig. 2d. The
error without optimization (no-opt) is the initial er-
ror per service. The error before service deploy-
ment (pre-depl) shows the expected improvement
in SNR estimation if the optimization process is
performed just before deployment. The error af-
ter all optimizations (all-opt) is the expected per-
formance after all optimizations have been per-
formed. We observe that the initial SNR error for
each service varies between 0.5 dB and 3 dB. Af-
ter successive optimizations, the performance of
services having an initial error over 0.5 dB is sig-
nificantly reduced and the improvement in SNR
error can reach up to 1.78 dB. Furthermore, the
all-optimization error shows that continuous opti-
mizations serve to further increase the accuracy
of the QoT estimation and do not penalize the al-
ready deployed services. By analyzing the pre-
depl error, we can expect up to 1.6 dB of improve-
ment in QoT estimation.

Conclusion
We present the results of a field trial where a
Bayesian optimization-based solution was used
to improve QoT estimation provided by an analyti-
cal model. By refining data directly extracted from
the live network, the accuracy of QoT estimation
was improved by up to 1.78 dB per service.
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