
HAL Id: hal-04420416
https://hal.science/hal-04420416v1

Submitted on 26 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Rethinking Scene Graphs for Action Recognition
Mathieu Riand, Patrick Le Callet, Laurent Dollé

To cite this version:
Mathieu Riand, Patrick Le Callet, Laurent Dollé. Rethinking Scene Graphs for Action Recognition.
2023 IEEE International Conference on Visual Communications and Image Processing, Dec 2023,
Jeju, South Korea. �hal-04420416�

https://hal.science/hal-04420416v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Rethinking Scene Graphs for Action Recognition
Mathieu Riand1,3, Patrick Le Callet1,2

1Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004
F-44000 Nantes, France

2Institut Universitaire de France
mathieu.riand@univ-nantes.fr, patrick.le-callet@univ-nantes.fr

Laurent Dollé3
3CEA

CEA Tech Pays de la Loire
F-44340 Bouguenais, France

laurent.dolle@cea.fr

Abstract—Over the last years, Graph Neural Networks (GNNs)
have been widely used in a variety of applications, including
action recognition. Scene graphs are extracted from videos and
fed to a GNN in order to predict the action represented. However,
in previous works, choices regarding the design of such scene
graphs are often arbitrary; for instance, directed temporal edges
are added without giving the GNN the capacity to use this
information. In this work, we rethink the way scene graphs are
built, taking inspiration from line graphs in order to propose a
new design that can be applied to any type of human activity. We
perform our experiments on 2 datasets and show that adapting
our GNN so that it can make use of temporal edges improves its
precision up to 7.5% for action recognition. We also show that
adopting our alternate design for scene graphs further improves
performance by an additional 14%, bringing new perspectives
to this field.

Index Terms—Action recognition, scene graphs, graph neural
network

I. INTRODUCTION

Recently, Graph Neural Networks (GNNs) [1] and graph
representations in general have seen a growing interest from
the scientific community to solve a wide range of problems:
from chemical property prediction for molecules or proteins
[2] to link prediction in social networks [3], graphs have the
capacity to represent very complex information in a symbolic
way, allowing networks to capture features otherwise hard to
extract from raw data.

Action recognition [4] can also be solved using graph
representations, by considering objects and hands in a video
as the nodes of a scene graph, in which edges represent
symbolic spatial relations between objects. Those graphs have
the advantage of being easily interpreted, since they are a
direct transcription of the scene. However, they require a
certain level of knowledge about the scene in order to use the
right set of spatial relations. Time is often represented through
temporal edges; they are simple directed edges added in order
to link the same instance of an object across the duration of
a video, as in [5].

In this paper, we propose more general scene graphs where
we use the raw 3D position of objects instead of symbolic
relations. We also argue that the addition of temporal edges
in scene graphs can be useful if and only if the GNN used
to classify them is able to differentiate between different
types of edges, which is not the case in [5] for instance.

This work was supported by Conseil Régional des Pays de la Loire.

Furthermore, we think that this field of research would benefit
from using scene graphs that are better suited to the capacities
of GNNs; in this paper, we propose a design inspired from line
graphs where each node contains two objects and their relative
positions. This simplifies our GNN and its training since it is
no longer needed to use spatial relations on edges.

To sum up, in this work:
• We show that the inclusion of edge types in order to

differentiate spatial and temporal edges, paired with a
GNN able to grasp this information, brings improvement
to the action classification precision by up to 7.5%.

• We propose a new design for scene graph, inspired from
line graphs, and show that it greatly improves the gen-
eralization power of our GNN when classifiying actions,
bringing us to state-of-the-art performances without using
expert information such as symbolic spatial relations.

We perform these experiments on the Bimanual Actions
dataset [5] and also on a personal dataset containing mainly
manipulation tasks on a conveyor.

II. RELATED WORKS

Many approaches have been proposed over decades to tackle
action recognition in computer vision [4], evolving with the
parallel advances in deep learning. We present only methods
that used graphs for action recognition; for a broad review of
the domain, we refer the reader to [6].

A family of works considers that a large part of the needed
information to predict the performed action is carried by
the person. Thus, those methods extract the human skeleton
and train networks on this information to perform action
recognition. In [7] and [8] the authors represent sequences
of skeleton data as a 3D information that is then fed to
a CNN, along with the motion information of the skeleton
(computed the same way as the optical flow for images), to
predict the performed action. Other works like [9] convert
skeleton sequences into RGB images to use CNNs originally
built to process images, such as YOLO [10], in order to process
those newly formed skeleton images. Lastly, [11] and [12] use
the fact that skeletons can be naturally represented as graphs,
where body joints are vertices and bones are edges, and train
GNNs to perform action recognition.

However, for some actions, only having the skeleton in-
formation can be limiting; this is why works such as [5]
included objects in their graph representation of the scenes



along with important body joints, mainly the hands. Such
graphs containing objects, humans, and their relations are
called scene graphs. However, the relations they contain are
often specific to the use-case, and cannot be generalized to
other works; for instance, in [13] objects can only be in
contact, in front of each other or not touching. In [14], authors
are using very specific contact relations, such as ”sat on” or
”eating”, which are already actions that need to be recognized.

In [5] and [11], directed edges, or temporal edges, allow
to link similar joints or objects across time; this is a way
of including temporal information initially contained in the
videos directly into the graphs. However, we believe that
adding temporal edges as simple directed edges makes it
harder for the GNN to use this information; in this work, we
explore ways of adding temporal edges in a more meaningful
way in our graphs, notably by adapting the convolutional layer
of our GNN.

On top of this, classical scene graphs are modeled directly
on the video; in [5] for instance, an object is represented by
one node. It is possible to ”paste” the graph over the frame
it corresponds to, which makes it very interpretable; but this
limits the amount of different graphs that could be generated
from one scene, and perhaps this formalism is not the best
adapted to GNNs. This is why in this work we propose to
start exploring new designs for scene graphs in order to find
the ones bringing good performance on action recognition.

III. METHOD

The scene graphs we propose share similarities with the
ones used in [5], as seen in Figure 1. Nodes represent objects
and human hands involved in the task; compared to previous
works, we separate actors (namely hands) from targets (manip-
ulated objects). This allows to also differentiate between edges
linking an actor to a target, which we call actor-target inter-
edges, and edges connecting two actors or two targets together,
called intra-edges. In our past experiments, we noticed that
removing intra-edges boosts the performance of our GNN, so
we do not include them in this work. Each node contains the
position and the class of the object it represent; as in [5], we
also create our scene graphs by concatenating ten successive
frames so that we can capture the movement of each object.

For each scene graph we generate 6 variants, each having a
different way to include the temporal dimension of our videos.
We first propose to add a timestamp on the nodes, representing
the frame number at which the object is detected; this is a
direct way to represent time in the graph since objects can
now be followed using this value in ascending order.

As in [5], we also introduce directed temporal edges (see
Figure 2) connecting nodes corresponding to the same object
or hand instance across time. However, as mentionned in the
introduction, we also add a flag on these edges in order to
differentiate them from the others; in practice, it is simply
a value that is read by our GNN and that allows it to learn
separately on spatial and temporal edges. In short, each graph
can have a timestamp on each node, temporal edges, and edge

types only when temporal edges are used, which totals to 6
variants.

Finally, we propose an alternative to classical scene graphs,
which we call line scene graphs; we take inspiration from
line graphs in the sense that what was previously an edge
representing the relation between two objects is now a node
containing both objects, encoded as a 3D vector representing
the distance between them (∆x,∆y,∆z), and their classes
(hand, bowl, etc). They also feature a temporal marker: its
value is 0 if the two objects are at the same instant (formerly
a spatial edge) and 1 if they are consecutive in time (formerly
a temporal edge). Their design is summarized by Figure 3.

We generate our graphs directly from ground truth when
available; we do this in order to have access to the position
of all objects with the least amount of noise possible, so that
our results depend only on the graph design we chose.

For the training model, we inspire from the one proposed
in [15] (see Figure 4), consisting of 4 graph convolutional
layers whose outputs are aggregated using a sum pooling
operation, followed by 2 fully-connected layers and a final
linear layer to output classification scores. We changed the
convolutional layers to match the information available on our
edges depending on the graph design.

IV. EXPERIMENTS

A. Datasets

As mentionned in the introduction, we perform our exper-
iments on two datasets to make more general observations
on scene graph design choices. We first use the Bimanual
Actions dataset [5] (see Figure 1, containing 540 videos of
6 different actors performing 9 tasks, ranging from cooking to
hammering. These demonstrations contain few objects, which
makes for very sparse scene graphs.

This is why we also perform our experiments on a dataset
that we recorded (see Figure 2), which contains 760 videos of
19 actors performing 8 different manipulation scenarios. The
tasks presented in this dataset are simpler, but they contain a
lot of objects (sometimes more than 20) which allows to create

Fig. 1. Extracting a scene graph from a frame: we make the difference
between actors and targets for the nodes involved in the action.



Fig. 2. Including temporal edges in scene graphs (represented as yellow
directed edges).

wider scene graphs; additionally, more variants of each action
are available since the number of actors is much higher.

B. Training parameters

For each experiment, the maximum number of epochs is set
to 200, and the learning rate to 10e-3. We also perform early
stopping to avoid overfitting; we stop the training after 20
epochs without any improvement on the validation loss. For
the scene graphs extracted from Bimanual Actions [5], we
performed leave-one-subject-out cross-validation, each time
using 4 actors for the training set, one for the validation set
and the last one as test set; the results are then averaged
over the 6 folds. For our dataset, we also performed a
cross-validation, this time simply using a 60/20/20 split for
training/validation/test. In each experiment we tried to predict
the action performed by the right hand.

C. Representing the time dimension

In this experiment, we changed the convolutional layers of
our network for RGCNConv [16], which allows the inclusion
of edge types; when training, RGCNConv learns separate
transform functions for each type of edge. For the cases where
we did not want to separate between spatial and temporal

Fig. 3. The design of our line scene graphs.

Fig. 4. The GNN used for action classification.

edges, all edges were set to the same unique type. We tried
every combination of the different ways to represent the time
dimension that we proposed in Section III, namely adding a
timestamp on the nodes, adding temporal edges and including
edge types. Those are denoted in the following tables as ”Node
feat.”, ”Temp. edges” and ”Type” respectively.

First, Table I displays all results from this experiment
applied to the Bimanual Actions dataset; we give precision,
recall and F1-score macro-averaged over all action classes;
best performances are highlighted in bold and worst ones in
italic. We note that the addition of timestamps increases the
precision of the network by approximately 4% when edge
types are not used. Adding edge types further increases the
precision by up to 7.5%.

From those results, we show first that timestamps on ob-
jects’ features are used by the network to grasp the temporal
information contained in the graph. Another interesting con-
clusion is that adding temporal edges without specifying any
edge type doesn’t seem to yield significant improvements on
our target task; it can even damage the overall performance
of the network. However, when using edge types (spatial and
temporal) the quality of the action prediction seems to improve
greatly. This supports our assumption that in order for the
network to grasp the usefulness of temporal edges, they need
to be treated separately. Finally, the time stamp information
seems to be of no importance when temporal edges with a
specific edge type are used, meaning that those edges alone
carry enough information to grasp the temporal nature of the
graphs.

Next, we perform the same experiment on our dataset;
our results are shown in Table II. This time, we can see
that the addition of temporal edges actually deteriorates the
performance of our GNN on action recognition; including edge
types only helps regaining what has been lost by the inclusion
of the temporal edges. Furthermore, using timestamps on node
features doesn’t help the network either.

Those results make us conclude that the inclusion of tem-
poral edges in scene graphs should not be systematic, as it
often is in the literature. In some cases, such as in our dataset,
they do not bring useful information; this brings us to think



TABLE I
ACTION RECOGNITION PERFORMANCE ON [5] FOR DIFFERENT TIME

REPRESENTATIONS.

Graph design Top prediction
Node feat. Temp. edges Type Prec. Rec. F1

X X X 0.3949 0.3657 0.3368
✓ X X 0.4347 0.4249 0.3628
X ✓ X 0.3965 0.3700 0.3293
✓ ✓ X 0.4437 0.4139 0.3665
X ✓ ✓ 0.4731 0.4355 0.3901
✓ ✓ ✓ 0.4732 0.4547 0.4067

[5] - object positions / / 0.31
[5] - symbolic relations 0.63 0.63 0.63

TABLE II
ACTION RECOGNITION PERFORMANCE ON OUR DATASET FOR DIFFERENT

TIME REPRESENTATIONS.

Graph design Top prediction
Node feat. Temp. edges Type Prec. Rec. F1

X X X 0.3510 0.3301 0.3031
✓ X X 0.3311 0.3136 0.2766
X ✓ X 0.3128 0.3044 0.2739
✓ ✓ X 0.3108 0.3155 0.2772
X ✓ ✓ 0.3418 0.3124 0.2891
✓ ✓ ✓ 0.3494 0.3383 0.2924

that maybe classical scene graphs are not always an optimal
solution to represent videos, and that we must propose new
ways to represent our scenes.

D. Line scene graphs

In [5], edges carry symbolic values representing spatial
relations between nodes; this results in simpler graphs and
in better performance on action recognition. However, this
is a restrictive representation of the environment; in this last
experiment, we generated graphs where spatial edges carry the
euclidean distance between connected objects. To be able to
use edge features, we again changed the convolutional layer in
our GNN; NNConv [17], for instance, can take edge attributes
as an additional input.

Macro-averaged results are presented in Table III; note that
here the training has been done only on one fold. The precision
of the network making use of the euclidean distance is 11.2%
lower than the base one using no edge features.

We can see that the model having access to the euclidean
distance performed worse. The overall precision of the network
on action recognition is lower, and training time is much
higher. Adding low-level information on edges seems to not
be beneficial to the model; however it is difficult to affirm
this since different layers were used for the two setups, so the
difference in performance might as well come from NNConv
itself.

The use of NNConv to process edge features is computa-
tionally expensive; we argue that this comes from the fact that
scene graphs are currently representing the scene in a non-
optimal way. For the distance to be easily used by a GNN, it
should be contained on the nodes, which is why we proposed
our line scene graphs in Section III.

TABLE III
EDGE FEATURES INFLUENCE ON ACTION RECOGNITION (BIMANUAL

ACTIONS DATASET).

Information level Training
on edges Prec. Rec. F1 duration (s)

No edge features 0.7306 0.7333 0.7147 343
Euclidean distance 0.6181 0.5279 0.4949 1587

TABLE IV
COMPARING THE ACCURACY OF THE SAME GNN ON CLASSICAL SCENE

GRAPHS AND OUR PROPOSED LINE SCENE GRAPHS (BIMANUAL ACTIONS
DATASET).

Graph type Accuracy
Training set Validation set Test set

Classical scene graphs 0.817 0.497 0.470
Line scene graphs 0.817 0.630 0.612

We use the same model as before with GCNConv [18] as
our convolutional layer since we no longer have edge types or
edge features, and train it on the dataset from [5] using our
new ”line” scene graphs. For a fair comparison, we also retrain
a network on classical graphs, using the same data split. Table
IV shows our results averaged over 4 trainings.

We can see that the accuracy is improved by more than
13% when using our line scene graphs, which is very close the
performance reported in [5] (63% accuracy). However, we use
no symbolic relations on edges, meaning that our graphs can
be applied to any other use case, such as the demonstrations
from our own dataset.

Additionally, the accuracy obtained on the training set is the
same for both designs: this shows that line scene graphs have a
much higher generalization power when exposed to new data.
When analyzing the confusion matrix of our GNN, we noticed
that our line scene graphs also allowed to detect rare classes
that were previously never recognized using classical scene
graphs.

V. CONCLUSION

In this work we have shown that it is possible to achieve
good performance for action recognition using generic scene
graphs while maintaining their interpretability. By rethinking
the way scene graphs are usually constructed, we achieve
performances comparable to the ones obtained using symbolic
graphs, without the extra step of detecting those symbolic
relations.

On top of this, we proved that the addition of temporal edges
in classical scene graphs must be done using edge types, so
that the GNN can treat temporal and spatial edges separately;
including them this way improved action recognition accuracy
by up to 7.5%.

In a future work, we would like to share our results on
applying self-supervised learning with scene graphs in order
to further improve the generalization power of our GNN, as
well as our dataset of video demonstrations along with their
annotations. Additionally, we want to apply our scene graphs
to other datasets to confirm their general purpose.



REFERENCES

[1] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in
graph domains,” Proceedings. 2005 IEEE International Joint Conference
on Neural Networks, vol. 2, 2005, pp 729–734.

[2] X. Wang, Z. Li, and M. Jiang, “Molecule property prediction based
on spatial graph embedding,” Journal of chemical information and
modeling, vol. 59, 2019, pp. 3817–3828.

[3] M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” Proceedings of the 32nd International Conference on Neural
Information Processing Systems, vol. 31, 2018, pp. 5171-–5181.

[4] J. Yamato, J. Ohya and K. Ishii, “Recognizing human action in time-
sequential images using hidden Markov model,” Proceedings 1992
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 1992, pp. 379–385.

[5] C. R. G. Dreher, M. Wächter and T. Asfour, “Learning Object-Action
Relations from Bimanual Human Demonstration Using Graph Net-
works,” in IEEE Robotics and Automation Letters, vol. 5, no. 1, Jan.
2020, pp. 187–194.

[6] Y. Zhu, X. Li, C. Liu, M. Zolfaghari, Y. Xiong, C. Wu, Z. Zhang, J.
Tighe, R. Manmatha, and M. Li, “A comprehensive study of deep video
action recognition,” arXiv preprint arXiv:2012.06567, 2020.

[7] C. Li, Q. Zhong, D. Xie and S. Pu, “Skeleton-based action recognition
with convolutional neural networks,” 2017 IEEE International Confer-
ence on Multimedia & Expo Workshops (ICMEW), 2018, pp. 597–600.

[8] C. Li, Q. Zhong, D. Xie and S. Pu, “Co-occurrence feature learning
from skeleton data for action recognition and detection with hierarchical
aggregation,” Proceedings of the 27th International Joint Conference on
Artificial Intelligence, 2018, pp. 786–792.

[9] J. Wu, Y. Li, L. Wang, K. Wang, R. Li, and T. Zhou, “Skeleton Based
Temporal Action Detection with YOLO,” Journal of Physics: Conference
Series, vol. 1237, 2019, p. 022087.

[10] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.

[11] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth
Innovative Applications of Artificial Intelligence Conference and Eighth
AAAI Symposium on Educational Advances in Artificial Intelligence
(AAAI’18/IAAI’18/EAAI’18), 2018, Article 912, pp. 7444-–7452.

[12] L. Shi, Y. Zhang, J. Cheng and H. Lu, “Skeleton-Based Action
Recognition With Directed Graph Neural Networks,” 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 7904–7913.

[13] E. E. Aksoy, A. Abramov, F. Wörgötter, and B. Dellen, “Categorizing
object-action relations from semantic scene graphs,” 2010 IEEE Inter-
national Conference on Robotics and Automation, 2010, pp. 398—405.

[14] J. Ji, R. Krishna, L. Fei-Fei, and J. C. Niebles, “Action genome: Actions
as compositions of spatio-temporal scene graphs,” Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 10236—10247.

[15] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph
contrastive learning with augmentations,” Proceedings of the 34th In-
ternational Conference on Neural Information Processing Systems, vol.
33, 2020, pp. 5812—5823.

[16] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Berg, I. Titov, and M. Welling,
“Modeling relational data with graph convolutional networks,” European
Semantic Web Conference, 2018, pp. 593–607.

[17] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for Quantum chemistry,” Proceedings of the
34th International Conference on Machine Learning, vol. 70, 2017, pp.
1263—1272.

[18] M. Welling and T. N. Kipf, “Semi-supervised classification with graph
convolutional networks,” International Conference on Learning Repre-
sentations (ICLR 2017), 2017.


