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Abstract

I examine the classical idea of ‘algorithm’ as a sequential, step-by-step, deterministic
procedure (i.e., the idea of ‘algorithm’ that was already in use by the 1930s), with respect
to the following themes: (a) its relation to the notion of an ‘effective procedure’, (b) its
different roles and uses in logic, computer science, and mathematics (focused on numerical
analysis), and (c) its different formal definitions that have been proposed by practitioners in
these areas. I argue that the term ‘algorithm’ has actually been conceptualized and used in
contrasting ways between the above areas, and I discuss the challenges and prospects for
the community toward adopting a final foundational theory of (classical) ‘algorithms’.

Keywords: Definitions of algorithms, Real computation, (Type-2) Turing computability, BSS,
Abstract State Machines, Recursors, Numerical analysis, Formalization of mathematical con-
cepts, Computational complexity

1 Introduction

Intuitively, we seem to have a good idea of what an algorithm is. If a competent mathematician
or computer scientist was asked to define ‘algorithms’, her answer would go something like this.
Algorithms are step-by-step procedures that are set out in a finite number of instructions; their
steps are small, so that they can be carried out by a calculator (human or otherwise) “mechani-
cally”, that is without any special knowledge or understanding being required at any step. Each
next step is uniquely determined by the current step and just the list of instructions. Call this
the classical idea of an ‘algorithm’ (described more precisely in sec.2); or, in Gurevich’s words:
algorithms in the sense of the 1930s (2019). How precise is this intuitive idea really? Can it be
more rigorously defined?

“Preprint version. Please cite the published version, which can be found in Philosophia Mathematica, Volume
31, Issue 3, 2023, 291-329, https://doi.org/10.1093/philmat/nkad011


fpapagia@uwo.ca
https://doi.org/10.1093/philmat/nkad011

1.1 Background and received views

Despite the long-standing prevalence of algorithmic methods in mathematics, attempts to for-
malize the above idea are relatively recent, and they are mostly a spin-off from the impressive
conceptual advancements in our understanding of how to demarcate the computable functions.
As it is well known, this understanding came about as the result of seminal work in the 1930s
by Godel, Church, Kleene, Rosser, Turing, Post, and others. The proposed formalisms turned
out to be extensionally equivalent, identifying the same class of number-theoretic functions as
the algorithmically computable ones. Nevertheless, from a conceptual point of view, the for-
malisms of Church-Rosser-Kleene and Godel-Herbrand were unconnected with the notion of
‘algorithm’ itself, for this notion refers rather to the process than to the result of a computa-
tion. The situation changed when Turing’s (1936) work came along, which analyzed the process
of computing by breaking it down into its conceptual constituents. This provided a low-level
analysis of what can (and cannot) ultimately be achieved by purely mechanical and elementary
steps, carried out by an (idealized) human agent. Turing’s analysis was widely conceived as
conclusive, and his name was added next to Church’s in a well-known thesis about the class of
effectively computable functions:

The Church-Turing Thesis (in the sense of the 1930s) (CTT): The effectively com-
putable functions over the non-negative integers are exactly the Turing-computable
functions.

The fact that Turing’s analysis focused on the process of computation, together with the
(seemingly innocuous) tacit assumption that what is meant by an ‘effective process of computing
a function’ (aka ‘mechanical procedure’) coincides with what is meant by ‘execution of an
algorithm’ led to the widely held view that the CTT and the Turing Machine (TM) formalism
explicate the notion of ‘algorithm’ itself. Indeed, there is now a long tradition in logic and
computer science that just identifies ‘effective procedures’ with ‘algorithms’. This tendency
is especially manifest in complexity theory, where statements regarding the existence or not of
algorithms with specific running time abound. Think, for example, statements of the kind: “there
is no algorithm that solves the Boolean satisfiability problem in polynomial time” (assuming
P £ NP); such statements are based on the use of TMs as the underlying model of computation,
and hence on the identification of algorithms with TM (i.e., effective) computations (see, e.g.,
Goldreich 2008, Lewis and Papadimitriou 1998, Sipser 2013, and also sec.3). Since this widely-
held view will play a special role in this paper, we will call it the First Received View (and later
on, the Symbolic View) about algorithms:

The First Received View about algorithms: A given procedure is an algorithm iff
it is an effective procedure.!

! Any talk of ‘algorithms’ in this paper concerns the classical, deterministic notion (the sense of the 1930s); see
sec.2.



Expectedly, the CTT has been widely taken in logic and computer science as concerning
algorithms. However, in order to distinguish this statement from the above-mentioned CTT, we
will call it the algorithmic Church-Turing thesis:>

The algorithmic Church-Turing Thesis (CTTayg)): The functions over the non-
negative integers that can be computed by following an algorithm are exactly the
Turing-computable functions.

The striking extensional equivalence of all the proposed formal concepts that aimed to de-
lineate the effectively computable number-theoretic functions (A-definable functions, recursive
functions, TMs, etc.) helped, in addition, to corroborate a conviction that there must be a clear
underlying concept of ‘mechanical procedures’. Godel wrote:

“If we begin with a vague intuitive concept, how can we find a sharp concept to
correspond to it faithfully? The answer is that the sharp concept is there all along,
only we did not perceive it clearly at first. ... We had not perceived the sharp concept
of mechanical procedures before Turing, who brought us to the right perspective.
And then we do perceive clearly the sharp concept.

If there is nothing sharp to begin with, it is hard to understand how, in many cases,
a vague concept can uniquely determine a sharp one without even the slightest free-
dom of choice.” (quoted in Wang 1997, 232-3; emphasis added)

Combined with the above-mentioned identification of mechanical (effective) procedures
with algorithms, this conviction naturally carried over into the notion of ‘algorithm’ itself. That
is, ‘algorithms’ were also seen as an informal-yet-rather-precise concept.” Gurevich (2019, 2.1),
for example, wrote recently that “[t]he 1930s notion of algorithm was robust”. This sentiment
remains so prevalent today that it also deserves a special name; call it the Second Received View
about algorithms:

The Second Received View about algorithms: There is a unified and robust pre-
theoretic idea of ‘algorithm’ in mathematics and computer science.

1.2 What this paper is about

This paper puts to the test both the aforementioned received views. Are the notions of ‘algo-
rithm’ and ‘effective procedure’ the same? Is the classical idea of ‘algorithms’ —the one that
was also at play in the 30s and underlay the development of computability— actually robust

2Dean (20164, 20) draws essentially the same distinction between these two versions of CTT.
3As just one example (among the many found in the literature) of unequivocal support for this sentiment,
consider:
“The intuitive concept of an algorithm, although it is nonrigorous, is clear to the extent that in
practice there are no serious cases when mathematicians disagree in their opinion about whether
some concretely given process is an algorithm or not” (Malc’ev, 1970, 18-19).



(or sharp)? To both questions I will give a negative answer. First, there exist well-defined
stepwise deterministic routines that the mathematical community is willing to accept as proper
algorithms, but which are not effective* (assuming a specific plausible extension of the CTT to
uncountable domains); see sec.4, for examples. Second, ‘algorithm’, even in its classical (and
ostensibly precise) sense, has been an open-textured concept, having given rise to more than one
sharpened notion used implicitly in the mathematical discourse.

The former thesis has been held by others philosophers as well.> However, in previous
discussions, a broader notion of ‘algorithm’ than the classical one has been usually assumed,
while here I only focus the discussion on algorithms in the sense of the 1930s. The latter thesis
has first been proposed by Shapiro in (2006; 2013). But, while Shapiro has held that open texture
was a feature of ‘algorithms’ (and ‘computability’) initially, and the notion was finally sharpened
in a unique way,® I attempt to show that the classical —open-textured indeed— idea of the 1930s
has evolved into two distinct conceptualizations that exist in parallel today in mathematics, logic,
and computer science.

Specifically, I argue that the outcome of one mode of sharpening ‘algorithms’ in the sense
of the 1930s is their common identification with the idea of ‘effective procedures’ (dominant in
logic and subdisciplines of computer science). That is, ‘algorithms’ became identical to compu-
tations by an (idealized) agent following a deterministic routine and having inexhaustible space
and time. Crucially, effective procedures in this sense are symbolic, as is explicitly captured
by Turing’s (1936) analysis and various later models.” T will hereafter refer to this sharpening
of ‘algorithms’ as symbolic (effective) procedures as ‘the Symbolic View’ (SV) (so, this is ac-
tually another name for the First Received View). But, at the same time, there exists another
regimentation of ‘algorithms in the sense of the 1930s’ (dominant in numerical analysis and
other areas of mathematics) as abstract —i.e., non-symbolic— processes, defined with respect
to stipulated primitive operations for different contexts and structures. I will refer to this second
sharpening of ‘algorithms’ as ‘the Abstract View’ (AV).

The paper is organized as follows. In section 2 I attempt a more precise characterization
of the 1930s idea of a ‘classical algorithm’. In section 3 I give a more precise account of the
SV —i.e., the regimentation of the 1930s idea as effective (symbolic) procedures. In section 4

“In the sense that they are not computable by a TM. Thus, in this paper, I start from the assumption that the
CTT correctly captures our notion of ‘effective’ but arrive at the conclusion that the CTT,) does not correctly
capture our notion of ‘algorithmic’.

5See, for example, Copeland and Shagrir (2019) and Shagrir (2022, ch.3) for relevant discussions and argu-
ments that ‘algorithms’ (simpliciter) is a broader notion than ‘effective procedures’ (in the sense of the term used
here).

®In much the same manner proposed by Lakatos (1976) regarding the (historical) development of mathematical
concepts.

"In this paper, I consider ‘effective procedures’ —in the sense of symbolic procedures that are in principle
simulable by an ideal agent in pen and paper, given enough space and time— a sharpened, proto-theoretic concept
(see sec.2 for explanation of this terminology). However, it should be noted that in computer science literature the
term appears with variant senses, which increasingly depart more and more from the original sense of ‘effectivity’
of the 1930s (as a symbolic deterministic procedure); see, e.g., Boker and Dershowitz (2010) and Gurevich (2019)
for different (and more recent) uses.



I examine examples of algorithms which, although in line with the pre-theoretic idea of ‘clas-
sical algorithms’, are not effective, and I introduce the alternative view of algorithms, i.e., the
AV. In section 5 I give a more precise account of the AV, drawing upon foundational theories
of algorithms that regard them as procedures directly over abstract objects as opposed to repre-
sentations thereof. In section 6 I provide an account for the emergence of the different views
(the SV and the AV), arguing that the classical, deterministic idea delineates an open-textured
concept, thus allowing room for two different notions of a ‘primitive step’, an absolute and a
relative one. In section 7 I discuss the dilemmas for the community in further regimenting the
intuitive, pre-theoretic, concept.

2 Algorithm: the informal concept and the road to formalization

I have proposed that the Second Received View about algorithms is that we have a robust under-
lying informal notion of ‘algorithm’ (in line with the words of Godel’s, Malc’ev’s and Gurevich’s
quoted earlier). What exactly is this notion? Virtually all practitioners might agree on something
like the following features as being essential for an algorithm:®

1. An algorithm is a general step-by-step procedure, prescribing a sequence of operations for
solving a type of problem. It must be expressed as a set of instructions of finite size.

2. An algorithm has a set (perhaps empty) of inputs and a (set of) output(s).

3. For any given input, the computation is carried out in a discrete stepwise fashion (that is,
without use of any continuous methods or analog devices). Alternatively put, an algorithm
proceeds in discrete time, so that at every given moment the state of the computation is
obtained from the state at the previous moment.

4. For any given input, the computation is carried out deterministically, without resort to any
random methods. The computational state at any given step/moment is uniquely deter-
mined by the state in the preceding step/time and the list of instructions.

5. The list of instructions that make up the algorithm are to be followed by a computing agent
(human or otherwise) which carries out the computation.

6. Each step of an algorithm must precisely and unambiguously be specified with sufficient
detail such that no ingenuity whatsoever is required by the computing agent.

7. An algorithm terminates after a finite number of steps.”

I will argue that it is this —purely intuitive— idea that has been sharpened further into two
different senses of a‘algorithm’. But, first, we need to quickly fix some terminology regarding
the different stages of sharpening and formalizing an intuitive idea in general.

8The characterization I provide here is distilled from descriptions in the classics Knuth (1997), Rogers (1987),
and Malc’ev (1970).

9While some authors (e.g., Knuth 1997) explicitly pose this requirement, others accept non-terminating proce-
dures as well. See, e.g., Hermes (1969, 2), Gurevich (2015, 189), and Moschovakis (1998, fn.16). In any case, we
do not need a definitive stance on this for the purposes of this paper.



Let us say that in moving from a purely intuitive to a purely formal concept, we start with
a pre-theoretic idea. At this initial level, the informal idea may be precise to a greater or lesser
extent, but it is typically employed and thought of on the basis of its paradigmatic cases, while it
may (possibly but not necessarily) have some vagueness at the boundaries of its extension. In our
case the pre-theoretic idea is something (along the lines of) the characterization of ‘algorithms’
just given. Then, at a second level, a process of a conceptual refinement of the pre-theoretic idea
comes into play, which involves fixing the boundaries and employing appropriate idealizations
and/or abstractions. The result of this “theoretic tidying” is an intermediate, more rigorous-
yet-still-informal concept, with now precise boundaries.!” Following Smith (2013), let us call
this intermediate concept proto-theoretic. In the case that concerns us, such proto-theoretic
concepts will be the distilled SV and AV, put forward in secs.3.3 and 5.4 respectively; the notion
of ‘effective procedure’, then, is —according to this paper’s proposal— one result of proto-
theoretic refinement of ‘algorithms’. Finally, a formal, ‘fully-theoretic’ counterpart is developed
to explicate the proto-theoretic concept. In our subject of concern, Turing machines and other
machine-based formal models are fully-theoretic explications of ‘effective procedures’, while
the formal theories discussed in sec.5 will be considered fully-theoretic explications of ‘abstract
algorithms’.

3 Building the Symbolic View: algorithms defined (formally)

The SV of algorithms is a familiar one. As said already, it is based on the well-entrenched idea
that certain formal models of computation that are used to explicate effective computations (es-
pecially symbolic ones) in some sense explicate the notion of ‘algorithm’ as well. Such formal
models are often motivated by the need to prove negative results, such as the non-existence of
algorithmic methods —either tout court or with specific time/space costs— for the solution of
given problems. In both computability and complexity theory, the dominant formal model that
plays this foundational role is the Turing machine. For example, it is on the grounds of their un-
solvabilty by a Turing machine (conjoined with the CTT and the co-extensionality of TMs with
other formal models) that problems like the Entscheidungsproblem are taken to be unsolvable by
effective procedures (i.e., ‘algorithms’ on the SV); and the same holds —at least, according to
the standard foundational story— for complexity results to the effect that no algorithmic method
exists for solving given problems within specific time or space limits.!!

However, none of the early works in computability theory was concerned explicitly with
defining ‘algorithms’ per se (but rather with extensionally delineating the class of computable

10This refinement process is alluded to in Carnap (1962) and discussed in more detail by Smith (2013, 344-5)
(upon which I also draw here). See also Shapiro (2013; 2015) for a close (but with some differences) account.

"More precisely, though, negative complexity results cannot be based on any kind of Turing machine or equiv-
alent model (although this is not the case with computability). The actual (equivalence) class of the appropriate
models for complexity, called the first machine class, imposes some restrictions on the computational power of
its members. For example, first machine class models must be so powerful as to be able to support representa-
tion of numbers in binary, but no so powerful as to allow parallel computations with arbitrary branching. See van
Emde Boas (1990), for details.



functions). And yet later works concerned with definitions of ‘algorithms’ per se followed suit
by remaining in the spirit of the above symbolic approaches. Two paradigmatic cases are the
works of Markov (1960, 1962) and Kolmogorov (later together with his student, Uspenskii)
(1963). The crucial assumption behind these approaches is that an algorithm is always a process
that exists with respect to some given alphabet and notational system. Such is the case with
Markov’s definitions of ‘normal algorithms’, and so is the case with algorithms as defined by
Kolmogorov and Uspenskii (K&U). As the latter authors succinctly put it: “Without fixing a
standard way of writing numbers, to speak of the algorithm computing [the value of a function
from its input] would make no sense.” (Kolmogorov and Uspenskii, 1963, fn.2; emphasis added).

3.1 Adding numerical algorithms to the picture

How do the foregoing approaches to formalizing ‘algorithms’ relate to the informal use of the
notion in mathematical practice? I have in mind here the use of algorithms in the context of
establishing rule-of-thumb methods for solving mathematical problems, such as finding roots of
(systems of) equations with real or complex coefficients (see, e.g., Chabert 1999).

In the last couple of centuries the search and study of such methods has formed the core of
an independent mathematical area, known as numerical analysis. The crucial point is that in
the mathematical folklore numerical algorithms are meant to be algorithms in the same, proper
sense of the term used in the theory of computation, even though they prototypically operate
on real numbers. That is, they are step-by-step computational procedures, always executable in
principle by an idealized human agent; thus consistent with the classical idea of the 1930s.!?

Now, if we take this assumption for granted, and if we also assume that the CTT tells us
something about algorithms —i.e., if we assume the SV, on which CTT = CTT y¢)— how are
numerical algorithms to be understood in relation to the CTT, given that the former concern
real-valued functions while the latter imposes limitations on algorithmic computation of func-
tions over non-negative integers? A possible answer comes from the framework of computable
analysis, which purports to extend the classical theory of (Turing) computability (and the scope
of the CTT) to real numbers and functions.

3.2 Numerical algorithms on the symbolic view: computable analysis

There are various approaches to computable analysis, but we will consider here the so-called
‘Weihrauch school’ (aka ‘Type-2 Theory of Effectivity’ (TTE)). TTE generalizes the classical
Turing machine model to a Type-2 Turing machine that computes a function f : R — R, by op-
erating over finite or infinite words from £* and/or £ (where ¥ a non-empty finite alphabet) on
k input and one output tape. The interested reader can see for details Weihrauch (2000), Brattka
and Hertling (2021), and for shorter and friendlier expositions Braverman (2005), Braverman
and Cook (2006), Brattka et al. (2008), or Pégny (2016).

121 consider it uncontentious that numerical algorithms —more precisely, their deterministic subset that concerns
us here— are algorithms in the classical sense of the 1930s. Just consider how many of them bear the names of
mathematicians who lived long before the computer era and made use of them in real practice.
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Now, accepting that the Type-2 TM formalism naturally explicates the informal idea of ‘ef-
fective computation of real-valued functions’,!> we can call the following statement ‘the Un-
countable Church-Turing Thesis’:

Uncountable-CTT: The effectively computable real-valued functions are exactly
the functions that are TTE-computable.

Analogously to the countable case, and assuming the SV, we can also assert an algorith-
mic version, since the SV presumably identifies also algorithms over the reals with effective
procedures:

Uncountable-CTT ag): The real-valued functions that can be computed by follow-
ing a (numerical) algorithm are exactly the functions that are TTE-computable.

Crucially, computable analysis introduces some special mathematical results that we will need
for our later discussion. Although these results may initially strike one as counter-intuitive, they
are in fact straightforward consequences of the requirement of effectivity for processes that deal
with infinite objects.

(A) Only continuous functions are computable. That is, no discontinuous function can be ef-
fectively computed; at least, near the discontinuity points. (See, e.g., Weihrauch 2000, p.6,p.30
or any other of the above references). Intuitively, this holds because if we are computing an
approximation to a value f(x), we want this approximation to be a good one for all points near
x, since the latter is also given by an approximation.

(B) A consequence of (A) is that the following relations are not TTE-computable:

{(ry) €R? [x=y}, {(xy) €R? |x <y}, {(x,y) €R* [ x <y}

The equality relation, for example, is not computable, intuitively, because a TM with two
equal real numbers on its input tape(s) would not be able to decide within any finite number
of steps —i.e., after having read only a finite prefix of the inputs— that the two numbers are
equal and do not differ at some later digit, not yet reached by the machine’s head. However, if
the two numbers are different, a decision is possible. Similarly, the total order relation is also
semi-decidable.

(C) Computability of particular operations and functions in R does not hold only by virtue
of their intrinsic properties but also depends on how the input/output data are represented on the
tapes. This is in contrast with classical computability theory, where there is no dependence of
whether a function f : N — N is computable on how the natural numbers are represented. As
a quick example, consider the function: g(x) = 3x (g : R — R). Its simplicity notwithstanding,
this function is not computable on the decimal representation (see, e.g., Weihrauch 2000, 18).

13See Pégny (2016) for a thorough discussion and arguments for that view.



But, it is computable on the Cauchy representation, by which a real x is represented as an infinite
sequence of rational numbers converging rapidly to x.!*

3.3 Making the SV more precise

Assuming the SV, let us try to identify central features of ‘algorithms’ upon which the use of
the concept in logic and some subdisciplines of computer science (e.g., complexity) implicitly
rests. Drawing upon the above-mentioned formalizations (TMs, K&U machines, TTE), I will
pin down essential central themes that I suggest are constitutive of our proto-theoretic under-
standing of ‘algorithms’ as effective procedures. Such features may not be explicitly posited in
the theoretical discourse of the relevant areas (computability theory, computable analysis, etc.),
but they are still constitutive of their theoretical structure (or so I claim).

We start by reiterating that, on the SV, algorithms are symbolic procedures. Thus, they are
tightly interlocked with the representations of the data they operate upon. Given a symbolic
representation of some input, on the most basic level of analysis an algorithm is a stepwise
procedure for effectively manipulating simple or composite parts of the arrangements of sym-
bols that constitute the representation on order to get a different arrangement of symbols that
represents the output.

On this account, algorithmic computations are linguistic/concrete, in the sense that they are
procedures for pushing symbols around.!> As we saw in the previous section (result (C)), their
close connection to representations comes clearly to the fore in the case of uncountable domains;
but this is not the only case where sensitivity to representations becomes apparent. A Turing- or
K&U-machine (or a Markov algorithm) computing a number-theoretic function would follow
a different program if the numbers were represented in unary or binary notation. And, even
from a pre-formal point of view, a schoolchild in ancient China would learn different sequences
of steps for multiplying (say) 538 by 127 from a schoolchild in contemporary New York. In a
clear sense then, we would say that in the foregoing examples, every different notation system
requires a different algorithm for multiplication.'® This is a crucial point and we will return to it

14This very brief discussion on representations should not leave the reader with the impression that real com-
putability is merely a matter of conventional or arbitrary choice, and that we get to make a given function com-
putable at will, by opting for those representations that “support” the desired result. There are, in fact, inherent
mathematical reasons for singling out natural equivalence classes of admissible representations for given mathe-
matical structures or spaces. The interested reader can see, e.g., Hertling (1999) and Weihrauch (2000).

15Shapiro (1982, 14) echoes exactly this view:

Mechanical devices engaged in computation and humans following algorithms' do not encounter
numbers themselves, but rather physical objects such as ink marks on paper. Since strings are the
relevant abstract forms of these physical objects, algorithms should be understood as procedures for
the manipulation of strings, not numbers. ... It follows that, strictly speaking, computability applies
only to string-theoretic functions and not to number-theoretic functions.
The fn. clarifies that “[t]he term ‘algorithm’ is understood here in its intuitive or preformal sense as an effective
procedure for computation.”
16Shapiro (2017, 269) expresses this view, in the context of a different debate with Rescorla (2007) on com-
putability:



later.!”

A further essential feature of algorithms, on the SV, is that any permitted primitive opera-
tions are finite. This suggests that both the existence of algorithms for given problems, as well
as the notion of ‘algorithm’ itself, are understood in an absolute sense. To see what I mean here,
recall that in ordinary computability theory there is an absolute answer whether any function
f:N" — N is algorithmically computable or not. The justification for the absolute character of
this answer is implicitly premised upon employing a family of natural notations (i.e., notations
that do not “cheat” by encoding already crucial parts of the sought answers—they are not “de-
viant”, so to speak'®) and upon taking for granted that any operations over such notations are
finite.!” The same holds for computable analysis and functions f : R¥ — R, based again on an
analogous assumption of “admissible” representations (fn.14) and of finite primitive operations.
This is in contrast with the view of algorithms that we will discuss in sec.5, where the notion
(and existence) of algorithms is understood primarily as relative to some stipulated model (of
computation) or level of abstraction, which become shaped by virtue of what operations are
stipulated as the primitive ones. The relative character of this view of ‘algorithms’ stems from
the fact that in this case the stipulated primitive operations can be either finite or infinite.

I contend that, despite being widely accepted, the features of algorithms I have articulated in
this section are not essential to or constitutive of the intuitive pre-theoretic idea of ‘algorithms’
that was presented in sec.2. That is, notwithstanding being a well-established view, the SV
about algorithms expresses only a proto-theoretic sharpening of our primary original idea of
an ‘algorithm’. As I am about to suggest, we can discern a second conceptualization in the
mathematical discourse that has been in parallel use for a long time.

4 Algorithms which do not square with the SV

I suggest that there is a latent tension between how algorithms are conceptualized on the SV and
how they actually function in the quotidian mathematical discourse (but also in some subareas of
computer science, such as algorithmics). To see this, recall that numerical analysis is concerned
with a huge range of algorithms, from simpler to more sophisticated ones. Are such algorithms
always effective procedures? Since these examples typically involve computations of operations
and comparisons between real numbers, and calculations of real-valued functions, we need to
look at the corresponding SV explication of real effectivity; i.e., in this case, TTE. But, recall,
order comparisons and equality checking are not always computable by Type-2 TMs (results

Notice, however, that the standard algorithm for multiplication ... works on numbers written in
decimal notation. The same algorithm would either give the wrong results, or senseless results, for
numbers written in unary, binary, hexadecimal or Roman notation.
17put differently, one could say that, on the SV, the idea of ‘algorithm’ is closer to the notion of ‘program’.
181t is not a trivial problem to single out exactly this family of natural notations. For discussions on deviant
notational systems, see Shapiro (1982, 2017), Rescorla (2007), Copeland and Proudfoot (2010), Quinon (2018),
Brauer (2021), and Shapiro et al. (2022).
19This finitistic requirement applies only to the elementary operations themselves, not to the whole computation.
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(B), sec.3.2). As aresult, it is certainly possible that various numerical algorithms, which very
often include comparisons as necessary intermediate operations, involve non-effective (i.e., not
TTE-computable) steps. Let us see some examples, to make this concern more specific.

Example 1: The floor function, f(x) = [x], (x € RT).

This is a function that takes as input a real number x, and gives as output the greatest integer less
than or equal to x (e.g., f(2.71) =2, f(83) = 83). Let us consider it for non-negative reals only.
As can be seen in fig. 1, this function is discontinuous. Therefore, it is not Turing computable
(see result (A) or Weihrauch 2000 p.7, p.108), and by the Uncountable-CTT it is not effectively
computable either. Is there an algorithm for its computation? Consider the following procedure,
on any input x = xo and initial value zero in some register r.?

FLOORALG (x,r)

1. If x <r, goto 3, else goto 2;
Setr=r+1,and goto 1;
Ifx<r, goto4,else gotoS;
Setr=r—1, and go to 3;
Stop and return r;

Nk

Here is also a recursive formulation (x € R™):

0 ifx<1,
fx) = .
f(x—1)+1 otherwise.

The (TTE/Turing) uncomputability of these processes stems from the existence of compar-
isons and subsequent branching steps. In essence, each such branching introduces a point of
discontinuity. Does this mean that FLOORALG is not a “genuine” algorithm? On the face of it,
it looks like a perfectly legitimate algorithm in the intuitive sense, for it seems to conform with
the informal characterization in sec.2. Yet it clearly is not an effective procedure as it stands,
and it violates the assumptions behind the SV (it neither depends on the particular choice of
symbolic representations nor it assumes exclusively finite operations).

Example 2: Consider the well-known bisection algorithm. It is a method for finding a root
Xo € [a,D] of a continuous function f(x), such that f(xp) = 0, when the values of the endpoints
of the interval are of opposite signs; that is, f(a)f(b) < 0 (existence in that case is guaranteed by
the intermediate value theorem). The idea behind the algorithm is to start with an interval that
is known to contain a root, xp, and try to approach the root by iterated bisections of the interval.
The algorithm receives as inputs the function f and the endpoints aj, b of the interval, such that
f(ay) and f(b;) are of opposite signs. One formulation is as follows:

BISECT (f,ay,by)

20This algorithm is an adaptation of one given in Weihrauch (2000, 261).
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Figure 1: The floor function, f(x) = |x|, for non-negative reals.

Compute ¢; = %b" and go to 2;

If f(c;) =0, goto 5, else go to 3;

If f(a;)f(ci) <O, set b1 =c;and a; 1 = a;. Else, set a;y| = ¢; and b; 1 = b;. Go to 4;
Seti=1i+1and goto 1.

Stop and return ¢;

ARSI A

Similarly to the previous example (and for the same reasons), this procedure cannot be imple-
mented in a Type-2 Turing machine (even assuming admissible representations), on account of
the repeated comparisons and equality tests it requires (in other words, the functional mapping
it induces is not Turing computable). It is, however, one of the most typical examples of algo-
rithms found in numerical analysis (together, perhaps, with Newton’s algorithm, which could
also be another relevant example).

Example 3: Consider a very simple decision problem of determining whether a quadratic equa-

tion ax®> + bx + ¢ = 0 has real roots. A simple algorithm to decide this can be read off from the
formula that gives the real roots of this equation:

B —b+Vb?—4ac

2a

The method consists in determining whether b*> —4ac > 0, and high school students learn to
perform this algorithm routinely.”?! Now this simple decision problem is again based on evalu-
ating an order relation, so it is definitely possible to have instances, for certain parameters a, b, ¢
that render it (TTE/Turing-)undecidable.

(D

X

These considerations suggest that the way algorithms are perceived in the broader mathemat-
ical community goes beyond a strict understanding of them as effective, symbolic procedures.
In actual practice, we know that all such algorithms can be implemented with finite operations

2!n algorithmic fashion, the process could look something like the following: Step 1: Compute D = b*> — 4ac.
Step 2: If D < 0, return ‘no real roots’; else return “real roots exist”.
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and executed approximately (or even exactly, on convenient data) by means of several devices,
such as floating-point or symbolic computations,?? rounded representations, extra terminating
conditions, etc. We also assume (probably for good reason) that whenever a computer program
successfully executes one of the above algorithms, we have not actually witnessed a case of hy-
percomputation or the completion of a supertask. What this means, then, is that non-effectivity
does not imply non-implementability —despite that the inverse does hold; i.e., effectivity im-
plies implementability— and so these notions should be separated. We will not dwell on this
distinction, however, but restrict our attention to how the above bear on the SV. The point is
that the discrepancy between what is an effective method and what counts as an algorithm in
mathematics undermines the SV, which is not merely the claim that algorithms are abstract pro-
cedures defined by their ability to be effectively carried out by some —sufficiently close for
one’s purposes— approximate implementation, but the stronger claim that algorithms (in the
sense of the *30s) are effective procedures themselves.

Now, what is the relation between algorithms of the kind we discuss in this section and symbolic
finitistic manipulations (i.e., the SV)? It seems clear that in developing and studying numerical
methods, considerations about concrete symbolic representations of their input/output data are
not involved in some essential way; even though the choice of representations may potentially
bear on their effectivity (result (C), sec.3.2). Attending to the long-standing study of numeri-
cal algorithms and their purposes”> shows that they are largely understood as having a natural
structure which is independent of the employed symbolic systems, and so it would be stretching
a point to see them as procedures whose main function is the description of mechanical symbol
manipulation. While one could say that in carrying out a numerical algorithm one is ultimately
caught up in such manipulations, nevertheless, the algorithm itself possesses some properties
that are difficult to make sense of if interpreted as mainly concerning moving symbols around.
Some such properties are, for example, convergencelaccuracy, and stability, and they all have to
do in some way with the proximity of the output value of the algorithm to the target mathemati-
cal value. Convergence/accuracy tell us something about whether and how well the algorithm’s
output approaches the correct result after a number of iterations, while stability expresses how
accurate the algorithm’s output remains with respect to small perturbations in its input (due
to rounding, data uncertainty or truncation errors).>* But such properties are meaningful and

22In this sentence the term ‘symbolic’ was used in a different sense than in the rest of this paper. ‘Symbolic
computations’ here is a technical term referring to the area of scientific computing that studies computations with
symbols that represent mathematical concepts, such as polynomials, algebraic numbers, trigonometric functions,
integrals, etc. (for example, computations with expressions of the form ‘cos 7, ‘e” 4- 7, etc.). This is a rather un-
fortunate parallel use of the term ‘symbolic computation’, but it is already well-established in the relevant literature.
To avoid confusion, in this paper this was the unique occurrence of ‘symbolic computation’ in this sense.

23For a large pool of examples in a historical context, see, e.g., Goldstine (1977) and Chabert (1999).

24These terms take different precise meanings in different contexts. For example, an algorithm can be ‘stable’
with respect to backward or to forward errors, or can be called ‘stable’ in a mixed backward-forward sense, and
the exact definitions of these notions vary in the contexts of linear algebra or differential equations. One can see,
e.g., Higham (2002) and Corless and Fillion (2013) for details (here we generally use ‘stability’ in the mixed
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useful for the practice of numerical analysis (which substantially involves comparing different
algorithms for the same problem, in a manner that does not depend on any particular choice of
notational systems) only insofar as by ‘input’ and ‘output’ here we refer to the actual real values
themselves and not to any symbolic representations thereof. For what makes a “small” pertur-
bation, as well as what it means to be “near” a target value, take a very different meaning when
we talk about distances between real values (i.e., points in the real line) and between symbolic
representations (e.g., sequences in a symbolic space). And it is with respect to the former notion
of distance that algorithms are evaluated in the tradition of numerical analysis.

5 Building the Abstract View: algorithms defined (again)

To make the case for the existence of an AV on ‘algorithms’ stronger, we first examine some
foundational approaches to the theory of algorithms, and then we propose a more detailed char-
acterization, addressing various conceptual points.

We first discuss the BSS (standing for ‘Blum-Shub-Smale’) framework. This is an alge-
braic approach to real algorithms and computations, aimed primarily at formalizing the notion
of ‘algorithm’ as used in numerical analysis. By formulating a formal explicatum of ‘numerical
algorithm’, based on a machine model that expands the classical TM, it becomes possible to
formally investigate the complexity of numerical methods and develop a real complexity theory
based on this model, along similar lines with ordinary complexity theory and the foundational
reliance of the latter on TMs. Here we are mainly interested in the conceptualization of ‘al-
gorithms’ that underlines this active area of research. After BSS, we very briefly look at the
foundational approaches of Gurevich and Moschovakis.

5.1 The BSS approach

A main motivation behind Blum et al.’s work is that although numerical analysis is all about
algorithms, “there is not even a formal definition of algorithm in the subject” (Blum et al., 1997,
23), despite the field’s origins going centuries back:

[T]he Turing model ... with its dependence on Os and 1s is fundamentally inadequate
for giving ... a foundation to ... scientific computation, where most of the algorithms
... are real number algorithms. (Blum et al., 1997, 3; emphasis in original)

Thus:

We want a model of computation which is more natural for describing algorithms of
numerical analysis, such as Newton’s method ... Translating to bit operations would
wipe out the natural structure of this algorithm. (Blum, 2004, 1028)

backward-forward sense).
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The BSS model is a model of computation not exclusively over continuous spaces, but over
any arbitrary field or ring R. If R is Z; =< {0,1},+, X >, then the model becomes reduced
to classical computability theory. The standard reference is Blum et al. (1997), but briefer
expositions can also be found in Blum (2004), Smale (1990), and Cucker (1999).

A numerical algorithm is generally formalized as a machine over R. But the theory provides
a more general model that is based on the notion of a machine M over R, where R is any
commutative, possibly ordered, ring or field. A (finite-dimensional) machine M has an input
and output space associated with it, a two-way infinite tape with cells, and, similarly to Turing
machines, a read-write head. The machine’s program is a finite directed graph with five types
of nodes, linked by operations or next node mappings. When both the input and output spaces
are R, the machine can be considered a formal model for numerical algorithms.

Within this framework, the authors prove several results about the decidability and complex-
ity of sets and problems over R and C. Importantly, a crucial idealization in the approach is
that the machine M is able to manipulate the exact value of any real number it is operating
on. Real numbers are viewed as “unanalyzed” (atomic, so to speak) entities in the algebra R,
and algebraic operations and comparisons are each counted as one unit of work; for instance, if
R =R, it takes one step to add, subtract, multiply, divide, and compare any two real numbers,
even irrationals.

The crucial take-away lesson from this model —for our purposes— is that in its algebraic
(and highly idealized) nature lies the goal of formalizing the quotidian conceptualization of
‘numerical algorithms’ as direct manipulations of numbers (unmediated by any particular rep-
resentations).”> This facilitates a more practice-oriented study of algorithms, concerned with
properties such as running time complexity, which in the numerical tradition are measured in
terms of numbers of operations; whence the treatment of operations and comparisons as unit
steps.

5.2 Gurevich’s axiomatization and the Abstract State Machine

The view of algorithms as abstract (non-symbolic) entities underlies Gurevich’s work as well, in
a series of articles trying to define the notion. Gurevich follows the axiomatic route to founding
the theory of (sequential) algorithms and then poses a machine model such that “any sequen-
tial algorithm, however abstract, could be simulated step-for-step by a machine of that model”
(Gurevich, 2000, 5). A crucial assumption, which he takes to be fundamental of the notion,
is that every algorithm has its native level of abstraction. Crucially for our purposes, an addi-
tional motivation for Gurevich’s specifying his corresponding machine model, the Abstract State
Machine (ASM), is to sidestep the problem of dependence on data representation, which other
machine models (like Type-2 TMs) face. By employing ASMs, algorithms can be modeled in

2 Compare: “there is a long-standing tradition of decidability results in algebra and analysis that we refer to as
the numerical tradition. This theory led to algorithms ... such as Newton’s method ... and Gaussian elimination ...
It is important to notice that these algorithms manipulate real numbers in much the way proposed [by the model].”
(Blum et al., 1997, 31). To see the relevance of this quote, recall that their model stipulates operations over the
exact real numbers.
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a representation-independent way (2000, 78). The aim, then, becomes to prove that for every
algorithm, on any level of abstraction, there is an equivalent ASM. The relevant level of abstrac-
tion of a particular informal algorithm is determined by what operations are to be executed in
one step, as well as by the abstraction levels of the algorithm’s states (2015, 204), and dictates
the choice of the vocabulary (2000, 87).

5.3 Moschovakis’s set theoretic definition and recursors

The last foundational approach we look into is by Moschovakis; a work also spanning several
decades, as Gurevich’s. Similarly to Gurevich, Moschovakis too adopts an abstract view of
algorithms; that is, algorithms are viewed as processes that are not representation-dependent
and not sufficiently modeled by Turing machines.

In Moschovakis’s framework, algorithms are viewed as abstract mathematical entities, for-
malized in set-theoretic terms. He regards algorithms as concepts with intrinsic mathematical
properties, which are different and must be distinguished from their implementations. Algo-
rithms can be mathematically defined and studied in and of themselves, based solely on their
intrinsic properties and not on properties that may be inherited by any particular machine im-
plementation. The proposal, in a nutshell, is that he explicates ‘implementations’ by means of
a specific abstract machine model, called an iferator (which is very similar to an ASM) and
‘algorithms’ themselves as abstract objects by means of a set-theoretic concept that he calls a
recursor on a partially ordered set. Then, having shown that iterators can too be represented by
recursors, the relation of implementability is formalized by means of the existence of a reduction
relation between recursors. For more details, one can see, e.g., Moschovakis (1998, 2001).

5.4 Making the AV more precise

By grouping the above three approaches —BSS, Gurevich, Moschovakis— together, I do not
mean to suggest that they are similar. Rather, I mean to stress that there is some common concep-
tualization of ‘algorithm’ underlying all three of them which is the same (I suggest) that also un-
derlies the informal practice of numerical analysis. A crucial common feature is that algorithms
are procedures whose identity and natural structure do not depend on particular symbolic rep-
resentations (and thus on a specification of their exact sequence of steps). This claim may sound
obscure however, so here is a way in which I think we can understand it. Let us accept that in any
discourse about algorithms, a tacit assumption is always at play: only acceptable, non-deviant,
notations (for number-theoretic algorithms) and only admissible representations (for numerical
algorithms) are considered. If this natural (and essential) presupposition is granted, then we can
say that in all the above cases a given algorithm retains its identity as long as it operates over any
member of some (equivalence) class of acceptable/admissible notations/representations. This is
the sense of ‘abstractness’ in which I call this understanding of algorithms “abstract”, and in
which I claim that algorithms “operate over abstract (and not symbolic) entities”.

But here lurks an important tension. As said already, not every member of the class of
admissible notations/representations entails the same sequence of concrete actions during the
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implementation of the algorithm (and we have assumed that algorithms in the sense of the 1930s
are procedures to be implemented by agents). In fact, as discussed earlier, most changes in
any notational or representational system would result in a different actual procedure. But if
the identity of these algorithms is stipulated to remain the same even when the exact sequence
of steps changes, this seems to bring about a contrast with a basic intuition that an algorithm
is made up of steps whose exact sequence is determined in complete detail. So either abstract
algorithms are not algorithms proper or, if we want to remain faithful to actual mathematical
practice and discourse, we need some way out of this apparent discrepancy. I can see two
possibilities here.

One is to introduce some distinction between higher- and lower-level algorithms. Follow-
ing this route, one could say that abstract algorithms (like the earlier examples) are higher-level
descriptions, which do not specify exact computational procedures but some sort of patterns of
actions or “algorithmic schemas” (cf. what Sipser 2013, p.185 calls ‘high-level descriptions of
algorithms’). Then, the Bisection method tells us something like “given any admissible repre-
sentations of the endpoints of the interval, employ the (lower-level) algorithm of addition on
them, then the (lower-level) algorithm of division by two and then...” This seems a fair (and
common) interpretation, but it is crucial to stress that the invoked lower-level algorithms cannot
be thought of as effective procedures (algorithms in the sense of the SV) but they too have to
be algorithms in the AV sense. This is because algorithms like the Bisection method have steps
(e.g., the comparisons) for which there exist no effective concrete algorithms, since they are
not TTE-computable as we have seen. The aforementioned description of the Bisection method
would include at some point “... use the (lower-level) algorithm to compare (the representation
of) the result of the previous step with (the representation of) zero. If it is less, go to step...”. But
there is no effective procedure for comparing reals, so lower-level algorithms must be abstract
algorithms (in the AV sense) too. We are back where we started, having only managed to give
a different name to the underlying dilemma that if we recognize the existence of the AV, we
recognize the existence of algorithms that are not effective.

Another possibility is to accept that abstract algorithms describe de re manipulations of
abstract objects (e.g., real numbers) themselves (an assumption that I have implicitly made in
various places until now). The merit of this approach is that it remains faithful to an under-
standing of algorithms as problem-solving stratagems. For example, the bisection method and
the algorithm described by the quadratic formula (1) tell us how to pin down some specific
real number (or, at least, one that lives arbitrarily close to it) beginning from the knowledge of
other real numbers. Talking about de re operations avoids the above problem of accounting for
the existence of non-effective steps within a procedure that, overall, is supposed to be always
reducible to an effective specification, and it dovetails naturally with our attribution of certain
mathematical properties to algorithms (e.g., stability and convergence/accuracy) which, as men-
tioned already, get distorted if interpreted as concerning symbol manipulation. But talk of de re
processes has also some disadvantages, such as the problem of our epistemic access to numbers
and other platonic identities. Such algorithms in fact lose touch with computations as physical
procedures carried out by human agents. I will defer discussion of these issues until the last
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section (7).26

Back to identifying the main features of the AV:?’ Besides abstract algorithms being invari-
ant under different notations/representations, a second feature of them is that there does not
seem to be any absolutist standard of whether a procedure is algorithmic or not. While algo-
rithms are ex hypothesi assumed to be systematic, mechanical procedures —thus, comprised of
“small” steps, blindly executable—, abstract algorithms in particular do not seem to imply any
independently-determined “measure” of step-complexity, as is the case with, e.g., computing
with Turing Machines (or the machines considered by Markov 1962 or by Kolmogorov and
Uspenskii 1963). Rather, what kind of actions comprise a single step is now a relative issue,
shaped by the level of abstraction, or the model of computation, that reifies the algorithm. This,
in fact, goes hand in hand with abstracting away algorithms from symbolic representations, since
if what is a step in an algorithm is shaped by what operations are stipulated as given within some
structure, then even single steps of infinite work can be sanctioned, such as some comparison
between reals.

Relatedly, all the three formal approaches from this camp that aim to formalize common-or-
garden algorithms are underpinned by a model- (or level- or structure-) relative view of admis-
sible steps. BSS assumes that carrying out any of the arithmetic operations (4, X, +, <, ) makes
a single step, and a numerical algorithm operates on a universe that comprises the closure of the
base set (typically R or C) under these operations and compositions. Gurevich’s approach poses
a native level of abstraction for any algorithm and his ASM model purposely permits steps of
any generality.”® And Moschovakis explicitly accepts that algorithms make sense only relative
to operations we accept as primitive on the relevant sets of data.?’

To summarize, on the AV, algorithms are understood as abstract procedures for de re manip-
ulations of mathematical entities. They have an identity and natural structure that do not depend
on the employed representations and, hence, on any particular precise sequence of steps implied
by these representations. They can also admit primitive operations that are not finitistic, and so

26The use of ‘de re’ in this context serves strictly the purpose of expressing the fact that numerical algorithms
instruct direct manipulations of real numbers (rather than via some description of them). Hence, I do not mean to
suggest a parallel between the classical de re/de dicto distinction and the AV/SV one.

27This paragraph is meant to be read in contrast with paragraph 3.3.

28<In applications, an algorithm may use powerful operations —matrix multiplication, discrete Fourier trans-
form, etc.— as givens. On the abstraction level of the algorithm, such an operation is performed within one step
and the trouble of actual execution of an operation is left to an implementation. ...

I sought a machine model ... such that any sequential algorithm, however abstract, could be simulated step-for-
step by a machine of that model.” (Gurevich, 2000, 81)

29Tt is tempting to assume that the successor operation S(n) = n+ 1 on the natural numbers is “immediately
computable,” an absolute “given,” presumably because of the trivial nature of the algorithm for constructing the
unary (tally) representation of S(n) from that of n—just add one tally; if we use binary notation, however, then
the computation of S(n) is not so trivial, ... while multiplication by 2 becomes trivial now—just add one 0. The
point [.. is] that ... there is no corresponding absolute notion of “algorithm” on the natural numbers—much less on
arbitrary sets. Algorithms make sense only relative to operations which we wish to admit as immediately given on
the relevant sets of data.” (1998, sec.8; emphasis in original).
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there exist algorithms that are not effective procedures. Finally, algorithms live within models
of computation (or native levels of abstraction or recursor structures), so that their existence is in
reference to a given collection of primitive operations and a set of abstract entities to be operated
upon.

6 Explaining the emergence of the different views

In sec.2, we suggested an informal characterization of the pre-theoretic idea of ‘algorithms’.
In the 1930s, this idea —which was from the outset concerned with procedures carried out by
humans— became regimented as ‘effective procedures’; that is, finitistic manipulations of (parts
of) any particular symbolic names that are used to stand as “proxies”, so to speak, for the actual
objects of concern (the SV). Yet, owing to the parallel development of scientific computing, the
same idea was also heavily used in a different sense, according to which algorithms have an
identity and a natural structure that are both independent of any symbolic names that may have
been chosen to represent their data; such algorithms exist rather relative to specific domains
and stipulated primitive operations over them (the AV). Let us, then, refer to the proto-theoretic
concept that derives from the former regimentation (SV) as ‘algorithmsgs’ and to the one that
stems from the latter (AV) as ‘algorithms 4.

In this section, I suggest a conceptual etiology for the two different regimentations, and in the
next one I discuss implications for the mathematical practice that different conceptual choices
have.

6.1 The Open Texture of Algorithms

How are we to account for the appearance of incompatible formalizations of ‘algorithm’, despite
the alleged consensus at the informal level? The explanation I propose is that we are dealing
with an open textured concept. That is, the so far established use of ‘classical algorithms’ in the
language and practice of mathematics is not adequate to delimit it in all possible directions.”!
As said already in the introduction, Shapiro (2006, 2013) has argued that both ‘computabil-
ity’ and ‘algorithm’ had initially some open texture, which was later removed by virtue of results
like the CTT. Nevertheless, while Shapiro holds that the notion “of (idealized) human com-
putability ... [is] now about as sharp as anything gets in mathematics ... [without] much room

30 Although I have been speaking all along about ‘algorithms 4’ in a way that implies that this is also a well-
sharpened and precise concept, I believe that if one looks further into it, one will find an idea that is less refined and
precise (i.e., still having some vagueness at the borders) than its counterpart proto-theoretic idea of ‘algorithmss’.
This is partly because the respective fully-theoretic regimentations of ‘algorithms_4’ (BSS-machines, ASMs, recur-
sors, etc.) are not entirely co-extensional —and none of them is universally accepted either—, thereby allowing
room for disagreement at the borders of the proto-theoretic idea itself (assuming a Lakatos-Shapiro picture, accord-
ing to which formal results contribute to a backward refinement of the informal concepts too). This is in contrast
with ‘algorithmss’ where the formal concepts are all co-extensional.

31The notion of an ‘open textured term’ is due to Waismann (1945). It is further explained in Shapiro (2006,
2013). See also Makovec and Shapiro (2019).
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for open texture” (2013, 178), the view that I propose is that ‘human computability’ and ‘algo-
rithm’ are sharp only insofar as they are taken from the outset as symbolic procedures,>> which
presupposes already a stage of proto-theoretic refinement. But ‘algorithms’ and ‘human com-
putability’, in the sense of the 1930s, allow also for non-symbolic refinements (or so I claim),
indicating that these concepts still have some remaining open texture, despite the unanimous
acceptance of the CTT. In other words, I contend that the informal characterization of classical
algorithms (sec.2) does not reveal on its face whether algorithms are meant to just mean effec-
tive linguistic (symbolic) procedures over names of mathematical objects, or whether they can
also refer to procedures that go above and beyond manipulation of symbolic names. I argued,
however, that the standard take —the (first) received view— has been the former option. Why
has it been so?

As it is well-known various early formalizations of mechanical procedures restricted the
analysis to symbolic computations (e.g., Turing machines, Post’s systems, Markov’s normal al-
gorithms, etc.). This was a well-motivated choice at the time, since such formalizations were
intended to regiment mechanical processes (within the logic tradition) as a means of demarcating
the computable number-theoretic functions. But it seems to me that there is no conceptual —i.e.,
separated from practical concerns— reason to assume that a mathematical stratagem which is in-
tended for identifying the specific number that is the solution to a problem (e.g., how to identify
the particular number which is the greatest common divisor of two other numbers) is from the
outset conceived as pertaining to combinatorially manipulating the components of any particu-
lar linguistic description that has been employed to represent the involved numbers, rather than
prescribing operations on the numbers themselves. The distinction between these two intentions
might not come to the fore during physical executions of algorithms —i.e., computations—,
since any infinite abstract object is represented in practice by some composite linguistic object
in order for a physical agent to operate on it. But it is an existing distinction and should be borne
in mind, for it does have potential consequences. For one, operating over composite linguistic
descriptions that are assumed of infinite length (e.g., strings on Type-2 TMs) distorts the natu-
ral structure of an algorithm that is designed to feasibly produce the solution to some problem.
For another, translating a process which is constructed with numbers as unanalyzed entities in
mind into a process of piece-by-piece manipulation of the descriptions of these objects (e.g.,
large strings, even finite) distorts formal properties of the original algorithm, such as its iden-
tity conditions, estimated convergence and stability, and even estimated computational costs.>>
The reason, however, that such discrepancies do not typically become apparent in everyday
computational practice is because we purposely restrict our attention and efforts to developing

32Something that Shapiro implicitly does, as can be seen in the quotes in fn.15 and 16.

33For example, a major factor that affects how well the algorithm from eq.(1) behaves is whether b*> ~ 4ac (a
case in which the algorithm becomes prone to unreliable results due to catastrophic cancellation). Now, it would be
impractical (and would likely lead us to the wrong conclusions) to try to decide whether such properties hold for
any problem instances by examining properties of the symbolic strings that represent these numbers, such as (say)
their lengths or their distance within some symbolic space with a relevant metric. It is well conceivable that b*
might indeed be approximately equal to 4ac, and yet the relevant properties of the corresponding strings to indicate
the opposite (and vice-versa).
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algorithms that are stable ones (i.e., that “behave well” with respect to any perturbed data and
error accumulation arising from the “translation” into symbolic descriptions).

The foregoing comments notwithstanding, the important fact for the subject of this section
is that a distinction between symbolic and de re manipulations does not bring about a noticeable
difference in the extensions of the classes of ‘algorithms’ and ‘algorithmically computable func-
tions’, as long as we remain in the countable realm. We could think of (say) Euclid’s algorithm
as being either a(n equivalence) class of effective procedures (i.e., algorithmsg; but different
ones for each different notation, e.g., decimal or Roman, etc.) or a (unique) algorithm 4 (a
model/level-relative sequence of direct operations over numbers).>* Both choices lead us to the
same extension for the class of algorithmically computable number-theoretic functions, and so
any reasons to opt for either one would be rather philosophical than purely mathematical. This
explains why the long-standing identification of the CTT (which concerns effective procedures)
with its algorithmic variant, CTT,g), has not led us astray in the practice and still remains so
widely assumed.?>

Still, though, would there be any compelling philosophical reasons to choose between number-
theoretic algorithmsg and algorithms 4? I believe no. I submit that there is nothing in the intu-
itive notion of ‘algorithm’ to suggest a definitive choice between algorithmsg and algorithms 4
as the (supposedly) correct regimentation. The informal characterization of sec.2 just does not
have enough shape to definitively weigh against one or the other; any direction taken would
amount to further sharpening the informal idea. This is the open texture of the pre-theoretical
idea, the origin of which we are now turning to discuss.

6.2 Suggesting an etiology: Two notions of an ‘immediate’ step

I propose that the source of the problem —the exact place where the open texture is to be
found in the pre-theoretic concept of sec.2, so to speak— comes down to this: how exactly is
the informal requirement that steps be specified in the “smallest detail” (so that no ingenuity
whatsoever may be required to perform the algorithm) to be understood and sharpened? Let us
try to make this requirement more precise by rephrasing it as something like this: at any given
state the application of the next step must be immediately clear and recognizable, in the sense
that no actual thought is needed to perform it. This is better, but still vague. How can we embed
this idea in a proto-theoretic regimentation of ‘algorithms’? For what kind of actions exactly
can we say that they require no thought whatsoever? I suggest that there are two possibilities of
going about this, which respectively underlie the two regimentations, SV and AV.

The first possibility is to try to implement this requirement in the most absolute sense possi-
ble. That is, to ensure that algorithmic steps somehow be immediate and “intuitively obvious”

3¥For problems faced by both these views, see Dean (2016a).

35Recall that both the CTT and the CTT y) are claims concerning extensions of concepts. See also Smith
(2013, 345,350) and Dean (2016a, §2.1) in this regard. Nevertheless, my claim about the co-extensionality of
‘algorithmss’ and ‘algorithms 4’ in the countable realm is in fact premised on a condition of always finitistic
primitive operations, which I will discuss and put under more scrutiny in the following subsections.
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tout court.>® A way to implement this ideal suggests itself when looking at preceding philosoph-
ical attempts to found mathematics in self-evident operations of that sort. Specifically, aspects
of Hilbert’s program can be seen as hinting at a suitable solution: express the entities under
consideration in ways that are “intuitively present as immediate experience prior to all thought”
(Hilbert, 1926). For Hilbert, this is achieved by the use of concrete signs (p.376) “whose shape
is ... immediately clear and recognizable” (such as a unary notational system) Then, vari-
ous aspects of these objects (concatenation, order of occurrence, etc.) are “given intuitively

. as something that neither can be reduced to anything else nor requires reduction”. So, if
these claims of Hilbert’s are accepted, then the symbolic regimentation of algorithms —e.g.,
as a TM operating on stroke numerals— responds satisfactorily to the requirement of actions
being immediately clear and recognizable in the strictest possible sense. Essentially, the same
requirements are found in Markov’s and K&U definitions of algorithms, expressed in terms of
allowing only local computational steps (see Markov 1962, Kolmogorov and Uspenskii 1963,
and Uspensky and Semenov 1993).

The second possibility is that instead of requiring that the computing agent deal with actions
that are immediately recognizable in some absolute —or strictest possible— sense, we require
that the agent deal with actions that are immediately recognizable in the sense that the agent
has achieved such a degree of familiarity with them as to immediately recognize them as ob-
vious, requiring no thought. Think, for example, how in our early school years we struggle to
memorize multiplication tables, but later on we become so familiar with them as to treat them
as immediate one-step operations in further calculations. Under this understanding, then, what
specifically the immediately recognizable steps are turns on the particular domain of discourse
under consideration. As some examples, formal models in logic, such as p-recursive functions
or A-calculus, take certain operations, such as composition or substitution, as immediately rec-
ognizable; truth-table validity tests (propositional logic) take the assignment of truth values to
the basic logical connectives as primitive; the algorithms we learn at elementary school for long
multiplication and long division take the multiplication tables we have memorized in first grades
as primitive; and more advanced number-theoretic algorithms, such as Euclid’s algorithm, take
all four arithmetical operations, as well as comparisons between integers, as primitive. By the
same token, then, it would make some sense to assume that in the centuries-old practice of
constructing algorithms for solving problems (numerical analysis), the notion of an ‘immediate
step’ that has tacitly been at play is also that of the familiar-immediate primitives in the domains
of interest (e.g., arithmetical operations, comparisons, and even nth roots).

Let us call the above two senses of an ‘immediately recognizable step’, respectively, the
‘absolute-immediate’ and the ‘relative-immediate’ sense. Crucially, both senses lead us to exten-
sionally equivalent outcomes in the countable realm (i.e., when we restrict attention to number-
theoretic algorithms). Why is this so? I suggest two reasons: an underlying fact and a condition.
The underlying fact is that in countable domains we can have a finite name for every entity in the
domain. This allows for a one-to-one correspondence between symbolic and de re operations.

36Compare: “Let us imagine the operations performed by the computer to be split up into “simple operations”
which are so elementary that it is not easy to imagine them further divided.” (Turing, 1936, 249).
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That is, fixing an appropriate notational system, we can assign to any primitive de re operation
described by our algorithm a unique symbolic operation (and vice-versa).>’ But, the primitive
operations assumed by the algorithm may not be of the ‘absolute-immediate’ type; for example,
the algorithm might involve using the product of two integers within a step. Then the following
condition becomes relevant, ensuring the co-extensionality as long as it is met: no primitive
operation can be of infinite work. Crucially, as long as operations of infinitary work are not
taken as primitive, any “relative-immediate” primitive operation (e.g., ‘24 <— 4 x 6’) can always
be ultimately reduced to a finite number of “absolute-immediate” operations (e.g., as repeated
unary addition), by a reduction process which is itself finitistic and unique. This means a one-
to-one correspondence between absolute- and relative-immediate operations as well (assum-
ing that the notational systems have been pre-determined); ultimately ensuring the existence of
one-to-one correspondences between any two of de re, absolute-symbolic and relative-symbolic
operations. Thus, owing to this finitistic-all-the-way-down structure, we have equivalent up-
to-isomorphism notions of ‘step’ in countable domains, accordingly leading to co-extensional
notions of ‘algorithmss’ and ‘algorithms 4’.

6.3 The open texture shows its face in uncountable domains

Despite that the open texture exhibited by the ‘small step’ requirement is benign for the count-
able case, trying to sharpen this requirement in uncountable domains opens up Pandora’s con-
ceptual box. Are we to understand an “immediately recognizable” step as an absolutely minimal
operation on symbols, or are operations such as “divide 7 by 2”, “check whether b* — 4ac > 0"
(with a, b, c reals), immediately recognizable steps in the sense of intimate familiarity with them
in quotidian mathematical practice? While such operations may involve infinitary work to be
completed, the use of rounded numbers (or other workarounds) we typically employ in imple-
menting these operations underpins a familiarity that makes us assume operations of this kind
as primitive (I think this familiarity is ultimately the product of our extensive use of opera-
tions over buck-stopper’® representations of reals in our mathematical education). But, now,
such ‘relative-immediate’ operations, if accepted, do not lead anymore to outcomes that are co-
extensional with those based only on ‘absolute-immediate’ operations, as was the case in the

37Such a correspondence ceases to be bijective in uncountable domains, since then we can have multiple names
to denote the same entity. This holds either if we use only finite representations (so different rounded numerals may
be used to denote the same real) or if we even allow the use of infinite strings to ensure equal cardinalities between
the set of names and the set of denoted entities (think e.g. the infinite names ‘0.999... and ‘1.000...’, or of different
Cauchy sequences that converge to the same number).

3 A term ¢ is called a ‘buck-stopper’ for an agent, in a given context, if the term is such that when encountered
by the agent it does not leave much room for wondering “how much is 7 In other words, by seeing ¢ an agent
automatically grasps the quantity denoted by it. To give some examples: when we see ‘III" or “34501° we recognize
instantly the actual numbers (quantities) denoted by these terms. It would not make much sense to ask “but how
much really is ‘III’?” On the other hand, when we look at ‘I or ‘3450516999154 we do not get an
instant grasp of the denoted quantities and might be justified to ask “what numbers are these?” This idea (and the
term ‘buck-stopper’ itself) comes from Kripke’s unpublished Whitehead Lectures (1992). An explanation of it can
be found in Shapiro et al. (2022).
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countable realm. This is because the two reasons we gave above (the underlying fact of the
existence of finite representations for every entity and the condition of allowing only finitistic
operations) are not anymore relevant together. We get confronted with the following dilemma.

On the one hand, accepting only the ‘absolute-immediate’ understanding of ‘step’ (e.g.,
by representing real numbers by strings of ‘0’s and ‘1’s, so that steps make only immediately
recognizable changes to them) adheres to the condition of finitistic primitives but means that we
have to represent the reals by infinite strings (i.e., we meet the condition but lose the underlying
fact; this approach is exemplified, for example, by TTE). The consequence is that we rule out
operations like the aforementioned examples as permissible; accordingly, we also rule out the
procedures from sec.4 as proper algorithms, and remain in line with the SV.

On the other hand, admitting also® the ‘relative-immediate’ conception of ‘step’ allows us
to permit operations like the above as primitive but at the same time opens the door to cases
which involve infinitary work within a primitive operation. This option is to some extent recon-
cilable with mathematical practice through the employment of suitable workarounds (rounded
representations, stopping rules, etc) that assure the reliability of the approximated output. But it
means that we can only preserve the finitistic condition by replacing the original algorithm by
an approximate substitute for it. And, such substitutions notwithstanding, it also means that we
admit inside the class of algorithms processes that are not effective by themselves (i.e., prior to
being approximated), putting us in line with the AV. For example, we recognize the existence of
a FLOOR-algorithm 4, even though no exact FLOOR-algorithmgs can exist.

The outcome of all this is that the one-to-one correspondences that existed before between
the de re, absolute- and relative-(familiar-)immediate operations do not hold anymore; thereby
breaking the up-to-isomorphism equivalence between these notions. We are now forced to make
conceptual choices whose consequences matter. But, again, the open texture of the pre-theoretic
concept does not tell us which way to go. The informal idea just does not have enough shape
to tell us which notion of ‘immediate step’ to give conceptual priority to, when it comes to
uncountable domains: the ‘absolute-immediate’ one or the ‘relative-(familiar-)immediate’ one.
Any answer would just be a community’s additional choice toward more conceptual sharpening.

6.4 Why the condition of finitistic operations?*"

There is a remaining wrinkle that needs to be ironed out. In the previous subsections, I ar-
gued that the co-extensionality between ‘algorithmss’ and ‘algorithms 4’ holds in the countable
case on the condition that all primitive operations are of only finitistic work. But, why accept
this condition, in the first place? Seen from the perspective of trying to capture the ideal of an
absolutely immediate and intuitively present step (as in the logic and foundations of mathemat-
ics tradition) the answer seems clear: only at most finitistic processes can be of that sort (as,
e.g., Kronecker, Skolem, Hilbert and the constructivists had it), and so the condition is not only

3The use of ‘also’ here is because this second scenario is not mutually exclusive with the first but actually
expands it, since familiar-immediate steps include absolute-immediate ones.

40The issues discussed in this subsection arose from extended comments by an anonymous reviewer of
Philosophia Mathematica, to whom I am indeed grateful.
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justified but necessary. However, this is not the case from the point of view of algorithms as
primarily problem-solving stratagems. As long as an algorithm is seen as a method leading us
to discover a specific mathematical entity (which is either the exact or a close enough solution
to our problem), then there is no conceptual requirement for all the intermediate steps to be for-
mulated finitistically. For the concern in this case is not to secure the process foundationally, or
to formalize some intuitive idea of ‘effectivity’, but to come up with stratagems that just “do the
job” for the particular problem at hand and show us a reliable way of locating the sought entity.
The only requirement, then, is that any such stratagem is susceptible of being approximated by
finite means in a way that does not affect its reliability. That is, the unavoidable errors that occur
from the approximating process are tolerable for any particular application and context at hand.
These conditions —whenever satisfied— compensate for the appearance of primitive operations
that involve infinitary work in the case of numerical algorithms (e.g., arithmetical operations and
comparisons between any two reals). But they also raise the question: why do we not see similar
primitive steps of an infinitary flavor in number-theoretic algorithms as well? If such operations
had indeed been seen in practice, then an extensional divergence between algorithms on the SV
and on the AV could have been noticeable also in countable domains.

Before attempting an answer, let us see what such operations could look like. The recursive
(and thus already finitistic) nature of the arithmetic operations in N makes it so that any alleged
non-effective primitive operations would have to introduce any infinite work in some other,
indirect way. As an example, then, consider stipulating a primitive operation such that on some
input n € N the result of the operation is “1” if n encodes a Turing machine that halts on its own
code, otherwise the operation outputs “0”:

HALT(n): given n € N, return 1 if the n™ TM halts on its own code; else return 0.

Now, any primitive infinitary steps in numerical algorithms are allowed on account of be-
ing in principle implementable; i.e., they are susceptible to finite approximations by means of
rounded representations and stopping rules. In a similar vein, the HALT(n) operation could be
considered implementable by employing some stopping rule like the following:*!

HALT(n,m): given n,m € N, return 1 if the n™ TM halts on its own code after m steps; else return O.

Nevertheless, although necessary, plain implementability is not the crucial requirement. In
order for a prescribed sequence of steps to find its way into the algorithmic practice, it rather
needs to be reliably implementable. That is, if the sequence of steps is implemented approxi-
mately (i.e., in case that the process is not effective/Turing computable), then the result needs
to be adequately satisfactory, i.e. the induced errors remain small for the particular problems at
hand. This, of course, is a context-dependent and essentially pragmatic criterion, which indicates
that the motivations lying behind the study of algorithms as problem-solving processes are very

417 thank the same anonymous reviewer for suggesting these examples of the HALT operation.
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different from the motivations that lay behind the development of the SV.*? In sharpening the
former idea, the concern was from the outset with useful and reliable (i.e., accurate/convergent
and error-robust) implementability,*3 while in sharpening the latter idea, the concern was with
a rigorous delineation of the concepts themselves. Now, given these motivations for the AV, it
is difficult to imagine some practical number-theoretic problem for which a sequence of steps
involving a HALT operation would make a useful algorithm —let alone a stable and reliable
one. Given that the only sense in which infinitary operations can penetrate number-theoretic
algorithms is in the form of operations like the HALT one (because natural numbers have only
finite representations and arithmetical operations are recursive, hence finitistic), this partially
explains why we have not seen number-theoretic algorithms that violate the finitistic condition
so far.

There is a second reason that I also think responsible for the lack of infinitary operations in
number-theoretic algorithms 4; though, this one is more of a sociological nature. The SV of algo-
rithms provided an extremely fruitful ground for both foundational and practical breakthroughs
in the theory of computation. Owing to its huge success, the syntactic approach to algorithmics
and the theory of computation became the orthodoxy, and the foundational framework under-
pinned by the CTT became the yardstick against which many later aspiring foundational frame-
works would be evaluated.** For reasons that are not yet clear to me (and which I think worthy
of further investigation) the conceptual advances in the theory computation were considered as
refining the informal notion of ‘algorithm’ in almost its entirety (i.e., the resulted refinements
of the notion of a‘well-defined effective method” were brought to bear on the problem-solving
conception of ‘algorithms’ as well), although no conceptual reasons for the necessity of such
a link really existed (except, perhaps, reasons of conceptual unification). The result is that the
widespread acceptance of the CTT,) became so deeply entrenched in the mathematical folk-
lore that it would really require a major breakthrough (or a number of them) in algorithmics to
accept as a bona fide algorithm any problem-solving stratagem over countable domains which

“2To see the contrast, recall that in the process of sharpening ‘algorithmss’, and in order to comply with the
then new formal results, a number of limiting cases had to be included in the extension of the concept as well. Such
cases were, for example, procedures for which it is impossible to tell in advance whether they will terminate on
a given input (owing to the crystallization of the class of effectively computable functions as the partial recursive
ones), or algorithms that do nothing in particular and yet never terminate (owing to accepting the empty function
as a limiting case of a partial recursive function. I think that such theoretical and limiting cases would hardly be
considered as falling under the concept of ‘algorithm’ within the problem-solving tradition that underpins the AV.

43Such concern with selecting only error-robust methods is already found in Gauss (1857, 31) (see also Goldstine
1977, 258 in this regard); and also later in von Neumann and Goldstine (1947) and Turing (1948).

#To wit, although Kolmogorov and Uspenskii (1963) aimed to give the broadest account of ‘algorithm’, they
still considered as the measure of success for any such account that only partial recursive functions are algorithmi-
cally computable (see their introduction and §3). Similarly, the BSS model is meant to be exactly reducible to the
classical TM model when the examined computations and algorithms are over discrete domains. And even Chabert
(1999), after having examined a long list of (non-effective) numerical methods, presents in a final chapter (titled
“Towards the Concept of Algorithm”) the developments of the 1930s as the culmination of the long-standing study
of algorithms as problem solving methods. The only exceptions that I am aware of to the “unwritten rule” that any
foundational theory of algorithms should comply with the CTT are the frameworks of Gurevich and Moschovakis
(cf. also Dean 2016a and Kapantais 2016, 2018).
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would defy the CTT. In other words, it seems to me that even if a useful method with a HALT
operation were to be discovered tomorrow —one that would indeed solve some problem from
the practice when implemented approximately (via a HALT(n,m) stopping rule)— there would
still be strong reluctance from the community to accept it as a proper algorithm (even though
numerical algorithms are essentially of the same nature).

7 The road ahead

I have argued that in examining the mathematical practice one comes to see more than one
informal proto-theoretic variant of the concept of ‘algorithm’. And this holds even when the
concept is considered only in its classical, sequential, deterministic conception.*> I have also
suggested that a reason for this phenomenon is the open texture of the informal, pre-theoretic
idea. Accordingly, it is a matter of deliberate, conceptual choice by the community, as regards
the key idea of a small step, which variant(s) to retain, sharpen further, and use their formalized
theories as frameworks for novel mathematical work. In this section, I discuss some conceptual
implications that each possible choice has.

The two existing variants are algorithmsg and algorithms 4 (based on the SV and the AV).
Let us assume first that the community has to keep only one of them. Let us also assume that
a reasonable goal is to end up with one, unified (proto-theoretic) concept of algorithm for the
countable and the uncountable cases alike. Indeed, it would be unnatural to deliberately aim for
different definitions of algorithms over N and R, knowing that they will be unrelated or even
incompatible. But this last assumption, natural though it may be, has crucial implications. For it
brings about an inescapable need for trade-offs in any attempt to define algorithms in a unified
way. These trade-offs are between generality and inclusiveness on the one hand and domain-
specific fecundity on the other. The point has been made aptly by P. Smith for mathematical
definitions in general. Let us see it, and then examine how it fittingly shows up in our case.

Definitions in mathematics get shaped by a number of pressures. We may start with
a cluster of informal basic results which we want our formal definitions broadly to
sustain ... There is then, on the one hand, the desire for increasing generality, inclu-
siveness, abstractness. But on the other hand, we also want the defined concepts to
feature in powerful theorems.

The desire for generality and the desire for a rich network of theorems evidently
push in different directions, for the more general and all-embracing a concept, the
fewer the interesting truths about all its instances. And hence there may be a num-
ber of acceptable ways of trading off the virtue of generality against the virtue of
theorem-generation, and a number of concepts encapsulating these different trade-
offs. (Smith, 1998, 174-5)

45Arguing that the general idea of algorithm, with all its extensions (parallel, non-deterministic, interactive,
quantum, geometric, deep algorithms etc.) has not a unique, precise meaning would not be any news really.
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Trying to define algorithms certainly exemplifies this predicament. Regimenting algorithms
as algorithms 4 provides generality, inclusiveness and abstractness but loses touch with the nec-
essary concreteness for basing classical complexity theory on them. And regimenting them as
algorithmsg (i.e., always effective) loses touch with algorithms in numerical analysis, geometry,
etc. Here is how the first problem comes about.

In a discussion on different foundational frameworks for ‘algorithms’, Dean (2016a) puts for-
ward three aspects of the status we grant to algorithms in our mathematical and computational
practice. Dean considers algorithms mainly in the context of complexity theory and algorith-
mic analysis, and, accordingly proposes that any foundational theory of ‘algorithms’ should be
responsive to the linguistic and technical practices of these fields and so capture all the three
aspects he proposes. These are roughly as follows (Dean, 2016a, 34): (a) Algorithms are math-
ematical procedures (described informally or in pseudocode) that can be carried out for given
inputs and lead to obtaining an output through a sequence of intermediate states. (b) Algorithms
can be implemented by members of models of computation 9Jt; that is, by some machine M € 1,
in a way that M computes the same function as the algorithm does and operates in the same step-
by-step manner. (c¢) Each algorithm has an intrinsic asymptotic running time complexity, which
imposes certain constraints on the implementation relation between it and the machines from
M. Specifically, 9t must belong in the first machine class (see fn.11), and an M € 91 that
implements an algorithm A must have the same asymptotic running time complexity as 4.

The above conditions are crucial for delimiting the basic operations which can reasonably
be regarded as basic computational steps in any analysis of problems and algorithms that pur-
ports to be usefully applicable to implementations on real-world computers. Let us accept them
as they are for our discussion.*® The first two aspects raise no issue with what concerns us
here. The third aspect (c) —which admittedly does the main work of providing the necessary
restrictions for bearing on physical computations— poses interesting challenges. More specif-
ically, it is not easy to see how algorithms 4 could conform with it. As Dean points outs, in
computer science, typical algorithms (e.g., a Mergesort) possess their running time complexity
(up to asymptotic bounds) by virtue of counting their number of operations in some appropriate
pseudocode specification. A goal of this practice is to offer grounds for comparing different
algorithms for the same task in terms of their efficiency. But in order to ensure natural results —
by avoiding, for example, steps that are effective yet so complex as to trivialize the process*’—
it is assumed that any pseudocode specification underpinning an algorithm’s analysis is such
that it can be implemented in some reasonable machine model, and in a manner that preserves
the same step-by-step evolution. And, crucially, the requirement of “reasonableness”, which
provides the safeguard against triviality, is captured by the restriction to models from the first
machine class only (see also van Emde Boas 1990 and Dean 2016b).

46Strictly, the second (b) aspect of Dean’s list seems to assume that algorithms exist independently from their
implementations, which we have not taken for granted in this discussion. But it would suffice to consider it true for
our purposes in this section.

4ISee, e,g., Dean (2016a, 33) for an example.
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Nevertheless, these conditions are too restrictive for numerical analysis. In this tradition,
algorithmic 4 analysis is not grounded in relevant fixed models of computation, but based on in-
formal (yet rigorous) estimations of the number of operations in their mathematical presentation.
Very often, algorithmic 4 costs are estimated in terms of floating-point operations (FLOPs; see,
e.g., Higham 2002, 3); yet these are not part of some formal model of computation either.*® And
even when formal models have been employed, in a manner that remains faithful to the needs of
this tradition, such models do not satisfy condition (c). Recall the BSS model for formalizing
algorithms 4 (sec.5.1). On the basis of it a whole theory of complexity of numerical problems
has been developed (Blum et al., 1997). A BSS machine, however, is much too powerful (and
idealized) to be considered a reasonable model from the first class.*” And yet, the whole BSS
framework does provide a useful complexity theory, predicated upon the notion of ‘algorithm 4 .
Similarly, Moschovakis’s framework also enables more mathematically elegant analyses of al-
gorithmic costs, as he shows in a focused example of how the analysis of Mergesort can be
mathematically founded on the theory of recursors, with no implementation “distractions” in
the process (1998). And it seems prima facie possible that the ASM framework of Gurevich can
too simplify such analyses in an implementation-independent manner.

Hence, it occurs that while Dean’s conditions accurately reflect the aspects in which a foun-
dational theory of algorithms should be responsible to the practice of computer science (and es-
pecially classical complexity theory), they are too restrictive for a unified framework that would
subsume algorithms on countable and uncountable data, and would be responsible to complexity
theory, algorithmic analysis and numerical analysis together. But, on the other hand, formaliza-
tions of ‘algorithm 4’ —such as the BSS model— are too inclusive to feature in a rich network
of theorems in classical complexity theory, since algorithms 4 are not even always effective, as
opposed to algorithmsg, and since they even ignore subtle yet fundamental differences in the
difficulties of addition and multiplication. And, as Dean (2016a, 54) also points out, the gener-
ality of the recursor and ASM frameworks severs the foundational link between the practice of
informal algorithmic analysis and the complexity costs of reasonable (i.e., first class) machine
models to which the informal algorithms are tacitly assumed to be always reducible. Once again,
the different pressures on developing mathematical definitions become increasingly apparent in
the quest for definitions of ‘algorithms’.

The road ahead for the community, then, might be as follows. One possibility could be to argue
for just identifying ‘algorithms’ with ‘algorithmsg’ in all cases, on the basis that algorithms that

“8Typically (but not universally), one FLOP signifies one addition, subtraction, multiplication, division or com-
parison. However, textbooks in numerical analysis display a big variety in the exact conventions. The widespread
practice of analyzing numerical algorithms in terms of numbers of FLOPs goes further distance toward justifying
our claim that in NA algorithms are better understood as model-relative, where what counts as an elementary step
is determined by the stipulated primitive operations.

“YDespite that BSS machines are too powerful and clearly unrealistic with respect to physically implementable
computations, the BSS model is successful in providing a complexity framework for taxonomizing numerical prob-
lems and algorithms that are developed with the goal of been implemented on digital computers. An account of
how this is possible is provided in Papayannopoulos (2021).
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are not unequivocally effective procedures are in fact terminological abuse and should strictly
be called otherwise (‘methods’, ‘rules’, ‘schemes’, ’general procedures’, etc.). Only when a
straightforward way of fixing the details and turning the routine to a symbolic one that proceeds
at each step in an unambiguous manner —so that it is also translatable to a reasonable model
of computation— exists, we can legitimately talk about ‘algorithms’ in the proper sense of the
term.

Such a choice, however, would be oddly at variance with mathematical practice in (at least)
two ways: First, it would go against standard practice in numerical analysis, where there is vir-
tually no concern with specific representations of the data.>® Second, we may face additional
conceptual implications for computability and complexity, if we also presuppose that we aim
at a a unified regimentation of ‘algorithms’ that would subsume both the countable and the un-
countable case (a natural presupposition, nonetheless). For one, the well-entrenched idea that
computability in N is absolute would lose some of its force (unless we are willing to accept
cumbersome representations as canonical ones). This is because real computability has strong
sensitivity to how we represent the real numbers (sec.3.2), since even standard arithmetical op-
erations like addition or multiplication can become uncomputable —a no-go for any theory of
computability— if decimal (or other base-b) representations are employed. For another, since
we know that decimal and binary notations are privileged for complexity purposes,’! if we were
to abandon them as canonical representations, this might add an extra obstacle to the possi-
ble goal of finding a concept of ‘algorithm’ that satisfies Dean’s (2016a) requirements and is
responsive to the practice of complexity theory.

In the opposite direction, the choice could be to regiment ‘algorithms’ as ‘algorithms 4’;
that is, to argue that the correct view of algorithms is to be regarded as model-relative proce-
dures, which possess an identity and natural structure that are both representation-independent.
The crucial implication in my opinion is a conceptual split between ‘algorithms’ and ‘compu-
tations’. Understood as the actual physical processes carried out by an agent (human, machine
or otherwise), computations depend for their exact sequence of steps on the representations of
the entities the agent operates upon. Thus, procedures that do not rely in any kind of way on the
form of the representational entities operated upon are, strictly speaking, not computations.> T
would then suggest that algorithms 4 be seen as collections of singled out operations that can

30And even when representational concerns do appear in numerical analysis, they are are very different from
those in TTE, for they relate to particular floating-point systems with specific precision, unit round-offs, etc.

Sl'We know, for example, that TMs operating on decimal or binary notations give rise to reasonable (first-
machine class) models of computation, while TMs operating on more cumbersome notations, such as stroke nu-
merals, are too “weak” for this purpose; see van Emde Boas (1990). While this, by itself, is not necessarily in
contrast with the approach of computable analysis, since natural and dyadic rationals can still be represented in
binary without problems (for they have finite representations), it remains an interesting and unexplored issue how
complexity is affected when we consider numbers whose binary representations require infinite strings. My con-
jecture is that this might force us to prefer an oracle-based formalization of Type-2 TMs (which involves only finite
inputs and outputs) to the infinite-string approach discussed here and in Weihrauch (2000) (the two formalizations
are equivalent from a computability point of view).

32Moschovakis has also expressed the view that we should not identify ‘algorithms’ with computational proce-
dures (e.g., 1998, 4.3). My view, then, comes to parallel his own on this issue, although via a different route.
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potentially be turned into actual computations. This approach raises a philosophical question
and a further mathematical challenge.

The philosophical question has to do with an epistemological problem, arising from my
proposal that, prior to and independently of their implementation, algorithms 4 had better be
seen as de re procedures.>® Does this analysis entail the need for a view according to which our
epistemological access to numbers is not mediated by their symbolic representations? I think
that this is not so. As long as an algorithm 4 does not describe a computation per se (but only a
possibility thereof), it says nothing about our relation to the manipulated abstract entities, when
we implement the algorithm. It only tells us that either an approximate or an exact computation
is possible, once some appropriate mediating representation of the relevant domains has been
adopted.

The mathematical challenge is that regimenting ‘algorithms’ as ‘algorithms 4’ shifts the con-
ceptual burden to the development of a precise definition of the ‘implementation relation’. And
I conjecture that such a definition would too face the challenges of trading off between on the
one hand inclusiveness —i.e., articulating a notion of ‘implementation’ that subsumes both im-
plementations on floating-point arithmetic (as in the practice of numerical analysis) and on any
given formal model of computation (as in the practice of computer science)— and, on the other
hand, relatability to well-entrenched results.>*

These theoretical possibilities notwithstanding, the likeliest actual scenario, in my opinion,
is that the community will keep working with both regimentations. This is not an uncommon sit-
uation in mathematical practice, where we have parallel formalizations of intuitive notions that
differently satisfy trade-offs between generality, inclusiveness, and relatability to other domain-
specific concepts and results (cf., e.g., the intuitive idea of ‘measure’ and different accepted
formalizations of it as ‘Lebesque measure’ ‘Borel measure’, etc.). Accordingly, in complexity
theory we need a notion of ‘algorithm’ that is specific enough to underpin a robust classifica-
tion of problems into classes of computational difficulty, on the (constitutive) assumption of
effective/symbolic computation. This need —which would exclude for example algorithms op-
erating on infinite objects or formal models that cannot distinguish between the difficulties of
multiplication and addition— would be satisfied by algorithmss and respective explicata, such
as TMs from the first machine class, and Type-2 Turing machines. But, at the same time, we
want to study algorithms as freestanding mathematical entities (but cf. Dean 2016a, §6), and to
that end we need increasingly generalized conceptions of them, as, e.g., operating over continu-
ous spaces or over arbitrary structures as data sets. This need would be met by certain explicata
of ‘algorithms 4’, such as recursors, ASMs or BSS algorithms (and the latter have already been
proved fruitful in supporting a rich area of complexity in numerical analysis).

331 thank an anonymous reviewer for bringing up this problem.

54For a discussion of such challenges for the countable case, see Dean (2016a). Yet, the uncountable case would
presumably involve far more challenges, given the variation in how ‘implementation’ is understood in computer
science and in numerical analysis (see fn.50).
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