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The emergence of intelligent connected vehicles (ICVs) is expected to contribute to resolving traffic congestion and safety
problems; however, it is inevitable that ICV safety issues in mixed traffic (involving ICVs and human driven vehicles) will be a
critical challenge. The numerical simulation of scenarios involving a mix of different driving profiles is expected to be an important
safety assessment tool in the process of testing and validating ICVs, especially regarding extreme scenarios, including car
collisions, which are rarely captured in real-world datasets. In this study, we propose a novel approach for car collision generation
in numerical simulations based on the assumption that car collision occurrences are mostly associated with certain specific driver
profiles. Using a dataset provided by the Next Generation Simulation (NGSIM) project, NGSIM 101 dataset, we identify three
different driver profiles: aggressive, inattentive, and normal drivers. We then replicate car collision occurrences by varying the
percentages of these three driver profiles in the simulated environment, allowing us to establish a relationship between driver
profiles and car collision occurrences. We also investigate the severity of car collisions and classify them with respect to the driver
profiles of the cars involved in the collisions. Our approach of replicating car collision occurrences in numerical simulations will
facilitate the testing and validation of ICVs in the future, especially regarding the testing of ICV functionalities in dealing with

traffic accidents.

1. Introduction

With the development of information and telecommunication
technologies, along with the rapid growth of new energy ve-
hicles (NEVs), intelligent connected vehicles (ICVs) have be-
come an increasingly active research topic. ICVs are expected
to reshape future mobility and contribute to mitigating road
traffic congestion and safety problems [1]. However, a major
challenge of ICVs is communicating with other vehicles and
accurately recognizing the patterns of human driving behavior
in mixed traffic [2]. To ensure the security of ICVs, they need to
be tested by driving hundreds of millions of miles and need to
be failure-free. Moreover, performing physical tests of ICVs is
not only time consuming but can sometimes be dangerous as
well. As an alternative to physical tests, traffic numerical
simulation platforms can be used to create realistic traffic

situations. In addition, traffic accidents can be generated in
traffic simulations in order to test the functionality of ICVs in
dealing with traffic accidents.

It is well known that traffic numerical simulation is
established by using mathematical models to reconstruct
road traffic [3] and can be performed on many scales (i.e.,
microscopic, mesoscopic, and macroscopic). Microscopic
traffic simulators are particularly promising in the validation
of ICV behavioral decision systems and work by replicating
individually each vehicle behavior in detail in order to create
an entire traffic environment. Various microscopic traffic
simulators have been developed in recent years, such as
SUMO [4], VISSIM [5], and AIMSUN [6]. However, among
these simulators, vehicle collision generation mechanisms
have not yet been described completely. In this study, we
propose a novel approach for car collision generation in
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numerical simulations based on the assumption that car
collision occurrences are mostly associated with certain
specific driver profiles.

As is well known, drivers have different driving patterns,
and different driver profiles can be distinguished. Meiring
and Myburgh [7] reviewed various methods of classification
of driving styles, such as “normal,” “aggressive,” and “in-
attentive.” Aggressive drivers are often characterized by
risky behaviors with regards to velocity (such as abrupt
instantaneous speed change, driving over the speed limit,
excessive acceleration, or deceleration) and frequent lane
changing behavior [8]. Inattentive drivers can be charac-
terized by long reaction time and forced sudden lane
changes with an abrupt deviation from normal behavior [7].
In our work, we focus on driver profiles only in terms of how
they react when directly behind another car (the car-fol-
lowing behavior).

Several open datasets on vehicular trajectories are cur-
rently available and can be applied to studying and analyzing
human driving behavior. Next Generation Simulation
(NGSIM) has published four vehicle trajectory datasets
(NGSIM [9]), which have been widely used in transportation
research [10]. More recently, datasets on motion trajectory
of traffic objects detected by autonomous vehicle sensors
have been published (e.g., Waymo data [11], Argoverse [12],
and nuScenes [13]). However, in these datasets, vehicle
collisions are rarely observed. Nevertheless, the Strategic
Highway Research Program 2 Naturalistic Driving Study
(SHRP2-NDS) [14] provides a dataset where several accident
situations are captured, yet seem unsatisfactory in terms of
quantification of vehicle collision causes and impacts.
Therefore, there is a lack of data on real-world vehicle
collisions connected to human driving behavior, including a
lack of both video data and vehicle trajectories in collision
situations.

On the other hand, traditional road safety analyses are
based on statistical methods which aim to understand the
importance of geometric (road shape) and track (road type)
characteristics for safety or to locate collision black-spots,
based on crash datasets [15]. Crash datasets as mentioned in
[16] provide only vehicle collision statistics, without in-
volving car trajectories and driver profiles. A large body of
the literature on road traffic safety explores the link between
ambient traffic conditions and collision occurrences [17]
and/or vehicle collision injury severity [18]. On highways
specifically, the authors of [19] provide evidence that vehicle
collisions have a specific relationship with traffic flow
characteristics (volume, density, and speed). In [20], the
authors identified the impact of general geometric param-
eters, weather, and traffic flow on different types of collision
(rear-end, sideswipe, and multiple vehicle involved) based
on French traffic and vehicle statistical data. Some other
studies employed statistical and machine learning ap-
proaches, such as multivariate probit models [20] or support
vector machine [21] to investigate the relationship between
influencing traffic factors and vehicle collision occurrences.

Regarding vehicular collision involving unexpected
human driving behavior, several previous works use traffic
simulations. In [22], based on their own proposed models
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for three types of vehicle collision depending on vehicle
interactions and maneuvers, the authors estimated the pa-
rameters of the models via simulation. In [23], the authors
studied the impact of driving violations (driving over the
speed limit, slow driving, and abrupt hard braking) on car
collision occurrence for different traffic conditions through
simulation. Moreover, in some other related works, the
traffic conflicts technique (TCT) using surrogate safety
measures based on vehicle trajectories has been proposed to
assess traffic safety [24]. These indicators can be used for
predicting potential collisions [15, 25, 26]. Nevertheless,
most of the literature addresses road traffic safety without
considering driving profiles. In our proposed approach, we
would like to represent different driver profiles in traffic
simulations and then increase the number of drivers with
extreme driving profiles (aggressive and inattentive).
Therefore, by the method of increasing the percentage of
drivers with extreme profiles, car collisions could be gen-
erated in the traffic simulations.

In this study, we propose a novel approach for car
collision (collision between cars) generation in numerical
simulation by varying the percentages of different driver
profiles in the traffic, aiming at establishing a relationship
between driving profiles and car collision occurrences. The
profiles are extracted from the NGSIM database and inte-
grated in the traffic simulator SUMO [4, 27, 28] using the
calibrated intelligent driver model (IDM), which is one of
the most human-like car-following models [29, 30]. For the
simulation, we used the IDM with an extension of driver
reaction times. Therefore, our main goals in this study are to
extract driver profiles from real driving data and replicate
them using a microscopic traffic model, establish a method
of reproducing realistic traffic simulation based on micro-
scopic road traffic modeling in the SUMO simulator, gen-
erate car collisions by appropriately varying the percentages
of the driver profiles, characterize the relationship between
the car collision occurrences with the driver profiles, and
observe the severity of the generated car collisions.

2. Materials and Methods

In this section, we present the relevant materials and the
proposed method. The approach structure is shown in
Figure 1. In this work, we study the driver profiles from car
trajectories and propose the definition of an aggressive
driver profile as a driver who always leaves short time
headways with respect to the leading vehicle and an inat-
tentive driver profile as a driver with particularly long re-
action times compared to other drivers. We classify all
drivers with intermediate values of reaction time and time
headway as the normal profile. The selection and thresholds
for the three driver profiles were based on the NGSIM 101
dataset [9]. After the classification of the driver profiles, the
specific driver profiles (aggressive and inattentive) are
represented using the calibrated IDM model (the existing
IDM model with an extension of reaction time), and the road
traffic is then simulated using SUMO (“Simulation of Urban
MObility”) [28]. The IDM model calibration is performed
using a genetic algorithm to find the optimal set of IDM
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FIGURE 1: Steps of the approach.

parameters with an objective of minimizing the predefined
error between real driver trajectory and the output of the
IDM model. In essence, we artificially increase the per-
centage of drivers with extreme profiles (aggressive or in-
attentive) and then count and analyze the car collisions
generated by traffic simulation. In the numerical simulation
experiments, we propose 4 different experiments using
different combinations of driver groups.

The remaining sections of this study are structured as
follows: in the rest of this section, from Subsection 2.1 to 2.4,
we present the necessary elements we predefined for our
method of vehicular collision generation, including (1) the
presentation of the NGSIM 101 dataset, (2) the proposition
of different driver profiles, (3) SUMO traffic simulator and
the choice of car-following model (IDM model), and (4) the
method of IDM model calibration to present different driver
profiles. In Sections 3- 5, we present the specific driver
profiles in the NGSIM 101 dataset, the calibration of the
IDM model for the specific drivers, and the simulation
experiments description. Section 6 presents the results ob-
tained from numerical simulations and the investigation of
the relationship between generated car collisions and driver
profiles. Section 7 presents the validation of the approach
with a different part of data in the NGSIM 101 dataset.
Section 8 deals with the severity of simulated car collisions
with respect to different driving profiles. Finally, Section 9
summarizes major findings and provides recommendations
for further research.

2.1. NGSIM 101 Dataset Description. NGSIM 101 [9] is an
open dataset released by the US Federal Highway Adminis-
tration (FHWA). On a highway section in Los Angeles,
California, covering 640 meters of length, all vehicle trajec-
tories are provided with a rate of 10Hz, and all data were
collected during the rush hour from 7:50 a.m. to 8:35 a.m.
This section has 5 normal lanes and one auxiliary lane con-
necting an on-ramp and an off-ramp. In our study, we focused

on the car trajectories only in the 5 main lanes. In addition, the
whole NGSIM 101 dataset is divided into three subsets of 15
minutes, which cover the traffic from 7:50 a.m. to 8:05 am.,,
from 8:05 a.m. to 8:15 a.m., and from 8:20 a.m. to 8:35 a.m.
In Figure 2, we present traffic volumes and speeds during each
of the three time periods. It can be observed that in the be-
ginning of the first 15 minutes, the mean speed is between 10
and 15m/s. After that, traffic becomes denser resulting in a
sudden fall of the mean speed. In the second and third 15-
minute time periods, traffic is more congested and the mean
traffic speed varies between 5 and 10 m/s.

In this work, we applied the proposed approach to the
first 15-minute dataset. The second 15-minute dataset was
then used for method validation. In our approach, we are
only interested in understanding driving profiles in terms of
car-following behavior, without considering lane change or
other behaviors. After processing the data of the first 15-
minute time frame, we selected approximately 1500 car
trajectories (drivers) from a total population of 1993 vehicle
trajectories to extract specific driver profiles. The selection
was based on the following condition: each car must always
have a leading car whose trajectory is continuous for at least
40s. The same data processing was made for the second 15-
minute of data and resulted in the selection of 1300 car
trajectories out of a total of 1495.

2.2. Classification of Driver Profiles. A driver profile can be
defined as the average driving behavior of a given driving
class [31]. Driving behavior is related to a driver’s sKkills,
sociodemographic status (age, gender, and occupation)
and current psychological state (fatigue and distraction).
From vehicle trajectory data, a driver’s characteristics can
be illustrated by the speed, acceleration, jerk, and some
other relevant traffic indicators, such as time headway
(THW) and time to collision (TTC) [31]. THW and TTC
are critical safety indicators for car-following behavior
[32]. THW measures the time passed before reaching the
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FIGURE 2: NGSIM 101 dataset traffic flow (number of vehicles in traffic and traffic mean speed for each time frame) for three 15-minute
periods, respectively, (a) from 7:50 a.m. to 8:05 a.m., (b) from 8:05 a.m. to 8:15 a.m., and (c) from 8:20 a.m. to 8:35 a.m.

leading vehicle’s position while running at current speed,
while TTC is usually used for judging the moment to start
braking and in the control of braking [33]. Several studies
show that the distribution of THW is related to driving
speed and also to traffic flow conditions. According to
[34], a negative correlation between the car speed and
THW can exist. In [35], it was shown that the speed and
THW follow different distribution patterns under dif-
ferent traffic density levels. The THW can illustrate better
the driver’s characteristics in all conditions of car-fol-
lowing behavior than the TTC, which is only important
for the braking behavior.

In this work, the classification of different driver profiles
begins with the observations from the NGSIM data. Figure 3
shows the distribution of each car driver’s maximum THW,
mean THW, minimum THW, and standard deviation of
THW, for the 1993 vehicle trajectories of the first 15 min
NGSIM 101 dataset.

Figure 3 shows evidence of the heterogeneity of human
driving profiles as the mean THW ranges from near 0s to 5s
and the minimum value of THW ranges from near Os to more
than 3s. Based on these previous preliminary findings, we
propose the definition of three profiles: (i) aggressive: shorter
car time headway, (ii) inattentive: longer reaction time, and
(iii) normal: for intermediate values of reaction time and car
time headway. We notice that since the reaction time cannot
be detected in the real driving data, we estimate it here, and we
assume that the reaction time is approximate to the minimum
THW value, which is the minimum safe time gap the driver
estimates should be maintained with the leading vehicle
during their whole trajectory (longer than 400 time steps,
explained in Section 2.1). The definitions of the the two driver
profiles (aggressive and inattentive) are formalized.

(1) Aggressive driver profile: A driver i is considered to
be aggressive with respect to a threshold ¢t* on the
time headway (THW) if

T
THW (i) =, Y THW (i) <" ()

We will explain in Section 3 how we fixed the
threshold ¢* in our approach.

(2) Inattentive driver profile (drivers with long reaction
time): A driver i is considered to be inattentive (with
a long reaction time) with respect to a threshold  on
the time headway (THW) if

min THW (i) = mtin THW (i, t) > 1. (2)

We will explain in Section 3 how we fixed the
threshold ¥ in our approach.

(3) Normal driver profile: the drivers whose profiles are not
aggressive or inattentive are called normal. They have
intermediate values of reaction time and time headway.

2.3. SUMO Traffic Simulator and IDM Car-Following Model.
SUMO (“Simulation of Urban MObility”) is a microscopic
open-source traffic simulator [4, 27, 28], widely used for
traffic research. Microscopic traffic models generally in-
clude two driver behavior models: (a) car-following,
corresponding to the behavior of a driver in reaction to the
actions or stimulus of the leading vehicle; (b) lane change,
corresponding to the behavior of lane changes that in-
cludes maneuvers of overtaking as well as insertion into a
target lane. We limit our work to the car-following
component. In addition, during the simulation, SUMO
can detect physical collisions (front and back bumper
meet or overlap) [36], and a collision is observed when a
following vehicle collides into the rear-end of the pro-
ceeding vehicle. The collision counts become available at
the end of each simulation.
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FiGure 3: The distribution of (a) the maximum THW, (b) mean THW, (¢) minimum THW, and (d) standard deviation of THW for each
driver in the first 15 minutes of data in the NGSIM 101 dataset. The unit on the X-axis is seconds.

Many interesting reviews on car-following can be found
in the literature [37-39]. We briefly present here some of the
most commonly used. The GHR model [40] is a stimulus-
response model in which drivers perform their acceleration/
deceleration depending on car speeds, relative car speeds with
respect to leading vehicles, intervehicle distances, and drivers’
reaction time. Wiedemann’s (1974) car-following model is
used in the Vissim simulator and describes the psycho-
physiological aspects of driving behavior in terms of four
discrete driving regimes. This model considers different
modes of operation, divided into “no reaction zone” (free-
road), “closing in,” “must decelerate,” and “car-following” by
human perceptual thresholds [38]. The Gipps model [41] and
Krauss model [42] are based on safe distance. In the Gipps
model, drivers update their car speeds with respect to keeping
a minimum safe distance between themselves and the leading
vehicle, in order to avoid collisions and in anticipation of the
extreme case of a leading car braking suddenly. The Krauss
model [42] is the car-following model by default in the SUMO
simulator. It extends the Gipps model by modeling the im-
perfection of human drivers with stochastic terms of car
speed. This property makes (or is supposed to make) the
model more realistic. The IDM car-following model was first
published in [43] which improved the initial results produced
by Gipps’ model. The acceleration is calculated as a function
of the desired speed and the desired space headway. The IDM
model is suitable for both free flow and congestion phases
[38]. This attribute makes the model more efficient and fa-
cilitates its calibration with real driving data.

We chose here the IDM car-following model [43], which
has been already implemented in SUMO, and it is shown by
several research works that IDM is the most human-like car-

following among certain compared models [29, 30].
Therefore, we briefly recall the model.

v v\ (s (v, an)
w9}

*(V,AV) + 0,VT + vav
sV, = sy + max| 0, — ],
0 2+/ab

where dV/dt is the vehicle acceleration, V is the vehicle
speed, s is the intervehicular distance; AV is the relative
speed with leading vehicle; a is the maximum acceleration, b
is the maximum deceleration, V; is the desired speed, J is the
exponential parameter of speed, we fixed it at 4 referring to
[43], s, is the minimal intervehicular distance with leading
vehicle, and T is the desired time headway (desired THW).

The output of the IDM model is the acceleration dV/dt
given as a function of the influencing factors (the inputs of the
model): the vehicles own speed V, the intervehicular distance s,
and the relative speed AV with respect to the leading vehicle.

In addition, we notice that the original IDM car-following
model does not include reaction time as a parameter [39].
Nevertheless, in a recent development of the SUMO simulator
[28], the authors improved the work on reaction time
modeling. They indicated that reaction time could be in-
troduced into the driving model (car-following and lane
change models) as an additional parameter. In the work we
present here, we introduced a reaction time parameter into
the IDM car-following model. In SUMO, the simulation step
can be set to At, and the driver reaction time is a time delay to

where

(4)



make a decision both for updating acceleration and lane
changing depending on the present state of traffic. This delay
of decision time (reaction time) can be set as (# * At), where n
is an additional parameter which we determine by calibration.

2.4. Method of Calibration of the IDM Model. In order to
simulate real driver behavior and driver profiles, the micro-
scopic traffic model must be calibrated with real driving data.
Two main types of calibration of car-following models exist: (1)
estimation of driving model parameters accounting for the
physical meanings of each parameter [44], in which parameters
(such as speed maximum and acceleration maximum) can be
extracted directly from vehicle trajectory data, such as the
maximal value of speed in the trajectory and maximal value of
acceleration in the trajectory, and (2) calibration of driving
models, which can be constructed as an optimization problem.
In the second approach, the objective function and the opti-
mization method need to be selected, and the problem is
performed to minimize the distance between the simulated
vehicle trajectories by the model and real vehicle trajectories.
Therefore, by this method, the optimal set of parameters can be
found. In the methods of calibration by optimization, several
mathematical optimization methods and algorithms such as
Newton, Gauss-Newton, gradient descent, and Levenberg-
Marquardt are presented for car-following model parameters
optimization in [45]. The authors of [45] proved that genetic
algorithms (GAs) are also effective to solve optimization
problems for car-following model calibration. Many of the
recent works on car-following model calibration used GA
methods [29, 30], and their works show that the GA optimi-
zation method is efficient for car-following model calibration.

In this work, the parameters which need to be calibrated
in the IDM model are as follows: a (maximal acceleration), b
(maximal deceleration), V|, (desired speed), s, (minimal
intervehicular distance to leading vehicle), and T (desired
THW), as well as the additional parameter # for the reaction
time (n* At). In addition, the parameter § (exponential
parameter of speed) is fixed at § = 4 as proposed in [43].

In our approach, the identification of drivers with ex-
treme profiles is performed by calibrating the parameters of
the IDM model, using a genetic algorithm referring to the
work in [30]. The used GA method is the default model in
Matlab 2020b [46], and for the algorithm description, it is
presented in the book [47]. In general, the mean square error
(MSE) is widely used for calibration of car-following models.
Here, another error metric is used as in [30], root mean
square percentage errors (RMSPE).

: 2
1 P (lemul (0) _ x?ata (0))
RMSPE(6) = || Zo ar

(5)

>

where x3@ (respectively, x5™") denotes the car trajectory
(positions in time) from data (respectively, from simulation)
and where 0 represents all the parameters of the considered
model. The car longitudinal position is chosen as the target
variable in the objective function.

The IDM model calculates car acceleration, as described
in (6), with the driver’s reaction time (7 * At). The reaction
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time is a delay of decision that driver takes for updating the
acceleration with current situation with the leading vehicle.
Car’s speed and position can be calculated as follows in (7)
and (8), based on the Euler method.

a*™ ! (+ + nAt) = IDM (6; variables (t)), (6)
Vsimul (f n At) _ Vsimul (f) ¥ asimul (t) x AL, (7)
(1 Af) = 2™ () + ™ (1) % A (8)

In addition, for drivers with normal profile, we simulate
them using an average profile. Their calibration of IDM
parameters is extracted directly from the dataset by their
physical meanings and combined with the default values in
the SUMO simulator.

3. Specific Driver Profiles in the NGSIM Dataset

In a traffic dataset with a large number of trajectories, it is
always possible to distinguish good drivers from risky ones.
Following the definition of the two extreme driver profiles of
Section 2.2, we consider the following four driver profile
groups in the NGSIM dataset: group 1: the 2.5% most ag-
gressive drivers, group 2: the second 2.5% most aggressive
drivers (drivers ranked between 2.5% and 5% of mean
THWs), group 3: the 2.5% most inattentive drivers, and
group 4: the second 2.5% most inattentive drivers (drivers
ranked between 2.5% and 5% in terms of inattentiveness).
Mathematically, the four groups are defined as follows.

Let us denote the set I agg (1), the of drivers i whose
THW (i) is less than ¢:

T agg (1) = {i, THW (i) < t}. 9)
Now, we denote by N the total number of drivers of the

considered dataset and by N, (t) the cardinal (number of
elements) of .7 agg (1):

N g (1) = Card (I (1)). (10)

agg

Finally, we denote by p,,(t) the proportion of the
number of drivers in .7, (f) with respect to the total
number of drivers (N):

(t)

pagg (t) = Naggﬁ' (11)
Let us now define ¢} and t; as follows:
t = p;glg(o.025) = max{t, pagg(t)go,ozs},
(12)

£y = Py (0.05) = max{t, p,g (£) <0.05}.
Groups 1 and 2 are then defined as follows:
Group1 = .7, (t]) = Jagg(p;glg (0.025)),
Group2 = F g (55)\ S age (1) (13)
= 7 sge( Pagg (0-09))\T (Pl (0.025)).

The groups 3 and 4 are defined similarly, that is,
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F inate () = {i, min THW (i) > t},
Ninatt (t) = Card (jinatt (t))’
(1)
: t):=N. .—
pmatt( ) inatt N
£y = P (0.025) := min{t, py (1) <0.025}, (14)

*

t4 = p;:att (005) = min{t’ pinatt (t) < 005}’

Group 3= jinatt (t;) = jinatt(pillatt (0025))’

Group 4= tfinatt (tz )\jinatt (t;) = ‘]inatt(P;nlatt (0'05))\jinatt(p;113tt (0025))

Applying the definitions of groups 1, 2, 3, and 4 above,
we obtain the thresholds of Table 1 on THW for groups 1
and 2 and on min THW for groups 3 and 4 (Figure 4).

4.IDM Model Calibration for Extreme
Driver Profiles

As mentioned above, the calibration is considered as the
optimization problem with the aim at minimizing the error
between the simulated car trajectories by the IDM model and
the real car trajectories from the dataset. We chose here to
apply a genetic algorithm (the default algorithm in Matlab
[48]) and to attempt to find the global optimum parameters of
selected drivers. Moreover, we repeated the genetic algorithm
10 times for every driver trajectory, in order to find a global
optimum solution for the parameters of the calibration.

In the application of the genetic algorithm, upper and
lower bounds need to be set for all parameters in the IDM
model. For the reaction time and desired THW, the bounds
for these two parameters need to be set differently for the
aggressive and inattentive driver profiles because the pa-
rameters’ real distribution for these two profiles are dif-
ferent(Figure 4). Thus, we set that for aggressive drivers, the
desired THW ranges from 0.1 to 4 s, while the reaction time
is from 0.1 to 2s, and for inattentive drivers, we set the
desired THW ranges from 1 to 4s, while the reaction time
goes from tr; — 0.3 to tr; + 0.3 seconds, where tr; is the value
of min THW (i) (Section 2.2, where we approximate the
driver’s reaction time to be around tr;). For other param-
eters, the bounds are the same for both aggressive and in-
attentive drivers as in [30]. Thus, the desired speed (V)
ranges from 10 to 40 m/s, the minimal intervehicular dis-
tance s, ranges from 0.1 to 10m, and the maximum ac-
celeration and the maximum deceleration range from 0.1 to
5m/s’.

The results of calibration for the 4 specific groups of
drivers are given in Appendix A. For the calibration on the
car trajectories variable (car positions in time), we obtained
for all 4 driver profile groups an RMPSE ranging in (1%, 2%).
From the calibration results, given in Tables 2-5, we notice
that group 1 driver profiles have shorter reaction times and
desired headway times compared to group 2 driver profiles.

On the other hand, group 3 driver profiles have longer
reaction times and desired headway times than group 4
driver profiles. Moreover, the desired THW (parameter T of
formula (4)) of attentive drivers is much larger than the one
of aggressive drivers. This result of calibration of IDM pa-
rameters for aggressive drivers and inattentive drives is
consistent with the findings from the dataset(Figure 4).

5. Numerical Simulation Experiments Setup

Before generating the collisions in traffic, we need to ensure
that the NGSIM traffic can be simulated realistically. The
reproduction of the NGSIM traffic data by numerical
simulation consists on the creation of the road section, the
selection of the microscopic traffic model (IDM car-fol-
lowing model plus the default lane changing model in
SUMO), and the creation of vehicles. The road network of
NGSIM is drawn manually using NETEDIT [49] provided
by the SUMO simulator, which is presented as a road of 640
meters with 5 straight lanes. The creation of each vehicle is
provided by its longitudinal origin position, longitudinal
destination position, entering lane, and entering time (in
seconds). This necessary information is extracted from the
car trajectory data.

As what we supposed in Section 3, each extreme driver
profiles have 2.5% in the initial traffic simulation. In Fig-
ure 5, we give car mean speed from the NGSIM real data and
from numerical simulation in SUMO. This figure shows that
the traffic simulation represents well the state of traffic (car
speed) over time. This first simulation with initial driver
profiles distribution in the traffic show that we can simulate
the real NGSIM traffic in SUMO. Under this condition, we
can begin the experiments for generating the collisions. In
addition, during the simulation, SUMO can detect physical
collisions (front and back bumper meet or overlap) [36]. We
can get the collision counts at the end of each simulation.
Four experiments of car collision simulation are proposed
for different combinations of the two selected groups of
drivers. Each experiment is carried out using different
combinations of one group of aggressive drivers and one
group of inattentive drivers. Driver profiles used in each
experiment are given in Table 6, and the different groups of
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TABLE 1: 4 groups’ specific drivers and obtained threshold of profile definition.

Type of drivers Indicator Threshold
1st aggressive (group 1) Mean THW <0.82s
2nd aggressive (group 2) Mean THW (0.82s, 0.94s)
Ist inattentive (group 3) min THW >1.84s
2nd inattentive (group 4) min THW (1.656s, 1.84s)

THW _mean THW _min distribution for all drivers
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FiGure 4: THW (THW_mean) and min THW (THW _min) distribution of all drivers in the first 15 min period data, group 1 in orange, group 2
in green, group 3 in red, and group 4 in purple. The remainder drivers (blue points) are considered as drivers with normal driving profile.

TaBLE 2: Calibration results for the driver profiles of group 1 (2.5%, Ist aggressive drivers).

Parameters and error Bounds Mean Std Median 25% 75%
VO (m/s) (10, 40) 26.25 7.69 23.03 20.29 32.01
T (s) (0.1, 4) 1.08 0.12 1.03 1.0 1.09
S0 (m) (0.1, 10) 0.74 1.1 0.1 0.1 11
Reaction time (s) (0.1, 2) 0.45 0.2 0.5 0.3 0.6
a (m/s?) (0.1, 5) 4.49 0.95 5.0 4.52 5.0
b (m/s?) (0.1, 5) 4.92 0.28 5.0 5.0 5.0
RMPSE position (%) 2.34 0.9 2.14 1.78 2.92

The values in bold indicate the errors.

TaBLE 3: Calibration results for the driver profiles of group 2 (2.5%, 2nd aggressive drivers).

Parameters and error Bounds Mean Std Median 25% 75%
VO (m/s) (10, 40) 25.95 8.94 22.22 19.22 36.42
T (s) (0.1, 4) 1.21 0.21 116 1.02 1.34
SO (m) (0.1, 10) 0.39 0.67 0.1 0.1 0.33
Reaction time (s) (0.1, 2) 0.55 0.16 0.5 0.5 0.68
a (m/s?) (0.1, 5) 4.69 0.92 5.0 5.0 5.0

b (m/s?) (0.1, 5) 4.87 0.61 5.0 5.0 5.0

RMPSE position (%) 1.03 2.09 1.55 2.7 1.03

The values in bold indicate the errors.

driver profiles are described in Section 3. For generating the
car collisions, we assume here that the car collisions can be
generated in each simulation by increasing the number of
aggressive and/or inattentive drivers in the traffic. The in-
creasing of the percentages of extreme driver profiles is done
artificially and randomly by replacing the normal drivers by
the chosen extreme driver profiles. In each experiment, we

reset numbers of simulations by using different rates of
drivers associated to each extreme driver profile (2.5% in the
origin dataset and then 5%, 10%, 15%, 20%, 25%, 30%, 35%,
40%, 45%, and 50%, respectively, for aggressive drivers and
inattentive drivers in each simulation). For each simulation,
once the rates of the extreme driver profiles are fixed, all the
other drivers are simulated as normal.
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TaBLE 4: Calibration results for the driver profiles of group 3 (2.5%, st inattentive drivers).

Parameters and error Bounds Mean std Median 25% 75%
VO (m/s) (10, 40) 22.33 8.81 19.8 15.75 24.16
T (s) a, 4) 2.38 0.71 2.43 1.8 2.83
S0 (m) (0.1, 10) 3.8 3.84 1.94 0.1 7.56
Reaction time (s) (tr; — 0.3, tr; +0.3) 2.16 0.61 2.2 2.0 2.38
a (m/s?) (0.1, 5) 3.86 1.46 47 2.94 5.0
b (m/sz) (0.1, 5) 4.86 0.67 5.0 5.0 5.0
RMPSE position (%) 1.72 0.99 1.41 1.13 2.11
The values in bold indicate the errors.
TaBLE 5: Calibration results for the driver profiles of group 4 (2.5%, 2nd inattentive drivers).
Parameters and error Bounds Mean Std Median 25% 75%
VO (m/s) (10, 40) 25.18 9.38 21.94 18.02 32.89
T (s) (1, 4) 1.98 0.58 2.05 1.48 2.47
SO (m) (0.1, 10) 3.65 3.73 2.02 0.1 7.83
Reaction time (s) (tr; — 0.3, tr; + 0.3) 1.73 0.49 1.8 1.72 1.9
a (m/sz) (0.1, 5) 3.99 1.64 5.0 3.59 5.0
b (m/s?) (0.1, 5) 4.85 0.6 5.0 5.0 5.0
RMPSE position (%) 1.68 0.9 1.43 1.15 1.89
The values in bold indicate the errors.
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F1GURE 5: The average traffic flow speed from real data (blue) and the simulated average car speed (orange) in SUMO of the initial traffic for
the first 15 minutes time frame, where 2.5% are aggressive drivers, simulated using their own IDM calibrated parameters, 2.5% are
inattentive drivers, simulated using their own IDM calibrated parameters, and the rest are normal drivers in the traffic.

TaBLE 6: Numerical simulation experiments.

2.5% 1st inattentive drivers
2.5% 1st inattentive drivers
2.5% 2nd inattentive drivers
2.5% 2nd inattentive drivers

95% normal drivers
95% normal drivers
95% normal drivers
95% normal drivers

El 2.5% 1st aggressive drivers
E2 2.5% 2nd aggressive drivers
E3 2.5% 1st aggressive drivers
E4 2.5% 2nd aggressive drivers
6. The Results

In this section, we give the results of the numerical simulations.
In Subsection 6.1, we provide the number of car collisions
generated by numerical simulation, based on the first 15
minutes data, and, respectively, for the defined four experi-
ments. In Subsection 6.2, we focus on the analysis of the car
collisions obtained in the simulations of experiment 1 (E1). In

addition, we show that the number of simulated car collisions
can be written as a function of the rates of aggressive and
inattentive driver profiles in traffic. In Section 7, we use another
15-minute time period data for the validation of our approach.

6.1. Number of Car Collisions by Numerical Simulation.
We start with the implementation of experiment E1. We
observed that the number of collisions occurred in each
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simulation is various even when using the same rate of specific
drivers. This is due to the random distribution of the specific
(aggressive and inattentive) driver profiles over all the drivers.
Furthermore, we observed the mean number of collisions
converged after several times simulations for each case.
Therefore, the presented collision counts in each case shown in
the following tables are the average value over 10 simulations
for each case. Moreover, the number of car collisions obtained
by numerical simulation is given in Tables 7-10 for each ex-
perimentation (E1, E2, E3, and E4) respectively.

In Table 7, the simulated car collision counts are given
for taking different rates of specific profiles in E1. The results
indicate clearly that the number of intervehicular collision
occurrences increases by increasing the number of aggres-
sive and/or inattentive driver profiles. Similarly, from the
results for E2, E3, and E4, given, respectively, in Tables 8-10,
the number of intervehicular collision occurrences also
increases by increasing the number of aggressive and/or
inattentive driver profiles. It is shown that the number of
obtained car collisions in these three experiments is lower
than the simulated result in E1 (by comparing Tables 8-10 to
Table 7). In addition, the number of car collisions obtained
with E4 is the lowest compared to the other three experi-
ments. This result shows that a different risk level is asso-
ciated to each group of specific driver profiles. The first
group of aggressive driver profiles could potentially cause
more car collisions than the second group of aggressive
driver profiles (comparing the results of E1 and E2). Sim-
ilarly, the first group of inattentive driver profiles could
cause more car collisions than the second group of inat-
tentive driver profiles (comparing the results of E3 and E4).
It is interesting to note that in all the four experiments, no
collisions occurred when the percentage of extreme drivers
was low. With the increase of the rate of each specific driver
profile, the number of car collisions increases. However, this
increase seems to be different from one experiment to an-
other (Figure 6), where each line presents the number of car
collisions in the simulation of each experiment with the
condition that aggressive drivers and inattentive drivers have
the same rate in the traffic. From Figure 6, we can observe
clearly that E1, where we generated car collisions based on
varying the percentage of the most aggressive and the most
inattentive drivers, can generate more car collisions than the
other three experiments. The E4 has probably the least
number of car collisions, where we generated car collisions
based on varying the percentage of the second aggressive and
the second inattentive drivers.

6.2. Analysis of Car Collisions Obtained in Experiment 1 (E1).
In this subsection, we focus on further analyzing the results
obtained by E1 (Table 7). A car collision is observed in SUMO
when a following vehicle (veh2) crashes into the rear-end of
the proceeding vehicle (vehl). We can get the driver profile
information of the two vehicles involved in each collision.
Therefore, the distribution of rear-end car collisions produced
by different driver profiles (aggressive, normal, and inat-
tentive) is shown in Figure 7, and the distribution is shown in
percentage. In Figure 7, the suffixes ag, long, and nor are used
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to indicate aggressive, inattentive, and normal driver profiles,
respectively. We give the percentages of the number of car
collisions caused by each pair of driver profiles rates regarding
to all generated collisions. It is shown in Figure 7 that col-
lisions generated by inattentive (vehl)-aggressive (veh2)
represent the largest percentage, which is at 28.99% of the
total number of simulated collisions.

Furthermore, Figure 8 shows the relationship between
the number of simulated car collisions and the rates of
aggressive and inattentive driver profiles, which presents in
another way for the values of the result given in Table 7.
From Figure 8, it seems that the sum of the two rates of
aggressive and inattentive driver profiles is important in
determining the number of car collisions. We can see in this
figure that the contours (the different levels of numbers of
collisions) have a regular relationship with the percentage of
specific drivers, where the gap of different levels is similar
and the contours have a similar shape. However, the con-
tours are not linear which means that the sum of the rates of
aggressive and inattentive driver profiles is important, but is
not the unique parameter for the determination of the
number of car collisions.

In order to better understand this relationship, we use
the statistical regression method to assume that car collision
counts (Y) are proportional to the percentage of aggressive
drivers (x,%) and the percentage of inattentive drivers
(x,%), which can be formulated as Y = f (x}, x,).

We have first tried linear regression, and the result is
shown in Appendix B, which shows that the assumption of
linearity in not convincing. Moreover, we observe from
Table 7 (red cases) that the number of car collisions gen-
erated with 30% of aggressive driver profiles and 30% of
inattentive driver profiles is 60. Holding on this 60%,
however, with 25% (also, respectively, 20%, 15%, 10%, 35%,
40%, 45%, and 50%) of aggressive driver profiles and 35%
(also, respectively, 40%, 45%, 50%, 25%, 20%, 15%, and 10%)
of inattentive driver profiles, the number of generated car
collisions become less, although the sum of all the pairs of
considered rates of aggressive and inattentive driver profiles
is 60%. Therefore, it seems that the number of generated car
collisions decreases with the increasing of the absolute
difference between the rates of aggressive and inattentive
driver profiles. In other terms, the number of generated car
collisions increases with the uniformity of mixing both
profiles (aggressive and inattentive). Based on this obser-
vation, we propose to add a quadratic term of the ap-
proximation of the relationship between the number of
generated car collisions and the rates of aggressive and
inattentive driver profiles.

Y= fxpx) = max(O,ﬁO By xxy + By, + By (xg —x2)2),
(15)

where Y is the estimation of car collision counts, x,% is the
percentage of aggressive drivers, and x,% is the percentage of
inattentive drivers. We set the lower bound of the function at
zero, since the number of car collisions cannot be negative. We
obtained the following coefficients: §, = —23.35, 3, = 1.4201,
B, = 1.3602, and B, = —1.4377, with RMSE = 4.864.
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TaBLE 7: Experiment 1: simulated car collision counts for different percentages of 1st aggressive and 1st inattentive drivers. For example, in
the case that 25% for aggressive, 25% for inattentive, and the remaining 50% are normal drivers.

Ist aggressive drivers (horizontal), 1st inattentive drivers (vertical) 2.5% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
2.5% 0 0 1 3 3 5 6 7 11 11 13

5% 0 0 2 4 5 7 10 10 12 18 19
10% 4 4 7 10 12 16 21 26 29 38 43
15% 5 7 11 17 21 27 31 37 46 53 52
20% 8 11 16 18 24 31 38 46 56 64 69
25% 1 13 20 26 36 45 50 57 66 72 82
30% 12 16 22 30 39 49 60 62 75 87 92
35% 17 20 29 37 46 52 60 73 78 92 99
40% 19 22 28 3 50 55 65 76 88 96 106
45% 23 25 33 46 58 65 78 88 92 106 123
50% 25 32 42 52 62 74 87 95 105 118 124

TaBLE 8: Experiment 2: simulated car collision counts for different percentages of 2nd aggressive and 1st inattentive drivers.

2nd aggressive drivers (horizontal), 1st inattentive drivers (vertical) 2.5%_ag 5%_ag 10%_ag 20%_ag 30%_ag 40%_ag 50%_ag

2.5%_inatt 0 0 1 3 4 5 7
5%_inatt 0 1 2 3 5 7 8
10%_inatt 4 5 5 9 13 16 17
20%_inatt 10 11 15 22 25 35 43
30%_inatt 12 14 17 24 32 39 52
40%_inatt 21 21 34 36 47 53 63
50%_inatt 27 29 37 48 61 69 80

TaBLe 9: Experiment 3: simulated car collision counts for different percentages of 1st aggressive and 2nd inattentive
drivers\enleadertwodots.

1st aggressive drivers (horizontal), 2nd inattentive drivers (vertical) 2.5%_ag 5%_ag 10%_ag 20%_ag 30%_ag 40%_ag 50%_ag

2.5%_inatt 0 0 2 4 4 8 10
5%_inatt 0 1 1 6 6 9 11
10%_inatt 2 2 2 9 15 18 20
20%_inatt 5 11 10 18 28 35 56
30%_inatt 11 11 18 25 38 54 69
40%_inatt 19 16 28 45 53 78 97
50%_inatt 24 29 32 55 73 82 101

TaBLE 10: Experiment 4: simulated car collision counts for different percentages of 2nd aggressive and 2nd inattentive drivers.

2nd aggressive drivers (horizontal), 2nd inattentive drivers (vertical) 2.5%_ag 5%_ag 10%_ag 20%_ag 30%_ag 40%_ag 50%_ag

2.5%_inatt 0 0 1 2 2 4 8
5%_inatt 0 1 2 2 4 5 6
10%_inatt 2 1 2 4 6 10 14
20%_inatt 4 5 8 14 14 16 30
30%_inatt 8 12 12 16 28 30 42
40%_inatt 16 16 22 24 28 34 52
50%_inatt 25 20 26 38 42 52 58

By this result, first, the fact that ;+#0 confirms the  f3; is negative confirms our hypotheses and shows the
significance of the effect of the absolute difference between =~ number of generated car collisions decreases with the in-
the two rates of aggressive and inattentive driver profiles on  crease of the absolute difference between the rates of ag-
the number of generated car collisions. Second, the fact that ~ gressive and inattentive driver profiles.



12

Journal of Advanced Transportation

120

100

80 1

60 1

40 A

number of accidents

20 1

2.5 5 10

— E1
— E2

20 30 40 50
(%)

—E3

— B4

F1GURE 6: Simulated car collision counts for the four experiments, where aggressive and inattentive drivers have same rate (axis x) in traffic
(based on the first 15-min data). For example, 2.5% (axis x) means each profile (aggressive, inattentive) takes 2.5% in the traffic.
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F1Gure 7: E1 : Simulated car -collision counts for different percentages of aggressive and inattentive drivers based on first 15-minute data.
The suffixes ag and long are the aggressive and inattentive driver profile, respectively.

In Figure 9, the number of generated car collisions for
each percentage of two drivers profiles is presented, as well as
the surface obtained by the nonlinear regression function.

7. Validation of the Approach on the Second 15-
Minute Time Period of Data

In this section, the same approach (Figure 1) for car
collision generation is carried out based on the second

15-min time period of the NGSIM 101 dataset with the
purpose of validation of the approach, where 1495 ve-
hicles are registered in this period on the 5 normal traffic
lanes. The thresholds on THW (mean THW) and
min THW for each driver profile are given in Table 11.
The simulation of traffic in SUMO for this period is
shown in Figure 10. The simulated resulting car colli-
sions, for the 4 experiments (E1-E4), are given in
Tables 12-15.
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FIGURE 9: El: nonlinear regression of the number of simulated car collisions. The suffixes ag and long are the aggressive and inattentive
driver profile, respectively.

TaBLE 11: Selected drivers and the associated threshold for the second 15-minute data.

Type of drivers Indicator Threshold
Lst aggressive (group 1) Mean THW <0.86s
2nd aggressive (group 2) Mean THW (0.86s, 0.98s)
Ist inattentive (group 3) min THW >1.99s
2nd inattentive (group 4) min THW (1.74s, 1.99s)

The result using the second 15-minute period data is  for the experimentation based on the first 15-minute period
close to the result using the first 15-minute period. The  data, Figure 11 shows similar results (number of generated
thresholds obtained from the four experiments are similar.  crashes for the four experiments) for the experimentation
The simulated car collisions using the second 15-minute data ~ based on the second 15-minute data. In Figure 11, each line
show the same trend as the first 15-minute data. Experiment ~ presents the number of car collisions in the simulation
E1 simulates the greatest number of car collisions, while E4  resulted from one experiment. In Figure 11, experiment 1,
simulates the lowest number of car collisions (Tables 12-15).  where we generated car collisions based on varying the
Furthermore, as shown in Figure 6 which shows the result ~ percentage of the most aggressive and the most inattentive
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FIGURE 10: Average traffic flow speed of real data (blue) and simulation (orange) in SUMO for the second 15-min data.

TaBLE 12: Experiment 1: simulated car collision counts by varying, respectively, the percentage of 1st aggressive and 1st inattentive drivers

for second 15-min period.

Ist aggressive drivers (horizontal), 1st inattentive drivers (vertical) 2.5%_ag 5%_ag 10%_ag 20%_ag 30%_ag 40%_ag 50%_ag

2.5%_inatt
5%_inatt

10%_inatt
20%_inatt
30%_inatt
40%_inatt
50%_inatt

0.0 2.0 4.0 9.0 11.0 17.0 20.0
3.0 5.0 7.0 12.0 15.0 22.0 26.0
11.0 14.0 16.0 21.0 30.0 34.0 39.0
25.0 28.0 34.0 42.0 50.0 65.0 70.0
34.0 39.0 45.0 51.0 56.0 68.0 79.0
47.0 52.0 57.0 70.0 79.0 91.0 105.0
58.0 60.0 68.0 79.0 82.0 102.0 115.0

TaBLE 13: Experiment 2: simulated car collision counts by varying, respectively, the percentage of 2nd aggressive and 1st inattentive drivers

over the second 15-minute period.

2st aggressive drivers (horizontal), 1st inattentive drivers (vertical) 2.5%_ag 5%_ag 10%_ag 20%_ag 30%_ag 40%_ag 50%_ag

2.5%_inatt
5%_inatt

10%_inatt
20%_inatt
30%_inatt
40%_inatt
50%_inatt

0.0 1.0 2.0 5.0 7.0 12.0 16.0
4.0 5.0 6.0 9.0 13.0 15.0 19.0
9.0 10.0 12.0 16.0 18.0 24.0 29.0
22.0 25.0 26.0 32.0 37.0 41.0 44.0
38.0 37.0 37.0 44.0 45.0 55.0 61.0
44.0 48.0 52.0 56.0 61.0 67.0 78.0
58.0 59.0 60.0 68.0 84.0 83.0 88.0

TaBLE 14: Experiment 3: simulated car collision counts by varying, respectively, the percentage of 1st aggressive and 2nd inattentive drivers

over the second 15-min period.

1st aggressive drivers (horizontal), 2nd inattentive drivers (vertical) 2.5%_ag 5%_ag 10%_ag 20%_ag 30%_ag 40%_ag 50%_ag

2.5%_inatt
5%_inatt
10%_inatt
20%_long
30%_inatt
40%_inatt
50%_inatt

0.0 1.0 4.0 10.0 12.0 19.0 20.0
2.0 3.0 5.0 10.0 11.0 19.0 24.0
6.0 7.0 8.0 14.0 18.0 26.0 31.0

16.0 18.0 18.0 25.0 30.0 37.0 43.0
22.0 26.0 29.0 33.0 38.0 47.0 54.0
29.0 34.0 35.0 43.0 52.0 58.0 68.0
33.0 33.0 40.0 50.0 53.0 69.0 72.0

drivers, can generate more car collisions than the other three
experiments. Experiment 4 has probably the least number of
car collisions, where we generated car collisions based on
varying the percentage of the second group of aggressive

drivers and the second group of inattentive drivers. These
similar observations have been already obtained, as shown in
Figure 6. In addition, the number of car collisions obtained
in experiment E1 based on the second 15-min data is given
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TaBLE 15: Experiment 4: simulated car collisions number by varying, respectively, the percentage of 2nd aggressive drivers and 2nd

inattentive drivers of second 15-min data.

2nd aggressive drivers (horizontal), 2nd inattentive drivers (vertical) 2.5%_ag 5%_ag 10%_ag 20%_ag 30%_ag 40%_ag 50%_ag

2.5%_inatt
5%_inatt

10%_inatt
20%_inatt
30%_inatt
40%_inatt
50%_inatt

0.0 1.0 2.0 7.0 9.0 10.0 15.0
2.0 4.0 6.0 8.0 11.0 16.0 16.0
5.0 6.0 7.0 10.0 12.0 17.0 19.0
13.0 15.0 18.0 20.0 22.0 27.0 30.0
20.0 22.0 23.0 26.0 31.0 35.0 38.0
28.0 28.0 31.0 32.0 37.0 42.0 43.0
30.0 32.0 32.0 37.0 40.0 45.0 46.0
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FiGure 11: Simulated car collision counts for the four experiments, where aggressive and inattentive drivers have same rate (axis x) in traffic
(based on the second 15-min data). For example, 2.5% (axis x) means each profile (aggressive, inattentive) takes 2.5% in the traffic.

in Table 12. We can see clearly that the results shown in
Figure 12 are similar to the results shown in Figure 8. As the
same, to further study on the relationship between the
number of collision and the percentage of aggressive drivers
and inattentive drivers in the whole traffic population, we
applied to the same regression method for the first 15-min
time period data. A nonlinear regression is performed (15),
where we get the following coeflicients:
B, = 0,-8.154, B, = 1.580, 8, = 0.8502, and p; = —0.7575,
with an RMSE= 3.761.

8. Analysis of Crash Severity

All simulated car collisions can be further used to explore car
collision severity. Several research efforts investigate the
relationship of rear-end car collision severity to car speed. In
[50], the authors reported that the critical impact speed was
approximately 55km/h for rear-end car collisions. In ad-
dition, in [51], the authors claim that the change of speed
before and after car collision is a critical indicator for car
collision severity outcomes.

In physics, the kinetic energy (KE) of an object is the
energy that it possesses due to its speed (16). In the case of
front-rear collision of two moving cars, the kinetic energy is
related to the relative speed of the front vehicle and the rear
car (17).

1
KE:Em*vz, (16)

KE o< Av. (17)

Relative speed could thus be an important surrogate to
indicate the severity of collision. In simulations with 50%
drivers being aggressive and the other 50% being inattentive,
866 car collisions were generated (with 5 simulations).
Among all car collisions, 220 (25.4%) concerned aggressive-
aggressive couples of driver profiles, 408 (47.1%) concerned
inattentive-aggressive, 107 (12.4%) concerned inattentive-
inattentive, and 131 (15.1%) concerned aggressive-inatten-
tive. In Figure 13, the distribution of relative speed for these
866 simulated collisions is shown. Car collisions involving
inattentive (vehl)-aggressive (veh2) drivers accounted for
the largest rate of all simulated collisions. All generated
collisions have a relative speed below 50 km/h. Furthermore,
collisions produced by two inattentive drivers are more
severe, since its mean relative speed is at 23.27 km/h, which
are more critical than the collision between other driver
profiles. Car collision severity is much lighter between two
aggressive drivers who have an average of relative speed at
15.7 km/h.

SCANeR studio [52, 53] is a driving simulation software,
which also includes Bullet physics engine (a free and open-
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FiGure 12: E1: simulated car collision counts for different percentages of aggressive and inattentive drivers based on second 15-minute data.
The suffixes ag and long are the aggressive and inattentive driver profile, respectively.
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FiGure 13: The distribution of relative speed for simulated car collisions (4 indicates the mean value for each subfigure). The suffixes ag and
inatt are the aggressive and inattentive driver profile, respectively. It shows that the most car collisions are occurred between inattentive-
aggressive drivers, and the most dangerous car collisions are produced between inattentive-inattentive drivers.

source software of simulation of collision detection, soft, and
rigid body dynamics) and provides the opportunity to
simulate vehicle car collisions with a vehicle physical model.
For every simulated car collision in SUMO, the involved two
vehicles’ trajectory can be registered. Then, the car collision
scene can be replayed in SCANeR Studio. Thus, the result of
a car collision simulated in SUMO can be resimulated in

SCANeR Studio (Figure 14). In Figure 15, the collision force
for certain replayed car collisions is shown. Each point
corresponds to one resimulated car collision by SCANeR. It
seems that the force is a superlinear function of the relative
speed (Figure 15). However, this fact needs more investi-
gations and should be considered in our future research. The
interest of this work will be to couple the SUMO traffic
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Ficure 14: SCANeR screenshot for a collision.
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simulator with SCANeR studio (the immersive driving
simulator) in order to build a high-performance system to
test and validate autonomous vehicles.

9. Conclusion and Scope for Further Work

In this work, the main contributions consist of the following:
extracting three proposed driver profiles based on real
driving datasets, replicating these profiles in a simulated
environment, and establishing a relationship between car
collision occurrences and these different driver profiles by
varying their percentages in the whole traffic via virtual
simulation.

Based on the NGSIM 101 dataset, two specific driver
profiles related to car collisions on road networks and a
normal driver profile have been classified, defined as (i)
aggressive drivers who keep short time headways with cars
ahead of them, (ii) inattentive drivers with long reaction
times, and (iii) normal drivers with intermediate values of
reaction time and time headway. These three driver profiles
have been simulated by using the intelligent driver model
(IDM) car-following model, with an extension including
driver reaction time. In order to represent the real driver
profiles, the IDM model is calibrated using a genetic algo-
rithm. Finally, by increasing the percentage of these two
extreme driver profiles among all drivers in a virtual traffic
simulation, we investigate the effect of these driver profiles
on car collision occurrences.

The results of the numerical simulations show that the
percentages of the aggressive and inattentive driver profiles
over the whole driver population are determinant in the car
collision occurrences and in the resulting severity outcomes.
One of the important results we obtained in this work is the
characterization of the relationship between the ratios of
these two driver profiles over the whole driver population
and the car collision occurrence count. We have also clas-
sified the car collisions that were generated and analyzed
their severity, in particular with respect to the relative speed
between the cars involved in the collisions. Another im-
portant result of this research is that the car collisions in-
volving an aggressive driver in the leading vehicle and an
inattentive driver following represent the most frequent
collision occurrences, while collisions between two inat-
tentive drivers were the most severe.

The safety validation of intelligent connected vehicles is
essential and could be critical for their deployment. In order
to complete the demonstration of the reliability of the
system’s safety, autonomous vehicles need to be driven for
hundreds of millions of miles. However, the huge cost of
such physical tests, combined with the inherent danger of
testing situations where collisions can happen, makes the
numerical simulation of scenarios mixing different driver
profiles an important safety assessment tool for ICV testing.
Furthermore, during the deployment phase of ICVs, the
recognition of drivers’ profiles should be considered in order
to avoid collisions. As shown by our experiments, based on
our approach, different traffic scenarios can be generated
with different driver profiles in traffic simulations. For future
research, this work is expected to greatly facilitate future ICV

Journal of Advanced Transportation

testing and validation for the car manufacturing industry via
numerical traffic simulation.

In this work, we used the IDM model and the simulator
SUMO to generate car collisions. The method is limited by
calibration accuracy and model performance; therefore, the
car-following model is not able to replicate 100% real human
driving behavior. Regarding the perspectives for our pro-
posed approach, tests with different car-following models
need to be considered in further works. Moreover, this work
is an experiment based on the NGSIM 101 dataset, and the
profiles are extracted from this dataset. We also intend to
work in the future with other datasets in order to confirm the
derived driver profiles and/or derive new driver profiles,
related to car collisions occurrences.

Appendix

A. Calibration Result for Specific Drivers

The results of calibration for 4 specific groups of driver in the
15-minute data of the NGSIM 101 dataset are given as
follows: in Table 2 for drivers of group 1, in Table 3 for
drivers of group 2, in Table 4 for drivers of group 3, and in
Table 5 for drivers of group 4. These tables show the mean,
median, standard deviation, 25% quantile, and 75% quantile,
of each parameter and for each group drivers. The tables give
also the bounds for the genetic algorithm.

B. Linear Regression of the Number of
Simulated Car Collisions

In order to find the relationship between simulates car
collisions number and the rate of specific profile drivers for
the result given in Table 3, we obtain Y = f (x,,x,) = B, +
By % x, + P, # xp with B, = —29.5569, B, = 1.4068, and
B, = 1.3468. The obtained root mean square error (RMSE)
is 9.7838. In Figure 16, the number of car collisions for each
percentage of two drivers profiles is presented, as well as the
plane obtained by regression. This result allows us to es-
timate the proportion between aggressive and inattentive
driver profiles generating the same number of car
collisions:

B, 13
B, 14
Although the linear regression is satisfying with

RMSE =9.7838 and R? = 0.9045, we can see on Figure 1 that
we need to still improve approximation.

= 1. (B.1)

Data Availability

This is a public dataset for traffic research. The homepage of
this dataset is as follows: https://ops.thwa.dot.gov/
trafficanalysistools/ngsim.htm.
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