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detection

Aymeric Gaudin?®, Louise Guillon?, Clara Fischer®, Arnaud Cachia®, Denis Riviere?,
Jean-Francois Mangin®, and Joél Chavas®

*Neurospin, Batiment 145, CEA Saclay, 91191 Gif-sur-Yvette, France
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ABSTRACT

The human cerebral cortex has many bumps and grooves called gyri and sulci. Even though there is a high inter-
individual consistency for the main cortical folds, this is not the case when we examine the exact shapes and details
of the folding patterns. Because of this complexity, characterizing the cortical folding variability and relating
them to subjects’ behavioral characteristics or pathologies is still an open scientific problem. Classical approaches
include labeling a few specific patterns, either manually or semi-automatically, based on geometric distances,
but the recent availability of MRI image datasets of tens of thousands of subjects makes modern deep-learning
techniques particularly attractive. Here, we build a self-supervised deep-learning model to detect folding patterns
in the cingulate region. We train a contrastive self-supervised model (SimCLR) on both Human Connectome
Project (1101 subjects) and UKBioBank (21070 subjects) datasets with topological-based augmentations on the
cortical skeletons, which are topological objects that capture the shape of the folds. We explore several backbone
architectures (convolutional network, DenseNet, and PointNet) for the SimCLR. For evaluation and testing, we
perform a linear classification task on a database manually labeled for the presence of the ”double-parallel”
folding pattern in the cingulate region, which is related to schizophrenia characteristics. The best model, giving
a test AUC of 0.76, is a convolutional network with 6 layers, a 10-dimensional latent space, a linear projection
head, and using the branch-clipping augmentation. This is the first time that a self-supervised deep learning
model has been applied to cortical skeletons on such a large dataset and quantitatively evaluated. We can now
envisage the next step: applying it to other brain regions to detect other biomarkers. The GitHub repository is
publicly available on https://github.com/neurospin-projects/2022_jchavas_cingulate_inhibitory_control.
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1. INTRODUCTION

The human cerebral cortex is folded and made of gyri separated by folds. Even though the main folding patterns
are common across humans, the details of the cortical folding present a very high inter-subject variability, just
like fingerprints. This variability is both a challenge and an opportunity: studying it can let us find anatomical
biomarkers of neurodevelopmental pathologies or of subjects’ endophenotypes linked to genetic polymorphisms.

We can decipher this variability by looking for local shape features called cortical folding patterns or folding
patterns.

The literature shows few cases of cortical folding patterns that have been identified and correlated with
pathologies or functions. For example, in the precentral region, Mellerio et al. (2015) manually identified a
pattern named the Power Button Sign (PBS) pattern because of its recognizable shape (Fig. 1A). This pattern
is very rare in the general population but is present in about 60% of patients with dysplasia near the motor
area, leading to epilepsy.! Also, the Anterior Cingulate Cortex (ACC) has two identified folding patterns, the
single-fold pattern and the double-parallel pattern (Fig. 1B):* the presence of different ACC patterns in both
hemispheres is related to control efficiency in preschoolers,? and the shape of the ACC folds has been related to
hallucinations among human patients suffering from schizophrenia.* To complement the manual methods, Borne
et al. proposed a supervised model based on a convolutional network to detect known patterns.’

These manual techniques have a drawback: they are long to implement, while the supervised ones will not
permit the detection of new folding patterns. We propose to resort to unsupervised techniques that allow the use
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Figure 1. Ezamples of cortical patterns. A. The power button sign pattern in the central region is linked to epilepsy.! B.
The anterior cingulate cortex (ACC) has two known patterns, a double-parallel pattern and a single-fold pattern.? We
use the detection of these two ACC patterns to evaluate our models.

of the large datasets that are now available. Recently, f-VAE® and SimCLR"” models have been trained to build
a latent space for folding representation.® 1% However, these studies have not used a manually labeled dataset
for hyperparameter tuning and evaluation.

Here, we build a contrastive learning framework to find a representation that permits the automatic detection
of relevant folding patterns. We use as inputs the so-called cortical skeletons—topologically-defined surfaces that
follow the middle of a sulcus (Fig 3, blue surface in the left image)—, which are stable throughout life after early
childhood and are expected to be less sensitive to data acquisition sites. We optimize a SimCLR model and
evaluate it by detecting the double-parallel pattern in the anterior cingulate cortex of the right hemisphere.

2. METHODS
2.1 Datasets

Three datasets are used in this project: the human connectome project (HCP) dataset, the UKBioBank dataset,
and the so-called ACC dataset :

e Data collection and sharing for the HCP dataset was provided by the MGH-USC Human Connectome
Project.'t We used in this work MRIs of 1101 HCP subjects,

e We preprocessed 21070 subjects of the UKBioBank, which recruited 500,000 people,*?

e The ACC dataset stands for the Anterior Cingulate Cortex dataset. This dataset contains MRIs from 341
young subjects taken from 4 separate studies.!>'” Each MRI has been manually labeled for the presence
or absence of the paracingulate fold, which lies parallel above the anterior cingulate fold.* '8 The presence
of the paracingulate fold corresponds to what we call in this paper the double-parallel pattern.

The HCP dataset is randomly split in two, HCP-1 and HCP-2. The ACC dataset is also randomly split in two,
ACC-1 for parameter tuning and ACC-2 for testing, using a stratification guaranteeing equipartition of the sites
(as there can be an effect of the site on MRI data acquisition), gender, and subjects having a paracingulate fold
in the right hemisphere (Fig. 2).

2.2 Demographic information

The 341 subjects of the ACC dataset are distributed as follows: 197 subjects are from a longitudinal study of
childhood-onset schizophrenia,'® 4 out of which 73 are schizophrenia patients, 49 are patients’ siblings, and 75
are healthy subjects.!> 65 subjects (46 adolescents, 19 children) are taken from Delalande et al., 2020.' Last,
79 subjects are taken from Tissier et al., 2018.17 All 341 subjects have been labeled manually for the presence
of the paracingulate fold.

Gender distribution is given in Table. 1. HCP subjects were recruited from Missouri (United States), UK-
BioBank subjects in 2006-2010 from across the UK, whereas ACC subjects were from France and the USA
(Table 1).
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Figure 2. Dataset splits used for parameter tuning and evaluation.

#subjects Age % of male Origin #sites
Mean |[min, max]
UKB 21070 64 [44, 82] 47 UK 1
HCP | 1101 29 [22, 40] 48 USA 1
ACC 341 15 [8, 40] 58 France, USA 4

Table 1. Demographic information of used datasets.

2.3 Preprocessing

All subjects’ brain magnetic resonance images (MRIs), affinely normalized to a standard brain referential
(ICBMc2009), were preprocessed with the Morphologist pipeline from the BrainVISA software* to get their
folding graph (Fig. 3), namely a graph-based representation of the cortical skeleton. Each branch of the graph
is either a simple surface, a junction line between simple surfaces, or a bottom line of a fold; they are connected
in the graph if their corresponding surfaces touch each other.%20

*https://brainvisa.info

cingulate crop with
branch labels

Cortical skeleton

Figure 3. Preprocessing the inputs of the deep learning algorithm. Left. The cortical skeleton (in blue) represents the
cortical folds for the right hemisphere. Middle. The cingulate crop with branch labels (one color per branch label):
each branch represents a simple surface, a junction line, or a bottom line of a fold. Right. From the cingulate crop, we
construct random views, using either the cutout augmentation, in which only bottom branches (represented in red) are
kept inside the cutout (top right), or the branch-clipping augmentation, in which branches are randomly removed, and
all bottom branches are removed (bottom right) .



We focus our study on the cingulate region of the right hemisphere (Fig. 3). For this, we compute a mask
of the cingulate region over a database where the folds were manually labeled.?’ Our final inputs are 2-mm
resolution 3D crops of dimension 17x40x38 (Fig. 3, middle).

2.4 Model

The contrastive model used is SimCLR, an instance discrimination contrastive model.” For each input image
x of a batch of size N, we generate two views, x; and x;, at each epoch, whose model outputs are z; and z;,
respectively. The model trains to brlng together Vlews from the same image and moves away views of different

images, in that it minimizes Zl 1 Ui j=pos(i) T ZJ 1 4ji=pos(j), With :

P exp(sim(z;, z;)/T) )
! Zk 1,k£i ©XP (sim(z, 2k) /7)

pos(i) represents the positive pair associated with i, 7 is a temperature parameter, and sim(.,.) is the cosine
similarity function.

2.5 Topology and graph-based augmentations

We test two different sets of topology-based transformations to generate the SimCLR views (see §2.8 for details
on the parameters optimization and the right panel of Fig 3 for illustration). The first one, called ”cutout”,
produces two different views: in one view, we remove a rolling block whose dimensions are 55% of the image
volume dimensions. In the second view, all non-zero voxels inside a random 3D block of the same size are kept,
and all non-zero voxels outside this block are removed.® In all views, fold bottom pixels are conserved to keep
the information on the global longitudinal shape of the sulcus.

The second augmentation method is called ”branch-clipping”: for both views, it removes random branches
from the folding graph until there are at least 40% of the voxels removed. All bottom voxels are removed.

We then binarize the image for all views and apply a random rotation with nearest-neighbor interpolation
with a maximum amplitude of 6° around each axis.

2.6 Backbones

We tested three different backbones. The first is a simple six-layer convolutional network, taken from a S-VAE
encoder optimized for cortical skeleton images.® The second one is a DenseNet architecture,?? which gives good
results when used on brain MRI data.?? Tts number of dense blocks is reduced to two, considering the smaller
image size.®

The third is a PointNet.2* A PointNet is a neural network that, instead of taking a binary 3D matrix with
a fixed size as input, takes point clouds, i.e., a list of 3D coordinates corresponding to the non-zero pixels in the
original 3D matrix. Indeed, in our volumes, only 4% of the pixels have non-zero values, making this backbone
attractive. We take the original implementation of PointNet in this work.

2.7 Linear classification

A standard way to assess the quality of a SimCLR model is to train classifiers on the embeddings it generates.” We
are using the scikit-learn implementation of a linear Support Vector Classifier (SVC) with probability estimates:
we take as a criterion the area under the receiver operating characteristic curve (AUC).?
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Figure 4. Preprocessing and training pipeline. We train the SImCLR model either on the HCP or on the UKBioBank
dataset (top) and evaluate the model on the ACC dataset, which has been manually labeled for the double-parallel pattern
in the cingulate region (bottom).

2.8 Deep-learning engineering and parameter optimization

We do initial grid searches using the DenseNet architecture with a 30-dimensional latent space and a non-linear
projection head. We are first doing a gridsearch on HCP-1 with evaluation on ACC-1 with a 55% cutout
augmentation® over the learning rate on 2, 4x10™%, the batch size on 16, 32. We then set the learning rate to
4x10~* and the batch size to 16. We then run a second grid search on 30,45,55% cutout size for the cutout
augmentation strategy and on 30,40,50% of removed pixels for the branch-clipping strategy. We find 55% for
the cutout size and 40% for the percentage of removed pixels to be the best.

We then test a dropout rate of 0, 0.05, 0.1 for the DenseNet backbone with both a 4-dimension and 30-
dimension latent space, with both the cutout and the branch-clipping augmentations. We set the dropout rate
to 0.05.

Last, we test the DenseNet backbone when removing or keeping the bottom voxels. For the cutout augmen-
tation, keeping bottom voxels increases the probability of getting stuck in a trivial solution where all outputs
lie in the same place, particularly for latent spaces of size 4. For the branch-clipping augmentation, removing
bottom voxels improves the AUC, probably by increasing the randomization of the views. Thus, we kept all
bottom voxels in the cutout augmentation and removed all bottom voxels in the branch-clipping augmentation.

We then run 5 models for each condition (see §3.1). Running a ConvNet model takes 20 minutes on a 16GB
GPU (Quadro RT 5000) with 48 CPU cores.

3. EXPERIMENTS AND RESULTS
3.1 Optimizing SimCLR model for the detection of the double-parallel pattern

We optimize the SimCLR self-supervised model to detect the double-parallel pattern in the cingulate region.
This is done in three main steps: we first perform a preprocessing of the brain MRI data, we then perform
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Figure 5. Parameter optimization results. Training is done on HCP-1 (half of the HCP dataset). Evaluation is done
on ACC-1 (half of the ACC dataset). Each small marker represents a different trained model. A. AUC score as a
function of the latent space size for the ConvNet backbone. Black lines with squares and dashed lines with down triangles
stand respectively for the branch-clipping and the cutout augmentations. The thinner solid black line corresponds to a
Principal Component Analysis (PCA) model. B. and C. are similar plots, respectively, for the DenseNet and the PointNet
backbones.

parameter optimization on the train/validation dataset, and finally, we test and evaluate the model on the test
dataset (Fig. 4).

After preprocessing the brain MRI data, we obtain crops of the cingulate region of the right hemisphere
containing only information on folds (see §2.3).

We then optimize parameters by training the model on HCP-1 and evaluating it using a linear SVC on
ACC-1 (see§ 2.8 for details). The evaluation criterion is the AUC for linearly classifying the double-parallel
pattern in the cingulate region. After an initial parameter initialization, we test three backbones—a simple
six-layer convolutional network (named ConvNet), a DenseNet, and a PointNet—, three latent spaces sizes—4,
10, 30—, two augmentation strategies—the cut-out and the branch-clipping augmentation—, and two projection
heads—Ilinear and non-linear—. We find the best model to be the six-layer convolutional network with a linear
projection head, a latent space size (that is, the dimension of the latent space) of 10, and using the branch-clipping
augmentation strategy (Fig. 5).

Last, for testing, we train models with the chosen hyperparameters on HCP-2 and evaluate them on ACC-
2. We find the AUC of SimCLR on the latent space to be 0.73+0.03 (n=5 models), slightly above the AUC
(0.69+£0.04, n=>5) of the S-VAE model optimized in® and applied here to the same dataset (Fig. 6A). Even if
favorable, we note that the difference doesn’t reach statistical significance (p=0.08).

We observe that the effect of the batch size on the AUC reaches a plateau for a small batch size of 8 (Fig. 6B);
we use a batch size of 16 in our models after an initial optimization (see §2.8). This differs from applying SimCLR
on big 2D image datasets, in which bigger batch sizes improve the results.” Then, we observe that, by training
on the ACC-1 dataset whose size is N=171, the result is similar to the one obtained when training the model
on HCP-2 with a similar training size (p=0.84, t-test, comparing blue circle and black square in Fig. 6B). The
result is also true for the UKBioBank dataset for enough training data, as the UKBioBank results match the
HCP ones for 1101 subjects. As data acquisition sites and age ranges differ in all three datasets, this shows that
the method is age and site-resistant. Then, when changing the training set size N, the performances increase.
For UKBioBank, the AUC increases to 0.76 when training with 21070 subjects (see Fig. 6C).

Variability (measured as the standard deviation over 5 different SimCLR initializations) decreases from 0.04
for n=>551 to 0.01 for n=21070, showing that increasing the number of training subjects significantly stabilizes
the representation. Last, the UMAP representation (from a model trained on UKBioBank and fit with UMAP
on UKBioBank embeddings) shows how the ACC dataset, as well as the subjects with a double-parallel pattern,
is embedded in the UKBioBank space (Fig. 6D).
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Figure 6. Testing results with the best parameters for SimCLR. Training is done on HCP-2 and evaluation is done on
ACC-2. A. AUC for SimCLR compared with the 5-VAE model. B. AUC as a function of batch size. C. AUC as a
function of the training set size. The blue circle and the upper triangle represent models for which the training is done,
respectively on ACC-1 and UKBioBank. HCP training is done exclusively on HCP-2 when the training size is smaller
than 551. D. UMAP representations of UKBioBank embeddings (top) and of ACC embeddings (bottom). Each point
represents a UKBioBank subject (green), an ACC subject with a double-parallel sulcus (red) or without (blue.)

4. DISCUSSION AND CONCLUSIONS

We built the software structure and applied for the first time a self-supervised deep-learning algorithm on cortical
skeletons with a database of more than 20,000 subjects. For the first time, we implemented augmentations that
use the graph structure of the cortical folds. We optimized the model and quantified its significance using a
manually labeled dataset.

We obtained a latent representation of the cortical folds of the cingulate region and evaluated this represen-
tation for detecting a double parallel cingulate pattern known to be related to schizophrenia.

The best SimCLR model found has two characteristics: a very simple backbone—a convolutional neural
network—and a topology-specific augmentation—the branch-clipping—that differs from the augmentations used
in 2D image learning and takes into account topological information of the inputs. Its simplicity likely means
the same model will work reasonably well when applied to other brain regions.

The obtained representation quality is resilient to a change in the training database. This advantage likely
comes from using cortical skeletons as they are less sensitive to acquisition sites and the subject’s age.'® However,
there is still a dataset effect. A possible solution would be to apply debiasing techniques?® or to modify the
augmentations further to reduce the remaining site and age effect.

Now that we have a representation that has been optimized for folding pattern detection, the next step
will be to bring external information (akin to other modalities) directly into the model to further improve
its representation quality.?® A possible solution may be to perform a late fusion (that is, to concatenate the
modalities at the level of the latent space), followed by an autoencoder to leverage possible correlations.?”
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