

Neil M. Ribe Laboratoire FAST, Orsay (France)

In collaboration with:

Stéphanie Chaillat (ENSTA-UMA, Palaiseau, France)

Alexander Chamolly (Institut Pasteur, Paris, France)

Gianluca Gerardi (Mines ParisTech, Fontainebleau, France)

Zhonghai Li (Univ Chinese Academy of Sci, Beijing, China)

Model

ullet a dense axisymmetric shell with viscosity η_1 sinking into a planet with viscosity η_2

Instantaneous Flow Solution: An Example ($\theta_t = 30^\circ$, $\eta_1/\eta_2 = 100$)

Three Forces Acting on a Slab: Scaling Analysis

Dynamical vs. Geometrical Sphericity

Dynamical sphericity number:

$$\Sigma_D = \frac{l_b}{R_0} \cot \theta_t$$

Geometrical sphericity number:

$\Sigma_G = \theta_t$

Implications:

1. Dynamical sphericity is greater for small plates ("sphericity paradox")

2. Geometrical sphericity is greater for large plates;

3. Sphericity is important at *all* scales in the dynamics of subduction

This hemisphere has...

(a) Greater geometrical sphericity

(b) Smaller dynamical sphericity

... than this cap.

Effect of Sphericity on the Sinking Speed *V*

P

Sphericity reduces V by a few tens of percent for small plates

P

Sphericity increases T_2 by a factor \approx 3 for small plates

Hoop Stress vs. Downdip Stress

Stress in most of the slab is dominated by the hoop stress component

Three-Dimensional Model (in progress)

Bird's-eye view of the shell

Cross-section along a meridian

