
HAL Id: hal-04420107
https://hal.science/hal-04420107

Submitted on 4 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Reinforcement Q-Learning for Intelligent Traffic
Signal Control with Partial Detection

Romain Ducrocq, Nadir Farhi

To cite this version:
Romain Ducrocq, Nadir Farhi. Deep Reinforcement Q-Learning for Intelligent Traffic Signal Control
with Partial Detection. International Journal of Intelligent Transportation Systems Research, 2023,
21 (1), pp.192-206. �10.1007/s13177-023-00346-4�. �hal-04420107�

https://hal.science/hal-04420107
https://hal.archives-ouvertes.fr

SEPTEMBER 2021 1

Deep Reinforcement Q-Learning for Intelligent
Traffic Signal Control with Partial Detection

Romain Ducrocq, Nadir Farhi
COSYS-GRETTIA, Univ Gustave Eiffel, IFSTTAR, F-77454 Marne-la-Vallée, France

Abstract—Intelligent traffic signal controllers, applying DQN
algorithms to traffic light policy optimization, efficiently reduce
traffic congestion by adjusting traffic signals to real-time traffic.
Most propositions in the literature however consider that all
vehicles at the intersection are detected, an unrealistic scenario.
Recently, new wireless communication technologies have enabled
cost-efficient detection of connected vehicles by infrastructures.
With only a small fraction of the total fleet currently equipped,
methods able to perform under low detection rates are desirable.

In this paper, we propose a deep reinforcement Q-learning
model to optimize traffic signal control at an isolated intersection,
in a partially observable environment with connected vehicles.
First, we present the novel DQN model within the RL framework.
We introduce a new state representation for partially observable
environments and a new reward function for traffic signal control,
and provide a network architecture and tuned hyper-parameters.
Second, we evaluate the performances of the model in numerical
simulations on multiple scenarios, in two steps. At first in full
detection against existing actuated controllers, then in partial de-
tection with loss estimates for proportions of connected vehicles.
Finally, from the obtained results, we define thresholds for
detection rates with acceptable and optimal performance levels.

The source code implementation of the model is available at:
https://github.com/romainducrocq/DQN-ITSCwPD

Index Terms—Deep Reinforcement Learning, Intelligent Traf-
fic Signal Control, Partially Detected Transportation Systems.

I. INTRODUCTION

A. State of the art

Traffic congestion poses serious economical and social
problems; long travelling times, fuel consumption and
air pollution; and inefficient traffic signals are significant
underlying root causes to the issue. Fixed time traffic signals
with predetermined timing have been commonly used, but
become inadequate when facing dynamic and varying traffic
demands. Thus, with ever growing urban areas and vehicle
fleets, adaptive traffic signal control, able to respond to traffic
flows in real time, is sought as a major stake of urbanization.

1) DQN for traffic signal control: Traffic signal control
(TSC) has been addressed by reinforcement learning (RL)
methods with Markov chains, dynamic programming, fuzzy
logic [1] and tabular Q-learning. However, the advent of deep
Q-learning (DQN) in recent years has enabled to explore
many novel TSC applications based on DQN algorithms.
Initial studies with simpler models have proven DQN to be
efficient for TSC, comparing trained multilayer perceptron
models at isolated intersections with other algorithms from
the literature [2, 3]. Subsequent studies have build on these
models to explore the benefits of complex neural network

architectures, with stacked auto encoders, convolutional
neural networks and recurrent neural networks [4–8]. Latest
work also successfully demonstrated a complete rainbow
DQN implementation for TSC, with adaptations of the six
DQN extensions [9]. Furthermore, a significant portion of
the research in the field is dedicated to achieve decentralized
coordination between traffic lights, with applications of
multi agent reinforcement learning (MARL) over up to
1000 coordinated agents [10–13]. Yet, the main effort in the
literature is put on defining state representations and reward
functions. Indeed, the complexity of traffic environments
leaves these definitions as unresolved, with many propositions.

2) TSC with connected vehicles: TSC responds to traffic
demand based on real time measures of road traffic parameters.
While the data are easily recovered in software simulations,
real world implementations rely on expensive infrastructures,
which exist only at a small fraction of intersections. These
are mainly inductive loops under the roads, which allow for
macroscopic representations of the traffic, or, in rare cases,
radars or video cameras for microscopic descriptions. Most
TSC propositions mentioned above require information that
are thus difficult to obtain, and are for now mostly inappro-
priate. However, the rapid development of IoT has created
new technologies applicable for sensing vehicles, such as GPS
localization systems, dedicated short ranged communications
(DSRC), C-V2X, radio frequency identification, Bluetooth,
ultra wide band, Zigbee, and apps (e.g. Google Maps) [14, 15].
These communication devices are cost-effective, and do not
require heavy infrastructure set ups. An increasing number of
equipped connected vehicles (CV) are thus nowadays able to
transmit their positions and speeds to infrastructures, allowing
for microscopic partial state representations of intersections.
Furthermore, latest research have shown that TSC with partial
detection applied to CV penetration rates as low as 20%
can significantly improve traffic conditions for all vehicles
[16]. DQN applications for TSC with partial detection over
connected vehicles have been little investigated, and are listed
by surveys as a gap in the literature and a key future research.

B. Paper contributions and organization
In this paper, we apply a DQN algorithm to explore TSC

policy optimization in partially observable traffic environments
with limited detection on CVs, and the main contributions are:

1) We review the traffic features used in DQN model defi-
nitions for TSC applications in the literature, sorted by
agent actions, state representations and reward functions.

ar
X

iv
:2

10
9.

14
33

7v
1

 [
cs

.L
G

]
 2

9
Se

p
20

21

https://github.com/romainducrocq/DQN-ITSCwPD

SEPTEMBER 2021 2

2) We propose a new DQN model for TSC at single inter-
sections with partial detection over connected vehicles.
We introduce a new state representation for partially
observable traffic, partial DTSE, and a new reward
function for TSC, total squared delay. We provide tuned
values for a DQN architecture and its hyper-parameters.

3) We validate the model in full and partial detection with
the 3DQN algorithm on three scenarios in the industry-
standard SUMO simulator, by comparison against exist-
ing actuated TSC algorithms, Max Pressure and SOTL.

4) We evaluate the performance loss in partial detection by
proportions of CVs in the traffic, and estimate thresholds
for the minimum acceptable and optimal detection rates.

In section I, we introduce the subject with a state of the
art of TSC with DQN and CVs. In section II, we lay the
underlying assumptions, and formulate expressly the problem
addressed. In section III, we expose the background for Q-
learning and DQN, detail our implementation of the 3DQN
algorithm, and review the literature of DQN traffic features
for TSC (contribution 1). In section IV, we propose the DQN
model with the agent actions, state representation and reward
function, and a DQN architecture with tuned hyper-parameters
(contribution 2). In section V, we present the evaluation
methodology in SUMO with three simulation scenarios and
two actuated comparison algorithms, Max Pressure and SOTL.
In section VI, we validate the model with a comparative
analysis of the results in full and partial detection (contribution
3), and conclude on the performances (contribution 4). In
section VII, we conclude on this paper and its perspectives.

II. PROBLEM STATEMENT

A. Assumptions
1) Road network: We consider a single 4-way intersection,

where each leg has an incoming and an outgoing approach,
and each approach has a set of incoming or outgoing lanes.
Each incoming lane in an incoming approach has a set of
connections to outgoing lanes in outgoing approaches. Each
connection is controlled by one own traffic signal, and can be
either open or closed. Incoming vehicles cross the intersection
along open connections with right, left or through movements.

2) Traffic phases: We consider a traffic phase as
the complete sequence of a green phase with interval
Tg ≥ Tg,min, a change phase with fixed interval Ty > 0 and
a clearance phase with fixed interval Tr ≥ 0, with total phase
interval Tp = Tg + Ty + Tr. The traffic program is the set of
all possible phases, with a cycle being one complete rotation
in a predetermined order through all the phases in the program.

3) Connected vehicles: We consider CVs that can transmit
their positions and speeds to traffic infrastructures. The mixed
traffic is defined by a CV penetration rate pcv , with a per-
centage pcv of CVs and a percentage 1 − pcv of non-CVs.
We assume that CVs are perfectly observable, i.e. that their
positions and speeds can be observed with perfect accuracy.
This assumption is debatable; e.g. [14] reports that current
GPS localization systems are only precise enough to identify
the approach in which a CV is situated, but not the exact lane.

B. Problem formulation

We formulate the problem addressed hereinafter as follows:
A DQN agent controls the traffic signals at an isolated inter-
section with the aim to minimize the total vehicle travel time, in
a partially observable environment with limited detection over
a fraction of the total mixed traffic from connected vehicles.

III. DEEP REINFORCEMENT Q-LEARNING

A. Q-learning background

The RL agent in stochastic environment ε faces a decision
making problem formalized as a Markov Decision Process
(MDP), and defined by the tuple < S,A, P,R >, where S is
the continuous state space with state s ∈ S, A is the discrete
action space with action a ∈ A, P is the transition dynamics
matrix with p = P (s′|s, a) the probability of transitioning to
state s′ after taking action a in state s, R is the reward function
with r′ = R(s, a, s′) the reward of taking action a in state s
and transitioning to state s′, and the transition is (s, a, s′, r′).

The goal of learning in a MDP is to find a policy π(s)
mapping from states to actions, that maximizes the cumulative
future reward Gt =

∑t+T
k=t γ

(k−t) · rk+1 = rt+1 + γ · Gt+1,
with γ ∈ [0, 1] a discount factor and a finite time horizon T .

The state-value function V (s) = E[Gt|st = s, π] estimates
expected cumulative future rewards for successive states in
the MDP with the Bellman recursion, and the action-value
function Q(s, a) = E[rt+1 + γ · V (st+1)|st = s, at = a, π]
similarly estimates them for state-action pairs. For an optimal
policy π∗(s) at each step t, the Bellman optimality equation
defines the relationship between optimal V ∗ and Q∗ functions
as V ∗(s) = maxaQ

∗(s, a), and thus the optimal action-value

Q∗(s, a) = E[rt+1 + γ ·max
a′

Q∗(st+1, a
′)|st = s, at = a, π∗]

Q-learning algorithms approximate the Q-function by many
iterative updates, with a function approximator Θ such that
Q(s, a,Θ) → Q∗(s, a) when t → ∞. The agent then learns
an optimal policy over time π(s) = argmaxaQ(s, a,Θ) [17].

B. 3DQN implementation

Deep Q-learning algorithms approximate the Q-function
with a neural network, the deep Q-network (DQN) [18–20]
Q with weights Θ, mapping from one continuous state s ∈ S
in an |s|-dimensional input layer to all the discrete Q-values
Q(s, a,Θ) ∀a ∈ A in an |A|-dimensional output layer. Here,
we implemented the dueling double DQN (3DQN) algorithm:

1) The dueling architecture: [21] decouples the state-value
function V (s) and the action-advantage function Â(s, a) =
Q(s, a)− V (s), into a 1-dimensional value stream V (s, θ, κ)
and an |A|-dimensional advantage stream Â(s, a, θ, ι) ∀a ∈ A,
with weights (θ, κ, ι) = Θ. The streams are then recombined
in a special aggregation layer to produce the Q-function with

Q(s, a,Θ) = V (s, θ, κ)+(Â(s, a, θ, ι)− 1

|A|
∑
a′

Â(s, a′, θ, ι))

SEPTEMBER 2021 3

2) The temporal difference: (TD) errors δ are computed
from double TD targets [22] by forward propagation through
the Q-network Q and a target Q-network Q̂ with weights Θ−

δ = r′ + γ · Q̂(s′, argmax
a′

Q(s′, a′,Θ),Θ−)−Q(s, a,Θ)

and the target Q-network Q̂ is updated by Polyak updates [23]

Θ− = (1− τ) ·Θ− + τ ·Θ, with τ � 1

3) The replay memory: D stores the N last transitions,
and the online Q-network Q is updated by back propagation
on a batch U(D) of M past transitions (s, a, s′, r′)m drawn
uniformly at random from D, with Huber Loss over TD errors

L =
1

2M

M∑
m=1

{
(δm)2 if |δm| < 1

2 · |δm| − 1 else

and with Adam optimization [24] on the derived gradient ∆.

Dueling Double DQN (3DQN) algorithm

Initialize step t = 0;
Initialize online dueling Q-network Q with random weights
Θ0 and target dueling Q-network Q̂ with weights Θ−0 = Θ0;
Initialize replay memory buffer D to capacity N
with Nmin random transitions (s, rand a ∈ A, s′, r′);
for episode e = 1:E do

Initialize sequence, observe initial state st = φ(xt);
while st not terminal do

With probability ε select random action at ∈ A
otherwise select action at = argmaxaQ(st, a,Θt);
Execute at in emulator ε and
observe reward rt+1 and next state st+1 = φ(xt+1);
Store transition (st, at, st+1, rt+1) in D;
Sample batch U(D) of M transitions (s, a, s′, r′)m;
for m = 1:M do

Set double TD error δm;
end for
Update online Q-network Q with Adam optimization
on Huber loss Lt w.r.t. weights Θt and gradient ∆t;
Soft update target Q-network Q̂ with Polyak update;
Decay ε with exponential decay, increment step t;

end while
end for

C. Review of DQN for TSC

The main effort in the literature of TSC with DQN is
placed on the definition of efficient state representations and
reward functions. However, RL models are time consuming
to tune, and the complexity of TSC environments makes
evaluation difficult. Moreover, the issue of reproducibility in
RL prevents rigorous comparison of TSC models, and there
are no widely accepted representations. We compile here a
non-comprehensive list of propositions found in the literature:

1) Agent actions: Two types exists; either (1) the TSC
agent acyclically selects the next phase from the set of possible
phases with fixed green interval duration [2, 4, 5, 8–13, 15,
16, 25, 26], or (2) the TSC agent selects the duration of the
next green interval for the upcoming phase in a cycle [3, 6, 7].

2) State representation: The observations can either be
macroscopic, with estimations of global parameters over traffic
flows, or microscopic, with raw data for individual vehicles.
While earlier work preferred low-dimensional macroscopic
state representations, latest work observe individual vehicles
for high-dimensional microscopic state representations.
Indeed, a significant gain in performance has been measured
for microscopic observations over macroscopic ones [25].
Either way, state representations have been usually found to
be aggregations of multiple traffic features; among which
current phase [3, 5, 7, 10–13, 15, 16], number of vehicles
[3, 7, 9, 12, 15, 16, 25], positions of vehicles [5–8, 10, 25],
queue lengths [3, 4, 7, 25, 26], speeds of vehicles [2, 5, 6,
25], history of past phases [2, 9, 25], elapsed time in the
current phase [15, 16], green, change and clearance intervals
duration [15, 16], distances to nearest vehicles [15, 16],
pressures [11, 13], number of waiting vehicles [2], waiting
times of vehicles [7], and upcoming phase in a fixed cycle [7].

3) Reward function: The reward in TSC, overall, aims at
reducing total lost travel time caused by traffic signals. As
such criterion can not be assessed directly, rewards are mostly
defined as weighted combinations of traffic features, which
coefficients are set empirically. The lack of solid theoretical
justifications is a major challenge for real world deployment,
as RL rewards are difficult to transcribe mathematically with-
out distorting the intended goal, especially in complex sys-
tems. Here, the reward functions act in effect as punishments,
with agents reducing evaluation metrics derived from traffic
features, maximizing negative values; among which delays
of vehicles [3, 7, 10, 15, 16, 25, 26], waiting times of
vehicles [5–7, 9, 10], queue lengths [4, 7, 12, 26], intersection
throughput [2, 7, 9, 26], phase changes [7, 9, 10], pressures
[11, 13], accumulated waiting times of vehicles [8], number
of waiting vehicles [9], travel times of vehicles [7], emergency
stops of vehicles [10], and teleports of vehicles in SUMO [10].

IV. DQN MODEL FOR TSC

A. Agent actions

1) Actions: The agent selects the next phase from the set
of possible phases for the next Tg,min time of green interval.
If the selected phase is the ongoing phase, the current green
interval Tg is extended by Tg,min. Else, the phase is changed
to the selection, with an intermediate Ty + Tr time through
change and clearance intervals, and an initial Tg,min time in
the green interval of the new phase. Thus, while the action is
to select the next phase, the agent also decides the duration of
the ongoing phase by consecutively selecting the same phase.

2) Action space: The action space is defined by the number
of possible phases in the traffic program. At a four-way

SEPTEMBER 2021 4

intersection, there is a total of eight valid paired signal phases
for non-conflicting movement signals [27]. From this, and as
phases aim to separate conflicting connections so that concur-
rent movements have minimum conflicts, the set of possible
phases has either two or four phases. 2-phases programs have
two permissive green intervals, one for each axis, with permis-
sive turn left, through and turn right movements. The action
space is A = {(n→ esw, s→ wne), (e→ swn,w → nes)},
with size |A| = 2. 4-phases programs have four protected
green intervals, two for each axis, with protected turn left
movements only, or through and turn right movements. The
action space is A = {(n → sw, s → ne), (n → e, s →
w), (e→ wn,w → es), (e→ s, w → n)}, with size |A| = 4.
The two possible action spaces are shown hereinafter in Fig. 1:

2 phases, action space.

4 phases, action space.

Fig. 1: Action spaces.

B. State representation

Discrete traffic state encoding (DTSE) [5] is a microscopic,
image-like state representation of the intersection for TSC.
Here, we adapt DTSE to the partially observed environment
with detection only on CVs, and we propose the partial DTSE.

In partial DTSE, the state representation is an image-like
construction of stacked matrices for multiple levels of
microscopic, individual information provided by CVs and
traffic signals at the intersection. Here, all incoming lanes

are discretized, over segments from the stop line up to a
detection range less than or equal to the total length of the
corresponding approach, into grids with cells of fixed length,
set to be slightly larger than the average size of a vehicle
with inter-vehicle gap. The cells contain data on individual
CVs and traffic signals, and the grids are aggregated over
the segments. Three matrices are extracted for three levels
of information; i.e. the matrix of CV positions P , the matrix
of CV speeds V , and the matrix of traffic signals over lanes
S; and stacked into a single 3D image-like state representation:

Partial DTSE =

P =
[
P0, P1, P2, P3

]
V =

[
V0, V1, V2, V3

]
S =

[
S0, S1, S2, S3

]

P =

Partial DTSE =
P0 P1 P2 P3

0 0 0 0 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 0 0 0 1 0
1 0 0 1 0 1 0 1 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0

V =

V0 V1 V2 V3

0 0 0 0 0 0 0 0 0.4 0 0 0
0 0.9 0 0 0.2 0 0 0 0 0 0.1 0

0.8 0 0 0 0 0 0 0.7 0 0 0 0
0 0.8 0 0 0 0 0 0 0 0 0 0

S =

S0 S1 S2 S3

1 1 0 0 0 0 1 1 0 0 0 0
1 1 0 0 0 0 1 1 0 0 0 0
1 1 0 0 0 0 1 1 0 0 0 0
1 1 0 0 0 0 1 1 0 0 0 0

Fig. 2: Partial DTSE.

SEPTEMBER 2021 5

The example in Fig. 2 demonstrates partial DTSE applied
to a four-way intersection, with CVs in blue and non-CVs in
yellow. The matrix of CV positions P is binary encoded, with
1 and 0 being respectively the presence or absence of CVs in
the cells. The matrix of CV speeds V encodes the matching
speeds, normalized over the speed limits of approaches. The
matrix of traffic signals over lanes S is binary encoded, with 1
being a green signal for the lane and 0 a yellow or red signal.

C. Reward function

The goal of the agent is to minimize the total travel time
through the intersection for all commuters, i.e. for both CVs
and non-CVs. As such, while the state represents only CVs in a
partially observed environment, the reward function considers
all vehicles in a fully observed environment. This implies that
full training is completed in the simulator, where non-CVs are
observable, and performances do not improve after deployment
[15]. We propose a reward function based on vehicle delay,
as delay was considered the most efficient metric for learning
by a comparative study [26]. Minimizing delay translates to
minimizing the lost travel time t − tmin, with t the average
travel time of vehicles and tmin the lowest possible travel time
with speed limit vmax [15]. At timestep t, for a given vehicle
i with speed vi(t), and over the travel distance tmin · vmax :

tmin · vmax =

∫ t

0

vi(t) dt =⇒ tmin =
1

vmax

∫ t

0

vi(t) dt

=⇒ t− tmin =
1

vmax

∫ t

0

vmax − vi(t) dt

Thus, minimizing the total delay is equivalent to minimiz-
ing, for each timestep t and vehicle i, the individual delay:

di(t) =
1

vmax
· (vmax − vi(t)) = 1− vi(t)

vmax

We propose here to minimize the total squared delay, the
cumulative delay over all incoming vehicles at the intersection,
with a power term that prioritizes many short delays over fewer
large delays and thereby encourages fairness among vehicles:

tsd(t) =
∑
i

(
1− (

vi(t)

vmax
)2
)

The reward function thus maximizes the negative total
squared delay. Additionally, the reward is normalized by
the maximum total squared delay encountered at that time
of training tsdmax(t) = max(tsd(t), tsdmax(t − 1)), and
centered in [0, 1] for learning stability [3], i.e. the TSC reward:

rt = 1− tsd(t)

tsdmax(t)

D. NN architecture

The convolutional neural network (CNN) [28] is a special
architecture for image analysis. It is split into a convolutional
module, that assembles patterns of increasing complexity in
data with space invariant operations, and a fully connected
module. A convolutional layer in the convolutional module
performs 2D-convolutions over shared weights of filters, i.e.
kernels, sliding with a stride along stacked input feature
matrices, i.e. channels, to output feature maps. It is defined
by a number of channels C, a kernel size K and a stride S.

Here, partial DTSE is a 3-channels image-like state repre-
sentation with cells acting as pixels, and we thus use a CNN
for the deep Q-network, i.e. the convolutional dueling DQN.
After experiments, we shaped the CNN to have two convo-
lutional layers (2) CNN1 with (C = 16,K = 4, S = 2),
(3) CNN2 with (C = 32,K = 2, S = 1), and two fully
connected layers (4) FC1 with 128 neurons and (5) FC2
with 64 neurons; and all the activations are exponential linear
unit (ELU) functions. With (1) the partial DTSE input layer,
(6) the dueling stream layer and (7) the Q-value aggregation
output layer, the convolutional dueling DQN is as in Fig. 3:

Fig. 3: Convolutional dueling DQN.

We tuned the model by grid search method over the hyper-
parameters, with runs of 2M timesteps and episodes of
3600 second simulations. The tuned values are: learning rate
α = 1e−4 with Adam optimization and Huber loss, discount
factor γ = 0.99, minimum epsilon εmin = 0.01, epsilon decay
εdec = 2M with exponential decay, replay memory buffer
capacity N = 1M, replay memory buffer initial size Nmin =
0.1M and target soft update rate τ = 1e−3 with Polyak update.

V. TEST METHODOLOGY

A. Simulations

We trained and tested the proposed model in the SUMO
microscopic continuous road traffic simulator [29, 30], as the
RL environment, on three high-fidelity traffic scenarios, with
different road network structures and traffic signal programs:

1) Scenario (a): 2 phases, 2x2 incoming lanes;
2) Scenario (b): 4 phases, 3x3 incoming lanes;
3) Scenario (c): 4 phases, 4x4 incoming lanes.
In scenarios (a) and (b), one incoming lane is reserved for,

respectively permissive and protected, left turns. In scenario
(c), two incoming lanes are reserved for protected left turns.
For all scenarios, the change, clearance and minimum green
intervals are fixed to Ty = 3 seconds, Tr = 2 seconds and

SEPTEMBER 2021 6

Tg,min = 10 seconds, and each approach has a length of 300
meters. As the vehicle size and inter-vehicle gap are 5 and 2.5
meters in SUMO, we use cells of 8 meters in partial DTSE,
and a detection range of 160 meters for up to 20 CVs per lane.

Episodes are 3600 second SUMO simulations, with ran-
domly generated traffic demand to create heterogeneous traffic.
Each episode is assigned a randomly selected CV penetration
rate pcv ∈ [0, 1] and randomly selected insertion traffic flows
qe ∈ [100, 1000] vehicles per hour per entry approach e, with
traffic demand following a Poisson process with parameter
λe = q−1e · 3600. The vehicle turn ratios are randomly split
over the movements, relatively to their number of connections.

In a learning phase, the DQN agent was first trained for 4M
timesteps, i.e. 40 hours on an 8-core CPU, in each scenario
following an epsilon-greedy policy. In a deployment phase,
the DQN agent, with trained neural network weights, was then
observed in each scenario following the optimal learned policy.

B. Evaluation process

In the deployment phase, the performances of the model
were evaluated indirectly with a two-step comparative process:

1) The efficiency of the model was first assessed in full de-
tection (FD), with pcv = 1, by comparing performances
with actuated TSC algorithms, Max Pressure and SOTL.

2) The efficiency of the model was then assessed in partial
detection (PD), with pcv ∈ [0, 1], by estimating the loss
in performances between FD and PD for levels of pcv .

Performances are recorded over 1000 episodes for each of
the three scenarios; i.e. (a), (b), (c); and for the four traffic
signal controllers; i.e. Max Pressure, SOTL, DQN with FD
and DQN with PD. Thus, each algorithm is evaluated over
3 · 1000 = 3000 hours of diverse traffic situations. Moreover,
a random seed was used at deployment, so that controllers
experience the same 3000 hours of exogenous traffic and are
comparable by episodes, to evaluate global tendencies in flows.

We measure the performances by the average over an
episode of the total delay at the intersection for all vehicles, as
episodes are unitary traffic situations and for 3000 comparison
points per algorithm: the episode mean total delay (EMTD).

C. Comparison algorithms

As there exists no standard algorithm for deep Q-learning
TSC with partial detection, the performances of the model are
evaluated in full detection against two actuated TSC (ATSC)
algorithms: Max Pressure and SOTL. They are adaptive,
non-learning TSC algorithms, responding to traffic flows in
real time by measuring requests for green signals over the
competing phases, according to fixed rules [27]. They rely on
full, macroscopic traffic detection and are already deployed
at many real intersections with inductive loops under the roads.

1) Max Pressure: [3, 31] is an acyclic ATSC algorithm
which minimizes the pressure of phases at an intersection.
The pressure of a phase p is defined as the difference
between the total number of vehicles in the set of all
incoming lanes with authorized movements for that phase

Lp,inc and the total number of vehicles in the set of all
corresponding outgoing lanes Lp,out. After each minimum
green interval of time Tg,min, the controller selects the phase
p ∈ P with maximum pressure to be relieved in the set
of all possible phases. While Max Pressure is efficient and
simple to implement, it involves detection on vehicles in
both incoming and outgoing lanes and is thus costly to deploy.

Max Pressure algorithm

procedure MaxPressure(Tg ,Tg,min):
if Tg ≥ Tg,min then

Set next phase to maximum pressure phase
p = argmax({pressure(p) for p ∈ P})
with pressure(p) =

∑
l∈Lp,inc

|Vl| −
∑
l∈Lp,out

|Vl|;
end if

2) SOTL: [3, 32] (Self-organizing traffic lights) is a cyclic
ATSC algorithm which dynamically sets the green interval
duration Tg in the current phase p. A time integral χ of the
total number of vehicles in the set of all incoming lanes with
prohibited movements for that phase Linc − Lp,inc and in a
distance ψ from the stop line is accumulated, and the current
phase is maintained until the accumulated time integral reaches
a fixed threshold µ. Additionally, small vehicle platoons of
size η, the total number of vehicles in the set of all incoming
lanes with authorized movements for that phase Lp,inc and in
a distance ω ≤ ψ from the stop line, are kept together and
prevent phase changes for sizes less than a fixed threshold ν.

Here, we set the constants to values commonly used in
the literature: µ = 50, ν = 3, and ψ = 80, ω = 25 meters [33].

SOTL algorithm

procedure SOTL(Tg ,Tg,min,µ,ν,ψ,ω):
Accumulate time integral χ = χ+

∑
l∈Linc−Lp,inc

|Vl,ψ|;
if Tg ≥ Tg,min and χ > µ then

Set vehicle platoon size η =
∑
l∈Lp,inc

|Vl,ω|;
if η null or η > ν then

Set χ = 0;
Set next phase to next phase in cycle p ∈ P ;

end if
end if

VI. RESULTS AND DISCUSSION

A. Analysis

We evaluate the performances of the model by EMTD over
3000 hours of simulation, in a two-step comparative analysis.

(1) We first assess the performances in full detection, by
comparing DQN with FD to Max Pressure and SOTL. Fig. 4
compares the probability distribution functions by values and
scenarios. Fig. 5 compares the means and standard deviations
by scenarios. (2) We then assess the performances in partial
detection, by comparing DQN with PD to DQN with FD.
Fig. 6 compares values between FD and PD by CV penetration
rates and scenarios. Fig. 7 estimates the average loss between
FD and PD by scenarios and ranges of CV penetration rates.

SEPTEMBER 2021 7

Fig. 4: EMTD probability distributions for DQN with FD, Max
Pressure and SOTL; by value, and by scenario.

Fig. 5: EMTD mean and standard deviation for DQN with FD,
Max Pressure and SOTL; by scenario.

Fig. 6: EMTD for DQN with FD and DQN with PD; by CV
penetration rate, and by scenario.

Fig. 7: EMTD loss (%) between DQN with FD and DQN with
PD for all scenarios; by range of CV penetration rate.

SEPTEMBER 2021 8

1) Full detection: From Fig. 4 and Fig. 5, DQN with FD
performs better than the two ATSC algorithms in all scenarios.

In scenario (a) with a 2-phases program, a small improve-
ment is visible in the probability distribution curve. The mean
is slightly lower, with a standard deviation similar to those
of Max Pressure and SOTL. We assume that this scenario is
simple and does not allow for a relevant margin of progress
and further optimization past actuated methods, and that the
small size of the road network has led to over-saturation in
many episodes with high demands. Nonetheless, performances
are at least equivalent to ATSC, and this with cost-efficiency.

In scenarios (b) and (c) with 4-phases programs, DQN
with FD outperforms significantly Max Pressure and SOTL.
While both means are strongly lower, the most notable results
here are the differences in standard deviations, which are low
for DQN with FD and high for the ATSC algorithms. This is
confirmed in the probability distribution curves, which form
dense spikes concentrated around lower values for DQN with
FD, while being spread out and flattened over wider ranges
of values for both Max Pressure and SOTL. This implies
that DQN with FD is more robust towards a great diversity
of traffic situations than the actuated methods, for complex
intersections with varying demands and 4-phases programs.

2) Partial detection: From Fig. 6 and Fig.7, DQN with PD
converges towards FD, as the CV penetration rate increases.

The performances in PD diverge strongly for CV penetration
rates less than 10%. They approach asymptotically the perfor-
mances for FD for CV penetration rates from 10% to 40%,
and the performances are quasi identical with CV penetration
rates higher than 40%, from DQN with PD to DQN with FD.

We estimate the average loss of DQN with PD, i.e. the
average performance gain of FD over PD, in a range of CV
penetration rates, in percentage. For very low CV penetration
rates less than 10%, the performance loss is very high, 50%
to 80%. It then decreases markedly in the following ranges of
CV penetration rates from 10% to 40%, being approximately
in 20% to 40%. Finally, it stabilizes under 20% starting from
CV penetration rates in 40% to 50%, and then decreases with
increasing CV penetration rates until reaching DQN with FD.

B. Observation in SUMO
We observed the trained, deployed DQN agent controlling

traffic signals in SUMO with the optimal learned policy. It
effectively learned that phase changes induce wasted time
due to the intermediate transitions through change and clear-
ance intervals, and thus maintains the ongoing phases for
sufficiently long green intervals to avoid flickering, and to
minimize the accumulated waiting time and the number of
stops in a queue. Yet, the agent also learned to promote fairness
among phases, and lanes with lower demand are not blocked
in favor of minimum travel times in lanes with higher demand.
Moreover, it learned to instantly adapt to changing flows and
to balance phase changes adequately to maximize speed for all
incoming vehicles, thus minimizing total delay. This learned
policy performs efficiently for CV penetration rates as low as
20%, which appears as the lower bound to infer traffic flow
parameters from the CVs in a partially observed environment.

Else, for CV penetration rates under 20%, the DQN agent
performs poorly, and due to the learned cost of phase change
and the few detected vehicles, traffic signals are maintained for
very long times, creating jams in all incoming approaches and
locking the intersection. This issue can be limited in practice
by defining a maximum green interval Tg,max, after which a
phase change is enforced in a cycle, thus the controller acting
as a pretimed fixed program for very low CV penetration rates.

C. Summary

We summarize the performances and draw two main results:
1) From the comparative analysis in full detection and the

observations in SUMO, the proposed DQN model sub-
stantially improves the performances of TSC compared
to deployed actuated methods Max Pressure and SOTL,
achieving both fairness between vehicles and global
efficiency at the intersection. Moreover, the DQN model
is more robust and adaptive to a high diversity of traffic
situations, for more complex intersection configurations
with varying traffic demands and for 4-phases programs.

2) From the comparative analysis in partial detection and
the observations in SUMO, the proposed DQN model
functions for CV penetration rates from 20% upwards.
Thus, we propose two performance thresholds: (1) the
acceptability threshold, whereupon the DQN model be-
comes advantageous to deploy in PD, at CV penetrations
rates pcv ≥ 20%, and (2) the optimality threshold,
whereupon the DQN model in PD attains high efficiency
similar to FD, at CV penetrations rates pcv ≥ 40%.

VII. CONCLUSION AND PERSPECTIVES

A. Conclusion

In this paper, we presented a novel model for deep Q-
learning traffic signal control at single intersections with
partial detection over connected vehicles. We introduced a
new state representation for partially observable environments,
partial DTSE, and a new reward function for TSC, total
squared delay. Additionally, we provided tuned values for the
convolutional dueling DQN architecture and hyper-parameters.

We evaluated the model performances against two existing
actuated controllers, Max Pressure and SOTL, in a two-
step comparative analysis by episode mean total delay. As
a result, we concluded the model to be more efficient than
the ATSC algorithms for 4-phases programs in full detection,
and estimated partial detection performance thresholds for CV
penetration rates: acceptability at 20% and optimality at 40%.

B. Perspectives

This work can be pursued in many ways: (1) We assumed
information on CVs to be exact despite imprecise infrastruc-
tures, and probabilistic estimation methods could be used
to compensate for the uncertainty in measurements. (2) We
trained a new agent for each scenario, and we think that partial
DTSE could be generalized across multiple intersection sizes
with zero-padding. (3) We proposed a reward function over
all vehicles that learns entirely in the simulator, while one

SEPTEMBER 2021 9

based only on CVs could continue to optimize policies after
deployment at a real intersection. (4) We suggested to limit
degraded performances for low CV penetration rates with a
maximum green interval, but a more efficient solution appears
as necessary. (5) We provided a model for single agent TSC,
and we believe that it could be extended to decentralized multi
agent RL for communicating grids of coordinated traffic lights.
(6) We tested the model only on synthetic edited data, and it
could be further validated on real world simulated networks,
e.g. with the Luxembourg SUMO traffic (LuST) scenario [34].

Furthermore, other network configurations; e.g. 3-way and
5-way intersections; or road parameters; e.g. prioritized vehi-
cles, pedestrian crossings, public transports; could be explored.

From these perspectives and the results discussed before, we
find the proposed model to be both effective and promising.

REFERENCES

[1] J. Alam and P. MK, “Design and analysis of a two stage traffic light
system using fuzzy logic,” 2015. [Online]. Available: https : / /www.
longdom.org/open-access/design-and-analysis-of-a-two-stage-traffic-
light-system-using-fuzzy-logic-2165-7866-1000162.pdf.

[2] M. Stevens and C. Yeh, “Reinforcement learning for traffic optimiza-
tion,” 2016. [Online]. Available: http://cs229.stanford.edu/proj2016spr/
report/047.pdf.

[3] W. Genders and S. Razavi, “An open-source framework for adaptive
traffic signal control,” 2019. [Online]. Available: https://arxiv.org/pdf/
1909.00395.pdf.

[4] L. Li, Y. Lv, and F. Wang, “Traffic signal timing via deep reinforcement
learning,” 2016. [Online]. Available: https://ieeexplore.ieee.org/stamp/
stamp.jsp?arnumber=7508798.

[5] J. Gao, Y. Shen, J. Liu, M. Ito, and N. Shiratori, “Adaptive traffic
signal control: Deep reinforcement learning algorithm with experience
replay and target network,” 2017. [Online]. Available: https: / /arxiv.
org/pdf/1705.02755.pdf.

[6] X. Liang, X. Du, G. Wang, and Z. Han, “A deep reinforcement learning
network for traffic light cycle control,” 2019. [Online]. Available: https:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8600382.

[7] H. Wei, G. Zheng, H. Yao, and Z. Li, “Intellilight: A reinforcement
learning approach for intelligent traffic light control,” 2018. [Online].
Available: https://dl.acm.org/doi/pdf/10.1145/3219819.3220096.

[8] A. Vidali, L. Crociani, G. Vizzari, and S. Bandini, “A deep reinforce-
ment learning approach to adaptive traffic lights management,” 2019.
[Online]. Available: http://ceur-ws.org/Vol-2404/paper07.pdf.

[9] S. Alemzadeh, R. Moslemi, R. Sharma, and M. Mesbahi, “Adaptive
traffic control with deep reinforcement learning: Towards state-of-the-
art and beyond,” 2020. [Online]. Available: https://arxiv.org/pdf/2007.
10960.pdf.

[10] E. Pol and F. Oliehoek, “Coordinated deep reinforcement learners
for traffic light control,” 2016. [Online]. Available: http : / /www.v6.
fransoliehoek.net/docs/VanDerPol16LICMAS.pdf.

[11] H. Wei, C. Chen, G. Zheng, K. Wu, V. Gayah, K. Xu, and Z. Li,
“Presslight: Learning max pressure control to coordinate traffic signals
in arterial network,” 2019. [Online]. Available: http://personal.psu.edu/
hzw77/publications/presslight-kdd19.pdf.

[12] H. Wei, N. Xu, H. Zhang, G. Zheng, X. Zang, C. Chen, W. Zhang,
Y. Zhu, K. Xu, and Z. Li, “Colight: Learning network-level cooperation
for traffic signal control,” 2019. [Online]. Available: http://faculty.ist.
psu.edu/jessieli/Publications/2019-CIKM-colight.pdf.

[13] C. Chen, H. Wei, N. Xu, G. Zheng, M. Yang, Y. Xiong, K. Xu, and
Z. Li, “Toward a thousand lights: Decentralized deep reinforcement
learning for large-scale traffic signal control,” 2020. [Online]. Avail-
able: https://ojs.aaai.org/index.php/AAAI/article/view/5744/5600.

[14] C. Nguyen and N. Farhi, “Estimation of urban traffic state with probe
vehicles,” 2020. [Online]. Available: https://arxiv.org/pdf/1811.05394.
pdf.

[15] R. Zhang, A. Ishikawa, W. Wang, B. Striner, and O. Tonguz, “Using
reinforcement learning with partial vehicledetection for intelligent
traffic signal control,” 2020. [Online]. Available: https : / / arxiv. org /
pdf/1807.01628.pdf.

[16] R. Zhang, R. Leteurtre, B. Striner, A. Alanazi, A. Alghafis, and
O. Tonguz, “Partially detected intelligent traffic signal control: En-
vironmental adaptation,” 2019. [Online]. Available: https://arxiv.org/
pdf/1910.10808.pdf.

[17] R. Sutton and A. Barto, “Reinforcement learning: An introduction
(second edition),” 2018. [Online]. Available: http: / / incompleteideas.
net/book/RLbook2020.pdf.

[18] M. Hessel, J. Modayil, H. Hasselt, T. Schaul, G. Ostrovski, W. Dabney,
D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining im-
provements in deep reinforcement learning,” 2017. [Online]. Available:
https://arxiv.org/pdf/1710.02298.pdf.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” 2013. [Online]. Available: https://arxiv.org/pdf/1312.5602.
pdf.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C.
Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S.
Legg, and D. Hassabis, “Human-level control through deep reinforce-
ment learning,” 2015. [Online]. Available: https://web.stanford.edu/
class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.
pdf.

[21] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” 2016.
[Online]. Available: https://arxiv.org/pdf/1511.06581.pdf.

[22] H. Hasselt, A. Guezand, and D. Silver, “Deep reinforcement learning
with double q-learning,” 2015. [Online]. Available: https://arxiv.org/
pdf/1509.06461.pdf.

[23] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.
Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” 2019. [Online]. Available: https://arxiv.org/pdf/1509.02971.
pdf.

[24] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017. [Online]. Available: https://arxiv.org/pdf/1412.6980.pdf.

[25] W. Genders and S. Razavi, “Evaluating reinforcement learning
state representations for adaptive traffic signal control,”
2018. [Online]. Available: https : / / www . sciencedirect .
com / science / article / pii / S1877050918303582 / pdf ? md5 =
f7c89fc22054a24b0b7541772eb4da10 & pid = 1 - s2 . 0 -
S1877050918303582-main.pdf.

[26] S. Touhbi, M. Babram, T. Nguyen-Huu, N. Marilleau,
M. Hbid, C. Cambier, and S. Stinckwich, “Adaptive traffic
signal control: Exploring reward definition for reinforcement
learning,” 2017. [Online]. Available: https : / / www .
sciencedirect . com / science / article / pii / S1877050917309912 /
pdf ? md5 = 2045e01880ec7708d9a3faff83a2f80d & pid = 1 - s2 . 0 -
S1877050917309912-main.pdf.

[27] H. Wei, G. Zheng, V. Gayah, and Z. Li, “A survey on traffic signal
control methods,” 2020. [Online]. Available: https://arxiv.org/pdf/1904.
08117.pdf.

[28] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” 2012. [On-
line]. Available: https : / / papers . nips . cc / paper / 2012 / file /
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[29] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
development and applications of sumo – simulation of urban mobility,”
2012. [Online]. Available: https:/ /sumo.dlr.de/pdf/sysmea v5 n34
2012 4.pdf.

[30] N. Kheterpal, K. Parvate, C. Wu, A. Kreidieh, E. Vinitsky, and A.
Bayen, “Flow: Deep reinforcement learning for control in sumo,” 2018.
[Online]. Available: https://flow-project.github.io/papers/Flow Deep
Reinforcement Learning for Control in SUMO.pdf.

[31] P. Varaiya, “Max pressure control of a network of signalized in-
tersections,” 2013. [Online]. Available: https : / / www. researchgate .
net /publication/259138901 Max pressure control of a network of
signalized intersections.

[32] C. Gershenson, “Self-organizing traffic lights,” 2004. [Online]. Avail-
able: https://arxiv.org/pdf/nlin/0411066.pdf.

[33] B. Placzek, “A self-organizingsystem for urbantraffic control based
on predictive interval microscopic model,” 2014. [Online]. Available:
https://arxiv.org/pdf/1406.1128.pdf.

[34] L. Codeca, R. Frank, and T. Engel, “Luxembourg sumo traffic (lust)
scenario: 24 hours of mobility for vehicular networking research,”
2015. [Online]. Available: https : / / asset - pdf . scinapse . io / prod /
2221980827/2221980827.pdf.

https://www.longdom.org/open-access/design-and-analysis-of-a-two-stage-traffic-light-system-using-fuzzy-logic-2165-7866-1000162.pdf
https://www.longdom.org/open-access/design-and-analysis-of-a-two-stage-traffic-light-system-using-fuzzy-logic-2165-7866-1000162.pdf
https://www.longdom.org/open-access/design-and-analysis-of-a-two-stage-traffic-light-system-using-fuzzy-logic-2165-7866-1000162.pdf
http://cs229.stanford.edu/proj2016spr/report/047.pdf
http://cs229.stanford.edu/proj2016spr/report/047.pdf
https://arxiv.org/pdf/1909.00395.pdf
https://arxiv.org/pdf/1909.00395.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7508798
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7508798
https://arxiv.org/pdf/1705.02755.pdf
https://arxiv.org/pdf/1705.02755.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8600382
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8600382
https://dl.acm.org/doi/pdf/10.1145/3219819.3220096
http://ceur-ws.org/Vol-2404/paper07.pdf
https://arxiv.org/pdf/2007.10960.pdf
https://arxiv.org/pdf/2007.10960.pdf
http://www.v6.fransoliehoek.net/docs/VanDerPol16LICMAS.pdf
http://www.v6.fransoliehoek.net/docs/VanDerPol16LICMAS.pdf
http://personal.psu.edu/hzw77/publications/presslight-kdd19.pdf
http://personal.psu.edu/hzw77/publications/presslight-kdd19.pdf
http://faculty.ist.psu.edu/jessieli/Publications/2019-CIKM-colight.pdf
http://faculty.ist.psu.edu/jessieli/Publications/2019-CIKM-colight.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/5744/5600
https://arxiv.org/pdf/1811.05394.pdf
https://arxiv.org/pdf/1811.05394.pdf
https://arxiv.org/pdf/1807.01628.pdf
https://arxiv.org/pdf/1807.01628.pdf
https://arxiv.org/pdf/1910.10808.pdf
https://arxiv.org/pdf/1910.10808.pdf
http://incompleteideas.net/book/RLbook2020.pdf
http://incompleteideas.net/book/RLbook2020.pdf
https://arxiv.org/pdf/1710.02298.pdf
https://arxiv.org/pdf/1312.5602.pdf
https://arxiv.org/pdf/1312.5602.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://arxiv.org/pdf/1511.06581.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://www.sciencedirect.com/science/article/pii/S1877050918303582/pdf?md5=f7c89fc22054a24b0b7541772eb4da10&pid=1-s2.0-S1877050918303582-main.pdf
https://www.sciencedirect.com/science/article/pii/S1877050918303582/pdf?md5=f7c89fc22054a24b0b7541772eb4da10&pid=1-s2.0-S1877050918303582-main.pdf
https://www.sciencedirect.com/science/article/pii/S1877050918303582/pdf?md5=f7c89fc22054a24b0b7541772eb4da10&pid=1-s2.0-S1877050918303582-main.pdf
https://www.sciencedirect.com/science/article/pii/S1877050918303582/pdf?md5=f7c89fc22054a24b0b7541772eb4da10&pid=1-s2.0-S1877050918303582-main.pdf
https://www.sciencedirect.com/science/article/pii/S1877050917309912/pdf?md5=2045e01880ec7708d9a3faff83a2f80d&pid=1-s2.0-S1877050917309912-main.pdf
https://www.sciencedirect.com/science/article/pii/S1877050917309912/pdf?md5=2045e01880ec7708d9a3faff83a2f80d&pid=1-s2.0-S1877050917309912-main.pdf
https://www.sciencedirect.com/science/article/pii/S1877050917309912/pdf?md5=2045e01880ec7708d9a3faff83a2f80d&pid=1-s2.0-S1877050917309912-main.pdf
https://www.sciencedirect.com/science/article/pii/S1877050917309912/pdf?md5=2045e01880ec7708d9a3faff83a2f80d&pid=1-s2.0-S1877050917309912-main.pdf
https://arxiv.org/pdf/1904.08117.pdf
https://arxiv.org/pdf/1904.08117.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://sumo.dlr.de/pdf/sysmea_v5_n34_2012_4.pdf
https://sumo.dlr.de/pdf/sysmea_v5_n34_2012_4.pdf
https://flow-project.github.io/papers/Flow_Deep_Reinforcement_Learning_for_Control_in_SUMO.pdf
https://flow-project.github.io/papers/Flow_Deep_Reinforcement_Learning_for_Control_in_SUMO.pdf
https://www.researchgate.net/publication/259138901_Max_pressure_control_of_a_network_of_signalized_intersections
https://www.researchgate.net/publication/259138901_Max_pressure_control_of_a_network_of_signalized_intersections
https://www.researchgate.net/publication/259138901_Max_pressure_control_of_a_network_of_signalized_intersections
https://arxiv.org/pdf/nlin/0411066.pdf
https://arxiv.org/pdf/1406.1128.pdf
https://asset-pdf.scinapse.io/prod/2221980827/2221980827.pdf
https://asset-pdf.scinapse.io/prod/2221980827/2221980827.pdf

	I Introduction
	I-A State of the art
	I-A1 DQN for traffic signal control
	I-A2 TSC with connected vehicles

	I-B Paper contributions and organization

	II Problem statement
	II-A Assumptions
	II-A1 Road network
	II-A2 Traffic phases
	II-A3 Connected vehicles

	II-B Problem formulation

	III Deep reinforcement Q-learning
	III-A Q-learning background
	III-B 3DQN implementation
	III-B1 The dueling architecture
	III-B2 The temporal difference
	III-B3 The replay memory

	III-C Review of DQN for TSC
	III-C1 Agent actions
	III-C2 State representation
	III-C3 Reward function

	IV DQN model for TSC
	IV-A Agent actions
	IV-A1 Actions
	IV-A2 Action space

	IV-B State representation
	IV-C Reward function
	IV-D NN architecture

	V Test methodology
	V-A Simulations
	V-B Evaluation process
	V-C Comparison algorithms
	V-C1 Max Pressure
	V-C2 SOTL

	VI Results and discussion
	VI-A Analysis
	VI-A1 Full detection
	VI-A2 Partial detection

	VI-B Observation in SUMO
	VI-C Summary

	VII Conclusion and perspectives
	VII-A Conclusion
	VII-B Perspectives

