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Abstract

In this note, the authors propose correcting one erroneous formula from [Vi-
dal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2014). A unified solution
framework for multi-attribute vehicle routing problems. European Journal
of Operational Research, 234(3), 658-673] in charge of lunch breaks. In the
original paper, the authors propose to compute several attribute values from
the solution of a vehicle routing problem; like the earliest and latest start-
ing time for sequences of customers to visit. The computed values allow us
to quickly evaluate the feasibility and the marginal cost of some neighbor
solutions. Several variants of the class of vehicle routing problems can be
addressed using this approach.

In the case of drivers’ lunch break scheduling, the proposed formula com-
bines optimistic values for the earliest and the latest completion times of the
sequence of customers to visit. Using these values to evaluate neighbor solu-
tions, may conclude that unfeasible solutions are feasible, or underestimate
the completion time of a driver’s route.

In this note, we describe a counter-example to identify the error in the
formula. We also adapt the formula to the correct result.

Keywords: routing, vehicle routing problem, unified solution framework

1. Introduction

Vehicle routing problems (VRP) form a class of problems widely studied
by the operations research community. A large number of variants exist with
time windows, capacity, pick-up, delivery, and many other constraints.
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In [1], the authors propose a unified solution framework that can be ap-
plied to many VRP variants. For each specific constraint, they provide a
dedicated set of formulas to use.

Unfortunately, the set of formulas proposed for the lunch break constraint
is not valid. This paper aims to highlight this error and to give a correction
that can be used by the numerous researchers that are using the solution
framework provided by [1].

In Section 2, the unified solution framework (UFS) is described in the
case of time windows and lunch break constraints. The incorrectness of the
method is explained through a counterexample in Section 2.2. A new set of
formulas is proposed in Section 2.3 and applied to the counterexample.

2. The unified solution framework applied to lunch breaks

For a more detailed description of UFS, the reader is referred to the
original paper [1].

UFS gives a generic pattern that can be used to build efficient local search
algorithms for several VRP variants. The general idea considers all the se-
quences of nodes (customers or depots in classical VRPs) present in a given
current solution. The neighbor solutions that can be reached by UFS con-
catenate some sequences of the current solution. For each sequence, some
attribute values are computed. The evaluation (cost and feasibility) of the
neighbor solutions is obtained by some calculations based on these attributes.

In [1], the authors provide for each type of constraint the set of attributes
to consider, and how to combine them to evaluate the result of the concate-
nation operator.

We describe this mechanism through a simple example that involves time
window and lunch break constraints.

Let us consider the current solution S made of two routes σa = {v1, v2, v3, v4}
and σb = {v5}. The node at position u in the sequence σ is named σ(u).
The nodes vi, i = 1, . . . , 5, have null service times (si = 0) and the following
earliest (ei) and latest (li) start times:

{[10, 20]; [70, 80]; [100, 110]; [150, 170]; [160, 170]}.

The distance between two nodes vi and vj is denoted dvi,vj . The distance
equals 10 in the example for any pair of nodes.
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Table 1: List of sequences of S
Singleton v1 ; v2 ; v3 ; v4 ; v5
Doublet {v1, v2} ; {v2, v3} ; {v3, v4}
Triplet {v1, v2, v3} ; {v2, v3, v4}
Quadruplet {v1, v2, v3, v4}

A lunch break is a single break of duration sLB that must be taken in a
non-empty route between [eLB, lLB]. The location could be unconstrained or
at one dedicated location vLB selected in a set of potential locations V LB.

In the example, we develop in the paper, sLB = 60; the lunch can be
taken at any location V LB = ∅, at any time ([eLB = −∞, lLB = +∞]).

All the sequences present in S are listed in Table 1, sorted by their length.
The concatenation operator of two sequences σ1 and σ2 is denoted ⊕; for

instance, {v1, v2} ⊕ {v3} = {v1, v2, v3}.

2.1. Attributes for VRP with time window constraints

We first describe the case where only time window constraints are consid-
ered. This case is simple to treat and the related formulas remain the same
when the lunch break constraint is added.

2.1.1. Definition

The attributes defined for each sequence of nodes are the total travel time
(servicing + driving), T , the earliest finishing time; E, the latest starting
time, L; and the feasibility, F .

2.1.2. Concatenation

Equations (1)-(4) describe how to compute the values of these attributes
for the sequence obtained by the concatenation of two sequences σ1 and σ2.

T (σ1 ⊕ σ2) = T (σ1) + dσ1(|σ1|)σ2(1) + T (σ2) (1)

E(σ1 ⊕ σ2) = max{E(σ1) + dσ1(|σ1|)σ2(1) + T (σ2), E(σ2)} (2)

L(σ1 ⊕ σ2) = min{L(σ1), L(σ2)− dσ1(|σ1|)σ2(1) − T (σ1)} (3)

F (σ1 ⊕ σ2) ≡ F (σ1) ∧ F (σ2) ∧ (E(σ1) + dσ1(|σ1|)σ2(1) ≤ L(σ2)) (4)

In Equation (1), the total time is the sum of the travel times of each
sequence plus the distance between the last node of σ1 and the first node of
σ2.

3



Table 2: Values of attributes T , E, L, and F for S
σ T E L F
{v1} 0 10 20 true
{v2} 0 70 80 true
{v3} 0 100 110 true
{v4} 0 150 170 true
σb = {v5} 0 160 170 true
{v1, v2} 10 70 20 true
{v1, v2, v3} 20 100 20 true
σa = {v1, v2, v3, v4} 30 150 20 true

If the driver leaves the last node of σ1 at the earliest completion time,
directly travels from σ1 to σ2, and reaches the end of σ2, the arrival time is
greater or equal to the earliest completion time of σ2. This statement gives
Equation (2).

A symmetrical reasoning gives Equation (3) to compute the latest starting
time of (σ1 ⊕ σ2).

The feasibility of σ1⊕σ2 is ensured by the feasibility of each sub-sequence
and the possibility of reaching the beginning of σ2 starting from the end of
σ1 before the latest starting time of σ2. This logical constraint is defined by
Equation (4).

2.1.3. Initialisation

For a sequence σ0 = (vi) containing a single vertex, T (σ0) = si, E(σ0) =
ei + si, L(σ0) = li, and F (σ0) = true.

By the iterative concatenations from singletons to quadruplets of Table 1,
the attributes of all the sequences. They are displayed in Table 2 for the
solution S.

2.1.4. Neighbors evaluation

All the neighbor solutions made of concatenations of the sequences listed
in Table 1 can be easily evaluated with Equations (1)-(4).

For instance, the solution S ′ = {σc, σd} with σc = {v1, v2, v4} and σd =
{v3, v5} is evaluated by the two concatenations: {v1, v2} ⊕ {v4} and {v3} ⊕
{v5}.

The values obtained for the solution S ′ = {v1, v2, v3, v4, v5} = σa ⊕ σb are
listed in Table 3.
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Table 3: Values of attributes T , E, L, and F for S ′

σ T E L F
σa ⊕ σb 40 160 20 true

2.2. Attributes for VRP with time windows and lunch break

We describe in this section the proposition of [1] for the lunch break. We
conclude by the inconsistency revealed by the counter-example.

2.2.1. Definition

Three additional attributes are defined. Compared to the previous at-
tributes E, L, and F they consider the schedule of the lunch break in the
sequence. They are denoted, E ′, the earliest starting time, L′, the latest
starting time, and F ′, the feasibility. Note that there is no equivalence of the
travel time T including the lunch break duration since it could be obtained
by adding the lunch break duration, T ′ = T + sLB.

2.2.2. Concatenation

Equations (5)-(16) compute the values for E ′, L′ and F ′ for the two
sequences’ concatenation.

Four cases are considered: (1) the break is in the first sequence, (2) the
break is between the two sequences, (3) the break is in the second sequence,
and (4) there is no break (this case refers to E,L, F ).

Some intermediate parameters are evaluated for each case, and denoted
E ′

case i, L
′
case i, and F ′

case i, for each Case i.
For Case 1, the attributes E ′(σ1), L

′(σ1), and F ′(σ1) are used instead of
the attributes that do not include the lunch break in σ1. Thus, Equations (2),
(3), and (4) are respectively translated to (8), (9), and (10).

Case 3 is symmetric to Case 1.
Three possibilities have to be computed to evaluate E ′

case 2:

1. The first member of Equation (11) enforces the earliest completion time
of σ1 ⊕ σ2, E

′(σ1 ⊕ σ2), to be compatible with the earliest completion
time of σ1.

2. The second member enforces E ′(σ1 ⊕ σ2) to be compatible with the
earliest starting time of the lunch break. This case is active when the
driver is reaching σ2(1) before eLB after the schedule of σ1.
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3. The third term enforces E ′(σ1⊕σ2) to be greater or equal to the earliest
completion time of the last sequence σ2.

A similar approach is applied to compute L′
case 2:

1. The third member of Equation (12) means that the schedule of σ1 and
the lunch break before σ2 has to reach σ2(1) before L(σ2).

2. The second member enforces to reach the lunch break before its latest
starting time if σ1 is scheduled before.

3. The first member means that the latest starting time of σ1⊕σ2 is lower
or equal to L(σ1).

The formula given for F ′
case 2 ensures the feasibility of the following sched-

ules:

• σ1;

• σ2;

• σ1 before the lunch break;

• the lunch break before σ2;

• σ1 followed by the trip to σ2, the lunch break, and σ2.

E ′(σ1 ⊕ σ2) = min({E ′
case i|F ′

case i = true, ∀i ∈ {1, 2, 3}} ∪+∞) (5)

L′(σ1 ⊕ σ2) = max({L′
case i|F ′

case i = true, ∀i ∈ {1, 2, 3}} ∪ −∞) (6)

F ′(σ1 ⊕ σ2) ≡ {F ′
case 1 ∨ F ′

case 2 ∨ F ′
case 3} (7)

E ′
case 1 = max{E ′(σ1) + dσ1(|σ1|)σ2(1) + T (σ2), E(σ2)} (8)

L′
case 1 = min{L′(σ1), L(σ2)− dσ1(|σ1|)σ2(1) − T (σ1)− sLB} (9)

F ′
case 1 ≡ F ′(σ1) ∧ F (σ2) ∧ (E ′(σ1) + dσ1(|σ1|)σ2(1) ≤ L(σ2))(10)

E ′
case 2 = max{E(σ1) + dσ1(|σ1|),σ2(1) + sLB + T (σ2), eLB + sLB + T (σ2), E(σ2)}(11)

L′
case 2 = min{L(σ1), lLB − T (σ1), L(σ2)− dσ1(|σ1|)σ2(1) − sLB − T (σ1)}(12)

F ′
case 2 ≡ F (σ1) ∧ F (σ2) ∧ (E(σ1) ≤ lLB) ∧ (eLB + sLB ≤ L(σ2))

∧(E(σ1) + dσ1(|σ1|)σ2(1) + sLB ≤ L(σ2))(13)

E ′
case 3 = max{E(σ1) + dσ1(|σ1|)σ2(1) + T (σ2) + sLB, E

′(σ2)}(14)
L′
case 3 = min{L(σ1), L

′(σ2)− dσ1(|σ1|)σ2(1) − T (σ1)}(15)
F ′
case 3 ≡ F (σ1) ∧ F ′(σ2) ∧ (E(σ1) + dσ1(|σ1|)σ2(1) ≤ L′(σ2))(16)
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Finally Equations (5)-(7) means that F ′(σ1 ⊕ σ2) is set to true only if at
least one case is feasible; and E ′(σ1⊕σ2) and L′(σ1⊕σ2) are respectively set
the minimum and maximum feasible values.

2.2.3. Initialisation

The initial values for singletons are given in the five first rows of Table 4.
The three last sequences are built by consecutive additions of the last vertex.
The evaluation of attributes E ′, L′, F ′ and intermediate ones is obtained
through Equations (5)-(16). Calculations are detailed in Appendix A.
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Table 6: Possible schedules for S ′

lunch position v1 v2 v3 v4 v5
v1, v2 [10, 10] [80, 80] [100, 110] [150, 160] [160, 170]
v2, v3 [10, 20] [70, 40] [140, 110] [150, 160] [160, 170]
v3, v4 [10, 20] [70, 80] [150, 90] [220, 160] [230, 170]

2.2.4. Neighbors evaluation

The solution S ′ that concatenates σa = {v5} at the end of σb = {v1, v2, v3, v4}
is evaluated in Table 5.

We point out that starting the resulting sequence σa ⊕ σb at 20 is not
feasible. In Table 6, the three possible schedules with the lunch break in σa

are detailed with the impact on the starting time window for each node in
S ′.

The lunch can be placed only between v1 and v2 with a latest starting
time enforced to 10 instead of 20.

The feasibility of Case 1 is checked in (10) with E ′(σa), the earliest com-
pletion time of σa that could be incompatible with L′(σa). In addition, the
computation of L′

case 1 does not take into account waiting times, and may
therefore set L′

case 1 to L′(σa) and give an inconsistency.
The waiting time enforced between v1 and v2 is the key feature to build

the counter-example S ′.

2.3. New attributes for VRP with time windows and lunch break

Regarding the counter-example and the default of the attributes E ′, L′,
and F ′, one can state that each possible position of the lunch break in a
sequence has to bring its own set of attributes. In this section, we propose
an alternative setting with a reduced set of attributes for each sequence.

2.3.1. Definition

In this section, we propose a new set of attributes to compute for each
sequence. The attributes E, L, F , and T are defined exactly as previously.
The concatenation operator remains the same for these attributes.

Instead of the attributes E ′, L′, and F ′, we define the pair of attributes
(E ′

x, L
′
x) for any not-dominated position of the lunch break in the sequence –

named configuration x for short. The set of not-dominated positions for the
lunch break is denoted C. An empty set C means infeasibility for a lunch
break scheduled in the sequence.
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2.3.2. Concatenation

As in [1], we consider the same four cases to compute the value of these
attributes after a concatenation. But for each case, we consider all the con-
figurations that are matching with the current case.

Each configuration x ∈ C(σ1) with a break in σ1 is concatenated with the
sequence σ2 without the lunch break. This configuration of σ1⊕σ2 is denoted
f(x, .). The concatenation operator in this case is given by Equations (17)-
(18), which are similar to Equations (8) and (9).

∀x ∈ C(σ1)

E ′
f(x,.)(σ1 ⊕ σ2) = max{E ′

x(σ1) + dσ1(|σ1|)σ2(1) + T (σ2), E(σ2)} (17)

L′
f(x,.)(σ1 ⊕ σ2) = min{L′

x(σ1), L(σ2)− dσ1(|σ1|)σ2(1) − T (σ1)− sLB} (18)

The second case refers to the single configuration f(., .), with the lunch
break between σ1 and σ2. Equations (19) and (20) are derived from Equa-
tions (11) and (12).

E ′
f(.,.)(σ1 ⊕ σ2) =

max{E(σ1) + dσ1(|σ1|),σ2(1) + sLB + T (σ2), eLB + sLB + T (σ2), E(σ2)} (19)

L′
f(.,.)(σ1 ⊕ σ2) =

min{L(σ1), lLB − T (σ1), L(σ2)− dσ1(|σ1|)σ2(1) − sLB − T (σ1)} (20)

The third case adapts Equations (14) and (15) to obtain Equations (21)
and (22).

∀y ∈ C(σ2)

E ′
f(.,y)(σ1 ⊕ σ2) = max{E(σ1) + dσ1(|σ1|)σ2(1) + T (σ2) + sLB, E

′
y(σ2)} (21)

L′
f(.,y)(σ1 ⊕ σ2) = min{L(σ1), L

′
b(σ2)− dσ1(|σ1|)σ2(1) − T (σ1)} (22)

Thus, the number of subcases considered is equal to |C(σ1)|+1+ |C(σ2)|
configurations with a break, plus one final sequence without any break. The
time complexity of this procedure is, therefore, linear in the number of nodes.

The set of acceptable configurations with a lunch break for the sequence
σ1⊕σ2 is obtained by checking the feasibility of each resulting sequence of the
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tested combinations, as in Equations (23), (24), and (25). These equations
are similar to Equations (10), (13), and (16), respectively.

Finally, this set is limited to configurations that are not-dominated. The
dominance between the two configurations is determined by the values of the
earliest completion time and the latest starting time, like in Equation (26).

C1 = {z = f(x, .)|x ∈ C(σ1) : F (σ2)∧(E ′
x(σ1)+dσ1(|σ1|)σ2(1) ≤ L(σ2)) = true}

(23)

C2 = {z = f(., .)|F (σ1) ∧ F (σ2) ∧ (E(σ1) ≤ lLB) ∧ (eLB + sLB ≤ L(σ2))

∧(E(σ1) + dσ1(|σ1|)σ2(1) + sLB ≤ L(σ2)) = true}(24)

C3 = {z = f(., y)|y ∈ C(σ2) : F (σ1)∧(E(σ1)+dσ1(|σ1|)σ2(1) ≤ L′
y(σ2)) = true}

(25)
C(σ1⊕σ2) = {z ∈ {C1∪C2∪C3}|∄w ∈ {C1∪C2∪C3} : (E ′

w ≤ E ′
z)∧(L′

w ≥ L′
z)}

(26)

2.3.3. Initialisation

For any singleton {v1}, there is no feasible configuration with a lunch
break (C({v1}) = ∅), since the lunch break cannot start or end a sequence.
Attributes E, L, T , and F are defined as in the original approach, illustrated
in Table 2.

For any doublet, only the configuration f(., .) with the break between the
two vertices is accepted; Equation (24) given for C2 is applied. The result
obtained for {v1, v2} is displayed in the first row of Table 7. Attributes E,
L, T , and F are computed through Equations (1)-(4); the values for {v1, v2}
form the sixth row of Table 2.

In Table 7, the symbol ∗ locates the lunch break in the sequence. In the
notation E ′

x and L′
x the index x represents the current configuration.

2.3.4. Neighbors evaluation

The proposed approach is applied to the example presented in the previ-
ous section where {v1, v2, v3, v4, v5} is built by iterative concatenations of the
last vertex.

The blocks of equations (1)-(4) and (17)-(22) compute the values of all
the attributes, while Equations (23)-(26) check the feasibility of the config-
urations that include a lunch break. The results are found in Tables 2, 3
and 7. Detailed calculations are given in Appendix B.
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Table 7: Computation details with the set of configurations for lunch break

σ C Case Feasible E ′
x L′

x

{v1} ⊕ {v2} {v1, ∗, v2} C2 True 80 10
{v1, v2} ⊕ {v3} {{v1, ∗, v2, v3}, C1 True 100 10

((((((({v1, v2, ∗, v3}} C2 False
{v1, v2, v3} ⊕ {v4} {{v1, ∗, v2, v3, v4} C1 True 150 10

{v1, v2, v3, ∗, v4}} C2 True 170 20
{v1, v2, v3, v4} ⊕ {v5} {{v1, ∗, v2, v3, v4, v5} C1 True 160 10

((((((((((
{v1, v2, v3, ∗, v4, v5}, C1 False

((((((((((
{v1, v2, v3, v4, ∗, v5}} C2 False

In this example, dominance never applies.
The configuration {v1, v2, ∗, v3} imposes to visit v3 after 140 that is greater

than L({v3}) = 110. The parameter E ′
x is evaluated at 170 with the config-

uration x = {v1, v2, v3, ∗, v4, v5} that violates L({v5}) = 170 (the travel time
is added to E ′

x). The schedule of the break after v4 in {v1, v2, v3, v4, ∗, v5}
makes this configuration infeasible since v5 could not be visited before time
220.

The unique feasible configuration x = {v1, ∗, v2, v3, v4, v5} has the lunch
break between v1 and v2 with its latest starting time L′

x set to 10 instead of
20 with the original formulas.

3. Conclusion

Through a counter-example, we show that some erroneous evaluations can
be processed while exploring neighbor solutions of a VRP with time windows
and lunch breaks when the approach proposed in [1].

We propose an alternative evaluation process that may drastically in-
crease the computational complexity of several neighborhood operators.

However, the proposed approach should be efficient when a few positions
of the lunch break are feasible and not dominated in a sequence. We guess
that several real-world applications satisfy this hypothesis.

For future works, we propose to extend this approach to several types of
breaks to schedule in the routes.
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Appendix A. Detailed calculations with the original attributes

In this section, we describe how the values of the attributes are computed
after each concatenation. Because of the infeasibility of the related case, the
values of some attributes are not calculated.

1. {v1} ⊕ {v2}
(4) F = True ∧ True ∧ (10 + 10 ≤ 80) = True

(1) T = 0 + 10 + 0 = 10

(2) E = max{10 + 10 + 0; 70} = 70

(3) L = min{20; 80− 10− 0} = 20

(10) F ′
case 1 = False ∧ True ∧ (∞+ 10 ≤ 80) = False

(13) F ′
case 2 = True∧True∧(10 ≤ ∞)∧(−∞+60 ≤ 80)∧(10+10+60 ≤

80) = True

(11) E ′
case 2 = max{10 + 10 + 60 + 0;−∞+ 60 + 0; 80} = 80

(12) L′
case 2 = min{20;∞− 0; 80− 10− 60− 0} = 10

(16) F ′
case 3 = True ∧ False ∧ (10 + 10 ≤ 0) = False

(7) F ′ = False ∨ True ∨ False = True

(5) E ′ = min{{80} ∪∞} = 80

(6) L′ = max{{10} ∪ −∞} = 10

2. {v1, v2} ⊕ {v3}
(4) F = True ∧ True ∧ (70 + 10 ≤ 110) = True

(1) T = 10 + 10 + 0 = 20

(2) E = max{70 + 10 + 0; 100} = 100

(3) L = min{20; 110− 10− 10} = 20

(10) F ′
case 1 = True ∧ True ∧ (80 + 10 ≤ 110) = True

(8) E ′
case 1 = max{80 + 10 + 0; 100} = 100

(9) L′
case 1 = min{10; 110− 10− 10− 60} = 10

(13) F ′
case 2 = True∧True∧ (70 ≤ ∞)∧ (−∞+60 ≤ 110)∧ (70+10+

60 ≤ 110) = False

(16) F ′
case 3 = True ∧ False ∧ (70 + 10 ≤ 0) = False
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(7) F ′ = True ∨ False ∨ False = True

(5) E ′ = min{{100} ∪∞} = 100

(6) L′ = max{{10} ∪ −∞} = 10

3. {v1, v2, v3} ⊕ {v4}
(4) F = True ∧ True ∧ (100 + 10 ≤ 170) = True

(1) T = 20 + 10 + 0 = 30

(2) E = max{100 + 10 + 0; 150} = 150

(3) L = min{20; 170− 10− 20} = 20

(10) F ′
case 1 = True ∧ True ∧ (100 + 10 ≤ 170) = True

(8) E ′
case 1 = max{100 + 10 + 0; 150} = 150

(9) L′
case 1 = min{10; 170− 10− 20− 60} = 10

(13) F ′
case 2 = True ∧ True ∧ (100 ≤ ∞) ∧ (−∞ + 60 ≤ 170) ∧ (100 +

10 + 60 ≤ 170) = True

(11) E ′
case 2 = max{100 + 10 + 60 + 0;−∞+ 60 + 0; 150} = 170

(12) L′
case 2 = min{20;∞− 20; 170− 10− 60− 20} = 20

(16) F ′
case 3 = True ∧ False ∧ (100 + 10 ≤ 0) = False

(7) F ′ = True ∨ True ∨ False = True

(5) E ′ = min{{150; 170} ∪∞} = 150

(6) L′ = max{{10; 20} ∪ −∞} = 20

4. {v1, v2, v3, v4} ⊕ {v5}
(4) F = True ∧ True ∧ (150 + 10 ≤ 170) = True

(1) T = 30 + 10 + 0 = 40

(2) E = max{150 + 10 + 0; 160} = 160

(3) L = min{20; 170− 10− 30} = 20

(10) F ′
case 1 = True ∧ True ∧ (150 + 10 ≤ 170) = True

(8) E ′
case 1 = max{150 + 10 + 0; 160} = 160

(9) L′
case 1 = min{20; 170− 10− 30− 60} = 20

(13) F ′
case 2 = True ∧ True ∧ (150 ≤ ∞) ∧ (−∞ + 60 ≤ 170) ∧ (150 +

10 + 60 ≤ 170) = False

(16) F ′
case 3 = True ∧ False ∧ (150 + 10 ≤ 0) = False
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(7) F ′ = True ∨ False ∨ False = True

(5) E ′ = min{{160} ∪∞} = 160

(6) L′ = max{{20} ∪ −∞} = 20

Appendix B. Detailed calculations with the new attributes

In this section, we describe how the values of Table 7 are computed.

1. {v1} ⊕ {v2}, {v1, ∗, v2} ∈ C2

(24) Feasiblity. True ∧ True ∧ (10 ≤ ∞) ∧ (−∞ + 60 ≤ 80) ∧ (10 +
10 + 60 ≤ 80) = True

(19) E ′
{v1,∗,v2} = max{10 + 10 + 60 + 0;−∞+ 60 + 0; 70} = 80

(20) L′
{v1,∗,v2} = min{20;∞− 0; 80− 10− 60− 0} = 10

2. {v1, v2} ⊕ {v3}, {v1, ∗, v2, v3} ∈ C1

(23) Feasiblity. True ∧ (80 + 10 ≤ 110) = True

(17) E ′
{v1,∗,v2,v3} = max{80 + 10 + 0; 100} = 100

(18) L′
{v1,∗,v2,v3} = min{10; 110− 10− 10− 60} = 10

3. {v1, v2} ⊕ {v3}, {v1, v2, ∗, v3} ∈ C2

(24) Feasiblity. True ∧ True ∧ (70 ≤ ∞) ∧ (−∞ + 60 ≤ 110) ∧ (70 +
10 + 60 ≤ 110) = False

4. {v1, v2, v3} ⊕ {v4}, {v1, ∗, v2, v3, v4} ∈ C1

(23) Feasiblity. True ∧ (100 + 10 ≤ 170) = True

(17) E ′
{v1,∗,v2,v3,v4} = max{100 + 10 + 0; 150} = 150

(18) L′
{v1,∗,v2,v3,v4} = min{10; 170− 10− 20− 60} = 10

5. {v1, v2, v3} ⊕ {v4}, {v1, v2, v3, ∗, v4} ∈ C2

(24) Feasiblity. True∧True∧ (100 ≤ ∞)∧ (−∞+60 ≤ 170)∧ (100+
10 + 60 ≤ 170) = True

(19) E ′
{v1,v2,v3,∗,v4} = max{100 + 10 + 60 + 0;−∞+ 60 + 0; 150} = 170

(20) L′
{v1,v2,v3,∗,v4} = min{20;∞− 20; 170− 10− 60− 20} = 20

6. {v1, v2, v3, v4} ⊕ {v5}, {v1, ∗, v2, v3, v4, v5} ∈ C1

(23) Feasiblity. True ∧ (150 + 10 ≤ 170) = True
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(17) E ′
{v1,∗,v2,v3,v4,v5} = max{150 + 10 + 0; 160} = 160

(18) L′
{v1,∗,v2,v3,v4,v5} = min{10; 170− 10− 30− 60} = 10

7. {v1, v2, v3, v4} ⊕ {v5}, {v1, v2, v3, ∗, v4, v5} ∈ C1

(23) Feasiblity. True ∧ (170 + 10 ≤ 170) = False

8. {v1, v2, v3, v4} ⊕ {v5}, {v1, v2, v3, v4, ∗, v5} ∈ C1

(24) Feasiblity. True∧True∧ (150 ≤ ∞)∧ (−∞+60 ≤ 170)∧ (150+
10 + 60 ≤ 170) = False
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