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Abstract

We consider a Multi-Armed Bandit problem
with covering constraints, where the primary
goal is to ensure that each arm receives a min-
imum expected reward while maximizing the
total cumulative reward. In this scenario, the
optimal policy then belongs to some unknown
feasible set. Unlike much of the existing liter-
ature, we do not assume the presence of a safe
policy or a feasibility margin, which hinders
the exclusive use of conservative approaches.
Consequently, we propose and analyze an al-
gorithm that switches between pessimism and
optimism in the face of uncertainty. We prove
both precise problem-dependent and problem-
independent bounds, demonstrating that our
algorithm achieves the best of the two ap-
proaches – depending on the presence or ab-
sence of a feasibility margin – in terms of con-
straint violation guarantees. Furthermore, our
results indicate that playing greedily on the
constraints actually outperforms pessimism
when considering long-term violations rather
than violations on a per-round basis.

1 INTRODUCTION

1.1 Preliminaries

The Multi-Armed Bandit (MAB) problem is a classi-
cal model for sequential decision-making in the face of
uncertainty (Lattimore and Szepesvári, 2020). In the
standard formulation of the problem, the objective of
the learner is to maximize the total sum of rewards by
efficiently balancing exploration (testing different arms
to learn their rewards) and exploitation (choosing arms
with the highest expected rewards based on available
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information). While the classic MAB framework is
applicable in various domains, in many real-world prob-
lems, additional constraints and considerations come
into play.

Motivation Consider, for instance, an online con-
tent recommendation system (Zhou and Brunskill, 2016;
Zong et al., 2016), aiming to maximize user engage-
ment and satisfaction. Its success is intricately bound
to the diversity of content available on the platform. To
sustain this essential diversity, platforms must ensure
sufficient exposure for all content creators, guaranteeing
a sufficient revenue for their continued activity. This
revenue could be, for instance, the number of times
a content was played, or revenues from ads displayed
with the content, which cannot be reduced to the num-
ber of times the content is suggested by the platform.
In this context, a constrained MAB problem (see e.g.
Slivkins et al. (2022); Sinha (2023)) emerges naturally.
In this setting, the primary goal of the learner is to
guarantee a fixed (known) minimum expected revenue
to each arm (e.g. content recommendation) and con-
sider the maximization of the total cumulative reward
as a complementary objective.

Setting and notation We consider a K-armed ban-
dit ν = (ν1, . . . , νK) ∈ FK , where F is a family of
distributions. We denote by µk, the expected reward
of arm k, and by ∆k = µ1 − µk, the sub-optimality
gap of arm k, assuming w.l.o.g. that arm 1 is op-
timal. At each time step t, the decision-maker se-
lects an arm At and receives a reward rt ∼ νAt

drawn independently at random. At time t, the pol-
icy π that chooses the actions can rely on past ob-
servations Ht−1 = (A1, r1, . . . , At−1, rt−1) and inter-
nal randomization. For each arm k, we denote by
Nk(t) =

∑t
s=1 I(As = k), the number of times it was

selected up to time t. We denote (·)+ = max(·, 0),
a ∧ b = min(a, b), a ∨ b = max(a, b).

The goal of the decision maker is to maximize its re-
wards Eν,π

[∑K
t=T rt

]
under the constraint that the ex-
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pected revenue of each arm scales linearly in T , namely,

∀k ∈ [K] : Eν,π

[
T∑

t=1

rtI(At = k)

]
⩾ λkT , (1)

where the scaling parameters (λk)k∈[K] ∈ (R+)K are
known a priori. If Eν [rt|At = k] = µk > 0, satisfying
the constraint of arm k is equivalent to ensuring that

1

T
Eν,π[Nk(T )] ⩾ p⋆k :=

λk

µk
.

Conveniently, the previous constrained optimization
problem can be reduced to the linear program

min
p∈△K

K∑
k=1

∆k(p
⋆
k − pk) s.t. ∀k ∈ [K], pk ⩾ p⋆k ,

where △K denotes the K-dimensional simplex. Clearly,
an optimal solution consists of playing each arm with
probability p⋆k (if possible) and allocating the remaining
probability over the optimal arms. Unfortunately, a
non-anticipative policy cannot compute (p⋆k)k∈[K] or
know the optimal arms because the means are unknown.
Moreover, the feasibility of this linear program depends
on the problem parameters, as there exists a solution
if and only if ∀k, µk ⩾ λk and

∑K
k=1 p

⋆
k ⩽ 1.

Definition 1 (Feasibility gap). The feasibility gap of
a problem with parameters (λ, µ) ∈ (R+K)2 is

ρλ(µ) = 1−
K∑

k=1

λk

µk
. (2)

In the following, we simply denote the feasibility gap
by ρλ when the context is clear.

Evaluation We do not assume any prior knowledge
on p⋆k, so relevant metrics must tolerate constraint
violation to a certain level. Inspired by the litera-
ture on safe bandits (see next section for details), we
consider two criteria to evaluate a policy on a given
problem: the excess regret (for the regret-minimization
objective), and the constraint violation. Denoting by
pk,t = E[I(At = k)|Ht−1] the sampling probability of
arm k, we consider the following metrics.

Definition 2. The total per-round excess-regret and
constraint violation are respectively defined by

Rπ
T (ν, λ) =

K∑
k=1

∆kEν,π

[
T∑

t=1

(pk,t − p⋆k)+

]
, and

Vπ
T (ν, λ) =

K∑
k=1

µkEν,π

[
T∑

t=1

(p⋆k − pk,t)+

]
.

When the context is clear we omit (π, ν, λ) in the nota-
tion for simplicity. Intuitively, the per-round metrics
encourage policies that smoothly converge to an opti-
mal stationary policy. This is a desirable feature in
real systems, which motivates providing policies with
strong guarantees under these metrics.

1.2 Comparison with the Literature

Due to the numerous possible applications, the general
problem of online learning with constraints covers sev-
eral active research areas. In the literature, constraints
typically originate from safety, fairness, or budget con-
siderations to name but a few.

The generic problem that we consider is part of the
literature on Bandits with Linear Constraints, notably
including knapsacks (or packing) and covering con-
straints. Bandits with knapsacks have been extensively
studied in the stochastic setting with finitely many
arms (Badanidiyuru et al., 2018) as well as in the con-
textual (Agrawal and Devanur, 2016) and adversarial
(Immorlica et al., 2022) setting. Logarithmic problem-
dependent bounds have also surfaced in Sankararaman
and Slivkins (2020); Li et al. (2021); Kumar and Klein-
berg (2022). Generally, positive costs are incurred and
the algorithm runs until some positive threshold is
violated. On the contrary, covering constraints necessi-
tates managing negative budgets and costs. A line of
works considers deterministic covering (Claure et al.,
2020; Patil et al., 2021; Wang et al., 2021; Chen et al.,
2019), ensuring that each arm is pulled at least at a
minimal known frequency, or Liu et al. (2022) with de-
terministic linear constraints. The core setting of this
paper, which is a covering problem, is more challenging
because the constraints are stochastic. Some works
tackle this case (Agrawal and Devanur, 2019; Slivkins
et al., 2022), and obtain O(

√
T ) constraint violation

that holds for the setting that we consider. However in
Slivkins et al. (2022); Chzhen et al. (2023), this guar-
antee holds only with at least one strong assumption:
knowledge of an initially safe policy1 or a feasibility
margin (ρλ ⩾ δ for some δ > 0). Finally, Sinha (2023)
studies the same revenue guarantees as described in
(1), and propose the BanditQ algorithm, that imple-
ments the natural idea of sampling the arm that is the
most “late” w.r.t. its revenue constraint at the current
time step, up to additional mechanisms to simulta-
neously minimize the regret. They obtain bounds of
order O(T 3/4) for a long-term evaluation of constraint
violation and regret, weaker than Definition 2.

Other areas of research are also closely related. For
instance, in safe bandits (Amani et al., 2019; Moradi-

1In the current setting, this would consist in knowing
for any arm k an allocation p̃k ⩾ p⋆k satisfying

∑
k p̃k ⩽ 1
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pari et al., 2021; Pacchiano et al., 2021; Liu et al.,
2021; Zhou and Ji, 2022; Chen et al., 2022; Hutchinson
et al., 2023) the goal is to only play actions belonging
to an unknown feasibility set, with the objective of
guaranteeing no violation of this constraint with high
probability. The per-round evaluation metrics (def. 2)
are inspired by some of these works. Their common
approach is pessimism-optimism (PO): the algorithm
plays the action maximizing reward (optimism) into a
set included w.h.p. into the feasible set (pessimism).
However, a safe-action and a known feasibility gap are
again instrumental to design these algorithms. In con-
trast, Chen et al. (2023); Agrawal and Devanur (2019)
obtained O(

√
T ) per-round safety violation without

these assumptions, with a doubly-optimistic (DO) ap-
proach, considering instead an extended feasible set at
each round. This good performance motivate the use of
(DO) as a “worst-case” policy in the switching policies
presented in Section 2. Furthermore, the algorithm
DOC is the K-armed instance of (DO), for which we
present a tighter analysis tailored for MAB.

Finally, we mention additional related fields. In on-
line convex optimization with long term constraints
(Mannor et al., 2009; Jenatton et al., 2015; Yu et al.,
2017; Castiglioni et al., 2022) the learner receives full
feedback of rewards and constraints. The question of
unknown constraints is also considered in Chaudhary
and Kalathil (2021); Liang et al. (2023), but as done in
the safe bandits literature some safe action is assumed
known. This pre-existing safe policy assumption is
also often made in safe Reinforcement Learning (Bura
et al., 2021; Ding et al., 2020; Xu et al., 2020; Efroni
et al., 2020), which additionally mainly study problem-
independent guarantees. Repeated auctions with ROI
constraints (Castiglioni et al., 2023; Deng et al., 2023)
is also similar in spirit, but again indirectly assumes
some null action. Finally we mention Carlsson et al.
(2023) that considers a setting similar to ours but with
a best-policy identification objective.

In this work, we study problem dependent-bounds for
stochastic bandits with unknown specific covering con-
straints, when no feasible actions is known beforehand
and when per-round constraint violations are measured,
and propose algorithms that switch between optimism
and pessimism to minimize constraint violation for any
possible problem.

1.3 Outline and Contributions

We propose several algorithms to solve the MAB
problem with revenue guarantees presented in Sec-
tion 1.1, which we frame as Revenue-Guaranteeing
Bandits (RGB). RGB decouples the two objectives (Def-
inition 2) by using a target allocation to satisfy the
constraints, and a standard optimistic bandit algo-

rithm for regret minimization. It is hence inspired
by doubly-optimistic (DO) and pessimistic-optimistic
(PO) approaches in the literature.

Typically, to obtain strong guarantees for the per-round
constraints violations, the first natural idea is to take
inspiration from (PO) methods (Pacchiano et al., 2021;
Li et al., 2021) even though there are no initial feasible
actions (according to the (PO) formulation). However,
for problems with a small feasibility gap, this produces
poorly performing or unfeasible algorithms.

Hence we first propose and analyze DOC (Algorithm 2),
based on (DO), which achieves O(

√
T ) constraint vi-

olation for all problems We refine this result with
novel problem-dependent bounds (Theorem 1) and fur-
ther prove constant excess regret O(

∑
k(p

⋆
k∆

2
k)

−1) if
mink λk > 0.

In order to get even better problem-dependent bounds
for VT , we introduce a new algorithm, named SPOC (Al-
gorithm 3), built on a hybrid combination of (PO) and
(DO). This policy also achieves O(

√
T ) violation for all

problems, and it even gets constant constraints viola-
tions O(ρ−1

λ ) (Theorem 2) on strictly feasible problem
instances. SPOC thus achieves the best of the two ap-
proaches in terms of constraint violations. This is
illustrated in Table 1, summarizing problem-dependent
results. We only include the scaling of first-order terms
and omit logarithmic factors for clarity.

We additionally prove a lower bound (Theorem 3) which
implies that the upper bound derived for VT (resp. RT )
for DOC (resp. SPOC) cannot be improved by more than
logarithmic factors.

Finally, our experiments (Section 4.1) suggest investi-
gating the long-term properties of a greedy algorithm,
named SGOC – which is thus in-between optimism and
pessimism. For SGOC, we prove that the cumulative
(and not the average !) long-term constraints violation
converges to 0 (Theorem 4) for a phase-based version
of this approach.

Table 1: Problem-dependent bounds (Section 3),
contribution of arm k

ALG. VT RT

DOC
√

p⋆kT
1

p⋆
k∆k

∧ log(T )
∆k

SPOC ρ−1
λ ∧

√
p⋆
kT

1
µk

√
p⋆kT

SGOC
√

p⋆kT
1
µk

√
p⋆kT
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2 ALGORITHMS

In this section, we detail the revenue-guaranteeing ban-
dit (RGB) framework, as well as specific implementations.
As detailed in Section 1.2, our inspiration comes from
(PO) and (DO) approaches that have been proposed
in the literature. In the K-armed problem considered,
an RGB policy implements these principles as follows:
at each time step, a target allocation routine proposes
a feasible target allocation p̂k,t, where p̂k,t aims at
estimating the allocation p⋆k, while a standard bandit
algorithm (that we call base bandit) chooses (indepen-
dently) one arm to allocate the remaining probability
1−∑j∈[K] p̂j,t. An arm is then chosen at random from
the mixture. We detail RGB in Algorithm 1 below.

Algorithm 1 Revenue-Guaranteeing Bandits (RGB)
Input: λ1, . . . , λK (constraint levels),

algorithms TargetAlloc and BaseBandit.

Init: H0 = {} (history of observations)

for t ⩾ 1 do
(p̂1,t, . . . , p̂K,t) = TargetAlloc(Ht−1)

kt = BaseBandit(Ht−1)

Set pk,t =

(
p̂k,t + I(kt = k)

(
1−

K∑
j=1

p̂j,t

))
Draw At ∼ Mult (p1,t, . . . , pK,t), collect rt ∼ νAt

Update Ht = Ht−1 ∪ {(At, rt)}

We now explore possible choices for the base bandit
algorithm and for the target allocation.

Base bandit As the revenue constraints are already
handled by the target allocation, the goal of the base
bandit is simply to try playing rewarding arms. This
can be handled by a classic bandit algorithm, which
could be chosen among any standard policy, like UCB
(Auer et al., 2002), ETC (Perchet et al., 2016) TS
(Thompson, 1933; Agrawal and Goyal, 2012), KL-UCB
(Cappé et al., 2013) or MED (Honda and Takemura,
2011; Baudry et al., 2023). As detailed in the next
section, choosing an optimistic algorithm is convenient
for the analysis of RGB policies, so in the rest of the
paper we assume that the base bandit is UCB (Auer
et al., 2002) or KL-UCB (Cappé et al., 2013), instan-
tiated to achieve logarithmic regret on the family of
distributions F . In the rest of the paper, we denote
this algorithm by UCB to avoid any ambiguity with the
target allocation.

We further remark that if maxk λk = 0 (no revenue
guarantee) then our algorithm simply follows the rec-
ommendation of UCB, so RGB naturally interpolates
standard MABs and revenue-guaranteeing bandits.

Target allocation All the target allocations consid-
ered in this paper are of the form

p̂πk,t =
λk

µ̂π
k,t

, (3)

where for all k ∈ [K], µ̂k,t is an estimate of the mean
µk computed with the Nk(t− 1) observations obtained
up to time t− 1. We consider (µ̂k,t)k∈[K],t∈[T ] that are
either empirical means or confidence bounds. To design
the latter, we use the following standard assumption.
Assumption 1 (Sub-Gaussian rewards). F is the fam-
ily of 1-sub-Gaussian distributions.

Under the sub-Gaussian model, for some parameter
c > 0 we can use the following mean estimates:

• µ̂Greedy
k,t = µ̄k,t :=

1
Nk(t−1)

∑t−1
s=1 rsI(As = k).

• µ̂LCB
k,t = LCBk,t := µ̄k,t −

√
6(1+c) log(t)

Nk(t−1) .

• µ̂UCB
k,t = UCBk,t := µ̄k,t +

√
6(1+c) log(t)

Nk(t−1) .

so that P (µk ∈ [LCBk,t, UCBk,t]) ⩾ 1− 2t−2(1+c) (using
a simple union bound on Nk(t− 1)). As detailed in the
next section, this confidence level (with 2(1 + c) > 2)
is crucial for the theoretical analysis of RGB policies.
Note however that UCB can use a different confidence
bound than UCBk,t (e.g., with lower confidence). In
the following, we use the shorthand formulation “LCB
allocation” (resp. UCB or greedy) to refer to the target
allocation corresponding to this estimate.

Algorithms We now detail Doubly-Optimistic Cover-
ing (DOC), Safe Pessimistic-Optimistic Covering (SPOC)
and Safe Greedy-Optimistic Covering (SGOC).

It is known (Agrawal and Devanur, 2019; Chen et al.,
2023) that (DO) can provide surprisingly better can-
didates than (PO) to satisfy the revenue guarantees
when the problem has low feasibility gap. This stems
from the following property:

If the problem is feasible, then the UCB allocation is
feasible with high probability.

On the contrary, LCB allocations may take a long time
to become feasible when ρλ is small (and may never
be if ρλ = 0), which causes the failure of (PO) for low
feasibility gaps. This motivates the idea of using the
UCB allocation as a backup policy when the LCB one
is unfeasible, which we later exploit with SPOC. Before
that, we detail DOC in Algorithm 2. For completeness,
DOC needs to be able to provide a target allocation also
when the UCB one is unfeasible, even if this situation
is unlikely. In the following implementation, we simply
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assume that a routine UnfeasAlloc is chosen before-
hand to tackle that case. We discuss its choice at the
end of this section.

Algorithm 2 Doubly-Optimistic Covering (DOC)
Input: λ = (λ1, . . . , λK), UnfeasAlloc

Play RGB(λ, UCB-Alloc, UCB) (Alg. 1), with

UCB-Alloc:

Ht−1 →


(

λk

UCBk,t

)
k∈[K]

if feasible,

UnfeasAlloc(Ht−1) otherwise.

We then detail the implementation of SPOC in Algo-
rithm 3 below. The idea is to play the LCB allocation
whenever it is feasible, and to switch to the UCB allo-
cation otherwise. We build SGOC on the same design
as SPOC, replacing the LCB allocation with the greedy
one. We report its implementation in Algorithm 4,
presented in Appendix B.4 due to space constraints.
Interestingly, we obtain from Equation (3) that for each
k ∈ [K], t ∈ [T ] the sampling probabilities of the three
algorithms satisfy

p̂DOCk,t ⩽ p̂SGOCk,t and p̂DOCk,t ⩽ p̂SPOCk,t , (4)

so SGOC and SPOC are expected to serve the constraint
at least as well as DOC in any situation (omitting the
role of UCB for simplicity). This is the motivation
for qualifying SPOC (resp. SGOC) as a “safe” way to
implement a pessimistic (resp. greedy) approach in the
RGB framework.

Algorithm 3 Safe Pessimistic-Optimistic Covering

(SPOC)
Input: λ = (λ1, . . . , λK), UnfeasAlloc

Play RGB(λ, SPOC-Alloc, UCB) (Alg. 1), with

SPOC-Alloc:

Ht−1 →



(
λk

LCBk,t

)
k∈[K]

if feasible, else(
λk

UCBk,t

)
k∈[K]

if feasible,

UnfeasAlloc(Ht−1) otherwise.

Remark 1 (Individual switches). In practice, we can
implement a variant of SPOC that switches as few arms
as possible to the UCB allocation, in order to guarantee
p̂k,t ⩾ p⋆k w.h.p. for as many arms as possible. We
chose the implementation of Algorithm 3 to simplify
the presentation, but the theoretical guarantees derived

for SPOC in Theorem 2 (next section) trivially hold for
any more subtle implementation of switches.

Policy for the unfeasible case In practice, the
decision-maker should decide in advance what strategy
to adopt if the initial problem appears to be unfeasible
(which is true w.h.p. if the UCB allocation is unfeasible).
For instance, for recommendation systems, there may
be no way to certify in advance that some content
may work “well enough” or not. However, there is no
unique way to define this new goal, i.e., a new target
allocation (p̃⋆k)k∈[K]. This depends on the exact context
of the problem, and UnfeasAlloc should be tailored to
reach the chosen objective. One possibility is to avoid
discriminating between arms (e.g., for fairness reasons)
by defining p̃⋆k ∝ p⋆k: every arm receives the same
fraction of their initial guaranteed revenue. Another
is to define an implicit ranking of the arms (i1, . . . , iK)
that can be learned (by knowing a rule set depending
on problem parameters) and to serve the constraints
of the lower-ranked arms in priority. For instance,
ranking the arms by decreasing expectation minimizes
the total constraint violation, while ranking the arms
by increasing values of p⋆k maximizes the number of
constraints that are satisfied.

3 THEORETICAL RESULTS

In this section, we provide upper bounds on RT and
VT for DOC, SPOC and SGOC, and provide lower bounds
that exhibit the trade-off between the two metrics.
We assume that all problems considered are feasible
(Definition 1), which is essential for the interpretation
of the results.

3.1 Auxiliary Results

Before presenting the main theorems, we define the key
quantities used in their statement.

Regret due to UCB For arms with positive revenue
guarantees, it is clear that UCB benefits from the plays
of sub-optimal arms caused by the target allocation. In
Lemma 1 (Appendix A) we prove that UCB only selects
such arms a finite number of times. More precisely, we
show that under Assumption 1 there exists a constant
multiplicative factor α such that the number of selection
of any arm k ∈ [K] by UCB is upper bounded by

Nk(T ) := N
⋆

k ∧ α
log(T )

∆2
k

∧ T , (5)

with a constant N
⋆

k ∈ R ∪ {+∞} satisfying

N
⋆

k = O
(
log
(
3 ∨ (p⋆k∆

2
k)

−1
)

p⋆k∆
2
k

)
. (6)
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Equation (5) further exhibits different regimes accord-
ing to the time horizon: if p⋆k ⩽ (log(T ))−1 we can use
the standard logarithmic bound, which is intuitive.

Sufficient sampling We now introduce a crucial re-
sult for the derivation of the problem-dependent bounds
presented in the next section. It formalizes the intuition
that, when playing a revenue-guaranteeing algorithm,
at each step t any arm k should satisfy Nk(t) = Ω(p⋆kt)
with high probability. More specifically, we show in
Lemma 2 (Appendix A) that there exists a constant
Γk such that if a policy π satisfies pπk,t ⩾ pDOCk,t (which is
the case for SPOC and SGOC), it holds that

+∞∑
t=1

Pπ

(
Nk(t) ⩽

p⋆k
8
t

)
⩽ Γk , with (7)

Γk = O

 log
(
(p⋆kµ

3
k)

−1
) 3

2

p⋆kµ
3
k

∨ − log(p⋆k)

p⋆k
∨ 1

c

 . (8)

The proof of this result is non-trivial and relies on a vari-
ant of Freedman’s inequality (Theorem 1 from Beygelz-
imer et al. (2011)). It is also noteworthy that the factor
c−1 in (8) justifies the confidence level adopted in Algo-
rithms 2 and 3: a smaller level may not guarantee that
the arms are sufficiently sampled with high probability.

3.2 Upper Bounds on VT and RT

We can now formalize our main results. When un-
specified, the guarantees are problem-dependent, while
problem-independent results will be explicitly stated
as such. We start with DOC, which serves as a basis for
the other algorithms.

Theorem 1 (Upper bounds for DOC). Under Assump-
tion 1, the excess-regret of DOC satisfies

RDOC
T ⩽

K∑
k=1

(
∆k(N

⋆

k + Γk)
)
∧ α log(T )

∆k
+

Kmaxk ∆k

1 + c
,

where α, N
⋆

k and Γk are respectively defined in Equa-
tions (5), (6) and (7). If maxk ∆k ⩽ ∆+ for a
fixed ∆+ ∈ R it furthermore holds that RDOC

T =

O(
√
KT log(T )) (pb. independent bound).

Moreover, there exists an absolute constant C0 such
that the constraint violation DOC satisfies

VDOC
T ⩽ C0

K∑
k=1

√
p⋆kT log(T ) +

K∑
k=1

λkΓk +
Kmaxk µk

1 + c
,

and VDOC
T = O(K

√
T log(T )) (pb. independent).

The details of the proof can be found in Appendix B.1.
Theorem 1 first establishes that both RDOC

T and VDOC
T

admit a problem-independent bound scaling in O(
√
T ),

which is on par with the best results obtained in the
literature for (DO) approaches (see e.g. Chen et al.
(2023)). These results are refined with novel problem-
dependent bounds: we obtain a constant for RDOC

T , and
a bound for VDOC

T that improves the scaling of the first-
order term. For instance, if µk ≫ λk then

√
p⋆kT log(T )

and λkΓk = O(µ−2
k ) can both be much smaller than√

T . It is also noteworthy that we employed a different
proof scheme to derive the two results for VDOC

T .

We now present upper bounds for SPOC, that we prove
in Appendix B.2.
Theorem 2 (Upper bounds for SPOC). Under Assump-
tion 1, SPOC satisfies VSPOC

T ⩽ VDOC
T as well as

VSPOC
T = O


√
log
(
ρ−2
λ ∨ e

)
ρλ

√
KDλ,µ

 ,

where Dλ,µ = max
j∈[K]:λj>0

log(e∨(λjµj)
−1)

λjµj
. Moreover,

there exists an absolute constant C1 > 0 such that

RSPOC
T ⩽

K∑
k=1

∆k

(
C1

√
p⋆kT log(T )

µk
+Nk(T ) + 2Γk

)
,

where Nk(T ) and Γk are resp. defined in (5) and (7).

The main result is that VSPOC
T admits a constant up-

per bound as soon as ρλ > 0, while simultaneously
guaranteeing no more constraints violation than DOC
for any horizon T . This justifies calling SPOC a “safe”
implementation of pessimism-optimism for the revenue-
guaranteeing problem. However, we note that the
constant bound may be vacuous if one of the revenue
parameters is very small (high constant Dλ,µ). This
effect may be reduced by implementing more subtle
switches (see Remark 1), but improving Dλ,µ seems
quite intricate in general.

Symmetrically to VDOC
T , the dominant term of the excess-

regret upper bound scales as O(
√
T ). However, the fac-

tor µ−1
k does not permit to obtain problem-independent

results: the upper bound is vacuous for µk ⩽ T−1/2.
Still, by assuming that the problem is feasible we know
that µ−1

k ⩽ λ−1
k , which in turn provides an upper bound

on RSPOC
T that is known by the decision-maker.

Remark 2. A minor modification of SPOC leads to
problem-independent bounds on RSPOC

T : choose thresh-
olds (τt)t∈[T ] such that SPOC plays the UCB allocation
for arm k if LCBk,t ⩽ τt. With this mechanism, we can
get RSPOC

T = O
(
τ−1
T

√
KT ∨ τ−3

T

)
(up to logarithms).

The drawback is that it is necessary to wait that τT ⩽ µk

to play LCB, which degrades the guarantees on VT from
a non-asymptotic perspective.
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We finally discuss the theoretical guarantees of SGOC.
It is clear (see e.g. Eq. (4)) that

VSGOC
T ⩽ VDOC

T , and RSGOC
T ⩽ RSPOC

T ,

which leads to the bound presented in Table 1 by The-
orem 1 and 2. A more refined analysis of SGOC would
allow to derive smaller multiplicative constants than
C0 and C1 presented in the theorems.

3.3 Lower Bounds

In this section we prove lower bounds that show that
the problem-dependent bounds obtained in previous
section for VDOC

T and RSPOC
T cannot be improved by more

than logarithmic factors, that can depend on T but
not on the problem constants. We define a revenue-
guaranteeing problem by (λ, ν) ∈ RK × FK , and use
the notation C to denote the set of feasible problems,
and by C0 ⊂ C its interior (problems with positive
feasibility gaps).
Definition 3 (Admissible policies). A policy π belongs
to the set of admissible policies Π if

∀(ν, λ) ∈ C : lim inf
T→∞

inf
k∈[K]

Eν,π[Nk(T )]

p⋆k(ν, λ)T
⩾ 1,

where for k ∈ [K], p⋆k(ν, λ) =
λk

EX∼νk
[X] .

In other words, π is admissible if all revenue guarantees
are satisfied asymptotically. We now consider more
precisely two subsets of admissible policies.,
Definition 4. A policy π ∈ Π can be

R-targeting: if ∀(ν, λ) ∈ C : lim supT− 1
2Rπ

T,ν = 0,

V-targeting: if ∀(ν, λ) ∈ C0 : lim supT− 1
2Vπ

T,ν = 0 .

We denote by ΠR (resp. ΠV ) the set of R-targeting
(resp. V-targeting) policies.

It is clear from Theorem 1 and 2 that DOC is R-targeting
while SPOC is V-targeting. We now state our main result
for this part.
Theorem 3 (Lower bounds). Consider λ ∈ RK and a
bandit ν ∈ FK with means (µk)k∈[K]. For any policy
π ∈ ΠR, it holds that

∀(ν, λ) ∈ C, lim sup
T→∞

Vπ
T (ν, λ)√
Tp⋆k(ν, λ)

⩾
1

2
√
e
,

and, for any policy π ∈ ΠV it holds that

∀(ν, λ) ∈ C0, lim sup
T→∞

Rπ
T (ν, λ)

1
µk

√
Tp⋆k(ν, λ)

⩾
1

2
√
e
.

The proof details can be found in Appendix B.3, and
rely on standard change-of-measure arguments. The-
orem 3 indicates that a targeting policy must pay at

least
√
T for the “non-targeted” objective. We further-

more observe that the upper bounds on VDOC
T and RSPOC

T

obtained in Section 3.2 match the lower bounds of The-
orem 3 up to logarithmic factors that do not depend
on (λ, ν). Finally, Theorem 3 also confirms that the
factors µ−1

k in the upper bounds on RT are unavoidable
for V-targeting policies.

4 PRACTICAL RESULTS

4.1 Experiments

As highlighted in Section 1.2, only a small fraction of
the literature is directly applicable to our setting. Thus,
we benchmark DOC, SPOC and SGOC in terms of excess-
regret and constraint violation with BanditQ (Sinha,
2023) and a primal-dual algorithm by Slivkins et al.
(2022). However, we present our results for the latter
only in Appendix C, since we did not obtain good
performance with this algorithm2. Additionally, for
fair comparison with BanditQ we also consider the
following long term metrics:

RLT
π,T (ν, λ) =

K∑
k=1

∆kEν,π

[
T∑

t=1

(pk,t − p⋆k)

]
+

, and

VLT
π,T (ν, λ) =

K∑
k=1

µkEν,π

[
T∑

t=1

(p⋆k − pk,t)

]
+

.

We replicate the experiment presented in Sinha (2023)3,
using 200 seeds and with T varying in [102, 105], report-
ing 10 values for non-anytime algorithms. We compute
the excess regret and constraints violation as well as
their long-term counterparts and display the result in
Figure 1, averaging the values across seeds. Error bars
represent the first and the last decile.

As predicted by our analysis, DOC has small excess regret
and square root violation while SPOC exhibits constant
violation and square root excess regret. SGOC exhibits
O(

√
T ) excess regret and violation (see Figure 3 for

better resolution) but still achieves lower excess regret
than SPOC and lower constraints violation than DOC. In
this example, we also observe the transition of SPOC
from optimism to pessimism, making the long-term
violation converge to 0. In Appendix C, we further
study the impact of ρλ on the performance of the
algorithms, confirming at the same time our previous
observations.

If we consider more specifically the long-term metrics,
BanditQ seems to converge to 0 regret and to constant

2we provide our implementation in supplementary, un-
fortunately we could not find a public implementation

3K = 5, µ = (0.335, 0.203, 0.241, 0.781, 0.617) and λ =
(0.167, 0.067, 0, 0, 0)
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Figure 1: Reproducing the simulation setup from Sinha (2023)

violation. However, simulations with different problem
parameters available in Appendix C show that BanditQ
exhibits positive regret on some instances, and positive
violation on others, contrasting with the predictable
behaviour of SPOC and DOC.

With long term metrics, SGOC seems to be the go-to
approach, reaching both very small long-term regret
and violation. It is not clear that these quantities
still scales in

√
T . This observation motivates a closer

investigation of the performance of SGOC w.r.t. the long
term metrics. Unfortunately, providing a tight analysis
for SGOC may be intricate, because the mean estimates
(µ̄k(t))k∈[K] are not independent of the trajectory. For
this reason, we introduce a phase based algorithm called
P-SGOC, in order to mimic the long-term behavior of
SGOC. We describe and analyze this algorithm in the
next section. Observe that P-SGOC seems to follow
closely SGOC in the presented experiment.

4.2 Greedy Algorithms

In this part, we assume that the horizon T is known,
and that the means are bounded by 1 for simplicity4.
P-SGOC proceeds in four phases. The first two phases
are used to build a target allocation p̂ = (p̂k)k∈[K]. In
the third phase, P-SGOC collects p̂kT samples from each
arm k. Finally, UCB plays for the remaining time steps.
We provide a detailed pseudo-code in Appendix B.4
(Algorithm 5). In the exact implementation of P-SGOC,
we carefully tune the length of phase 1 and 2 to ensure
that the algorithm goes to phase 3 with high probabil-
ity. Furthermore, using two estimation phases allows
P-SGOC to obtain (again, w.h.p.) an uncertainty on the
estimate of p⋆k on par with SGOC (for which the errors
depends on Nk(t) = Ω(p⋆kt) w.h.p.). For these reasons,
we believe that P-SGOC is a good proxy for SGOC.

We now present the long-term guarantees of P-SGOC,
assuming for simplicity a positive feasibility gap and

4otherwise, a short preliminary phase can provide a
crude upper bound on each mean.

only positive revenue guarantee.

Theorem 4 (Long-term excess-regret and constraint
violation of P-SGOC). Assume that mink∈[K] λk > 0,
that ρλ > 0, and that maxk∈[K] µk ⩽ 1. If the distribu-
tions are σ-sub-Gaussian then P-SGOC satisfies

lim sup
T→∞

RLT
T ⩽ 24

K∑
k=1

σ2

µ2
k

∆k , and lim sup
T→∞

VLT
T ⩽ 0 .

The results are stated in an asymptotic formulation to
simplify their interpretation. The detailed proof, with
explicit bounds, is available in Appendix B.4.

By Theorem 4, P-SGOC asymptotically satisfies all the
long-term constraints in expectation, and achieves con-
stant excess-regret. This result is of course much
stronger than what we obtained for the per-round met-
rics with SGOC, proving that a “greedy-optimistic” have
merits if long-term goals are also considered.

CONCLUSION

In this paper we tackle a Multi-Armed Bandit prob-
lem with guaranteed per-arm revenue. Setting the
per-round satisfaction of the revenue constraint as the
main goal encourages the design of policies that switch
between pessimism and optimism for the constraint
estimation. This approach achieves strong theoreti-
cal guarantees, even for difficult problems with small
feasibility gap. Numerical experiments support these
findings, and further reveals the strong long-term per-
formance of a greedy approach. Further theoretical
results indicate that greedy outperforms pessimism un-
der new metrics defined for long-term satisfaction of
the constraints, by achieving constant regret and no
violation.

In future works, extensions of MAB with revenue guar-
antees could be considered. The contextual setting
(Slivkins et al., 2022) is a natural extension but chal-
lenging as it is currently unknown whether a (DO)
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algorithm can get both O(
√
T ) excess regret and con-

straint violation. Another promising direction would
be to extend the hybrid approach presented in this pa-
per to handle more complicated constraint structures.
For instance, a legal contract may specify the policies
that should be targeted, whether some constraints are
feasible or not, or depending on some problem parame-
ters. We could then design algorithms with multiple
switches depending on their own evaluation of their
location on the decision tree.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes. See Section 1 and Algorithms 2 to 5. ]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes. See theorems 1, 2 and 4, and it is clear
that the computational complexity of the al-
gorithm is O(K) at each step.]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes code will be provided
in the supplementary material.]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results. [Yes.
See the Appendix.]

(c) Clear explanations of any assumptions. [Yes.]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes, the code will be given in the supplemen-
tary materials.]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes, see section 4.1]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes, see Appendix.]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes.]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Not Applicable]

(d) Information about consent from data provider-
s/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]
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A TECHNICAL LEMMAS

In this section we formalize and prove the results presented at the beginning of Section 3 on the regret caused by
the base bandit (Lemma 1) and the sufficient sampling of each arm (Lemma 2). We also provide in Lemma 4 a
simple result used to derive the constants presented in the two previously introduced lemmas.

In order to assess the generality of the approaches presented in this paper, we prove the aforementioned result
under the following Assumption 2, more general than Assumption 1.
Assumption 2 (Confidence sets). For any c > 0 and collected data Ht−1, the target allocation can use a
confidence interval [LCBk,t, UCBk,t] satisfying

P (µk ∈ [LCBk,t, UCBk,t]) ⩾ 1− 1

t2(1+c)
,

Furthermore, there exists a constant C > 0 such that

UCBk,t − LCBk,t ⩽ C

√
log(t)

Nk(t− 1)
. (9)

Indeed, Assumption 2 is not only satisfied by sub-Gaussian distributions, but by more general exponential families
of distributions, and can also be applied to some families of heavy-tail distributions by building the confidence
intervals with appropriate robust estimators (see e.g. Bubeck et al. (2013)).
Lemma 1 (Excess-regret caused by UCB). We assume that the confidence bound used by UCB satisfy Assumption 2,
and use the notation p̄ = (p̄k)k∈[K] for some arbitrary p̄k ⩾ 0. Then, for any time step t we denote by UCBj,t
the upper confidence bound used for arm j, and define Bt = {∀j ∈ [K] : µj ⩽ UCBj,t} (optimism), and
Nk,t = {Nk(t) ⩾ p̄kt} (sufficient sampling). Then, the number of pulls of any sub-optimal arm k by UCB under Bt

and Nk,t−1 satisfies

E

[
T∑

t=1

I(At+1 = kt = k,Bt,Nk,t−1)

]
⩽ Nk(T ) :=

3C2 log
(
3 ∨ C2

p̄k∆2
k

)
p̄k∆2

k

∧ C2 log(T )

∆2
k

∧ T .

Furthermore, for large enough time horizons this bound becomes N
⋆

k =
3C2 log

(
3∨ C2

p̄k∆2
k

)
p̄k∆2

k
if p̄k > 0, and C2 log(T )

∆2
k

otherwise.

Proof. Let us start by fixing a sub-optimal arm k and considering E
[∑T

t=1 I(kt = k,Bt,Dt,Nk,t−1)
]
, with

Dt = {At+1 = kt}. First, the upper bound by T is trivial. Then, because the base bandit is based on the UCB
principle we have that if kt = k then arm k has the largest upper confidence bound among all arms. In particular,
if Bt holds then UCBk,t ⩾ UCB1,t ⩾ µ1. We thus obtain that

{kt = k, UCBk,t ⩾ max
j

UCBj,t,Dt,Bt,Nk,t−1} ⊂ {kt = k,Dt, UCBk,t ⩾ UCB1,t,Bt,Nk,t−1}

⊂ {kt = k,Dt, UCBk,t ⩾ µ1,Bt,Nk,t−1}

⊂ {kt = k,Dt, µk + C

√
log(t)

Nk(t− 1)
⩾ µ1,Bt,Nk,t−1}

=

{
kt = k,Dt, C

√
log(t)

Nk(t− 1)
⩾ ∆k,Bt,Nk,t−1

}
,

where we used Assumption 2 to upper bound UCBk,t − µk. It is clear that the final event cannot happen if
Nk(t− 1) ⩾ C2 log(t)

∆2
k

. Hence, C2 log(T )
∆2

k
, provides the second upper bound on the number of pulls due to the base

bandit, independently of the value of p̄k. This result is standard for the analysis of UCB algorithms. Under
Nk,t−1, we can further prove that the base bandit will not cause pulls arm k after a large enough time. More
precisely,

t > tk(p̄k) := sup

{
t ∈ N : p̄kt ⩽

C2

∆2
k

log(t)

}
⇒ I(kt = k,Bt,Dt,Nk,t−1) = 0 .
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Furthermore, using Lemma 4 we obtain that tk(p̄k) ⩽
3C2 log

(
3∨ C2

p̄k∆2
k

)
p̄k∆2

k
, giving the first part of Lemma 1. This

concludes the proof.

Lemma 2 (Sufficient sampling). Under Assumption 2, for any arm k ∈ [K] there exists a problem-dependent
constant Γk such that if a policy π satisfies pπk,t ⩾ pDOCk,t at all time it holds that

+∞∑
t=1

Pπ

(
Nk(t) ⩽

p⋆k
8
t

)
⩽ Γk = O

 log
(

1
p⋆
kµ

3
k

) 3
2

p⋆kµ
3
k

∨ − log(p⋆k)

p⋆k
∨ 1

c

 .

Proof. The proof is based on the following concentration result, that proves that the sample size of each arm k is
“close” to the sum of sampling probabilities with high probability.

Lemma 3 (Application of Freedman’s inequality). For any δt > 0 and η ∈ (0, 1] it holds that

Nk(t) ⩾ (1− η)

t∑
s=1

pk,s −
1

η
log(1/δt) with probability at least 1− δt . (10)

Proof. We apply Theorem 1 from Beygelzimer et al. (2011) with the martingale difference (Xs)s⩽t defined by
∀s ⩽ t, Xs = I(As = k)− pk,s, using that E[X2

s |Fs−1] = pk,s(1− pk,s) ⩽ pk,s ⩽ 1.

Using Lemma 3 with δt = t−(1+p⋆
k) and a parameter η ∈ (0, 1) (defined later) we first obtain that

P
(
Nk(t) ⩽

p⋆kt

8

)
⩽ P

(
Nk(t) ⩽ (1− η)

t∑
s=1

pk,s −
1

η
log(1/δt)

)
+ P

(
(1− η)

t∑
s=1

pk,s −
1

η
log(1/δt) ⩽

p⋆k
8
t

)

⩽
1

t1+p⋆
k
+ P

(
(1− η)

t∑
s=1

pk,s −
1 + p⋆k

η
log(t) ⩽

p⋆k
8
t

)
︸ ︷︷ ︸

Pt

.

We then upper bound Pt by analyzing different scenarios for the sequence (pk,s)s⩽t. We consider two events:
Et = {∩s∈[t/4,t]Bs} (µk belongs to the confidence intervals for all rounds between t/4 and t), and the event
{Nk(t/2) ⩾ nt :=

C2 log(t)
µ2
k

}. We then obtain that

Pt ⩽ P

(
(1− η)

t∑
s=1

pk,s −
1 + p⋆k

η
log(t) ⩽

p⋆k
8
t,Nk

(
t

2

)
⩾ nt, Et

)
︸ ︷︷ ︸

P ′
t

+ P
(
Nk

(
t

2

)
⩽ nt

)
+ P

(
Ēt
)

We first upper bound
∑t

t=1 P(Ēt) thanks to our assumptions on P(B̄s),

T∑
t=1

P(Ēt) ⩽
T∑

t=1

t∑
s=t/4

P
(
B̄s

)
⩽ 12

+∞∑
t=1

1

t1+c
⩽

12

c
, (11)

We then upper bound P ′
t . We first remark that

Et ∩ {Nk(t/2) ⩾ nt} ⇒ ∀s ∈ [t/2, t], pk,s ⩾
λk

µk + C
√

log(s)
Nk(s)

⩾
p⋆k
2

. (12)
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Using this result, we obtain the following deterministic upper bound

T∑
t=1

P ′
t ⩽

T∑
t=1

I
(
p⋆kt

4
(1− η)− 1 + p⋆k

η
log(t) ⩽

p⋆kt

8

)

⩽
T∑

t=1

I
(
p⋆kt

8
−
(
p⋆kt

4
η +

1 + p⋆k
η

log(t)

)
⩽ 0

)

We now optimize η to make this quantity as small as possible, obtaining η = 2
√

(1+p⋆
k) log(t)

p⋆
kt

. We can use this
value only if η < 1, but remark that this check is redundant with the indicator being 0. Indeed, we obtain that

T∑
t=1

P ′
t ⩽

T∑
t=1

I

(
p⋆kt

8
⩽
√
p⋆k(1 + p⋆k)t log(t) ∪ 2

√
(1 + p⋆k) log(t)

p⋆kt
> 1

)

⩽
T∑

t=1

I
(

t

log(t)
⩽ 64

(
1 +

1

p⋆k

))
:= t0k .

Using Lemma 4 we further obtain that t0k = O
(

− log(p⋆
k)

p⋆
k

)
.

It remains to upper bound
∑T

t=1 P (Nk(t/2) ⩽ nt). We can use the exact same scheme as before, with the
significant advantage that nt scales in log(t) instead of t, so we can use a cruder lower bound on

∑t/2
s=1 pk,s to

conclude the proof. We now define ε′t = {∩s∈[t/4,t/2]Bs}, which provides

ε′t ⇒
t/2∑
s=1

pk,s ⩾
t

4
× λk

µk + C
√

log(t)
.

Using this result along with Lemma 3 for δ′t =
1

t1+λk
we now obtain that for any η ∈ (0, 1),

P
(
Nk

(
t

2

)
⩽ nt

)
⩽ δ′t + P

(
(1− η)

t∑
s=1

pk,s −
1 + λk

η
log(t) ⩽ nt, E ′

t

)
+ P(Ē ′

t) .

Similarly as for
∑

P(Ēt) we obtain that
∑T

t=1 P(Ē ′
t) ⩽ 8

c , and we also obtain by choosing η =√
8 (1+λk) log(t)

λkt
(µk + C

√
log(t)) in Lemma 3 that

T∑
t=1

P

(
(1− η)

t∑
s=1

pk,s −
1 + λk

η
log(t) ⩽ nt, E ′

t

)
⩽

T∑
t=1

I

(
(1− η)

λk

µk + C
√
log(t)

t

8
− 1 + λk

η
log(t) ⩽ nt

)

=

T∑
t=1

I

(
λk

µk + C
√
log(t)

t

8
−
√

λk(1 + λk)t log(t)

2(µk + C
√
log(t))

⩽ nt

)

⩽
T∑

t=1

I

(
λk

µk + C
√
log(t)

t

8
⩽ 2nt,

)
∨

T∑
t=1

I

(
λk

µk + C
√
log(t)

t

8
⩽ 2

√
λk(1 + λk)t log(t)

2(µk + C
√

log(t))

)
:= t1k ∨ t2k ,

that are both problem-dependent constants. Similarly to t0k, an upper bound on t1k and t2k can be derived explicitly
thanks to Lemma 4, and again we used that the value of η that we choose is valid for t ⩾ t1k ∨ t2k. We thus easily

obtain that t1k = O
(

1
λkµ2

k
log
(

1
λkµ2

k

)3/2)
and t2k = O

(
1
λk

log
(

1
λk

)3/2)
. A summary of all the results obtained

so far finally leads to

+∞∑
t=1

P
(
Nk(t) ⩽

p∗kt

8

)
⩽ Γk := t0k ∨ t1k ∨ t2k +

1

p⋆k
+

1

λk︸ ︷︷ ︸∑T
t=1(δt+δ′t)

+
20

c
. (13)
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If c is not unreasonably small, the “characteristic times” (tik)i∈[3] dominate this bound p⋆k and/or µk are small.
Thanks to Lemma 4, we obtain the scaling

Γk = O
(

1

p⋆kµ
3
k

log

(
1

p⋆kµ
3
k

)3/2

∨ 1

p⋆kµk
log

(
1

p⋆kµk

)3/2

∨ − log(p⋆k)

p⋆k
∨ 1

c

)
,

and remark that the second term can be removed without changing the result.

Lemma 4. For any α ⩾ 1, the mapping fα : x ∈ [(α+ 2)α ∨ 3,∞) 7→ sup
{
t ∈ N : t

log(t)α ⩽ x
}

satisfies

fα(x) ⩽ (α+ 2)α × log(x)αx.

Proof. We start by remarking that the function g(x) = x
log(x)α is strictly increasing for all x ≥ eα. Now, consider

a value s = Ax log(x)α for some A > 0, such that s ⩾ 3 ∨ eα. By the monotonicity of t
(log t)α , we have that

t > s ⇒ t

(log(t)α
>

s

(log(s)α
= x× A log(x)α

(log(A) + log(x) + α log(log(x)))
α .

Then, for x ⩾ A ⩾ 3, it holds that log(A) + log(x) + α log(log(x)) ⩽ (α + 2) log(x), so we can simply choose
A = (α+ 2)α to obtain the result.

All that is left is to verify that for this choice, s = (α+ 2)α × log(x)αx ⩾ 3 ∨ eα, but this clearly holds for all
x ≥ 3 and α > 0.

B PROOF OF THEOREMS 1–4

In this section we prove all the main results presented in this paper.

B.1 Proof of Theorem 1

We recall the theorem before detailing the proof.

Theorem 1 (Upper bounds for DOC). Under Assumption 1, the excess-regret of DOC satisfies

RDOC
T ⩽

K∑
k=1

(
∆k(N

⋆

k + Γk)
)
∧ α log(T )

∆k
+

Kmaxk ∆k

1 + c
,

where α, N
⋆

k and Γk are respectively defined in Equations (5), (6) and (7). If maxk ∆k ⩽ ∆+ for a fixed ∆+ ∈ R
it furthermore holds that RDOC

T = O(
√
KT log(T )) (pb. independent bound).

Moreover, there exists an absolute constant C0 such that the constraint violation DOC satisfies

VDOC
T ⩽ C0

K∑
k=1

√
p⋆kT log(T ) +

K∑
k=1

λkΓk +
Kmaxk µk

1 + c
,

and VDOC
T = O(K

√
T log(T )) (pb. independent).

Proof. We divide the proof between the upper bounds on the excess-regret and constraint violation, starting
with the excess-regret. As for the technical results of Appendix A, we write the proof under the more general
Assumption 2, and instantiate the constants for Assumption 1 only when the final results are derived.
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Upper bound on the excess-regret We consider the events Nk,t = {Nk(t) ⩾ p̄kt} for some (p̄k)k∈[K],
Bt = {∀j ∈ [K] : µj ∈ [LCBj,t, UCBj,t]}, and Dt = {At+1 = kt}. Let us fix a sub-optimal arm k. For any time step
t, we use that pDOCk,t ⩽ λk

UCBk,t
to obtain that

E[(pDOCk,t − p⋆k)+] ⩽ E[(pDOCk,t − p⋆k)+I(Nk,t−1,Bt)] + P(N̄k,t−1) + E
[
pDOCk,t I(B̄t)

]
⩽ E

[(
λk

UCBk,t
− p⋆k

)
+

I(Nk,t−1,Bt)

]
+ E [I(kt = k,Nk,t−1,Bt,Dt)] + P(N̄k,t−1) + E

[
pDOCk,t I(B̄t)

]
⩽ 0 + E [I(kt = k,Nk,t−1,Bt,Dt)] + P(N̄k,t−1) + E

[
pDOCk,t I(B̄t)

]
.

We emphasize that due to the optimism under Bt, this equality holds for any choice of (p̄k)k∈[K].

Now, we first obtain the term K maxk ∆k

1+c by upper bounding the following term,

T∑
t=1

K∑
k=1

∆kE
[
pk,tI(B̄t)

]
⩽

T∑
t=1

max
k

∆kP(B̄t) (14)

⩽

(
T∑

t=1

δt

)
Kmax

k
∆k =

Kmaxk ∆k

1 + c
. (15)

We then obtain the first-order term of the result by using Lemma 1 and Lemma 2. We now consider two different
choices for (p̄k)k∈[K] to bound the two remaining terms.

Case I: p̄k =
p⋆
k

8 . We can use both lemmas and obtain that ∀k ∈ [K],

T∑
t=1

(
E [I(kt = k,Nk,t−1,Bt,Dt)] + P(N̄k,t−1)

)
⩽ N

⋆

k + Γk ,

where N
⋆

k and Γk are respectively defined in the statement of Lemma 1 and of Lemma 2.

Case II: p̄k = 0. For this choice, (Nk,t) always holds (P(N̄k,t) = 0), and we complete the result by using Lemma 1
to obtain that, at the same time, this quantity is also bounded by α log(T )

∆2
k

, for some α = C2 (with C defined in
Assumption 2).

Moreover, this second upper bound by α log(T )
∆k

also guarantees the standard O
(√

KT log(T )
)

problem-
independent bound, which is directly obtained by taking the maximum between the logarithmic bound and the
trivial bound by T . We remark that the upper bound ∆+ on the gap is necessary to upper bound the term
K maxk ∆k

1+c .

Constraint violation To upper bound VDOC
T , we consider any arm k ∈ [K] for which λk > 0. We again use the

events Nk,t and Bt that we used to upper bound RDOC
T , so that under Bt the UCB allocation is feasible. We first

write that

T∑
t=1

µkE
[
(p⋆k − pDOCk,t )+

]
⩽

T∑
t=1

µkE
[
(p⋆k − pDOCk,t )+I(Nk,t−1,Bt)

]
+ λk

T∑
t=1

P(N̄k,t−1) + µk

T∑
t=1

E
[
p∗kI(B̄t)

]
.

We upper bound the second order terms using Assumption 2 and Lemma 2, obtaining (similar to the proof
for the excess regret)

∑K
k=1 λkΓk +

K maxk µk

1+c when summing over the k arms. For the remaining term, we use
Assumption 2 to write that

⩽
T∑

t=1

µkE
[
(p⋆k − pDOCk,t )+I(Nk,t−1,Bt)

]
⩽

T∑
t=1

µkλkE

[(
UCBk,t − µk

UCBk,t × µk

)
+

I(Nk,t−1,Bt)

]

⩽
T∑

t=1

p⋆k × C

√
8
log(t)

p⋆kt
,
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which concludes the proof for the problem-dependent bound, with C0 = 2
√
8C. Under Assumption 2 we can

define C = 2
√
6(1 + c), which further provides C0 = 16

√
3(1 + c).

For the problem-independent bound, we take another path that do not use the events Nk,t, since the scaling of
Γk provided by Lemma 2 does not allow us to recover the desired bound. We use that the value of UCBk,t is
determined by (µ̂k,n)n∈N (empirical average with sample size Nk(t− 1) = n), t and the confidence level δt. Since
the confidence level is increasing with t and δt, we can claim that there exists an absolute constant D such that

∀t ∈ T , UCBk,t ⩽ ŨCB(Nk(t− 1), T ) := µk +D

√
log(T )

Nk(t− 1)
with probability at least 1− 1

T
.

We denote by B the corresponding good event and p̃k,t =
λk

ŨCB(Nk(t−1),T )
, and write that

T∑
t=1

µkE
[
(p⋆k − pDOCk,t )+

]
⩽

T∑
t=1

µkE
[
(p⋆k − p̃DOCk,t )+

]
T∑

t=1

µkE
[
(p⋆k − p̃DOCk,t )+I(B)

]
+ TµkP(B̄)

⩽
T∑

t=1

µkλkE

[(
ŨCBk(Nk(t− 1), T )− µk

ŨCB(Nk(t− 1), T )× µk

)
+

I(B)
]
+ µk

⩽ Dp⋆k × E

[
T∑

t=1

µk

ŨCB(Nk(t− 1), T )

√
log(T )

Nk(t− 1)
I(B)

]
︸ ︷︷ ︸

ZT

+µk .

We further upper bound ZT using a union bound on Nk(t− 1),

ZT ⩽ E

[
T∑

t=1

T∑
n=1

µk

ŨCB(n, T )

√
log(T )

n
I(Nk(t− 1) = n,B)

]
T∑

n=1

µk

ŨCB(n, T )

√
log(T )

n
E

[
T∑

t=1

I(Nk(t− 1) = n,B)
]

.

Without loss of generality, we assume that n ≥ 1; the case of n = 0 is taken care of by sampling each arm once at
the beginning, which would not change any of the results.

Notice that the sum in the expectation is the number of rounds since we get to Nk(t− 1) = n until we play arm
k another time and move to Nk(t − 1) = n+ 1, under B. We use again that under B, for all time steps t the
sampling probability of k is larger than p̃k(t) =

λk

ŨCBk(n,T )
when Nk(t−1) = n. Thus, E

[∑T
t=1 I(Nk(t− 1) = n,B)

]
is smaller than the expectation of a geometric random variable with probability λk

ŨCBk(n,T )
. We hence obtain that

ZT ⩽
T∑

n=1

µk

ŨCB(n, T )

√
log(T )

n
× ŨCB(n, T )

λk
=

T∑
n=1

1

p⋆k

√
log(T )

n

Multiplying ZT by Dp⋆k, we then conclude that

T∑
t=1

µkE
[
p⋆k − pDOCk,t

]
⩽ 2D

√
log(T )T ,

which gives the problem-independent bound of O(K
√
T log(T ) when summing over the K constraints.

B.2 Proof of Theorem 2

We recall the theorem below.
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Theorem 2 (Upper bounds for SPOC). Under Assumption 1, SPOC satisfies VSPOC
T ⩽ VDOC

T as well as

VSPOC
T = O


√
log
(
ρ−2
λ ∨ e

)
ρλ

√
KDλ,µ

 ,

where Dλ,µ = max
j∈[K]:λj>0

log(e∨(λjµj)
−1)

λjµj
. Moreover, there exists an absolute constant C1 > 0 such that

RSPOC
T ⩽

K∑
k=1

∆k

(
C1

√
p⋆kT log(T )

µk
+Nk(T ) + 2Γk

)
,

where Nk(T ) and Γk are resp. defined in (5) and (7).

Proof. We decompose the proof in two parts, starting with the per-round constraint violation. We again write
the proof under the more general Assumption 2, and instantiate the constants for Assumption 1 only when the
final results are derived.

Constraint violation: By design, SPOC uses the UCB target allocation if the LCB one is unfeasible. Hence, it
directly holds that

∀k ∈ [K] : pSPOCk,t ⩾ pDOCk,t ⇒ VSPOC
T ⩽ VDOC

T .

This gives a first part of the result. We now consider the refined upper bound for problems with positive feasibility
gap. Assume that ρλ > 0, and denote by Gt =

{∑K
j=1

λj

LCBj,t
⩽ 1
}

the event that the LCB allocation is feasible,
and by Bt = {∀j ∈ [K] : µj ∈ [LCBj,t, UCBj,t]} the event that all means are well concentrated. We further define
Nt = ∩jNj,t := ∩j{Nj(t) ⩾ p⋆j

t
8}, and first write that for any arm k with λk > 0 it holds that

T∑
t=1

µkE [(p⋆k − pk,t)+] ⩽
T∑

t=1

µkE [(p⋆k − pk,t)+I(Nt−1,Bt)] + λk

T∑
t=1

P(N̄t) + µk

T∑
t=1

E[p⋆kI(B̄t)]

We can upper bound the last two terms similarly as in the proof of Theorem 1. Using Lemma 2 and Assumption 2
we obtain that

K∑
k=1

(
λk

T∑
t=1

P(N̄t) + µk

T∑
t=1

E[p⋆kI(B̄t)]

)
⩽

 K∑
j=1

λj

 K∑
k=1

Γk +
Kmaxk µk

1 + c
, (16)

where we used a union bound to derive the first term. We now consider the first-order term of the result. Again,
we use that by design pSPOCk,t ⩾ pDOCk,t for any k, t. The result comes from using the same proof as for DOC up to a
characteristic time tρ depending on ρλ and other problem parameters. We start by writing that

V k
T :=

T∑
t=1

µkE [(p⋆k − pk,t)+I(Nt−1,Bt)] ⩽
T∑

t=1

µkE
[
(p⋆k − p⋆kI(Gt) + pDOCk,t I(Ḡt))+I(Nt−1,Bt)

]
=

T∑
t=1

µkE
[
(p⋆k − pDOCk,t )+I(Nt−1,Bt, Ḡt)

]
.

Then, we use a simple property to introduce ρλ in the analysis: if ∀j ∈ [K] : , µ̄LCB
j (t) ⩾ (1 − ρλ)µj , then the

LCB allocation is feasible and Gt holds. Combining this property with Bt and Nt−1, we obtain that the events
considered cannot hold simultaneously when t is larger than a problem-dependent constant, formally

t > tρ := sup

{
t ∈ N : ∃j ∈ [K] : C

√
8
log(t)

p⋆j t
⩾ ρλµj

}
. (17)
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By Lemma 4, we furthermore obtain that tρ ⩽ maxj∈[K]
24C2

p⋆
j (ρλµj)2

. We can thus write that

V k
T ⩽

tρ∑
t=1

µkE
[
(p⋆k − pDOCk,t )+I(Nt−1,Bt)

]
⩽ C

tρ∑
t=1

√
8p⋆k log(t)

t
(as in Theorem 1)

⩽ 2C
√
8p⋆ktρ log(tρ)

⩽
56C2

ρλ
max
j∈[K]

√
p⋆k

λjµj
log

(
112C2

λjµjρ2λ

)
.

Remarking that for (x, y) > 0 it holds that x+ y ⩽ ((y ∨ 1)(1 + x)), we can further write that

V k
T ⩽ 56C2 ×

1 ∨
√

log
(

1
ρ2
λ

)
ρλ

max
j∈[K]

√
p⋆k

λjµj

(
1 + log

(
112C2

λjµj

))
, (18)

and finally using that
∑

k

√
p⋆k ⩽

√
K we get

K∑
k=1

V k
T ⩽

√
log
(

1
ρ2
λ
∨ e
)

ρλ

√
KDλ,µ ,

where Dλ,µ is explicitly defined in Equation (18). This completes the proof regarding the constraint violation.

Excess regret: Let us consider again the events Bt = {∀j ∈ [K]µj ∈ [LCBj,t, UCBj,t]} and Nk,t = {Nk(t) ⩾
p⋆
k

8 t},
Dt = {At+1 = kt}, and Gt =

{∑
k=1 p

LCB
k,t ⩽ 1

}
. We re-use our results for the LCB allocation, remarking that

RSPOC
T ⩽

K∑
k=1

∆kE
[
(pSPOCk,t − p⋆k)+I(Bt,Nk,t−1,Gt)

]
︸ ︷︷ ︸

R̃LCB
T

+

K∑
k=1

∆kE
[
(pDOCk,t − p⋆k)+

(
I(Bt,Nk,t−1,Dt) + I(Bt,Nk,t−1)

)]
︸ ︷︷ ︸

R̃DOC
T

.

With the same arguments as for the proof of Theorem 1, we first obtain that

R̃DOC
T ⩽

K∑
k=1

∆k

(
Nk(T ) + Γk

)
.

It remains to upper bound the term R̃LCB
T . We first remark that if ρλ = 0 then the LCB allocation is unfeasible

under Bt so RLCB
T = 0. Let us now consider the case ρλ > 0. Since lower bounding the number of rounds for which

the LCB allocation is feasible is intricate, we simply drop the event Gt in the rest of the proof after using that

(pSPOCk,t − p⋆k)+I(Gt) ⩽ p⋆k

(
µk − LCBk,t

LCBk,t

)
+

∨ 1 .

so that we can now work with the confidence intervals. Under Nk,t−1 and Bt, we are sure that LCBk,t ⩾ µk

2 if

t > tk(1/2) := sup

{
s ∈ N : C

√
8 log(t)

p⋆kt
⩾

µk

2

}
.

We remark from the proof of Lemma 2 that this term is one of the component of Γk, so for simplicity we use
tk(1/2) ⩽ Γk in the statement of Theorem 2. We hence obtain that

R̃LCB
T ⩽

K∑
k=1

∆kΓk +

K∑
k=1

∆k

T∑
t=tk(1/2)

2E
[
p⋆k

(
µk − LCBk,t

µk

)
I(Bt,Nk,t−1)

]
︸ ︷︷ ︸

RT

.
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Finally, using Assumption 2 we obtain that

RT ⩽
K∑

k=1

∆k

T∑
t=tk(1/2)

2C
p⋆k
µk

√
8 log(t)

p⋆kt

⩽ 4C

K∑
k=1

∆k

µk

√
8p⋆kT log(T ) ,

which concludes the proof, obtaining that C1 = 4C
√
8. Under Assumption 1, since C = 2

√
6(1 + c) we obtain

that C1 = 32
√
3(1 + c).

B.3 Proof of Theorem 3

We recall from Definition 4 that ΠR denotes the set of R-targeting policies (RT = o(
√
T )) and ΠV denotes the

set of V-targeting policies (VT = o(
√
T )). We prove the following result.

Theorem 3 (Lower bounds). Consider λ ∈ RK and a bandit ν ∈ FK with means (µk)k∈[K]. For any policy
π ∈ ΠR, it holds that

∀(ν, λ) ∈ C, lim sup
T→∞

Vπ
T (ν, λ)√
Tp⋆k(ν, λ)

⩾
1

2
√
e
,

and, for any policy π ∈ ΠV it holds that

∀(ν, λ) ∈ C0, lim sup
T→∞

Rπ
T (ν, λ)

1
µk

√
Tp⋆k(ν, λ)

⩾
1

2
√
e
.

Proof. Let us fix a set of parameters (λ1, . . . , λk)∈(R+)K . We start by proving the first statement, assuming that
the bandit regret under the policy π ∈ Π is dominated by

√
T asymptotically for all problems. We fix a bandit

instance ν ∈ F and, for simplicity, let us consider an arbitrary arm with constraint parameter λ > 0. In the
following, we assume w.l.o.g. that the selected arm is arm 1 (up to re-indexing the arms and constraints).

Then, consider another bandit instance ν′ ∈ FK , where the distributions of the arms in (ν, ν′) are the same
except for arm 1. To keep simple notation, let us now denote by ν and ν′ the distribution of arm 1 (only) under
the two models.

Let µ = EX∼ν [X] be the expectation of this arm under ν. Then, choose ν′ ∈ F to be absolutely continuous w.r.t.
ν and such that EX∼ν′ [X] = µ+ ε for some ε > 0. Assume that (λ1, . . . , λK) are such that the problem is feasible
under ν (by extension, it is feasible under ν′). We further denote by pt the sampling probability of the selected
arm at time step t for a trajectory under π, and use the shorthand notation p⋆ν = λ

µ and p⋆ν′ = λ
µ+ε . We consider

the event

E =

{
T∑

t=1

pt ⩽
λ

µ+ ε
2

T

}
.

The result follows from a standard change of measure argument. We first remark that

E holds under ν ⇒
T∑

t=1

(p⋆ν − pt)+ ⩾
T∑

t=1

(p⋆ν − pt) ⩾ Tλ
ε

2µ
(
µ+ ε

2

) ,

and similarly that

Ē holds under ν′ ⇒
T∑

t=1

(pt − p⋆ν′)+ ⩾
T∑

t=1

(pt − p⋆ν′) ⩾ Tλ
ε

2(µ+ ε)
(
µ+ ε

2

) .
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We use the Bretagnolle-Huber inequality (see e.g. Theorem 14.2 of Lattimore and Szepesvári (2020)),

Eν,π

[
T∑

t=1

(p⋆ν − pt)+

]
+ Eν′,π

[
T∑

t=1

(pt − p⋆ν′)+

]
⩾ Eν,π

[
T∑

t=1

(p⋆ν − pt)+I(E)
]
+ Eν′,π

[
T∑

t=1

(pt − p⋆ν′)+I(Ē)
]

⩾ Tλ
ε

2(µ+ ε)
(
µ+ ε

2

) (Pν,π(E) + Pν′,π(Ē)
)

⩾ Tλ
ε

2(µ+ ε)
(
µ+ ε

2

) exp (−Eν,π[N1(T )]D(ν, ν′)) .

By Assumption 1, as ν and ν′ are sub-Gaussian it holds that D(ν, ν′) ⩾ ε2

2

Eν,π

[
T∑

t=1

(p⋆ν − pt)+

]
+ Eν′,π

[
T∑

t=1

(pt − p⋆ν′)+

]
⩾

λ

2µ2
εT ×

exp
(
−Eν,π[N1(T )]

ε2

2

)
(
1 + ε

µ

)2
︸ ︷︷ ︸

B(T,ε)

We now consider the properties of B(T, ε) for small values of ε and large values of T . Since π is an admissible
policy (Definition 3), it must hold that lim inf Eν,π[N1(T )] ⩾ p⋆νT . Hence, for T → ∞ and ε → 0 we have
εB(T, ε) ∼ εe−p⋆

νT
ε2

2 , which is maximized by choosing ε = (p⋆νT )
− 1

2 . This choice provides B(T, ε) ∼ e−1/2. To

complete the proof of the first lower bound, we use that π is R-targeting so
Eν′,π[

∑T
t=1(pt−p⋆

ν)+]√
T

→ 0. Hence, the
scaling in

√
T must come from the contribution of arm 1 to Vπ

T (ν, λ). Furthermore, we obtain an asymptotic rate
of 1

2
√
e

√
Tp⋆ν .

We omit the proof of the second statement of the theorem, since it consists in the exact same steps. The only
subtlety is that we now need to assume that ν satisfies ρλ(ν) > 0 (as indicated in the statement), so that for
ε > 0 small enough the relevant alternative problem ν′ (such that EX∼ν′

1
= µ1 − ε) can be feasible for ε small

enough. Furthermore, the event of interest for this part of the proof becomes E =
{∑T

t=1 pt ⩾
λ

µ− ε
2
T
}
, so that

we can lower bound the excess regret suffered by arm 1 under the assumption that π is V-targeting.

B.4 Proof of Theorem 4

In order to make the presentation of the proof of Theorem 4 clearer, we detail in Algorithm 4 and Algorithm 5,
the implementation of the two greedy algorithms presented in the paper in this section.

Algorithm 4 Safe Greedy-Optimistic Covering (SGOC)
Input: λ = (λ1, . . . , λK), UnfeasAlloc

Play RGB(λ, SGOC-Alloc, UCB) (Alg. 1), with

SGOC-Alloc:

Ht−1 →



(
λk

µ̄k,t

)
k∈[K]

if feasible, with ∀j ∈ [K], µ̄j,t =
∑t−1

s=1 rsI(As=j)∑t−1
s=1 I(As=j)

. Else, play(
λk

UCBk,t

)
k∈[K]

if feasible,

UnfeasAlloc(Ht−1) otherwise.

We then recall the theorem, before proving it.

Theorem 4 (Long-term excess-regret and constraint violation of P-SGOC). Assume that mink∈[K] λk > 0, that



Multi-Armed Bandits with Guaranteed Revenue per Arm

Algorithm 5 Phased Safe Greedy-Optimistic Covering (P-SGOC)
Input: λ = (λ1, . . . , λK), time horizon T

Set SK = {k ∈ [K] : λk > 0}
Phase 1: (Initial estimation)

for k ∈ SK do

Collect N1
k = λk

4 T samples (rk,1, . . . rk,N1
k
) ; ▷ Total phase duration smaller than T

4
if (λ, µ) feasible.

Compute µ̂1
k = 1

N1
k

∑N1
k

i=1 rk,i ; ▷ First “crude” mean estimate with N1
k = λk

4
T samples.

Store the data collected during the phase in H1.
Phase 2: (Refined estimation)

for k ∈ SK do

if
∑K

j=1

(
λj

6µ̂1
j

∨ λj

2

)
T ⩽ T

2 ; ▷ Ensure a phase duration smaller than T
2
.

then

N2
k =

(
λj

6µ̂1
j

∨ λj

2

)
T ; ▷ For T large enough, N2

k = λk

6µ̂1
k

T w.h.p. ...

else

N2
k = λk

2 ; ▷ ...But it is guaranteed that N2
k ⩾ λk

2
in any case.

Collect N2
k samples (rk,1,2, . . . rk,N2

k ,2
) from arm k

Compute µ̂2
k = 1

N2
k

∑N2
k

i=1 rk,i,2. ; ▷ Refined mean estimate with N2
k = Ω(p⋆kT ) samples w.h.p.

Store the data collected during the phase in H2

Phase 3: (Target Allocation)

for k ∈ SK do

if
∑K

j=1
λj

µ̂2
j

⩽ 1 then

N3
k =

(
λk

µ̂2
k

− N1
k+N2

k

T

)
+

T ; ▷ Target a total number of samples λk

µ̂2
k

T

else

∀j ∈ [K], compute ÛCB2j such that P
(
ÛCB2j ⩽ µj

)
⩽ 1

T

Set N3
k =

(
λk

ÛCB2k
− N1

k+N2
k

T

)
+

T .; ▷ Switch to optimistic allocation if unfeasible.

Collect N3
k samples from each arm k ∈ SK using round-robin, stop if horizon T is reached.

Store the data collected during the phase in H3

Phase 4: (Regret minimization)

Play UCB using H1 ∪H2 ∪H3 until horizon T is reached. ; ▷ Last phase with the base bandit.
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ρλ > 0, and that maxk∈[K] µk ⩽ 1. If the distributions are σ-sub-Gaussian then P-SGOC satisfies

lim sup
T→∞

RLT
T ⩽ 24

K∑
k=1

σ2

µ2
k

∆k , and lim sup
T→∞

VLT
T ⩽ 0 .

Proof. We start by defining the favorable high-probability events that guarantee the performance of the algorithm.

Success events We consider events that ensure that the algorithm goes to phase 3 with a good estimate µ̂2
k.

First, we use that if for an arm j the estimate µ̂1
j is well concentrated it is possible to collect N2

j = Ω(p⋆jT )
samples from this arm. More precisely, we have that

G1 :=

{
∀j ∈ [K] : µ̂1

j ∈
[
2µj

3
, 2µj

]}
⇒ ∀j ∈ [K] : N2

j ∈
[
p⋆j
12

T,
p⋆j
2
T

]
.

In particular, under G1 the algorithm goes to phase 3 with a number of samples for each arm that is a fraction of
their optimal allocation. Furthermore, the number of pulls of arm k in the third phase is positive if µ̂2

k ⩽ 2µk.
Considering that we also would not want the sampling probability in the third phase to be too high, we naturally
consider the second type of good events,

∀k : G2
k :=

{
µ̂2
k ∈

[
1

2
µk, 2µk

]}
,

so that under G = G1 ∩ G2
k the algorithm collects λk

µ̂2
k
T samples for arm k, and N2

k ⩾ p⋆
k

12T .

Before upper bounding the two metrics, we first provide an auxiliary results that will be used to prove both
statements. We upper bound the probability of the bad event, as follows

P(Ḡ) ⩽
K∑
j=1

{
P
(
µ̂1
j /∈

[
2µj

3
, 2µj

])
+ P

(
µ̂2
k ∈

[
1

2
µk, 2µk

]
, µ̂1

j ∈
[
2µj

3
, 2µj

])}

⩽
K∑
j=1

{
P
(
µ̂1
j /∈

[
2µj

3
, 2µj

])
+ P

(
µ̂2
k ∈

[
1

2
µk, 2µk

]
, N2

j (T ) ⩾
p⋆j
12

T

)}
.

All the terms can then be upper bounded using Hoeffding’s inequality, so we obtain that

P(Ḡ) ⩽
∑
j

{
e
−

λjT

2σ2
j

(
2µj
3

)2

+ e
−

λjT

2σ2
j

(2µj)
2

+ e
−

p⋆j

24σ2
j

T( 1
2µj)

2

+ e
−

p⋆j

24σ2
j

T (2µj)
2
}

. (19)

Then, before proving the statements we can also remark that (1) for the long-term metrics the quantity of interest
for the analysis is E

[∑T
t=1 p

P-SGOC
k,t

]
, and (2) that for deterministic algorithm we can consider the expected number

of pulls of each arm instead of the sampling probabilities. Indeed, we can write a phase decomposition as follows

E

[
T∑

t=1

pP-SGOCk,t

]
= E[Nk(T )] =

4∑
s=1

E[N i
k]

where N i
k denotes the number of pulls of arm k in phase i, for i ∈ [4] (set to 0 if P-SGOC does not reach this

phase).

Upper bounding RLT
T Under G, the algorithm goes to phase 3 and plays the greedy allocation obtained at the

end of phase 2. Further using that G ⊂ G′ := {N2
k ⩾ p⋆

k

12T, µ̂
2
k ⩾ µk/2} (as explained above), we can then upper
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bound
∑4

s=1 E[N i
k] as follows,

4∑
s=1

E[N i
k(T )] ⩽ TE

[
λk

µ̂2
k

× I (G′)

]
+ TP(Ḡ′) + E[N4

k (T )I(G′)]

= Tp⋆k E

[
µk

µ̂2
k

× I (G′)

]
︸ ︷︷ ︸

AT

+TP(Ḡ) + E[N4
k (T )I(G′)] .

The upper bound of Equation (19) indicates that lim
T→∞

TP(Ḡ) = 0. Then, by a direct adaptation of the proof of

Lemma 1 we can also obtain that, since λk > 0, lim
T→∞

E[N4
k (T )I(G)] = 0. Hence, for a large enough horizon T

excess-regret can only be caused by the term AT .

We then rewrite AT in the form of a bias and variance term as follows,

AT = E

 1

1 +
µ̂2
k−µk

µk

× I (G′)



= E


1− µ̂2

k − µk

µk
+

(
µ̂2
k−µk

µk

)2

1 +
µ̂2
k−µk

µk

 I (G′)

 , since
1

1 + x
= 1− x+

x2

1 + x
for x > −1.

Then, we use that for any sample size n it holds that E
[
µ̂2
kI(µ̂2

k ⩾ µk/2, N
2
k = n)

]
⩾ µk (the estimate is positively

biased by G′), so the bias term is negative. We can thus further upper bound AT by

AT ⩽ 1 + E


(

µ̂2
k−µk

µk

)2

1 +
µ̂2
k−µk

µk

I (G′)


⩽ 1 + 2E

( µ̂2
k − µk

µk

)2

I (G′)

 , since µ̂2
k ⩾

µk

2

⩽ 1 +
2

µ2
k

× E
[(

µ̂2
k − µk

)2
I
(
N2

k ⩾
p⋆k
12

T

)]
.

Then, for the simplicity of notation we denote by µ̄k,n the mean estimate corresponding to N2
k = n. Using that

the sample size and that the variance of the mean estimate are independent, we obtain that

E
[(

µ̂2
k − µk

)2
I
(
N2

k ⩾
p⋆k
12

T

)]
=

T∑
n=

p⋆
k

12 T

P(N2
k = n)E

[
(µ̄k,n − µk)

2
]

⩽ max
n⩾

p⋆
k

12 T

E
[
(µ̄k,n − µk)

2
]

⩽ 12
σ2

p⋆kT
.

We then obtain the desired constant by multiplying this upper bound by 2
p⋆
kT

µ2
k

, which proves the upper bound
provided on RLT

T : P-SGOC suffers constant regret when mink λk > 0.
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Lower Bounding VLT
T We now lower bound E[Nk(T )], and consider the successful event G1. Under this event,

we are sure that the duration of phase 2 is no more than T/2 rounds, that the third phase occurs and that the
mean estimate of each arm j used in phase 3 is computed with at least p⋆

k

12T samples. We furthermore define

J =

{∑K
j=1

λj

µ̂2
j

⩽ 1

}
the event that the greedy allocation proposed at the end of phase 2 is feasible. In this part

of the analysis, we omit phase 4 for simplicity, as well as the case when J̄ holds. Indeed, since we assume that
ρλ > 0 and we consider the asymptotic problem-dependent bound, we can avoid considering the cases where the
UCB allocation is played. Hence, we simply consider the following lower bound,

E[Nk(T )] ⩾ E
[(
N1

k +N2
k +N3

k

)
I(G,J )

]
⩾ TE

[
λk

µ̂2
k

I (J ,G1)

]
.

In general, there might be a problem of definition for µ̂2
k

−1
(that can technically be negative or infinite, even

though µk is assumed to be positive). However under J the greedy allocation is feasible, which is possible only if
µ̂2
k ⩾ λk ⩾ λk

2 . We can thus use that

λk

µ̂2
k

I (J ,G1) =
λk

µ̂2
k +

(
λk

2 − µ̂2
k

)
+

I (J ,G1) ,

which is a convenient re-writing because the right-hand term is now well-defined even when ignoring the events J
and G1. Using also that under G1 it holds that N2

k ⩾ p⋆
k

12T , we obtain that

E[Nk(T )] ⩾ TE

 λk

µ̂2
k +

(
λk

2 − µ̂2
k

)
+

I (J ,G1)


= TE

 λk

µ̂2
k +

(
λk

2 − µ̂2
k

)
+

I
(
J ,G1, N

2
k ⩾

p⋆k
12

T

)
= TE

 λk

µ̂2
k +

(
λk

2 − µ̂2
k

)
+

I
(
N2

k ⩾
p⋆k
12

T

)
(1− I

(
J ,G1

)
)


⩾ TE

 λk

µ̂2
k +

(
λk

2 − µ̂2
k

)
+

I
(
N2

k ⩾
p⋆k
12

T

)
︸ ︷︷ ︸

BT

−2T
(
P(J̄ ,G1) + P(Ḡ1)

)
.

We then prove that the probabilities corresponding to J̄ and Ḡ1 are negligible asymptotically. First, we can upper
bound TP

(
Ḡ1

)
by (19) (only the first two terms of the r.h.s. are necessary). Then, we similarly upper bound

TP(J̄ ,G1) ⩽ TP
(
∃j : λj > 0 and µ̂2

j ⩽ (1− ρλ)µj ,G1

)
⩽ T

K∑
j=1

e−
p⋆j

24σ2 T (ρλµj)
2 → 0 ,
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which is again negligible asymptotically, because ρλ > 0. We can thus focus on lower bounding BT , and use the
independence of N2

k and µ̂2
k to write (using the same notation µ̄k,n that we used when upper bounding RLT

T ) that

BT = p⋆kT
∑

n=
p⋆
k

12 T

P(N2
k = n)E

[
µk

µ̄k,n +
(
λk

2 − µ̄k,n

)
+

]

⩾ p⋆kT
∑

n=
p⋆
k

12 T

P(N2
k = n)

(
1− 1

µk
E [µ̄k,n − µk]−

1

µk
E

[(
λk

2
− µ̄k,n

)
+

])

= p⋆kT
∑

n=
p⋆
k

12 T

P(N2
k = n)

(
1− 1

µk
E

[(
λk

2
− µ̄k,n

)
+

])

⩾ p⋆kT

(
1− P

(
N2

k ⩽
p⋆k
12

T

))(
1− p⋆k

2
e−

p⋆k
96σ2 Tλ2

k)

)
⩾ p⋆kT

(
1− P

(
N2

k ⩽
p⋆k
12

T

)
− p⋆k

2
e−

p⋆k
96σ2 Tλ2

k)

)
.

We finally upper bound P
(
N2

k ⩽ p⋆
k

12T
)
⩽ P(Ḡ1), that we can again upper bound thanks to (19). We finally obtain

that BT ∼ p⋆kT when T → +∞. Combining all the results developed in this part, we finally obtain the second
statement of the theorem: when ρλ > 0, P-SGOC suffers no constraint violation asymptotically.

C ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments to further support the results presented in Section 4.1. We
first consider different value for the feasibility gap ρλ on a synthetic experiment with fixed distributions. Then,
we redraw the Figure 1 presented in the main text but look only at the performance of SGOC to illustrate its
behaviour with respect to the horizon T with better resolution. Lastly, we plot the results we obtain with the
approach of Slivkins et al. (2022). All code is written in python. Computations were run on a cluster with 10
cpus and 100 GB of RAM.

Impact of the feasability gap ρλ

In Figure 2, we study the impact of the feasibility gap ρλ on the performance of SGOC, DOC, SPOC, BanditQ in
terms of violation VT and excess regret RT and the performance of SGOC, DOC, SPOC, BanditQ, SGOC, P-SGOC in
terms of long term violation VT and long term excess regret RLT

T . We take K = 3 arms, µ = (0.8, 0.9, 0.7) with
the feasibility ρλ varying in {0, 0.1, 0.5, 0.9} and the horizon varying in [102, 105]. We set λ = µ(1− ρλ)/K. We
take 200 seeds and report the mean value across seeds. Error bars represent the first and last decile.

When ρλ = 0, SPOC, DOC and SGOC behave like DOC and therefore have low regret but a constraint violation in
√
T .

Looking at long term metrics, we see that all algorithms have low regret and positive fairness violation. BanditQ
seems to get the best trade-off in this setting.

As the feasibility increases, SGOC, DOC, SPOC, and SGOC behave similarly as in the experiment in Figure 1 in the
main text. In particular, we observe when ρλ = 0.1, the transition from optimism to pessimism of SPOC yielding a√
T regret but constant fairness violation. SGOC still has excellent performance with respect to long term metrics.

The difference is the behavior of BanditQ. When ρλ > 0, BanditQ seems to have high long term excess regret but
low long term violation. This is the opposite of what was observed in the experiment in Figure 1 in the main text.
Such behaviour contrasts with the predictability of approaches like SPOC or DOC.

The regret and violation in
√
T of SGOC

We redraw in Figure 3 the plot in Figure 1 but displaying only the performance of SGOC. We observe that the
regret and constraints violation of SGOC evolve as

√
T as expected from the analysis.

Results with LagrangeBwK (Slivkins et al., 2022)

In Figure 4 we consider the same simulation setup as the one in Figure 1, including the LagrangeBwK algorithm
from Slivkins et al. (2022). We observe a linear constraint violation, showing that this implementation of the
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algorithm does not seem to converge to an optimal allocation for the problem and time horizon considered. We
used the learning rates suggested in Slivkins et al. (2022), and for completeness we provide the implementation
that we used in the supplementary material.
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Figure 2: Simulations with increasing feasibility gap ρλ. The plots in each row uses a different value of ρλ, the
plots in each column represents a different metric.
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Figure 3: Reproducing the simulation setup from Sinha (2023) focusing only on SGOC for better resolution
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Figure 4: Performance of LagrangeBwK (Slivkins et al., 2022) on the simulation setup from Sinha (2023)
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