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Abstract: The measurement and analysis of vital signs are a subject of significant research interest,
particularly for monitoring the driver’s physiological state, which is of crucial importance for road
safety. Various approaches have been proposed using contact techniques to measure vital signs.
However, all of these methods are invasive and cumbersome for the driver. This paper proposes using
a non-contact sensor based on continuous wave (CW) radar at 24 GHz to measure vital signs. We
associate these measurements with distinct temporal neural networks to analyze the signals to detect
and extract heart and respiration rates as well as classify the physiological state of the driver. This
approach offers robust performance in estimating the exact values of heart and respiration rates and
in classifying the driver’s physiological state. It is non-invasive and requires no physical contact with
the driver, making it particularly practical and safe. The results presented in this paper, derived from
the use of a 1D Convolutional Neural Network (1D-CNN), a Temporal Convolutional Network (TCN),
a Recurrent Neural Network particularly the Bidirectional Long Short-Term Memory (Bi-LSTM), and
a Convolutional Recurrent Neural Network (CRNN). Among these, the CRNN emerged as the most
effective Deep Learning approach for vital signal analysis.

Keywords: vital signs; CW radar; heart and respiration rate; physiological state; temporal neural
networks; Bi-LSTM; CNN; TCN; CRNN

1. Introduction

The contactless monitoring of a person’s vital signs is crucial, especially when it comes
to evaluating the condition of the driver. This topic has gained attention from researchers
in the field of road safety. Factors such as fatigue, stress, distraction, and other emotional
states can have an effect on driving ability and increase the risk of road accidents.

To monitor and estimate the alertness of the driver at any given time, various indicators
reflecting their physiological state can be considered. Changes in alertness levels correspond
to changes in the driver’s psychophysiological state. Hence, technologies that detect
drivers physiological signals have become increasingly important for improving road
safety [1–3]. The physiological signals used for assessing the functional state of drivers
include cerebral activity, cardiac rhythm, muscular tension, and respiratory patterns. This
paper will specifically focus on heart and respiratory rates as indicators for evaluating the
driver’s state.

Researchers have proposed various approaches based on traditional methods for mea-
suring physiological signals, such as electrocardiography (ECG) [4,5] and spirometry [6].
However, these methods are invasive and require instrumentation in direct contact with
the driver, which can be cumbersome and potentially dangerous. Non-invasive solutions
have been proposed, such as the use of video cameras, photoplethysmography (PPG) [7,8],
or pressure sensors on the seat [9]. Nevertheless, these non-invasive solutions can still be
cumbersome and do not allow for accurate measurement of physiological signals.
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A promising approach for measuring driver physiological signals involves the use of
CW radar for heart rate and respiration measurement [10,11]. This contactless method is
non-invasive, making it particularly convenient and safe. CW radars use electromagnetic
waves to measure the distance and speed of moving objects, which allows for measuring the
distance between the radar and the driver’s chest, which moves in rhythm with respiration
and heartbeats. Also, CW Doppler radars consume less power and have a simple hardware
architecture. The relative displacement information obtained via the CW Doppler radar
can be employed to estimate the heart rate in single-person scenarios [12].

CW radar acquires all small vibrations generated on the chest surface by cardiac and
respiration activities. It is susceptible to chest vibrations that are unrelated to heartbeats
or breathing, such as body movements, as well as interference from other individuals [12].
Reducing the radar’s susceptibility to the propagation channel and driver body movement
constitutes a primary challenge. The amplitude of the heartbeat signal is considerably
smaller (between 0.2 and 0.5 mm) compared to the thorax displacement caused by respira-
tion (between 4 and 10 mm). Thus, separating the frequencies of each heart and breathing
rhythm emerges as the second challenge for researchers in this field [13,14].

To overcome this problem of harmonies, the authors in [15,16] propose signal pro-
cessing algorithms based on simple filtering or the heart rate frequency estimation using
spectral analysis and to separate the heart rate and respiration signals from radar CW
measurements. Authors in [15] used the analysis of temporal variations in the signals in
successive time windows for processing via the Fast Fourier transform (FFT) [15] or the
Wavelet transform (WT) methods [16]. Various approaches using complex signal processing
methods are proposed in [14,17–19]: In [14], the author introduces an approach based on
cyclostationarity techniques to extract heartbeat and respiration rates from vital signals
obtained with a 2.4 GHz CW radar, without being dependent on environmental noise and
random body movements. This is achieved via the derivation of order 1 and 2’s cyclo-
stationarity moments and the second cyclic cumulant. Furthermore, in [17], the authors
focused on extracting the harmonic signal of heartbeats from the vibrations of the chest
surface gathered via a Continuous-Wave Doppler Radar System (CW-DRS) equipped with a
band-pass filter. This method assumes that respiration does not occur within the heartbeat’s
harmonic region. The method proposed in [18] uses a Doppler radar and Empirical Mode
Decomposition (EMD) to filter out the noise and detect respiration signals. This signal is fil-
tered to isolate respiration frequencies before being analyzed using the Short-Time Fourier
Transform to determine the breathing rate. However, all of the deterministic approaches
mentioned above are complex methods and their results depend on the environment of the
application and the predefined conditions, which makes them less flexible and less precise.

The analysis and interpretation of raw radar data can be challenging due to several
factors, as mentioned in the previous section, such as environment and harmonies. Machine
Learning (ML) techniques have been used as a non-deterministic approach to extract
physiological signals from the radar data in order to overcome the limits of deterministic
methods. Many state-of-the-art solutions use various types of filters to separate the heart
and respiration rates. In [20], the authors propose using the gamma filter to model the time
series heartbeat signal, accounting for respiration and respiration artifacts. The approach
uses a gamma filter to isolate the heart rate from radar-measured signals, providing an
effective and non-invasive method for heart rate monitoring. In [21,22], the authors suggest
the use of the Kalman filter to update the band-pass filter limits for parameter estimations
while considering heart rate measurement and reducing noise in vital signs. However,
given the Kalman filter assumptions, it is required to selectively filter out corrupted data
caused by arbitrary user motions in order to prevent subsequent vital sign estimates from
being tainted [21].

Other approaches are based on unsupervised or supervised machine-learning algo-
rithms to predict vital parameters from time series [23] or to extract pertinent information,
such as arrhythmia detection [24], based on electrocardiography (ECG) signals. Further-
more, CW Doppler radar systems have integrated Deep Learning methodologies, such
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as detecting heartbeats [25,26]. The first results indicate promising advantages in terms
of heartbeat detection latency and source separation capabilities (resistance of heartbeat
detection to respiration or random body motions) compared to traditional methods. Deep
neural networks can learn to detect physiological signals by analyzing raw radar data,
extracting relevant features, and estimating heart and respiration rates. the research in [26]
proposes the use of convolutional neural networks (CNN) in order to estimate the heart
rate from the measured signals using an ultra-wideband radar (UWB). This approach
focuses on person-specific identification, with the CNN being trained separately for each
subject, primarily due to the lack of available training data. In [12], the authors propose an
artificial neural network (ANN) as the main signal processing element, which is trained
to detect heartbeats accurately in real time, but most of the methods mentioned above
allow us to extract either the heart rate or the respiratory rate but not both at the same time.
Recently, the research in [27] proposes the use of a deep learning framework utilizing a
convolutional neural network to estimate the heart rate (Fc) and respiration rate (Fr) in real
time using a dataset measured during sleep via a UWB radar with a sampling frequency
fe = 23,328 GHz and a window size of 15 s in order to detect artifacts. In addition to
resolving this problem, the research uses a Continuous Wavelet Transform (CWT) as a
pre-processing method to extract the characteristics of each signal.

This paper proposes two approaches: one for estimation and the other for classification
aimed at monitoring the driver’s vital signs and estimating his physiological state. The
dataset used in this study was obtained from a CW radar with fe = 100 Hz and a window
size of 50 s, which represents a logical duration to estimate the physiological state of the
driver. This presents a difference between our study and [27], which uses a 15 s window.
Their focus was not on detecting changes in the physiological state but rather on working
exclusively with the sleep state. The approaches presented in this paper employ different
Deep Learning models: 1D-CNN; the Recurrent Neural Network (RNN); in particular,
the Bi-LSTM network, using its ability to remember long-term dependencies in sequential
data; and the TCN, which is adept at handling long sequences with complex patterns.
Additionally, our paper introduces the CRNN model, which combines the benefits of CNN
and Bi-LSTM to achieve a robust performance in detecting and extracting the heart and
breath rate values, while also classifying the different physiological states of the driver
based on the temporal vital signs measured via the CW radar.

The rest of this paper is organized as follows. Section 2 introduces and discusses the
architectures and characteristics of the four proposed Deep Learning models. Section 3
focuses on the CW radar function and data processing. Section 4 represents the results of our
models. Finally, Section 5 concludes the study and provides suggestions for future research.

2. Models Proposed

This section presents the different Deep Learning models in order to detect and extract
the value of the heart rate and the respiratory rate from the temporal vital signs and also to
classify the different states of the driver (fatigue or drowsiness, resting or normal state, and
the state of stress). We have tested several Deep Learning models to evaluate each model’s
performance and contribution to our problem’s study.

2.1. 1D-CNN

The 1D-CNN is a Deep Learning technique that involves applying a series of convolu-
tion filters to a one-dimensional sequence of data, such as vital signs in our case.

In our specific approach, we use a 1D-CNN which is comprised of two convolution
layers of 128 units with a filter size of 512 (layer A and layer C in Figure 1, as well as a
MaxPooling-1D layer (layer B and layer D)) to reduce the dimensionality of the extracted
features. These convolution layers allow us to extract relevant features from the input
signal. We have used a network of dense layers (fully connected) for the output layers. In
our study, we employ CNNs to solve regression and classification problems.The final layer
of our model of regression outputs two values, corresponding to the heart rate and the
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respiratory rate extracted from the time-series signals. The final layer of our classification
outputs three values, corresponding to three classes representing the physiological states of
the driver as shown in Figure 1.

Figure 1. The general architecture of the proposed models.

Figure 1 illustrates the general architecture of the four models we have proposed.
We aimed to maintain a similar structure for all four models while modifying the hidden
layers section, as explained in Section 2. However, the input section is the same for all four
models: each input (xi) corresponds to a vital sign, labeled by the heart and respiratory
rates (Fc, Fr) for regression, and by three different physiological states of the driver, namely
fatigue or drowsiness, normal state, and stress.

2.2. TCN

In the context of analyzing CW radar signals for the extraction of heart and respiratory
frequencies, we have explored an innovative approach using TCN [28]. This is an extension
of our previous model that uses 1D CNN, where we have applied a series of convolution
filters to a one-dimensional sequence of vital signals. The TCN model proposed consists
of a temporal convolution block with dilations ranging from 1 to 32 as hidden layers, as
shown in Figure 2. This allows the network to learn dependencies at different time intervals.
The convolution layers are complemented by residual connections and causal padding
to ensure that the prediction at each instant is based on past and current data. As for the
output layers, the model has several fully connected layers (Dense), each followed by a
Dropout regularization layer to control overfitting. The last two units of the network are
dedicated to predicting heart and respiratory frequencies, which are used for the regression
output. For the classification, the TCN output corresponds to the three physiological states
of the driver.

This TCN approach offers an improvement over our old 1D CNN-based model,
bringing a greater ability to understand temporal dependencies in the signal data and
requiring fewer parameters than the CNN. This improvement can lead to a more accurate
extraction of heart and respiratory frequencies from raw CW signals.

2.3. Bi-LSTM

Bi-LSTM is particularly well suited for detecting vital signals from the CW radar data,
due to their ability to process temporal sequences and retain long-term information. Using
Bi-LSTMs to process the CW radar data allows for the detection of heart and respiratory
frequencies with high precision, showcasing an edge over traditional methods as well as
the standalone CNN model discussed in the preceding section.
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Figure 2. A dilated causal convolution with dilation factors d = 1, 2, 4, 8, 16, and 32 and a filter size
k = 3.

Figure 1 shows the architecture of the Bi-LSTM model proposed in this paper. It con-
sists of a two-layer bidirectional LSTM with 128 units (layer A and layer D), a normalization
layer (layer B), and a 1D global pooling layer (layer D) to reduce the dimensionality of
the features extracted via the Bi-LSTM network. The 1D global pooling layer can help
prevent overfitting and improve the generalization of the model. Additionally, it can save
computational resources by reducing the number of parameters required for processing
1D sequential data. Our output layer is comprised of four units of fully connected layers,
which corresponds to the desired outputs for the regression model. In the case of the
classification model, the outputs correspond to the three physiological states of the driver,
as shown in Figure 1.

Combining the benefits of temporal feature extraction and long-term memory reten-
tion, the proposed Bi-LSTM model offers a powerful solution for analyzing the vital signs
measured via the CW radar.

2.4. CRNN

In the previous sections, we have seen the individual strengths of CNN and Bi-LSTM
in detecting heart and respiratory frequencies from signals measured using the CW radar
data. The CNN offers excellent spatial feature extraction capabilities, while the Bi-LSTM
effectively handles long-term temporal dependencies within the vital sign sequences.

In this section, we present a CRNN architecture developed to detect heart rate and
respiratory frequency from vital signs measured via the CW radar. This architecture
combines the benefits of CNNs and Bi-LSTMs into a unified model, enabling precise and
efficient extraction of spatial and temporal features.

Our CRNN architecture, illustrated in Figure 1, comprises a Conv-1D layer (layer A) of
128 units with a filter size of 512 for the initial extraction of features from CW radar signals.
Following the phase of convolution, a bidirectional LSTM layer (layer C) of 128 units is
used to comprehend the long-term temporal dependencies of these vital signs. This ability
to effectively handle past and future information renders our model particularly suited to
the sequential nature of heart rate and respiratory frequency data. The Bi-LSTM phase is
followed by a Global Average Pooling layer (layer D) to reduce computational complexity
while retaining the essence of key features. Subsequently, a series of dense layers are
used and the final layer produces estimates of the heart rate and respiratory frequency
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for the regression output and it determines the physiological state of the driver for the
classification output, as shown in Figure 1.

In conclusion, our CRNN architecture uses the local feature extraction capability of the
CNN and the expertise over long-term temporal dependencies of the Bi-LSTM to provide a
robust method for analyzing the vital signs measured via the CW radar.

3. Experience
3.1. Data

This section introduces the operating principle of the CW radar for vital signs’ mea-
surements, specifically heart and respiratory rates. We will present two distinct databases
used for training the Deep Learning models. The first database contains simulation data
generated by MATLAB, while the second one contains real data measured via a 24 GHz
CW radar.

3.1.1. Simulation Data: Basic Principles of CW Radar Operation

The CW radar generates sinusoidal electromagnetic waves using a local oscillator
(LO) [12,14]. These waves are then amplified via a power amplifier (PA). Mathematically,
the transmitted signal, T(t), can be expressed as:

T(t) = AT cos(2π f t + φ(t)) (1)

where f represents the frequency of the transmitted signal, φ(t) denotes the phase noise of
the LO, and AT is the amplitude of the transmitted signal.

The transmitted waves reflect off of a moving object, such as a human body, and the
reflected signal experiences a frequency shift due to the Doppler effect. The motion of
the body comprises three components: respiration (xr), heartbeat (xc), and random body
movements (xm). This gives rise to the received signal R(t), which can be mathematically
expressed as:

R(t) = A cos[2π f t− 4πd0
λ
− 4πx(t)

λ
+ φ(t− 2d0

c
)] + N(t) (2)

Here, A is the amplitude of the received signal, λ is the wavelength of the signal, c is
the speed of light, d0 represents the initial distance between the CW radar and the body,
x(t) = xr + xc + xm denotes the displacement of the human body surface, and N(t) is the
signal noise.

R(t) = A cos[2π f t− 4πd0
λ
− 4πxr(t)

λ
− 4πxc(t)

λ
− 4πxm(t)

λ
+ φ(t− 2d0

c
)] + N(t) (3)

Upon reflection, the signal mixes with the local oscillator’s signal, producing two
foundational signals: the in-phase signal I(t) and the quadrature-phase signal Q(t). This
process is depicted in Figure 3, which illustrates the CW radar system and its associated
components. The quadrature signal is shifted by 90° relative to the carrier. These signals
can be expressed as:

I(t) = A cos[2π f t +
4πd0

λ
+

4πxr(t)
λ

+
4πxc(t)

λ
+

4πxm(t)
λ

+ ∆φ(t)] + NI(t) (4)

Q(t) = A sin[2π f t +
4πd0

λ
+

4πxr(t)
λ

+
4πxc(t)

λ
+

4πxm(t)
λ

+ ∆φ(t)] + NQ(t) (5)

In these equations, it is posited that the amplitudes of I(t) and Q(t) coincide [14], and
NI(t) and NQ(t) represent the noise components for the in-phase and quadrature-phase
signals, respectively, while ∆φ(t) represents any additional phase shift in the signal.

For these, the baseband signal, B(t), is derived as:

B(t) = I(t) + jQ(t) (6)
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where j is the imaginary unit. For simplification, this signal is then expressed in exponential
form using Euler’s formula:

B(t) = Abs(t) exp[j cos(2πFrt)] exp[j cos(2πFct)] + N(t) (7)

In this equation, Ab = A exp(j 4πd0
λ ), s(t) = exp[j 4πxm(t)

λ + ∆φ(t)], and N(t) = Ni(t) +
jNq(t).

Figure 3. Fundamental mechanism of CW radar.

3.1.2. Simulation Data: Generation Procedure

We use a dataset generated by MATLAB for our research (simulation part), which
serves to train and test our Deep Learning (DL) models of regression. This dataset comprises
3000 baseband signals from the CW radar, labeled with the heart rate, Fc, and the respiration
rate, Fr, representing 30 subjects in a normal state, with each signal in Equation (7) having
5001 samples and a varying Signal to Noise Ratio (SNR). For our study, the CW radar is
used to generate baseband signals, so we chose 30 heart and respiratory rate values within
their normal ranges: Fc [0.83–2] Hz and Fr [0.16–0.33], and we also varied the SNR from
−10 to 10 dB for each case. This is performed to illustrate the impact across 100 different
environments. In this setup, the CW radar in Figure 3 and the individual are positioned 1 m
apart as shown below Table 1. In addition, to estimate the performance of the regression
models, we generated an additional dataset using MATLAB, containing 15 new values
for the heart and respiratory rates to represent 15 subjects in different physiological states
(fatigue or drowsiness, normal state, and stress). Each value of Fc and Fr represents
an individual, and for each case, the SNR is varied between −10 and 10 dB to produce
100 signals with identical Fc and Fr in 100 distinct environments. We selected five values
in the normal ranges (Fc [0.83–2] Hz, Fr [0.16–0.33]) to represent individuals in a normal
state. It should be noted that any change in the physiological state results in modifications
to the vital signs. For individuals displaying signs of fatigue or drowsiness, we chose five
values below these normal ranges. Conversely, for those experiencing stress, we selected
five values above the normal ranges. This distinction aims to capture the typical variations
in heart and respiration rates associated with different physiological states. The reason why
we generated two different databases is to test the ability of the different DL regression
models proposed in the article to detect and extract the exact value of the heart rate and
the respiratory rate for different physiological states of the driver, knowing that we only
used a database that only represents the normal state of the driver. This is a strong point,
particularly when validating our models with real measurement data (problem of lack of
data [26]). The results of this test are presented in Section 4.

On the other hand, we have created a second database with 5300 labeled signals for
our classification models. This time, we have selected 20 values for Fc and Fr to represent
the driver’s normal state, 16 for fatigue and drowsiness, and 17 for stress. We varied the
SNR for each value from −10 to 10 dB.
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Table 1. Simulation parameters.

Parameter Value

Radar Frequency 24 GHz
Fc [0.83–2] Hz
Fr [0.16–0.33] Hz
ac [0.2–0.5] mm
ar [4–12] mm
Distance [0.6–1] m

The normal range for an adult’s respiratory rate is between 10 and 20 breaths per
minute, or 0.16 Hz and 0.33 Hz [29]. The accepted heart rate for adults is between 60 and
100 beats per minute, equivalent to 0.83 Hz and 1.67 Hz [30,31]. If a heart rate falls below
50 BPM (usually during sleep), it is referred to as bradycardia, while a rate over 100 BPM
is called tachycardia. In terms of the amplitudes, the cardiac frequency amplitude (ac)
ranges between 0.2 and 0.5 mm, and the respiratory frequency amplitude (ar) varies from
4 to 12 mm. The standard ranges for the values of ac and ar are ac [0.2–0.5] mm and ar
[4–12] mm, respectively [32].

3.1.3. Real Data

In this study, to both evaluate the performance of the DL models proposed and
validate their accuracy on the real data, we used the clinical dataset provided in [33]. This
dataset consists of 30 healthy subjects of different ages and sexes measured via the CW
radar system based on Six-Port technology operating at 24 GHz in the ISM band. As a
reference, they used an electrocardiogram measured simultaneously with the CW radar.
The characteristics of the dataset are mentioned in [33]: Although this database was not
created based on drivers, the signals it comprises will nevertheless allow us to test our
regression and classification models on real signals.

To construct our dataset, we based it on the dataset proposed in [33], using the radar
signals in phase and quadrature to construct the baseband signal for each subject (knowing
that both signals are stored in mV). Each time, we obtain a signal representing a resting
scenario of the person. This signal is of 1,215,200 samples with a sampling frequency of
2000 Hz. To keep the same principle of our simulation dataset, we have re-sampled the
data with fe = 100 Hz and we divided each signal into several signals of 5001 samples
corresponding to 50.01 s as the acquisition time. To obtain the heart rate and respiratory
rate values corresponding to each signal, several algorithms were used as follows. A
normal FFT [34] was applied to the baseband signals measured via the CW radar to
extract the respiratory rate and the results obtained were compared with the results of the
cyclostationary algorithm [14]. For the heart rate, the R-peak algorithm [35] was applied to
the EGG signals measured via the electrocardiogram.

We finally constructed a dataset to train and test our models, with 280 rows and
5003 columns, where each row corresponds to a signal of 5001 samples with two labels
(heart rate and respiratory rate), that is, for the regression approach.

In addition, we have constructed a second dataset for validating our classification
models. This second real dataset contained 612 label signals (219 representing resting
(rst), 185 signals for Apnea (apn), and 208 representing Valsalva (vals) [33]). As the lack of
data measured via the CW radar represents the different states of the driver (drowsiness
or fatigue, normal state or resting, and stress), in order to evaluate our classification
models, we used a dataset of the three scenarios mentioned above (Resting represents the
normal state of the person, Apnea refers to a temporary pause in breathing, and finally,
Valsalva represents a breathing technique involving a forceful exhalation against a closed
airway, which can affect heart rate and blood pressure). The results of the regression and
classification models are represented in Section 4.
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3.2. Training, Test, and Evaluation Networks

In this context, all regression models were trained for 60 epochs with a batch size of 64.
The Adam optimizer with a learning rate of 0.001 was used to minimize the Root Mean
Squared Error (RMSE), which measures the difference between the model predictions and
the actual data. Furthermore, the RMSE is used as an evaluation metric for assessing the
performance in the regression output. As for the classification models, they have been
trained for 60 epochs with a batch size of 64 and an Adam optimizer with a learning
rate of 0.0001. The loss function chosen was the categorical cross-entropy, and the model
performance was evaluated using the accuracy metric.

To evaluate the performance of our models, we devised our simulation dataset as
follows: 64% for the training, 16% for the validation, and 20% for the test with a random
state of 4. We will use the test dataset to estimate the accuracy and performance of each
model (Bi-LSTM, 1D-CNN, CRNN, and TCN). In the case of the real dataset, we have the
vital signs measured via the CW radar for 30 healthy subjects. We partitioned this dataset
into three segments: 17 subjects for training, five for validation, and eight for testing. This
partitioning pertains to the regression dataset which contains the signal representing the
normal state of the person or the resting scenario. In addition, for the classification dataset,
we have just an available dataset for 24 individuals representing the three scenarios of
resting, Valsalva, and apnea. We devised our classification dataset as follows: 14 subjects
for training, four for validation, and six for testing.

Several statistical indicators or static tests are used to evaluate the architectures of
neural networks. In this article, three statistical indicators have been used for the regression
models, namely the correlation coefficient R2_score, the root mean square error (RMSE), and
the Mean Absolute Error (MAE) to quantify the accuracy of continuous predictions. Four
other statistical indicators have been used to evaluate the classification models: accuracy,
precision, recall, and the F1_score.

RMSE =
√

MSE =

√
1
N ∑(yi −Ypred)2 (8)

R2_score = 1−
∑(yi −Ypred)

2

∑(yi −Ymoy)2 (9)

MAE =
1
N ∑ |yi −Ypred| (10)

Accuracy =
Alltrue

All
=

TP + TN
TP + TN + FP + FN

(11)

Precision =
TruePositives

PredictedPositives
=

TP
TP + FP

(12)

Recall =
TruePositives

AllActualPositives
=

TP
TP + FN

(13)

F1_score = 2 · Recall · Precision
Recall + Precision

(14)

where:
Ypred is the value simulated by the model;
yi is the measured value;
Ymoy is the mean of the measured values, and N is the number of samples.
TP (True Positives): The number of observations that were correctly classified as

positive by the model.
TN (True Negatives): The number of observations that were correctly classified as

negative by the model.
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FP (False Positives): The number of observations that were incorrectly classified as
positive. The model predicted the observation was positive when it was actually negative.

FN (False Negatives): The number of observations that were incorrectly classified as
negative. The model predicted the observation was negative when it was actually positive.

To evaluate the performance of each regression model, we used an adapted version of
R2score, referred to as the R2score* indicator, which can be mathematically expressed as:

R2score* = 1−
∑(yi −Ypred)

2

∑(y2
i )

(15)

The reason for using R2score* instead of R2score is the use of different datasets, each
containing 100 signals with varying snr [−10, 10] and the same y (Fc and Fr). The results
obtained were presented in Section 4.3.

4. Results and Discussion

In this section, we will present a comparison of the Models’ parameters, and after that,
we will present both the results obtained using the simulation data in Section 4.2 and the
results of real or measured data in Section 4.3.

4.1. Comparison of Models’ Parameters

Tables 2 and 3 provide a comprehensive and detailed overview of the complexity of
the four neural network models presented in this paper: CNN, TCN, Bi-LSTM, and CRNN.
We observe that in both classification and regression tasks, CNN models display the largest
number of total and trainable parameters, about 18.7 million, reflecting a higher complexity
of this model compared to the TCN, Bi-LSTM, and CRNN models.

The TCN, Bi-LSTM, and CRNN models have significantly fewer total and trainable
parameters, with the CRNN model having the lowest number when applied to regression
tasks, despite being tasked with predicting two outputs (heart and respiratory rates) as
well as the three outputs (fatigue, normal state, and stress) in the classification tasks.

Table 2. Comparison of classification model parameters.

CNN TCN Bi-LSTM CRNN

Total params. 18,697,379 559,907 547,747 348,195

Trainable params. 18,697,251 556,835 547,107 348,067

Non-trainable params. 128 3072 640 128

Table 3. Comparison of regression model parameters.

CNN TCN Bi-LSTM CRNN

Total params. 18,697,362 559,890 547,730 348,178

Trainable params. 18,697,234 556,818 547,090 348,050

Non-trainable params. 128 3072 640 128

4.2. Simulation Data

This subsection presents the results of various tests carried out using simulation
databases for the different models presented in Section 2. Figures 4 and 5 show the valida-
tion and training loss curves of the regression and classification models with a simulation
dataset of 3000 labeled signals of the heart rate and respiration rate in normal ranges for
the regression output and a simulation dataset labeled with three classes representing
the different physiological states of the driver (drowsiness, normal state, and stress) for
the classification outputs. The training loss refers to the model’s error and it shows the
learning ability of each model in each epoch. The validation loss shows the model’s ability
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to recall or generalize to new validation data. We observe that the loss functions of each
model progressively converge to a value close to 0.0, demonstrating that the models have a
high ability and capability to learn from their training data. We observe that the 1D-CNN
converges rapidly (in the 10 first epochs), as well as the TCN, Bi-LSTM, and CRNN models,
which converge in around 30 epochs. Furthermore, the various curves dedicated to the
validation data confirm that there is no overfitting for all proposed models.

Figure 4. Loss function of regression models.

Figure 5. Loss function of classification models.

Table 4 represents the values of the three static indicators RMSE, MAE, and R2-score
for the different regression models tested to resolve our problems in estimating the heart
and respiration rates. These indicators were calculated after the accuracy values were
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obtained after ten test compilations for each model, in order to assess their accuracy. The
table shows that the CRNN and Bi-LSTM models perform better than TCN and CNN
in detecting heart and respiratory rates (Bi-LSTM indicators values: RMSE_Fc = 0.134,
RMSE_Fr = 2.5× 10−2, MAE_Fc = 1.3× 10−2, MAE_Fr = 5× 10−2, R2_Fc = 93.8%,
and R2_Fr = 93.1%) from the temporal signals at the level of both indicators. These
results are due to the ability of the Bi-LSTM model to process temporal sequences and to
keep the information in the long term, as opposed to the CNN (RMSE_Fc = 6.8× 10−2,
RMSE_Fr = 2.3× 10−2, MAE_Fc = 5.9× 10−3, MAE_Fr = 3.3× 10−3, R2_Fc = 93.2%,
and R2_Fr = 88.7%). Table 5 represents the values of different indicators evaluating our
classification models, and Figure 6 represents the confusion matrix of each model.

Table 4. Average R2 scores of RMSE and MAE for each regression model after 10 tests using the
simulated Dataset.

1D-CNN Bi-LSTM CRNN TCN

RMSE
Fr

Average 2.3× 10−2 2.5× 10−2 5× 10−2 4.2× 10−2

Standard Deviation 1.2× 10−2 1.1× 10−4 1.7× 10−2 1.8× 10−4

Fc
Average 6.8× 10−2 0.134 5.8× 10−2 0.232
Standard Deviation 3.3× 10−2 3.5× 10−4 3.5× 10−2 1.1× 10−2

MAE
Fr

Average 5.9× 10−3 1.3× 10−2 1.6× 10−2 2.5× 10−2

Standard Deviation 4.5× 10−3 1.1× 10−2 1.2× 10−2 2.7× 10−2

Fc
Average 3.3× 10−2 5× 10−2 5.8× 10−2 5× 10−2

Standard Deviation 2.3× 10−2 4× 10−2 3.5× 10−2 4× 10−2

R2 Score
Fr

Average (%) 88.7 93.1 87.7 76.9
Standard Deviation 9.7× 10−2 4.4× 10−2 0.123 4.3× 10−2

Fc
Average (%) 93.2 93.8 97.23 74.91
Standard Deviation 0.207 3.5× 10−2 2.5× 10−4 5.4× 10−2

Table 5. Evaluation of different classification models using the simulated Dataset.

1D-CNN TCN Bi-LSTM CRNN

Accuracy 97.9% 98.2% 99% 99%

Precision 98% 98.2% 99% 99%

Recall 97.9% 98.2% 99% 99%

F1_score 97.9% 98.1% 99% 99%

The accuracy of the four classification models in identifying and classifying the physi-
ological state of the driver based on the vital signs measured via the CW radar is demon-
strated in Figure 5 and Table 5. Figure 6 represents the confusion matrix of the different
models proposed in our article. It is a valuable tool for evaluating the performance of
the classification between the four models. The confusion matrix of the CNN, TCN, Bi-
LSTM, and CRNN models has no difficulty in identifying and classifying the three states of
the driver.
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(a) TCN (b) CNN

(c) Bi-LSTM
(d) CRNN

Figure 6. Confusion Matrix for Each Model Using the Simulated Dataset, Dependent on Individual
variances.

Table 6 above illustrates the accuracy (R2score*) of each model in predicting the exact
values of the heartbeat and breathing rates of each state (drowsiness, normal state, and
stress) when we tested our model with the additional dataset (Section 3).

Table 6. Average R2score* (%) for Each Regression Model to predict heart and respiration rates in
different physiological states.

Model Fr Fc

CNN Drowsiness 95.7 94.3
Normal state 97 98

Stress 88 90

Bi-LSTM Drowsiness 92.5 96
Normal state 98 98

Stress 96 90

CRNN Drowsiness 95 95
Normal state 98 98

Stress 90 94

TCN Drowsiness 90 82.5
Normal state 97 96

Stress 88 85
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Figure 7 represents the accuracy of each model in predicting the exact value of the heart
and respiration rate in every state regardless of the SNR value (the blue curve represents
drowsiness or fatigue, the green curve represents the normal state, and the red curve
represent the stress). These results show us that we can also estimate the value of the heart
rate and breathing rate independently of the person.

Respiration rate: Fr Heart rate: Fc

CNN

TCN

Bi-LSTM

CRNN

Figure 7. Comparative accuracy curves: predicting heart and respiration rates based on physiologi-
cal state.
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Following the preceding graphs, it is observed that the CNN, TCN, Bi-LSTM, and
CRNN models proposed can predict the values of respiratory frequency: Fr with a robust
precision (greater than 80%) regardless of SNR and the physiological state of the person.
On the other hand, heart rate values within the normal range and values representing
fatigue and drowsiness can be accurately predicted regardless of the SNR value, but the
heart rate of a stress state cannot be accurately predicted.

The confusion matrices, in Figure 8 depicted below, show the results achieved by our
classification models, using the same database as those referenced in Figure 7 and Table 6.
From the displayed results, we note that during the simulation phase, thanks to our models,
we are able to estimate the heart and respiratory rates, as well as classify the physiological
state of the driver independent of the SNR and individual variances, provided that the
person is in good health.

(a) TCN (b) CNN

(c) Bi-LSTM (d) CRNN

Figure 8. Confusion Matrix for Each Model Using the Simulated Dataset, Independent of Individual
Variances.

4.3. Real Data

This subsection presents the results obtained by the use of real or measured databases
for the different models presented in Section 2. Figures 9 and 10 show the validation and
training loss curves of the regression and classification models with the real data presented
in Section 3, in which the regression database containing 260 signals represents 28 persons in
a normal state and the labeled heart and respiration rate in normal ranges. The classification
dataset contains 170 signals representing different states of persons (Valsalva, apnea, and
resting). The different curves of our models demonstrate the ability of each model to make
a relation between the input (vital signs) and the output (classification of the state or the
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prediction of the heart and preparation values). We observe that in Figures 9 and 10, all
curves converge progressively to 0.0, but with more epochs than for the simulating dataset,
with the exception of the val loss curve of the CNN classification model, which diverges.
This shows that the CNN is too complex in the case of the classification task and realizes
an overfitting. This is not the case for the regression task. However, our challenge is to
maintain the same architecture used for the simulation data and to test its performance on
the real data.

Figure 9. Loss function of classification models.

Figure 10. Loss function of regression models.

Table 7 presents the values of the static indicators RMSE and MAE for the different
proposed regression models (CNN-1D, TCN, Bi-LSTM, and CRNN) with a window size of
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50 s, tested with the real data [33] in order to validate the architecture of our four proposed
regression models in predicting heart and respiration rates. It is essential to note the
intervals within which these predictions are being made. For the respiratory frequency
(Fr), the interval lies between 0.16 and 0.33 Hz, while for the cardiac frequency (Fc), it is
in the range of 0.83–2 Hz. Given these narrow intervals, even minor prediction errors can
be significant. From the values shown in Table 7, it is clear that all models perform better
in predicting the respiratory rate (Fr) than the heart rate (Fc). Specifically, the Bi-LSTM
model outperforms the others, demonstrating the lowest RMSE and MAE for both Fr
and Fc. For Fr, the Bi-LSTM and TCN models exhibit relatively low RMSE and MAE
errors, with values as low as 0.057 and 0.053, respectively. Conversely, for the prediction of
heart rate Fc, the Bi-LSTM and CRNN models yield lower RMSE and MAE error values,
ranging between 0.11 and 0.147. Notably, the MAE values obtained for each of our models
are significantly lower compared to the MAE values reported in another study [27,36].
The study [27] used a UWB radar for measurement and employed Convolutional Neural
Networks with a window size of 15 s for analysis. Furthermore, the study in [36], which
employed the same dataset as ours from [33] and used a Standard LSRM for extracting the
heart rate (Fc) with a window size of 20 s, will be discussed in Table 7 below.

Table 7. Performance metrics of regression models for predicting respiratory and cardiac frequencies
Using The Real Dataset.

1D-CNN Bi-LSTM CRNN TCN [27] [36]

RMSE
Fr

Average 0.136 0.057 0.082 0.058 - -
Standard Deviation 0.078 0.024 0.042 0.024 - -

Fc
Average 0.234 0.142 0.2 0.155 - 2.35
Standard Deviation 0.132 0.091 0.129 0.095 - -

MAE
Fr

Average 0.111 0.043 0.07 0.053 2.67 -
Standard Deviation 0.078 0.024 0.042 0.024 1.45 -

Fc
Average 0.192 0.11 0.147 0.119 4.78 -
Standard Deviation 0.132 0.091 0.135 0.095 0.80 -

By examining the confusion matrices for each model in Figure 11, we can see where
each model struggles. For example, the Bi-LSTM model has trouble distinguishing classes
resting (rst) and Valsalva (val) from class apnea (apn), with only a 29% and 67% accuracy,
respectively, for these classes. Similarly, the 1D-CNN model struggles to distinguish class
rst from class apn, with an accuracy of only 57% for class rst. This is unsurprising given
the architecture’s lack of generalization during learning (overfitting). Lastly, the confusion
matrices for the CRNN and TCN models indicate that these models perform relatively well
for all classes, although the CRNN model has a slightly lower performance for class rst.
these results are consistent with the performance of each model in Table 7. That shows the
disability of 1D-CNN and Bi-LSTM to learn their input raw signal in the short term and
in the long term, respectively. However, for CRNN, the Bi-LSTM layer is able to learn the
series extracted via the Conv-1D layer.

Table 8 shows an evaluation of the performance of our four classification models, 1D-
CNN, TCN, Bi-LSTM, and CRNN, using different metrics of evaluation. Of these models,
the TCN has the highest performance across all metrics, with an accuracy, precision, recall,
and f1 score of 97%. The CRNN follows closely, with a performance exceeding 93% on all
metrics. However, 1D-CNN and Bi-LSTM have relatively lower performance with scores
for accuracy, precision, recall, and F1_score all below 85%. It is notable that the authors
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in [37,38] employed the same dataset we used from [37] to train and validate their deep
learning classification models. In [29], the research introduced an ANN model to classify
five physiological states: Resting, sleep apnea, Valsalva, tilt up, and tilt down, achieving an
accuracy of 83%. Meanwhile, in [38], the study proposed a combination of CNN and GRU
to classify four scenarios: Resting, sleep apnea, Valsalva, and tilt, reporting an accuracy of
95.52%, a precision of 96.35%, a recall of 94.74%, and an F1_score of 95.40%.

(a) TCN (b) CNN

(c) Bi-LSTM (d) CRNN

Figure 11. Confusion matrix for each model Using the Real Dataset, Independent of Individual
Variances.

Table 8. Evaluation of different classification models Using the Real Dataset.

1D-CNN TCN Bi-LSTM CRNN [37] [38]

Accuracy 79.54% 97.72% 81.81% 93.18% 83% 95.52%

Precision 83.32% 97.79% 84.38% 93.87% - 96.35%

Recall 79.54% 97.72% 81.81% 93.18% - 94.74%

F1_score 80.45% 97.65% 79.65% 93.01% - 95.40%

5. Conclusions

This paper presents a non-contactless approach for detecting and extracting heart and
respiration rates to monitor the driver’s physiological state. This approach is based on
the concatenation of the measurement of the vital signs via a 24 GHz CW radar and the
analysis via different Deep Learning models based on temporal neural networks. The goal
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is to estimate the heart and respiration rates and to classify the physiological state of the
driver. All proposed solutions have shown a robust performance using the simulation data
for detecting heart and respiration rate values simultaneously in the normal range and
also for accurately classifying the different physiological states of the driver, regardless
of the value of the SNR. The CRNN was particularly noteworthy as the best performer
among them. As part of our future work, we plan to test our Deep Learning models using
real data representing different states of the driver such as drowsiness, normal state, and
stress. Furthermore, special attention will be given to the propagation channel, taking into
account body movements and noise. We also aim to refine our models to be able to detect
with high precision the values of heart rate and respiratory rate, not only in the normal
range, but also in a different physiological state of the driver.
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