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Abstract—Software technology has exponentially evolved lead-
ing to the development of intelligent applications using artificial
intelligence models and techniques. Such development impacts
all scientific and social fields: home automation, medicine, com-
munication, etc. To make those new applications useful to a
larger number of people, researchers are working on how to
integrate artificial intelligence into real world while respecting
the notion of calm technology. This paper fits in the context of
the development of intelligent systems termed “wise systems” that
aim at satisfying the calm technology requirement. Those systems
are based on the concept of “Wise Object”: a software entity –
object, service, component, application, etc. – able to learn by
itself how it is expected to behave and how it is used by a human
or another software entity. During its learning process, a Wise
Object constructs a graph that represents its behavior and the
way it is used. A major weakness of Wise Objects is that the
numerical information that they generate is mostly meaningless
to humans. Therefore the objective of the work presented in this
paper is to extend Wise Objects with semantic that enable them
communicate with humans whose attention will consequently be
less involved. In this paper, we address the issue of how to
relate two different views using two state-based formalisms: State
Transition Graph for views generated by the Wise Objects and
Input Output Symbolic Transition System for conceptual views.
Our proposal extends previous work done to extend the generated
information with the conceptual knowledge using a matching
algorithm founded on graph morphism. The first version of the
algorithm has several limitations and constraints on the graphs
that make it difficult to use in realistic cases. In this paper, we
propose to generalize the algorithm and raise those restrictions.
To illustrate the complete process, the construction of a sample
graph matching on a home-automation system is considered.

I. INTRODUCTION

T
O ENABLE usability and accessibility of intelligent
systems to a large number of people, researchers are

working on how to integrate artificial intelligence (AI) into real
world while respecting the notion of calm technology. Calm
technology represented by Mark Weiser and John Seely Brown
[1] in 1995, intends to lightly involve humans within the work
process by requiring the smallest possible amount of their
attention [2], minimizing therefore system intrusion into their
life. Furthermore as software systems usage varies depending
on users and time, they should be able to autonomously adapt

to evolving such usages. To meet those requirements, we
realised a software framework to develop intelligent systems
termed “Wise Systems” (WS), based on the concept of “Wise
Object” (WO) [3].

A WO is a software entity – object, service, component,
application – able to learn by itself how it is expected to behave
and how it is used by a human or another software entity. This
is enabled by introspection and reflection mechanisms (more
details in [4]). WOs compose a WS that may be considered
as a multi-agent system [5] [6] where a WO is a self-learning
agent that autonomously monitors its internal changes and that
does not know the other WOs in the system. Thus, a WO
informs the WS about its state changes, so that other WOs
react accordingly.

Based on the behaviour of the WS and the internal moni-
toring of each WO, the collected monitoring data can feed a
learning process able to determine usual and unusual behaviors
(for instance). As the development of WSs is non-trivial, we
developed an object based framework, known as the Wise Ob-
ject Framework (WOF [4]) to help developers design, deploy
and evolve WSs. Generally, knowledge in AI-enabled systems
can be provided according to two approaches: (i) describing a
priori the arrangement of activities to be performed by the
system, or, (ii) letting the system acquire by its own the
required knowledge using different learning mechanisms:

• In the former approach, ontologies or scenarios are
usually used to describe the arrangement of activities
to achieve a goal as in [7] and [8]. In [7], functional
behavior as well as inter-operation of system entities
are described a priori using state-diagrams. In [8], the
authors go a step forward combing ontologies to design
ambiant assisted living systems with an unsupervised
learning before system deployment to create relevant
scenarios. In those approaches, the end user is at the
heart of the scenario creation process as described in [9]
and [10].

• In the second approach, knowledge is provided by the
AI-enabled system in representations and views not nec-
essarily understandable by humansand to the distance
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between the business domain and technological domain
views [11].

According to the calm technology [12], the WO embedded
AI fits in the second approach. By self-monitoring, a WO
acquires raw knowledge (logs) about its behavior. Based on
IBM’s 4 state loop (MAPE-K) [13] [14] architecture, WOF
provides a plugin system to add analyzers that produce new
knowledge from existing knowledge (i.e., logs or knowledge
produced by the analyzers). Different analyzers already exist
like statistical, Markovian, etc. In this paper, we focus on the
State Transition Graph (STG) analyzer, it analyzes logs and
produces an STG. This graph is useful for a WO to know in
which state it stands and to determine the consequences on
its state when it performs an action (a method invocation in
the object oriented paradigm of WOF). This graph can also be
used by the WO to determine the sequence of methods to call
to reach a specific state. As previously stated, and because it
is built in a completely unsupervised way, this graph does not
carry useful semantic, the states only carry numbers, that is a
problem to communicate with end-users.

Although initiated in the 18th century with Euler’s work
on the famous problem of Königsberg bridges [15], graph
theory remains a powerful tool for software-intensive system
development. Graphs are present at the software design stage,
such as Input/Output Labelled Transitions Systems (IOLTS)
or Input/Output Symbolic Transitions Systems (IOSTS) which
are often used to model the system behavior, especially to build
systems based on oracle, controller synthesis [16] [17] or to
test a system by executing the various possible behaviors of
this system [18], as well as during the data collection phase,
to connect data from different sources [19]. As these graphs
are conceptual, dedicated to human to human communication,
they bring semantic. Since the STG built at runtime by a
WO is close to IOLTS, a WO can use knowledge from its
design stage, the IOSTS for example, to attach semantic to its
STG. These graphs are obtained by combining two research
methods (quantitative and qualitative). On the machine side,
behavioral data (i.e., logs) is autonomously collected by WOs
which dynamically analyse it and build an STG. On the human
side, a developer/expert expresses the expected behavior of a
system in a conceptual model using a human vocabulary. A
qualitative behavioral view is provided using an IOSTS.

Our proposal in this paper is to present a new matching
algorithm between both types of graphs. As the problem
was simplified in our previous work [20], it has many
limitations, the strongest being the number of equivalent
attributes/variables in STG/IOSTS, another limitation is the
constraint on the existence of only one matching between an
STG and an IOSTS. This new algorithm will extend more
further the generated knowledge with conceptual knowledge,
based on the graph morphism [21] [22]. Thus, many variables
from both knowledge will be taken into account this time,
resulting in many different matching. This provides the ability
to make WSs’ generated knowledge understandable by human
and to enable human evaluation of WSs’ outputs. Explicitly,
the contribution presented in this paper attempts to relate both

views: (a) a conceptual view relying on knowledge given by
developers to either describe or control the system behavior,
and, (b) behavior-related knowledge acquired during WS’s
learning process, this process is illustrated through a concrete
example. Consequently, we are in the process of establishing
a machine-human communication (MHC). In this way, we use
two state-based formalisms:

• STG for representing behavior-related knowledge gener-
ated by the WSs,

• IOSTS for modelling conceptual views of develop-
ers/experts.

This paper is organised as follows: Section II presents the
basic idea, describes the architectural overview and gives the
definition of important terms. Section III presents STG and
IOSTS formalisms, and illustrates them through examples.
Finally, Section IV presents our graph matching algorithm,
before Section VI concludes the paper.

II. BASIC IDEA & ARCHITECTURAL VIEW

The basic idea underlying the WO concept is to give a
software entity the core mechanisms for learning behaviors
through introspection and analysis. Our aim is to go further
by enabling software to execute MAPE-K loops [4]. On the top
of this concept, we built the WOF [3] with design decisions
mainly guided by reusability and genericity requirements:
the framework should be maintainable and used in different
application domains with different strategies (e.g., analysis
approaches).

Seeking clarity, we borrowed some terms used for humans
to refer to abilities a WO possesses. Awareness and wisdom
both rely on knowledge. Inspired by [23], we give some
definitions of those terms commonly used for humans and
present those we chose for WOs.

Knowledge: refers to information, inference rules and infor-
mation deduced from them, for instance: “Turning on a heater
will cause temperature change”.

Awareness: represents the ability to collect - ability to
provide internal data - on itself by itself. For instance, it
is when an entity/object/device collects information and data
about capabilities (what is intended to do) and its use (what it

is asked to do). Capabilities are the services and functionalities
the WO may render.

Wisdom: is the ability to analyse collected information and
stored knowledge related to their capabilities and usage to
output useful information for end users. It is worth noticing
that a WO is highly aware, while the converse is false. Wisdom
implies awareness, but awareness does not imply wisdom.

Semantic: is the meaning given to something so that it
can be understood by humans as mentioned in the Cambridge
dictionary. This definition also applies to objects/devices, as
semantic is used to communicate with humans.

From the conceptual view, according to the target applica-
tion, a WO may be considered as:

• a stand-alone software entity (object, component, etc.),
• a software avatar designed to be a proxy for a physical

device (e.g., a heater, vacuum cleaner, light bulb),
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Fig. 1: Generic functional architecture of a WO in the
WOF [20].

• a software avatar designed to be a proxy for an existing
software entity (object, component, etc.).

A WO is characterised by its:

• autonomy: it is able to operate with no human interven-
tion,

• adaptability: it changes its behavior when its environment
evolves,

• ability to communicate (send its state changes and receive
requests): with its environment according to a publish-
subscribe paradigm.

Fig. 1 illustrates a partial view of a WO’s functional
architecture defined in the WOF. As depicted, the WO uses
awareness to collect data on itself. It analyses those data
thanks to the behavioral graph generator plugin (Also termed
analyzer) and generates a behavioral graph represented by
an STG (Section III-A). On the other hand, when designing
an application, developers can provide a conceptual model
describing/specifying the way they view the behavior of the
system’s entities associated to WOs. Such models are rep-
resented using IOSTS and contain the semantic given by
developers to WOs (Section III-B). The IOSTS formalism is
mostly known in simplifying system modelling by allowing
symbolic representation of parameters and variable values
instead of concrete data values enumeration [24].

The semantic carried by the IOSTS will be used by the
graph matcher plugin to extend the STG using the algorithm
proposed in this paper.

III. COMPLEX BEHAVIORAL MODELS, DEFINITIONS AND

ILLUSTRATIONS

Modeling the behavior of a system is enabled by tools
and languages that result in informal, semi-formal or formal
representations: semi-formal notations like UML or more
abstract behavior representations based on proven theories [25]
like graph theory. In our case, STGs and IOSTSs respectively
generated by WOs and provided by developers are used.

A. Definition of an STG

An STG is a directed graph where vertices represent the
different states of an object and transitions represent the
execution of its methods. Let us consider an object defined by
its set of attributes A and its set of methods M . According to
this information (A and M ) on the object, the STG definition
is given in Definition 1.

Definition 1:

An STG is defined by the triplet G(V,E, L) where:
• V is the set of vertices, with |V | = n where each vertex

represents a unique state of the object, and conversely,
each state of the object is represented by a unique vertex.
Therefore vi = vj ⇔ i = j with vi, vj ∈ V and i, j ∈
[0, n[.

• E is the set of directed edges where ∀e ∈ E, e is defined
by the triplet e = (vi, vj ,mk), such that vi, vj ∈ V and
mk ∈ M . This triplet is called a transition labeled by
mk. The invocation of method mk from state vi switches
the object to state vj .

• L is a set of vertex labels where any label li ∈ L
is associated to vi. A label li is the set of pairs
(attj , valuei,j) ∀attj ∈ A, with valuei,j the value of
attj in the state vi and Dom(attj) the value domain of
attj , i.e., the set of valuei,j for all i. By definition, 2
states vi and vj are different vi ̸= vj , iff ∃attk ∈ A,
such that valuei,k ̸= valuej,k. Conversely, if ∀k ∈
[0, |A|[ valuei,k = valuej,k, the states vi and vj are
considered the same, i.e., vi = vj , thus i = j.

The STG must comply with certain constraints:
• The number of attributes is finite:

|A| ∈ N
∗.

• The domain Dom(atti) of each attribute atti ∈ A is
bounded and discrete:

∀att ∈ A,min(Dom(att)) ̸= −∞,
max(Dom(att)) ̸= ∞,

|Dom(att)| ∈ N
∗.

The matching algorithm we propose in Section IV takes as
input an STG with a specific property we name exhaustiveness.
Definition of “exhaustive STG” is given in Definition 2

Definition 2: An exhaustive STG is an STG such that from
each vertex vi there exist |M | transitions, each labeled by a
method mk in M :

∀vi ∈ V, ∀mk ∈ M,
∃vj ∈ V |(vi, vj ,mk) ∈ E.

(1)

It is worth noting that vi and vj may be different or same
states (vi ̸= vj or vi = vj).

According to Definition 2, an exhaustive STG is deter-
ministic, i.e., from any state, on any method invocation, the
destination state is known. Moreover, the number of transitions
|E| in an exhaustive STG depends on the numbers of vertices
|V | and methods |M | such that:

|V | × |M | = |E|. (2)
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Fig. 2: An exhaustive STG presentation of a roller shutter.

As each vertex represents a state and a unique set of attribute
values, an attribute is defined according a discrete and bounded
domain and the set of attributes is naturally finite, the number
of vertices |V | is bounded:

∏|A|
i=1 |Dom(atti)| ≥ |V |. (3)

The inequality is due to the fact that some attribute value
combinations may not be compatible. In other words the
number of possible states is

∏|A|
i=1 |Dom(atti)|, but all are

not necessary reachable.
Fig. 2 illustrates an exhaustive STG of the behavior

of a simplified roller shutter with adjustable slats. It is
defined by the attributes “level” and “orientation” (A =
{level, orientation}) and 2 methods “open” and “close”
(M = {open(), close()}). The methods “open” and “close”
respectively increase and decrease the level by 50, the slats ori-
entation is adjusted automatically to have values 0 or 90. This
STG was automatically generated and State 0 corresponds to
the first discovered state, State 1 the second, etc., consequently,
except the methods that give semantic to the transitions, the
states have no semantic. According to the domains of the
level and orientation, and Property 3, the STG has 4 reachable
states, and according to Property 2 the number of edges is 8.
Point out that State 0 has nothing to do with the initial values
of the roller shutter, they correspond to the first state found
during the automatic generation of the STG.

Let us note that a WO, never stores the whole STG due to
an evident combinatorial explosion. Only a useful sub-graph
is stored and mechanisms for forgetting sub-parts that are no
longer useful are implemented. These memory problems are
out of the scope of this paper, and we consider here only
exhaustive STG to highlight the algorithm.

B. Definition of an IOSTS

An IOSTS is a directed graph whose vertices, called local-
ities represent different states of the system (in our case, the
system is a software object) and whose edges are transitions.
The localities are connected by transitions triggered by actions.
An IOSTS allows the definition of an infinite state transition
system in a finite way, unlike an STG. In the literature, IOSTS
are used to verify, test and control systems. Verification and
testing are formal techniques for validating and comparing

two views of a system while control is used to constrain the
system behavior [16] [26]. The definition of IOSTS given in
Definition 3, is taken from [27] [16] and especially from the
use case given in [24].

Definition 3: An IOSTS is a sixfold ⟨D,Θ, Q, q0, Σ, T ⟩
such as:

• D is a finite set of typed data consisting of two disjoint
sets of: variables X and action parameters P . Let an
element d ∈ D, Dom(d) determines the value domain
of d.

• Θ an initial condition expressed as a predicate on vari-
ables X .

• Q is a non-empty finite set of localities with q0 ∈ Q
the initial locality. A locality q is a set of states such
that statesOf(q) ⊆ Dom(X), with Dom(X) the cartesian
product of the domains Dom(x) of each x ∈ X:

Dom(X) =
∏

x∈X

Dom(x). (4)

Let us note that a state is defined by a unique tuple of
values for the whole variables.

• Σ is the alphabet, a finite, non-empty set of actions.
It consists of the disjoint union of the set Σ? of input
actions, the set Σ! of output actions, and the set ΣT

of internal actions. For each action a in Σ, its signature
sig(a) = ⟨p1, . . . , pk⟩|pi ∈ P is a tuple of parameters.
The signature of internal actions is always an empty tuple.

• T is a finite set of transitions, such that each transition
is a tuple t = ⟨qo, a,G,A, qd⟩ defined by:

– a locality qo ∈ Q, called the origin of the transition,
– an action a ∈ Σ, called the action of the transition,
– a boolean expression G on X ∪ sig(a) related to

the variables and the parameters of the action, called
the transition guard, transition guards allows us to
distinguish transitions that have same origin and
action but disjoint conditions to their triggering,

– an assignment of the set of variables, of the form
(x := Ax)x∈X such that for each x ∈ X , Ax is an
expression on X ∪ sig(a), it defines the change of
variable values during the transition,

– a locality qd, called the transition destination.
According to this definition, each variable has a subdomain
in each locality. Thus, let us define the function dom(q, x)
that returns the definition domain of the variable x ∈ X in
the locality q ∈ Q, consequently dom(q, x) ⊆ Dom(x). By
extension, dom(q,X) is the cartesian product of domains of
all x in q:

dom(q,X) =
∏

x∈X dom(q, x),
dom(q,X) ⊆ Dom(X).

(5)

Fig. 3 illustrates the IOSTS given by a developer to control a
roller shutter with adjustable slats. This IOSTS expresses that
the roller shutter expects an input up?/down? ∈ Σ? carrying
the parameter step ∈]0, 100], the relative elevation to increase
or decrease the shutter level. In addition, the roller shutter slats
can be rotated between 0 and 90 degrees during the elevation.
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Let us mention that the roller shutter used in this example
adapts automatically its angle, while the elevation is between
0 and 100 steps. Thus, end-users only control the elevation
(height). The IOSTS contains two localities:

• The locality where the system is closed (i.e., both vari-
ables are equal to 0, see Equation 6). In this locality, if the
system receives the up?(step) command, the transition
will be made from the Closed to Open locality by
increasing the value of the height variable by step. If the
system receives the down?(step) action, it will perform
no operation (NOP).

• The locality where the system is open (i.e., one of the
variables is different from 0, see Equation 7). In this
locality, if the system receives the action up?(step), the
transition will be reflexive from Open to itself and will
compute the value of the variable height by executing
this assignment height := min(height + step, 100),
the shutter elevation cannot be increased more than the
maximum of elevation. If it receives the down?(step)
action and the action closes the shutter less than it is
open (step < height), height is decreased by step,
otherwise the transition will be from the locality Open to
the locality Closed by assigning 0 to the variable height.

As illustrated in Fig. 3, and according to the Definition 3, the
IOSTS is composed of:

• Q = {Closed,Open}, the set of localities.
• X = {height, angle}, the set of variables.
• P = {step}, the set of parameters.
• Σ = {up?, down?}, the set of actions where the sig-

natures of the actions are sig(up?) = sig(down?) =
⟨step⟩.

• Dom(height) = [0, 100], Dom(angle) = [0, 90] and
Dom(step) =]0, 100] are respectively the domains of
height, angle and step.

• According to Equation 4, Dom(X) is:

Dom(X) = [0, 100]× [0, 90].

• The states of closed locality, defined by Equation 5, are:

statesOf(Closed) = {(0, 0)},
{(0, 0)} ⊂ Dom(X).

(6)

• The states of open locality are defined as follows:

statesOf(Open) = Dom(X)\statesOf(Closed),
Dom(X)\statesOf(Closed) ⊂ Dom(X).

(7)

Thus:

statesOf(Closed) ∩ statesOf(Open) = ∅. (8)

As IOSTS is classical reference modeling formalism for
model-based testing of reactive systems [28], it provide a
convenient abstraction of the behaviors of such systems, which
are beneficial and playing an important role in the matching
algorithm.

IV. GRAPH MATCHING ALGORITHM

This section introduces our algorithm that relates the gen-
erated STG to developers’ semantic expressed in an IOSTS
formalism. The generated STG in Fig. 2 is composed of states
automatically labelled by the WO: 0, 1, 2 and 3 and the
localities of the IOSTS are labelled “Open” and “Closed”.
As both represent the same roller shutter, the main challenge
is how to match states 0, 1, 2 and 3 to the localities of the
IOSTS, in other words, which attribute of the STG corresponds
to which variable of the IOSTS.

A. Matching constraints

The STG and IOSTS must meet certain criteria to correctly
apply the matching algorithm.

1) Considering that we have in the set of attributes A a non
empty subset called Ae ̸= ∅ and in the set of variables
X a non empty subset called Xe ̸= ∅. Furthermore, let
us consider R the binary relation of Ae in Xe, which is
a bijection (↣↠) [29]:

• each member of Ae must be linked exactly to one
element of Xe,

• each element of Xe must be linked exactly to one
member of Ae.

∃!Ae ⊆ A, ∃!Xe ⊆ X|Ae ↣↠ Xe

⇔
(Ae, Xe),

(9)

where (Ae, Xe) means that both Ae and Xe represent
the same information. The matching solution is given by
(Ae, Xe,R). Therefore, any couple atte, xe such that
atteRxe will be featured by (atte, xe) as they represent
the same information, thus:

Dom(atte) ⊆ Dom(xe). (10)

Let us note that Dom(atte) is a subset of Dom(xe) due
to the fact that Dom(xe) can be defined as a continuous
domain and Dom(atte) is defined as a discrete and
bounded set of values. Furthermore, from Equation 10
we deduce the following:

• In case of Dom(atte) ⊂ R:

(atte, xe)
⇔

min(Dom(atte)) ≥ min(Dom(xe))
∧

max(Dom(atte)) ≤ max(Dom(xe)).

• In case of Dom(atte) ⊂ S | S is the set of strings:

(atte, xe)
⇔

∀valuei ∈ Dom(atte), valuei ∈ Dom(xe).

2) Every locality in the IOSTS must be unique taking into
account just the set variables Xe. Thus, the domains of
Xe in the different localities in the IOSTS are disjoint:

∀q, q′ ∈ Q | q ̸= q′

⇔
dom(q,Xe) ∩ dom(q′, Xe) = ∅.
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Fig. 3: An IOSTS representation of a roller shutter.

B. Algorithm

The matching algorithm will automatically run through
several steps summarized in Fig. 4. The algorithm will receive
two types of knowledge representation (STG and IOSTS). It
is divided into three parts. The former produces all possible
attribute-variable matching pairs P . The result will be used in
the second part to build all longest combinations Pm, which
will be used to construct the matching between states and
localities in the third part.

As validation of the algorithm is NP-complete, reducing
the matching cost is planned as future work through the use
of ontology and the matrix structure of graphs.

Let us detail the algorithm:

• As a starting point, P is the set that contains all poten-
tial equivalent attribute-variable pairs according to their
domains:

P = {(att, x) | att ∈ A, x ∈ X,Dom(att) ⊆ Dom(x)}.

• P(P ) is the power set of P [30], it contains all subsets
c of P :

∀c ⊆ P, c ∈ P(P ),

thus, |P(P )| = 2|P |. As Ae and Xe are not empty, the
empty set can be removed from P(P ):

P∅/ = P(P )\{∅}.

• Pv is all valid combinations c of pairs attribute-variable in
P∅/ . A combination ci is valid if and only if it represents

a bijection between its attributes and variables.

Pv = {c | c ∈ P∅/ , ∀(atti, xj) ∈ c,

(atti, xk) ̸∈ c ∧ (attl, xj) ̸∈ c},

with i ̸= l and j ̸= k.
• Pm is all maximized combinations1 ci of pairs attribute-

variable in Pv:

Pm = {c | c ∈ Pv, ∀cj ∈ Pv, c ̸⊂ cj}. (11)

1The longest combinations such that any subset of a combination does not
exist in the set of combinations.

Pm stores the maximized combinations according to the
definition domain of attributes and variables.

As for each vertex it exists a unique locality such that
for any couple attribute-variable of a combination, the values
of the attribute are included in the domain of the locality,
we keep from Pm only the combinations that satisfy such
property. Therefore, PV Q stores the possibles combinations ci
that correspond to a valid matching between vertices V and
localities Q.

PV Q = {c | c ∈ Pm, ∃!v ∈ V, ∃!q ∈ Q, ∀(att, x) ∈ c,

dom(v, att) ⊆ dom(q, x)}.
(12)

From PV Q, all the possible matching MV Q that stores the
sets of vertex-locality couples can be deduced:

MV Q = {mi | ∀ci ∈ PV Q, ∃!v ∈ V, ∃!q ∈ Q,

∀(att, x) ∈ ci, dom(v, att) ⊆ dom(q, x),

(v, q) ∈ mi}.

(13)

These matching MV Q are valid regarding the couples
attribute att variable x and the couples vertex v locality q.
Since the matching algorithm is based on the graph morphism,
it needs to respect the structure of the matched graphs [31].
In our context, the images of the vertices of the STG in the
IOSTS – the localities – must respect the adjacency relations

(neighboring) present in the STG (i.e., the transitions). In other
words, two adjacent vertices must match the same or two
adjacent localities. Consider S is the surjective application of
the STG in the IOSTS respectively between the vertices V
and localities Q (see Equation 14), i.e., each vertex matches
one locality and a locality is matched by at least one vertex.
For any transition (u, v) ∈ E of STG, then (S(u),S(v)) ∈ T
is a transition of the IOSTS. The STG → IOSTS matching is
a surjective homomorphism, i.e., an epimorphism [31].

S : STG → IOSTS,
V ↠ Q = S(V ),

(14)

implies:
SE : E → T,

SE((u, v)) = (S(u),S(v)),
(S(u),S(v)) ⊂ T.

(15)
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Fig. 4: Illustration of stepwise matching algorithm (outputs in Fig. 5 and Fig. 6)
.

According to Equation 15, if state v′ is the neighbor of v
and the locality q matches with v, v′ must match with q or a
neighbor of q:

MS = {m | m ∈ MV Q, ∀(v, q) ∈ m, ∀v′ ∈ neighbors(v),

∃q′ ∈ neighbors(q) ∪ {q}, (v′, q′) ∈ m}.
(16)

C. Matching illustration

In the previous example, the STG in Fig. 2 is automatically
generated by a WO and the IOSTS in Fig. 3 is provided by
a developer. Both represent the same simplified roller shutter
behavior. The behavior is simplified to highlight the algorithm,
the implementation can deal with complex behaviors. The STG
uses discrete values with a level of opening of 50% and a slats
orientation of 90%, while the IOSTS use continuous intervals,
without any constraint on the step that is a real value.

Fig. 5 and Fig. 6 illustrate all possible matching results of
the API developed in the LISTIC laboratory of both (STG and
IOSTS) graphs. Localities in the IOSTS are Closed and Open,
each contains variables with disjoint domains (see Equation 8),
in our example, both variables height and angle.

According to the constraints of the matching algorithm
given in Section IV-A:

1) there is potential equivalent attributes/variables between
the STG and the IOSTS, more precisely between the
attributes “level, orientation” and the variables “height,
angle”. According to Equation 10, the following pairs
represent potential attributes/variables equivalences:

(level, height),
(orientation, angle),
(orientation, height),

2) the domains of both localities Closed and Open respect
Equation 8. Thus, Closed and Open are disjoint.

On the STG side, there are four vertices, each one
labeled with a set of attribute-value pairs (att, value).
In our case, the pair (level, orientation) takes the
values [(50, 90), (100, 90), (50, 0), (0, 0)] respectively for
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Fig. 6: Algorithm result of the graph matching
P2

m = {(orientation, height)} ∈ PV Q.
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(v0, v1, v2, v3). Therefore, to establish a correspondence be-
tween the two graphs, for all combinations Pm(P ), the defi-
nition domain of the pair (level, orientation) in each vertex
of the STG must be compared to the definition domain of the
variables pair (height, angle) in each locality of the IOSTS.
This comparison gives PV Q, which consequently implies MS .
In detail, the following sets are obtained:

P = {(level, height), (orientation, angle),

(orientation, height)}.

The powerset of P :

P∅/(P ) = {{(level, height)}, {(orientation, angle)},

{(orientation, height)},

{(level, height), (orientation, angle)},

{(level, height), (orientation, height)},

{(orientation, angle), (orientation, height)},

{(level, height), (orientation, angle),

(orientation, height)}}.

Therefore:

Pv = {{(level, height)}, {(orientation, angle)},

{(orientation, height)},

{(level, height), (orientation, angle)}}.

Thus:

Pm = {{(orientation, height)},

{(level, height), (orientation, angle)}}.

As PV Q ≡ Pm in this illustration, it contains two combina-
tions, which gives two matches

MV Q = {
{(v0, Open), (v1, Open), (v2, Open), (v3, Closed)},
{(v0, Open), (v1, Open), (v2, Closed), (v3, Closed)}

}.

Since both matching are surjective in this illustration, MV Q ≡
MS .

This example provides two possible matches and the algo-
rithm cannot determine, which one corresponds to (Ae, Xe).
More information is required to determine the good matching.
This information can be provided by the end user or, as we
intend to do in future work, determined from the meaning of
attributes, variables, methods and actions using an ontology.

V. RELATED WORK

For many years, graphs have been used in several fields
to represent complex problems in a descriptive way (e.g.,
maps, relationships between people profiles, public transporta-
tion, scene analysis, chemistry, molecular biology, the quest
for evolutionary conserved pathways thought protein-protein
alignment, etc.). This has been done for various purposes: anal-
ysis, operation, knowledge modeling, pattern detection, etc.
Although initiated in the 18th century with Euler’s work on
the problem of Königsberg bridges [15], graph theory remains

a powerful tool for software-intensive system development and
an effective way to represent objects as in [32]. Since then,
several approaches of graph matching have been developed
and the first formulation of the graph matching problem was
proposed by [33] and dates back to 1979. Afterwards, sev-
eral formulations appeared like convex-concave programming
formulation, maximum common subgraph (MCS), the use
of the Frobenius norm that uses the adjacency matrices of
corresponding graphs to express the maximization or the min-
imization of the non-overlapping edges between two graphs,
graph matching using dummy vertices that consist of finding a
matching with the exception of some vertices in the data graph,
which have no correspondence at all. In general, there exist
two major formulations of the graph matching problem [34]
[35]:

• Exact Matching is divided into two categories, (a) graph
isomorphism, checks whether two graphs are the same.
(b) subgraph isomorphism, checks whether the smallest
graph is a subgraph of the biggest one. Both techniques
are overly complex and rely on graph/subgraph isomor-
phism, whether or not they check the one-to-one or many-
to-one matching.

• Inexact Matching is a term used where it is impossible
to find an isomorphism between two graphs, and it
comprises many approaches:

– the maximum common subgraph, used in searching
the similarity between the graphs to know how
different they are instead of a binary answer [36]

– least square formulation, used in the case of weighted
graphs to search for a match that minimizes the total
difference between all aligned edges through the use
of the Frobenius norm for instance [36].

– graph edit distance, used to find in a low cost the
sequence of operations (i.e., deletion, insertion and
substitution of vertices and edges) that transform
one graph into another [37]. As this procedure is
a hard combinatorial problem, another alternative
called “beam search” is explained in details in [38]

In real applications, we often want to match graphs of
different sizes, which results in new techniques and norms
as depicted in [34]. Moreover, the problem is more extensive
than one might imagine, as graphs are used to represent
objects, images, regions in maps, also, many formalisms have
emerged so far, such as the correspondence between different
representations of knowledge as an STG and an IOSTS, which,
to our knowledge, no paper has addressed. Until now, the most
well-known operations on graphs is the comparison of two
or more graph representations that requires many theoretical
and complex concepts [21], like graph matching, which is a
more constrained version of the graph isomorphism problem
that is at the basis of our proposal. Finally, we mention that
graph/sub-graph isomorphism and homomorphism are consid-
ered to be the most complex problems in graph matching,
they are NP-complete. These problems have been studied
in [39] [21] [40]. It is worth to mention that for certain
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types of graphs under certain constraints, the complexity of
the isomorphism has been proven to be of polynomial type
with a huge cost [41].

The matching of two knowledge representations (STG -
IOSTS) led us to two problems: exact matching and inexact
matching. To understand the problems, we need to see the
matching from both perspectives: machine (i.e., numerical
and structural) and human (i.e., semantic). According to the
machine, and since the matching preserves the structure and
the transitions between both formalisms, the matching is
always exact between “states” and “localities”, which gives
an epimorphism (Equations 14, 15). However, from the human
perspective, in most real-life cases, there will be at most one
exact matching according the semantic. As illustrated in the
illustrations (Fig. 5 and Fig. 6), only one matching is exact.
The exact matching problem is a great challenge, our work
focuses on this problem by taking into account, in addition to
the numerical perspective, the semantic perspective.

VI. CONCLUSION AND FUTURE WORK

Our research work on software intelligent systems, namely
WSs, tackles the issue of bringing closer knowledge generated
by AI and human semantic. Indeed a major weakness of WOs
composing a WS is that they generate numerical information
mostly meaningless to humans. Our proposal is to extend
knowledge issued by WOs (expressed in STGs) at runtime
with knowledge (expressed in IOSTs) provided by developers
at design time. Such extension is based on graph matching.

We have proposed in this paper an algorithm to face the
problem of matching an STG and an IOSTS. The goal of this
work is to extend WOs with the behavior semantic defined
at software design time. From the end user’s perspective, the
algorithm provides the system with the ability to communicate
with him using human semantic. From the developer’s per-
spective, the resulted matching may help him discover errors
or inconsistencies between the conceptual view and the system
implementation. The results of the algorithm provide a set
of valid matching according to the numerical and structural
information stored in both behavioral graphs.

As illustrated in the paper, the algorithm provides a set of
valid matching, however, it cannot determine the valid one
from the end user perspective. Besides, the algorithm has
neither an idea of the meaning of variables that represent the
same information at different scales, nor of variable names.
Thus, one of our future work will address this problem:
How to take semantic into account in the matching problem?
From the end user perspective, this problem is a semantic
one, the natural solution is therefore to rely on ontologies.
Approaches we are currently considering consist in semantic
graph matching based on an ontology merged with the results
presented in this paper.

In this respect, we have initiated a France-Canada innova-
tion project with the University of Sherbrooke to investigate
matching algorithms based on other semantic formalisms than
IOSTSs, such as ontologies and scenario-based [8] [7]. The
main idea is to bind the algorithm matching results with

an ontology to provide a human level communication with
users according to the context of the application. Moreover,
this collaboration brings us the medical context as a new
application domain, namely ambient assistance systems for
elderly people.
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