Supporting Information

Antibacterial activity and untargeted metabolomics profiling of *Acalypha arvensis* Poepp

Valendy Thesnor^{1,2,3}, Roland Molinié⁴, Ryland T. Giebelhaus^{5,6}, A. Paulina de la Mata Espinosa^{5,6}, James J. Harynuk^{5,6}, David Bénimélis¹, Bérénice Vanhoye⁴, Catherine Dunyach-Rémy⁷, Muriel Sylvestre², Yvens Cheremond³, Patrick Meffre¹, Gerardo Cebrián-Torrejón^{2,8*} and Zohra Benfodda^{1,8*}

- ⁵ Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada
- ⁶ The Metabolomics Innovation Centre, Edmonton, AB T6G 2N4, Canada
- ⁷ CHU Nîmes Hôpital Universitaire Carémeau, Nîmes cedex, France.
- ⁸ The authors supervised joinly this work

¹ UNIV. NIMES, UPR CHROME, F-30021 Nîmes cedex 1, France.

² COVACHIM-M2E Laboratory EA 3592, Université des Antilles, Fouillole Campus, UFR SEN, Department of Chemistry, Pointe-à-Pitre Cedex, France.

³ URE, Université d'État d'Haïti, Port-au-Prince, Haïti.

⁴ UMR INRAE 1158 Transfrontalière BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UPJV, UFR de Pharmacie, 80037 Amiens, France

^{*} Correspondence: G.C.T.: gerardo.cebrian-torrejon@univ-antilles.fr and ZB: zohra.benfodda@unimes.fr

Table of contents

- 1. Photograph of Acalypha arvensis Poepp. Individual
- 2. Figures untargeted analysis of GC \times GC-TOFMS metabolite profiles of the methanol: chloroform extract (50:50), F6
- 3. Tables untargeted analysis of GC \times GC-TOFMS metabolite profiles of the methanol: chloroform extract (50:50), F6
- 4. TLC plate of all fraction of *Acalypha arvensis* Poepp

1. Photograph of Acalypha arvensis Poepp. Individual

Figure S1: Photograph of a Acalypha arvensis Poepp (taken by Josia Richardson)

2. Figures untargeted analysis of GC × GC-TOFMS metabolite profiles of the methanol: chloroform extract (50:50), F6

Figure S2: GC×GC total ion chromatogram A. arvensis extract F6 derivatized

Figure S3: GC×GC total ion chromatogram A. arvensis extract F6 derivatized (with peak markers)

Figure S4: GC×GC total ion chromatogram A. *arvensis* extract F6 derivatized with Scripts

Figure S5 : GC×GC total ion chromatogram A. arvensis extract F6 SPME

Figure S6: GC×GC total ion chromatogram A. *arvensis* extract F6 SPME (with peak markers)

Figure S7: GC×GC total ion chromatogram A. arvensis extract F6 SPME with Scripts

Figure S8 : GC×GC Methods Comparison

3. Tables untargeted analysis of GC × GC-TOFMS metabolite profiles

Table S1. Fifty-eight compounds identified by derivatization peaks that were detected by derivatization. ¹tR, ²tR represent primary and secondary retention times, respectively.

Peak #	Name	Similarity	Classifications	¹ tR, ² tR (s)	UniqueMass	Quant S/N	Area
417	Limonene	936	monoterpene	687.5 , 1.235	68	1707	283112
647	Tris(trimethylsilyl)hydroxylamine	680	cysteine_TMS	835, 1.255	146	410.06	37014
841	Heptanoic acid, trimethylsilyl ester	899	SatFA_TMS	962.5 , 1.470	75	1758.6	821644
1200	Octanoic acid, trimethylsilyl ester	974	SatFA_TMS	1175, 1.480	117	1731.2	442217
1511	Nonanoic acid, trimethylsilyl ester	988	SatFA TMS	1387.5, 1.475	117	9015.7	2393950
1808	Decanoic acid, trimethylsilyl ester	967	SatFA TMS	1595, 1.460	117	764.66	184704
	Dodecanoic acid, trimethylsilyl		—	,			
2327	ester	929	SatFA_TMS	1980, 1.445	117	1002	232718
2264	Ribitol, 1,2,3,4,5-pentakis-O-	202		2012 5 1 205	102	422.22	12(210
2364	(trimethylsilyi)- Ribital 12345-pentakis-O-	803	sugars_41MS	2012.5 , 1.295	103	432.23	126318
2386	(trimethylsilyl)-	824	sugars 4TMS	2030, 1.255	103	1652	426671
	Ribitol, 1,2,3,4,5-pentakis-O-		<u> </u>	,			
2397	(trimethylsilyl)-	831	sugars_4TMS	2040, 1.265	103	5129.1	1670019
2772	Myristic acid, TMS derivative	807	SatFA_TMS	2330, 1.440	285	509.48	83166
	3-Keto-glucose, bis(O-						
2775	(trimethyloxime), tetrakis-O-	867	sugars 5TMS	2335 1 205	73	1663	1 2E+07
2115	D-Fructose, 1.3.4.5.6-pentakis-O-	807	sugars_51105	2335, 1.295	13	4005	1.2E+07
2914	(trimethylsilyl)-, O-methyloxime	905	sugars_5TMS	2417.5 , 1.310	173	1584.1	1708356
	d-Mannose, 2,3,4,5,6-pentakis-O-						
2002	(trimethylsilyl)-, o-methyloxyme,			2445 1 200		00.10 5	0.55.05
2993	(1Z)-	925	sugars_5TMS	2445, 1.300	/3	8343.5	2.7E+07
	(trimethylsilyl)-, o-methyloxyme.						
3008	(1E)-	888	sugars_5TMS	2452.5 , 1.330	87	535.32	139884
	d-Glucose, 2,3,4,5,6-pentakis-O-						
2015	(trimethylsilyl)-, o-methyloxyme,	0.40		0457.5 1 005	1.00	0720 5	1.00
3015	(IE)-	949	sugars_51MS	2457.5, 1.305	160	9/38.5	1.2E+07
3027	Hexadecanoic acid, methyl ester	965	Linear_saturated_FAMES	2460, 1.505	87	9592.1	3836100
	(trimethylsilyl)- o-methyloxyme						
3043	(1Z)-	938	sugars_5TMS	2467.5, 0.235	205	1836.1	1537107
	d-Galactose, 2,3,4,5,6-pentakis-O-						
2000	(trimethylsilyl)-, o-methyloxyme,	015		2405 0 2 60	1.00	100.0	100400
3099	(1Z)-	917	sugars_5TMS	2495, 0.260	160	189.3	108498
3221	Ethyl pentadecanoate	909	FAEE	2570, 1.495	88	1026.6	244166
3259	Palmitoleic acid 1TMS	822	MonoenoicFA_TMS	2612.5 , 1.450	117	169.84	53967
2266	15-Tetracosenoic acid, (Z)-, TMS	860	MonoopoieEA TMS	2620 1 455	117	212 51	122207
5200	Hexadecanoic acid, trimethylsilyl	007	Monocholer A_1 MD	2020, 1.433	11/	542.54	132307
3293	ester	970	SatFA_TMS	2650, 1.445	132	15244	5192772
	9,12-Octadecadienoic acid, methyl						
3362	ester	924	Linear dienoicFAME	2730.1.520	67	4485.3	1692296

2271	9,12,15-Octadecatrienoic acid,	020	Lincor trianciaEAME	2742 5 1 520	67	8725 7	2462550
33/1		939		2742.5, 1.330	07	0/55./	3403330
3406	Octadecanoic acid, methyl ester	910	Linear_saturated_FAMES	2775, 1.490	74	3421.7	1523706
2128	Heptadecanoic acid, TMS	051	SatEA TMS	2802 5 1 425	122	251 57	78042
3420	d-Galactose 23456-pentakis-O-	931	Sau'A_TMS	2602.5, 1.455	132	551.57	/0943
	(trimethylsilyl)-, o-methyloxyme.						
3431	(1Z)-	896	sugars 5TMS	2807.5, 1.320	73	10112	1.6E+07
	d-Galactose, 2,3,4,5,6-pentakis-O-		<u> </u>				
	(trimethylsilyl)-, o-methyloxyme,						
3446	(1Z)-	908	sugars_5TMS	2830, 1.325	103	1603.1	585452
	9,12-Octadecadienoic acid, methyl						
3449	ester, (E,E)-	873	Linear_dienoicFAME	2832.5 , 1.520	67	447.44	161532
	d-Galactose, 2,3,4,5,6-pentakis-O-						
2456	(trimethylsilyl)-, o-methyloxyme,	020	TIME	2942 5 1 225	72	2109.2	2122016
3456	$\frac{(1Z)}{1 C_{1}}$	828	sugars_51MS	2842.5, 1.325	/3	2108.3	2132816
	d-Galactose, 2,3,4,5,6-pentakis-O-						
3460	$(17)_{-}$	814	sugars 5TMS	2850 1 345	147	713 40	235777
5400	d-Mannose 23456-pentakis-O-	017	sugars_JINIS	2050, 1.545	177/	/13.47	233111
	(trimethylsilvl)-, o-methyloxyme						
3464	(1Z)-	838	sugars 5TMS	2860, 1.325	147	452.94	320633
	trans-9-Octadecenoic acid,		0 _	,			
3500	trimethylsilyl ester	892	MonoenoicFA_TMS	2910, 1.465	117	5742.2	944596
	α-Linolenic acid, trimethylsilyl		_				
3503	ester	928	multienoicFA_TMS	2915, 1.480	108	5737.4	1968665
	15-Tetracosenoic acid, (Z)-, TMS						
3512	derivative	839	MonoenoicFA_TMS	2922.5 , 1.445	117	344.54	261762
	Octadecanoic acid, trimethylsilyl						
3529	ester	988	SatFA_TMS	2945, 1.450	117	13573	4039101
2(20	Methyl (6E,9E,12E)-6,9,12-	())	EA	2047 5 1 5 (0	01	02 001	21(00
3620	octadecatrienoate	623	FA	3047.5, 1.560	91	98.991	31688
3780	Eicosanoic acid, trimethylsilyl ester	967	SatFA_TMS	3217.5, 1.455	117	1436.2	310003
2000	Heneicosanoic acid, TMS	014		2245 1 475	122	102.22	15204
3900	derivative	814	SatFA_IMS	3345, 1.475	132	103.32	15384
3964	Maltose 8TMS	833	sugars_8TMS	3425, 1.375	204	10751	4491939
	15-Tetracosenoic acid, (Z)-, TMS						
3982	derivative	825	MonoenoicFA_TMS	3442.5, 1.500	117	225.79	94233
4012	Docosanoic acid, trimethylsilyl	800	Sate A TMS	24675 1 405	122	107 20	55057
4012	Tricosanojo agid trimethylailyl	000	SalrA_INIS	3407.3, 1.493	132	40/.20	5595/
4159	ester	926	SatFA_TMS	3587 5 1 515	132	251.87	46322
4176		704		2602.5 1.420	204	1500 4	771225
41/0	D Turphose	/94	sugars_81MS	3002.3, 1.430	204	1389.4	//1333
/102	D-1 uranose,	758	sugars 8TMS	3617 5 1 405	170	272 58	7/1/6
+193	neptakis(unnetnyishyi)-	/ 30	sugars_o1MS	3017.3, 1.403	1/7	525.38	/4140
4239	Maltose, octakis(trimethylsilyl)-	711	sugars_8TMS	3655, 1.415	361	559.56	503216
1251	D-Turanose,	840	magna PTMC	2665 1 440	72	2404.0	5710007
4254	neptakis(trimethylsilyl)-	840	sugars_81MS	3005, 1.440	/3	3494.9	5/10906
1300	i etracosanoic acid, trimethylsilyl	965	SatEA TMS	3702 5 1 545	117	1423 7	207762
4405		903		2045 1 525	204	1723./	377203
4485	Maltose, octakis(trimethylsilyl)-	802	sugars_8TMS	3845, 1.525	204	891.22	467784
1500	Docosanoic acid, trimethylsilyl	804	Sate A TMS	2022 5 1 625	117	1204 4	117200
4309		094		3922.3, 1.023	11/	1394.4	44/380
4718	3-Bromocholest-5-ene	770	FA	4032.5 , 1.785	105	90.826	22843
1010	I etracosanoic acid, trimethylsilyl	804	Sate A TMS	41075 1755	117	11065	170710
4810	ester	804	SatrA_1MS	4127.5, 1.755	11/	1480.3	4/8/49

4858	Campesterol tms	884	cholesterol_TMS	4192.5 , 1.860	129	4915.7	2095533	
4965	β-Sitosterol trimethylsilyl ether	831	cholesterol_TMS	4282.5 , 1.965	129	8160.9	5024644	
	Pregn-5-en-20-one, 3,16-							
4981	bis[(trimethylsilyl)oxy]-, (3β,16α)-	742	sterol_TMS	4297.5 , 1.945	55	657.92	407467	
	D-Turanose,							
5051	heptakis(trimethylsilyl)-	848	sugars_8TMS	4367.5 , 1.935	73	2562.1	4776193	
	Eatty acid (EA); Eatty acid athyl acters (EAEE); EAMES (fatty acid mathyl acters); TMS (trimathylsilyl ather); SatEA TMS							

Fatty acid (FA); Fatty acid ethyl esters (FAEE); FAMES (fatty acid methyl esters); TMS (trimethylsilyl ether); SatFA_TMS (Saturated Fatty acid_trimethylsilyl ether).

Table S2. Twenty-nine compounds identified by SPME peaks that were detected by derivatization. ¹tR, ²tR represent primary and secondary retention times, respectively.

Peak #	Name	Similarity	Classifications	1tR, 2tR (s)	UniqueMass	Quant S/N	Area
86	Hexanal	935	linear_aldehyde	602.5 , 2.010	41	1760.5	1278565
474	Hexanoic acid	951	linear_FA	1105 , 1.720	60	4149.4	2447456
486	Hexanoic acid, ethyl ester	932	FAEE	1112.5 , 1.835	88	805.48	154325
533	1-Isopropyl-4-methyl-1,4- cyclohexadiene	888	terpenes1	1160, 1.430	93	4078.9	902565
586	4-Isopropenyl-1-methyl-1- cyclohexene	960	terpenes2	1192.5 , 1.405	68	34613	6260079
675	1,3,6-Octatriene, 3,7-dimethyl-	941	terpenes1	1240, 1.430	93	18121	3095421
742	1-Isopropyl-4-methyl-1,4- cyclohexadiene	908	terpenes1	1272.5 , 1.395	93	5272.3	727499
847	1-Methyl-4-(1-methylethylidene)- 1-cyclohexene	924	terpenes1	1352.5 , 1.375	93	10476	1795404
929	Nonanal	940	linear aldehyde	1390, 2.045	57	7715.1	1433560
1014	Octanoic acid, methyl ester	973	Linear_saturated_FAMES	1437.5 , 1.800	74	4037.3	1141873
1221	5,7-Octadien-2-ol, 2,6-dimethyl-	882	terpenes1	1545 , 1.785	93	357.1	74961
1455	Decanal	936	linear_aldehyde	1645 , 1.985	57	1976.9	496294
1566	Nonanoic acid, methyl ester	906	Linear_saturated_FAMES	1685 , 1.755	87	7480.9	1046417
1642	Bicyclo[2.2.1]hept-2-ene, 1,7,7- trimethyl-	839	terpenes1	1712.5 , 1.650	93	10292	1814198
2077	Decanoic acid, methyl ester	979	Linear_saturated_FAMES	1917.5 , 1.725	74	9841.9	2323317
2104	(1R,2S,4R)-2,7,7- Trimethylbicyclo[2.2.1]heptan-2-ol	733	terpenes2	1935 , 1.880	85	128.06	30844
2362	6-Dodecanone	855	ketones	2102.5 , 2.025	43	464.5	210649
2373	Dodecanal	945	linear_aldehyde	2110, 1.890	41	1729.5	628829
2408	Undecanoic acid, methyl ester	935	Linear_saturated_FAMES	2140, 1.705	74	505.85	122333
2535	Naphthalene, 1,2,3,5,6,7,8,8a- octahydro-1,8a-dimethyl-7-(1- methylethenyl)-, [1R-(1α,7β,8aα)]-	840	terpenes3	2245, 1.505	91	717.6	134886
2631	Dodecanoic acid, methyl ester	944	Linear_saturated_FAMES	2347.5 , 1.670	74	10186	1875553
2802	Patchouli alcohol	850	terpenes3	2655, 1.740	41	132.78	42116
2835	Tetradecanoic acid, methyl ester	969	Linear saturated FAMES	2732.5 , 1.625	74	2363.3	643488

2890	Pentadecanoic acid, methyl ester	960	Linear_saturated_FAMES	2877.5 , 1.245	74	587.4	83335
2904	2-Undecanone, 6,10-dimethyl-	868	ketones	2900, 1.320	43	651.19	145010
2941	Hexadecanoic acid, methyl ester	990	Linear_saturated_FAMES	2970, 1.155	74	48039	6751820
	9,12-Octadecadienoic acid, methyl					1066.3	142.572
3022	ester, (E,E)-	912	Linear_dienoicFAME	3085, 1.110	67	100010	112072
	9,12,15-Octadecatrienoic acid,					858.09	184721
3025	methyl ester, (Z,Z,Z)-	908	terpenes3	3090, 1.110	79	020.07	101/21
3032	Tetradecanoic acid, methyl ester	889	Linear saturated FAMES	3100, 1.100	74	621	94072

Fatty acid (FA); Fatty acid ethyl esters (FAEE); FAMES (fatty acid methyl esters).

4. TLC plate of all fraction of Acalypha arvensis Poepp

Figure S9. TLC plate of all fraction of Acalypha arvensis Poepp

HPTLC plates of the six fractions obtained from *A. arvensis*. Fractions were prepared at a concentration of 5mg/mL and deposited on a silica gel 60 F254 20 × 10 cm HPTLC plate (Merck) using the CAMAG Automatic TLC Sampler 4 (ATS 4) depositor (CAMAG, Muttenz, Switzerland). A deposit of 5 μ L was thus carried out in three replicates for each fraction. The migration was performed with the eluent system ethyl acetate/methanol (90/10) over a distance of 70 mm with the CAMAG Automatic Developing Chamber 2 (ADC 2). The developed TLC plates were visualized under Visible light (A), UV 254 (B) and 366 nm (C) using the CAMAG TLC Visualizer.

(C)

(B)