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Abstract

Large-scale testing is crucial in pandemic containment, but resources are often prohibitively
constrained. We study the optimal application of pooled testing for populations that are
heterogeneous with respect to an individual’s infection probability and utility that materializes
if included in a negative test. We show that the welfare gain from overlapping testing over
non-overlapping testing is bounded. Moreover, non-overlapping allocations, which are both
conceptually and logistically simpler to implement, are empirically near-optimal, and we
design a heuristic mechanism for finding these near-optimal test allocations. In numerical
experiments, we highlight the efficacy and viability of our heuristic in practice. We also
implement and provide experimental evidence on the benefits of utility-weighted pooled
testing in a real-world setting. Our pilot study at a higher education research institute in
Mexico finds no evidence that performance and mental health outcomes of participants in our
testing regime are worse than under the first-best counterfactual of full access for individuals
without testing.
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1 Introduction

In a pandemic, large-scale testing forms a crucial part of containment strategies. This has been
highlighted in the COVID-19 pandemic, during which social distancing measures, including
lockdowns, came with high economic and social costs (Deb et al., 2022; Camera and Gioffré, 2021).
Instead, differentiated isolation and quarantining aids in balancing containment and activities
(both social and productive). But testing resources can be prohibitively constrained in terms of
the supply of reagents, trained personnel or lab equipment. Extensive individual testing is often
infeasible, as demonstrated by ample evidence from lower-and-middle income countries during the
COVID-19 pandemic (Kavanagh et al., 2020; Dhabaan et al., 2020; Abera et al., 2020). Pooled
testing has been a longstanding mechanism for expanding the reach of limited testing resources
(Dorfman, 1943). In a pooled test, the samples of multiple individuals are pooled together and
tested in a single test. If this test is positive, at least one individual in the pool is infected;
otherwise, all pooled individuals are healthy.1 While a systematic allocation of testing resources
is indispensable to maximize the social gain of a limited testing budget, the allocation problem
with a large population of individuals is non-trivial, and has been addressed, for instance, by
Augenblick et al. (2020); Bobkova et al. (2023) and Lipnowski and Ravid (2021).

Our point of departure from prior work is the observation that different individuals have
different utilities for resuming in-person activities. The goal, therefore, should be to maximize an
expected aggregation of these utilities. Put differently, a social planner might attribute higher
utilities to individuals whose in-person contributions are crucial to their organization. We assume
that a given population is heterogeneous in that each individual has their own probability of being
infected and their own utility for testing negative and therefore being able to resume in-person
activities. Our goal is to allocate tests to subsets of the population as pooled tests in order to
maximize aggregate expected social welfare. Only negatively tested individuals contribute to
social welfare, whereas individuals in positively tested pools remain quarantined and earn a utility
normalized to zero.2

Our contribution is three-fold: Firstly, we quantify the loss from restricting a testing regime
to non-overlapping tests. In non-overlapping tests, each individual can be pooled into at most
one test, a constraint that is appealing especially in smaller testing laboratories, for logistical
reasons. Secondly, we develop a non-overlapping test allocation mechanism with surprising
theoretical guarantees for optimal expected social welfare given any population, which achieves
high-quality approximations of optimal welfare for realistic populations. The procedure is
both conceptually simple, computationally efficient and practical on typical computing facilities.
Finally, we implemented our testing framework in a small scale pilot study at the Potosinian
Institute of Scientific and Technological Research (IPICYT). We provide numerical evidence of the
feasibility and performance of our procedure based on real-world data, and we provide evidence
from a randomized controlled trial that our testing mechanism does not negatively impact the
participating individuals’ productivity and performance at work, nor their subjective well-being
and mental health, when the counterfactual is a world without quarantine.

Our problem setting is fundamentally motivated and informed by a collaboration with the
Potosinian Institute of Scientific and Technological Research (IPICYT), a higher education
research institution in Mexico. In 2021, the entire institute was working remotely with access to
campus only in exceptional circumstances, and the IPICYT administration was keen to explore
safe and resource-optimal alternatives to ease the social and economical costs of a fully virtual
work environment. In September 2022, coinciding with a general reopening of campus facilities, a
heterogeneous population of 130 individuals participated in our pilot study. The treatment group

1Pooled tests can also address privacy concerns, as pooling provides a certain degree of anonymity to test takers
who may not agree to be tested individually.

2Unlike in some pooled testing regimes, we do not perform subsequent individual, or multi-stage adaptive testing,
following a positive pooled test result, as this is would be prohibitively expensive in a strongly resource-constrained
setting.
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in this study was invited for qPCR testing based on pooled testing allocations computed by our
test allocation mechanism, and allowed access to campus only following a negative qPCR test
result.

The National Laboratory of Agricultural, Medical and Environmental Biotechnology (LAN-
BAMA), housed within IPICYT, generously provided qPCR testing. A crucial building block in
the application of our algorithms was the determination of population data, consisting of the
individuals’ utilities from in-person access and their health probabilities. We devised a survey
protocol for determining the utilities and worked closely with epidemiologists at IPICYT and in
the local state of San Luis Potosí to determine accurate estimates of the probabilities of infection
for each member of the population (details are given in Section 5.2).

It is important to note that, although pooled testing increases resource efficiency with regards
to testing reagents, this can come at a significant logistical cost for laboratory personnel when
pools are overlapping, especially if the series of tests to be performed is complicated and requires
delicate tab-keeping of results. The pooled testing regime in which no individual forms part of
more than one pooled test is not only conceptually simpler to study but, more importantly, also
logistically simpler to implement. We call this testing regime ‘non-overlapping’. By contrast,
the more general overlapping testing regime allows for individual samples to be allocated to
arbitrarily many tests. The following example demonstrates that allowing overlapping tests can
result in a higher welfare than non-overlapping testing, even in simple cases. Interestingly, we
see that the healthy individual is tested twice in the optimal overlapping test allocation. This is
intuitive, as a healthy individual can be included in many tests without affecting the probability
of each test being negative.

Example 1.1. Suppose we have a testing budget of B = 2, and consider a population of three
individuals {1, 2, 3} with health probabilities q1 = q2 = 1/2, q3 = 1 and utilities u1 = u2 = u3 = 1.
As individuals 1 and 2 are identical, there are four possible non-overlapping test allocations
up to symmetry. Allocation ({1}, {2}) achieves welfare 1, and the remaining three allocations
({1}, {3}), ({1, 2}, {3}) and ({1, 3}, {2}) achieve welfare 3

2 . The best overlapping test allocation
T ∗ = ({1, 3}, {2, 3}) tests individual 3 twice and achieves a welfare of u(T ∗) = 7

4 .

Our first research question is whether non-overlapping tests may be vastly outperformed by
overlapping regimes. After all, if that is the case then supporting overlaps may be worth the
logistical overhead. During a pandemic, testing regimes have to be robust to a vast multitude
of infection states and heterogeneity between individuals. Thus, our focus is on the analysis of
worst-case scenarios, i.e. we establish welfare guarantees that hold for any configuration of health
probabilities and individual utilities. In this vein, we show that the worst-case ratio between the
welfare of the best overlapping testing regime and the best non-overlapping regime is at most 4,
and in special cases even smaller. While a factor of 4 is admittedly significant, the worst example
we know of gives a ratio of 7/6. Qualitatively, we interpret these results as a justification to focus
on non-overlapping testing regimes. This is confirmed by our empirical results, which indicate
only small gains from overlaps in practice.

Turning to the challenge of computing testing regimes, even without overlaps, it is known
from previous literature in discrete mathematics that the problem of determining an optimal
regime is computationally intractable if the pool size is unbounded3 and even with a bounded
pool size, the problem is not computationally feasible in practice (see details in Section 4).
However, we were able to design a greedy polynomial-time algorithm that finds an approximate
solution to the welfare-maximization problem, which, in the worst case, is guaranteed to achieve
at least one fifth of welfare in the optimal non-overlapping testing regime. We then compare the
performance of our greedy algorithm with optimal non-overlapping testing empirically. In order
to compute (approximately) optimal non-overlapping testing regimes, we model the problem as a

3By computationally intractable we mean that no polynomial time algorithm exists, a property also known as
NP-hardness.
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mixed-integer conic program which is tractable in our simulations. We choose a population size,
pool size constraints and testing budgets that mirror realities at IPICYT. Our results indicate that
our algorithm computes near-optimal testing regimes, and vastly outperforms the mixed-integer
linear program with respect to running time.

We also provide empirical evidence in support of our approach to welfare-maximizing pooled
testing in a resource-constrained environment by evaluating the randomized controlled trial at
IPICYT. For the pilot study, we developed a web application that formed the center point for par-
ticipants, administrators and the LANBAMA testing laboratory, and implemented our algorithm
to compute near-optimal non-overlapping group testing regimes.4 Our trial results suggest that,
compared to a best-case scenario of free mobility and full access to institutional resources (but
not testing resources), our testing approach is just as efficient in terms of performance, learning,
and mental health outcomes. At the same time, our protocol, which ensures that only negatively
qPCR-tested individuals have in-person access, and safeguards the population’s health within the
institution, unlike a full reopening without testing, and at a fraction of the cost of an individual
qPCR testing regime.5

Related work. Pooled testing dates back to the seminal work of Dorfman (1943), and has
since become a mature field in its own right with a rich literature of protocols. In contrast to
our test allocation mechanism, a large part of this literature aims to ascertain the infection
status of all individuals in a population with a minimal number of tests.6 It has been applied
to combat various diseases in the past, especially HIV/AIDS (Tu et al., 1995; Wein and Zenios,
1996; Emmanuel et al., 1988). From the outset of the COVID-19 pandemic, it became clear that
testing resource constraints would be a large issue for many countries, and hence pooled testing
became a viable option for combating the virus, especially as it was shown that qPCR tests can
be sensitive enough to pool samples in a pooled test (Sanghani et al., 2021; Mutesa et al., 2021;
Nalbantoglu, 2020).

In the economics literature, various recent contributions aim to characterize optimal testing
allocations. Lipnowski and Ravid (2021) study welfare-maximizing optimal pooled testing in
a population heterogeneous in individual health probabilities. They describe a unique optimal
test allocation exhibiting ‘assortative batching’, meaning that individuals with different health
probabilities are never pooled together. This highlights an important difference to our work,
as in our more general setup individuals of varying health probabilities may also differ in the
utility that materializes when tested negatively. Secondly, in the model of Lipnowski and Ravid
(2021), individuals may be quarantined regardless of their test result, depending on the benefit
and cost of release and their posterior probability of being infected. Consequently, the available
tests are assigned to individuals whose quarantine decision prior to testing is most uncertain. We
take a more cautious approach to quarantining: only negatively tested individuals are released.
Lipnowski and Ravid (2021) also demonstrate that individuals with lower health probabilities are
tested in smaller pools due to smaller informational externalities. While this intuition translates
to our model (see Example 1.1), the optimal allocation is complicated by the fact that different
utilities may weight externalities differently. By further contrast with our work, Lipnowski and
Ravid (2021) consider continuous populations and focus exclusively on non-overlapping testing
regimes. Our focus is on quantifying the welfare discrepancy in overlapping and non-overlapping
testing and on practical algorithms to compute an optimal testing allocation. We consider

4The web app code is available as open source at https://github.com/edwinlock/csef.git. A demo of the
app can be accessed at https://demo.c-sef.com.

5At the time of reopening, San Luis Potosí had 221,870 cumulative COVID-19 cases, of which 615 were active.
KN95 Masks were mandatory for everyone returning to IPICYT.

6The unfortunate reality is that many resource-constrained populations are in a situation where their testing
budget falls far below the information theoretic lower bounds required to precisely ascertain the health profile of
all individuals. Moreover, complex pooled testing regimes can be difficult to implement logistically at scale with
limited laboratory personnel and workflow infrastructure (Cleary et al., 2021).
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heterogeneous utilities to be indispensable in practical mechanisms as they may help improve
efficiency as well as potential inequalities, taking into account for example individual productivity
or vulnerabilities.

Ely et al. (2021) study a model where a policymaker can employ tests of different types,
each with differential costs and sensitivities. The policymaker has an overall budget, and test
allocations are measured with respect to the rate at which they correctly classify individuals as
infected or healthy. Brault et al. (2021) focus on limited pooled tests for early screening at a
non-diagnostic level with high penalties associated with false negatives. Gollier and Gossner (2020)
study pooled tests as a means to estimate infection prevalence and to find healthy individuals in a
population. The main differences between their work and ours is that we consider a heterogeneous
population as well as upper bounds on pool sizes imposed by lab constraints. Bobkova et al.
(2023) characterize the optimal test allocation in a continuous population that is heterogeneous
in infection probabilities. They focus on the case where the population can be divided into a
low-risk and a high-risk group, and consider pooled testing where each individual can be tested
at most twice. Augenblick et al. (2020) study testing frequency as a crucial factor to limiting
viral spread in a pandemic, and how pooled testing can increase the reach of a rapid frequency
testing regime when tests are limited.7

Although not cast as a pooled testing paper, the results of Goldberg and Rudolf (2020) can
be interpreted as computing the optimal allocation of a single (arbitrarily large) pooled test to a
heterogeneous population as in our model setting. The authors show that computing an optimal
single test allocation cannot be achieved in polynomial time, but they provide a procedure8 for
finding an approximately optimal single test allocation; we use their procedure as a component of
our new algorithm.

The remainder of the paper is organized as follows. In Section 2, we describe our population
and testing model. Section 3 presents the results on the optimality of non-overlapping compared
to overlapping test allocations. In Section 4, we showcase our algorithms, including the Greedy
heuristic and the MILP formulation. Section 5 details the implementation of our testing framework
at IPICYT, our simulations on real-work data, as well an evaluation of the social and economical
benefits of the test allocation mechanism. Section 6 is a discussion and outlook. All proofs are
presented in the Appendix.

2 Model

Let [n] := {1, . . . , n} denote a collection of n individuals and B ∈ N be the testing budget. A
population J of size n is a tuple (p1, . . . pn, u1, . . . , un) which assigns each individual i ∈ [n] an
independent probability of infection pi ∈ [0, 1] and a utility ui ≥ 0 that captures their gain of
returning to in-person activities.9 We also let qi = 1−pi denote the probability that an individual
is healthy. We denote the universe of all populations by J := ∆n × Rn

+.
Fix a population J . A single test consists of samples of a subset of the individuals, which we

identify with a set t ⊆ [n] of the individuals whose samples are included in the test. Test sizes
are bounded by a pool size constraint G, so |t| ≤ G for all tests t. We are primarily interested in
pool sizes G < n.10 For convenience, we introduce the notation qS =

∏
i∈S qi, for any S ⊆ [n],

to express the probability that all individuals in S are healthy; hence, qt is the probability that
test t is negative. A test allocation T = (t1, . . . , tB) is an ordered collection of B tests satisfying
|tj | ≤ G for all j ∈ [B] := {1, . . . , B}.

7See also Larremore et al. (2021).
8This procedure is a fully polynomial-time approximation scheme (FPTAS).
9Utility might reflect people’s socioeconomic status, the type of occupation, or mental health considerations.

See Section 5.2 for details on the utilities in our pilot.
10Pool sizes in pooled tests are limited due to biological constraints. Our partners in Mexico have replicated

techniques from Sanghani et al. (2021) to achieve a maximal pool size of 5 with saliva samples.
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For a given test allocation T , let P T
i denote the probability that i ∈ [n] is included in at least

one negative test tj ∈ T . A test allocation only earns utility from individuals who return to
in-person activities as a result of being in a negative test. We let u(T ) denote the welfare, i.e. the
aggregate expected utility, earned under test allocation T .11 Linearity of expectation allows us to
express the welfare of T as u(T ) =

∑
i∈[n] ui ·P T

i . In addition, we let u(t) := u({t}) = qt
(∑

i∈t ui
)

for a single pooled test t. A test allocation T is optimal (for a given population) if it maximizes
welfare. Without loss of generality, we assume that B < n. If this is not the case, testing every
person in the population individually is optimal. When the population J is not fixed, we denote
u(T, J) the welfare of a test allocation T in population J .

Non-overlapping test allocations. As discussed in the Introduction, we are particularly
interested in non-overlapping test allocations, which include each individual in at most one test.
Formally, a test allocation T is non-overlapping if t ∩ t′ = ∅ for all distinct tests t, t′ ∈ T . In
general, P T

i can be a complicated expression due to correlation between overlapping tests. In a
non-overlapping test allocation, T , on the contrary, test results are independent of each other,
and the welfare of T is given by u(T ) =

∑
t∈T u(t).

Independence of Infections. In general it may be the case that infections in a population are
correlated. However, we emphasize that our testing model is intended for a regime wherein all
individuals in the given population are assumed to be in full lockdown, hence social interactions
at the workplace do not contribute to potential correlation of infection for two key reasons: Either
individuals who would potentially interact are forcibly at home, and hence no longer interact, or
if the individuals are interacting at the workplace, it is because they are both in a negative test
and hence cannot infect each other.

3 Performance of non-overlapping testing

In general, overlapping testing can achieve higher welfare than test allocations that are restricted
to not overlap, as demonstrated in Example 1.1. However, non-overlapping test allocations are
often strongly preferred for logistical reasons. This was the case with our partner institution,
which was running a small testing lab in which the assignment of individual samples to more than
one test was close to infeasible. A natural question is to identify how much welfare may be lost
by restricting to non-overlapping tests. If the difference in welfare achievable with overlapping
and non-overlapping testing is not too large, even institutions with the logistical capacity to
run overlapping tests may choose the latter. Our goal in this section is to provide robust upper
bounds on the increase in welfare achievable when we allow tests to overlap.

Given a population J and budget B, we define the overlap welfare ratio R(B, J) for budget
B and population J as the ratio of the welfare of an optimal test allocation over the welfare
of an optimal non-overlapping test allocation. Formally, we let T ∗(B) and T (B) respectively
denote the space of all test allocations and all non-overlapping test allocations with testing
budget B. We define optimal welfare from overlapping and non-overlapping test allocations as
OPT∗(B, J) := maxT ∗∈T ∗(B) u(T

∗, J) and OPT(B, J) := maxT∈T (B) u(T, J), respectively. The
overlap welfare ratio for budget B and population J is given by R(B, J) = OPT∗(B,J)

OPT(B,J) .

Definition 3.1. The overlap welfare ratio for budget B is an upper bound on the welfare increase
from allowing overlapping test allocations across all possible populations J . Formally,

R(B) = sup
J∈J

R(B, J).

11We omit the term ‘expected’ for brevity and assume that all welfares and utilities are determined in expectation.
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Recalling Example 1.1 with a population J of three individuals and a budget B of 2 from the
introduction, we saw that the maximum welfare achievable by testing with and without overlaps
is OPT∗(2, J) = 7

4 and OPT(2, J) = 3
2 , respectively. Hence the overlap welfare ratio for budget

2 and the given population is R(2, J) = 7
6 , demonstrating that the ratio can be greater than 1.

The example immediately implies Proposition 3.2.

Proposition 3.2. The overlap welfare ratio R(2) for budget 2 is at least 7
6 .

We next show in Proposition 3.3 that Example 1.1 also represents a worst case when we have
a budget of B = 2. That is, no population achieves a higher overlap welfare ratio with 2 tests
than 7

6 achieved with the population from Example 1.1. In the example, welfare was maximized
by including the healthy individual in both tests. Similarly, in the proof of Proposition 3.3
we use a property that the overlap welfare ratio is maximized when the health probabilities of
the individuals included in both tests are 1. The proof of Proposition 3.3 works by dissecting
an optimal overlapping two-test allocation T ∗ = (t∗1, t

∗
2) for an arbitrary population into the

individuals A contained only in the first test, the individuals B contained only in the second
test, and the individuals C in both tests. We then consider the four non-overlapping two-test
allocations T 1 = (A ∪ C,B), T 2 = (A,C), T 3 = (B,C) and T 4 = (A ∪ B,C) and show that
at least one of these allocations achieves a welfare that is greater or equal to 6

7 of the welfare
achieved by T ∗.

Proposition 3.3. The overlap welfare ratio R(2) for budget 2 is at most 7
6 .

Stated differently, with a budget of two tests, allowing for overlaps increases welfare by at
most 16.7%. Similar results can be derived for testing budgets of 3 and 4, with larger upper
bounds. The proof of Proposition 3.4 considers all subsets of individuals who are included in
exactly k sets, for all 1 ≤ k ≤ B. These subsets are non-overlapping by construction, and we
show that the B subsets with the largest utility achieve an overlap welfare ratio no greater than
7
3 for B = 3 and 15

4 for B = 4.

Proposition 3.4. The overlap welfare ratios for budgets B ∈ {3, 4} are bounded by R(3) ≤ 7
3

and R(4) ≤ 15
4 .

Proposition 3.4 states that allowing overlaps cannot increase welfare by more than 133.3%
with three tests, and by more than 275% with four tests. Given these sharp increases in upper
bounds of the overlap welfare ratio, one might expect further increases from adding even more
tests to the budget, or the ratio being even unbounded for B ∈ Z+. Surprisingly, however, we
show that allowing overlaps increases welfare by at most 300% for any testing budget, i.e. even if
the budget is arbitrarily high, for any populations and any pool sizes.

Theorem 3.5. For any budget B, the overlap welfare ratio R(B) is at most 4.

We emphasize that the proof of Proposition 3.4 does not provide any indication that there
exist populations that actually achieve a gain from allowing overlaps of 7

3 and 15
4 with budgets 3

and 4, and Theorem 3.5 does also not give any indication that some population may actually be
300% better off with overlapping testing. In fact, we do not know of any populations that achieve
an overlap welfare ratio greater than the moderate gain of 7

6 . Extensive computational searches
we performed have failed to identify any such populations. We conjecture that the overlap welfare
ratio is close to 7

6 even for budgets greater than 2. That is, our upper bounds are not tight, albeit
surprising in light of the richness of our model.

We conclude this section by sketching the main arguments of the proof of Theorem 3.5. The
full proof is given in Appendix A.2. Given an optimal overlapping test allocation T ∗ with budget
B for some population, the proof works by constructing two non-overlapping test allocations T 1

and T 2 whose tests are no larger in size than the tests in T ∗, and showing that T 1 or T 2 achieves
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an overlap welfare ratio no larger than 4. As this construction works for any population, testing
budget and pool size, this proves Theorem 3.5.

We now provide more detail on how T 1 and T 2 are constructed and how we prove the overlap
welfare ratio bound of 4. First we construct an intermediary non-overlapping test allocation
T = {t1, . . . , tB} from T ∗ that removes each tested individual from all but the first test of T ∗ in
which the individual appears. (As a result, some tests in T may be empty.)

For each test tj of T , we choose a subset Sj ⊆ tj of smallest cardinality so that the probability
of all individuals in Sj being healthy is strictly less than 1

2 . This means that the probability of
any strict subset of individuals in Sj being healthy is at least 1

2 . If such a subset does not exist,
we let Sj be the empty set. The two allocations T 1 and T 2 are defined as T 1 := (S1, . . . , SB) and
T 2 := (t1 \ S1, . . . , tB \ SB). By construction, the individuals included in allocation T are split
between T 1 and T 2.

The key technical step in the proof consists of Lemma A.4 which, broadly speaking, tells us
that no test in T can be partitioned into two subsets which both have probability less than 1

2 of
being healthy.12 For the proof of Lemma A.4, we devise a novel ‘pivoting’ technique that allows
us to express the overall welfare of a test allocation as the sum of the expected marginal utilities
gained from each consecutive test if we assume (for the sake of proof) that the tests are applied
sequentially in order (see Observation A.2 and surrounding discussion for details).

In particular, as the probability qSj is less than 1
2 due to our choice of Sj , Lemma A.4

tells us that the probability qtj\Sj
of all individuals in tj \ Sj being healthy is at least 1

2 . The
construction of the sets Sj thus ensures that qt ≥ qi · 12 for any test t in T 1 or T 2 and any
individual i ∈ t. We use this, together with the fact that T 1 and T 2 are non-overlapping, to argue
that the welfare achieved by T 1 is u(T 1) = 1

2

∑
i∈T 1 qiui, and likewise for T 2. It follows that

max{u(T 1), u(T 2)} ≥ 1
4

∑
i∈T qiui. As the welfare of allocation T ∗ is at most u(T ∗) ≤

∑
i∈T qiui,

the result follows.

4 Finding near-optimal test allocations

We now discuss how to determine approximately optimal test allocations. As we show, computing
an exact optimal test allocation is computationally intractable even when the budget consists
of a single test, as well as in practically relevant applications. Thus, our main goal is to
establish a simple but effective heuristic for this problem. We prove that our heuristic produces
a test allocation with expected welfare that is at least 20% of expected welfare in the optimal
non-overlapping test allocation for any population, and regardless of the pool size and testing
budget. While it is in itself surprising that such a theoretical guarantee exists, our computational
experiments also show that, in practice, the algorithm we design performs extremely close to
optimal, i.e. the welfare it achieves is within 99.5% of optimal non-overlapping welfare (see Tables 1
and 3 for outcomes of numerical experiments on pilot data). In special cases, we also show better
theoretical guarantees: when the number of individuals is large relative to the testing budget, our
heuristic finds an optimal test allocation; and when utilities are homogeneous, a variation of our
heuristic achieves an e-approximation, i.e. at least roughly 37% of optimal non-overlapping welfare.
Our heuristic is also the only computational method we know of that can find a near-optimal
non-overlapping test allocation in a reasonable amount of time for realistic problem sizes such as
the population encountered in our pilot.

First, consider the problem of computing an optimal test allocation with a budget of B = 1,
where the non-overlapping and overlapping testing regimes coincide. For unbounded pool sizes,
the single-test problem is NP-hard. This was shown by Goldberg and Rudolf (2020) in their work
on the maximum expected value all-or-nothing subset problem. When the pool size is bounded by
a constant G < n, an exhaustive search procedure that explores all possible test allocations checks

12This lemma is stated and proved in the appendix, and is a non-trivial generalization of Lemma 6 in (Goldberg
and Rudolf, 2020). A variant of this lemma is also used in the proof of Theorem 4.1, our main result in Section 4.
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∑
k∈[G]

(
n
k

)
= O(nG) possible test constellations. Even though this exhaustive search algorithm

runs in polynomial time for a fixed pool size, reasonable choices of pool sizes such as G = 5 or
G = 10 for saliva testing (as implemented by our partner institution), and pool sizes of G = 32,
G = 48, and G = 57 for nasal swab testing (Yelin et al., 2020; Shental et al., 2020; Theagarajan,
2020) make this procedure prohibitively expensive in practice.

In Section 4.2, we describe two methods for computing a single-test allocation. Both methods
return a single test with a welfare that is within a factor of 1− ε of optimal welfare, with ε > 0
denoting a tiny error tolerance that can be adjusted when using either method. Our heuristic
relies on the repeated application of one of these single-test allocation procedures. In order to
evaluate its performance in terms of optimal welfare and running time, we must also solve the
optimal welfare problem with non-overlapping tests exactly. We tackle this problem with a convex
programming formulation. For computational reasons, we again develop an approximation via a
mixed-integer linear programming formulation (MILP), and we establish convergence to, and an
approximation guarantee very close to, the optimal welfare. The MILP formulation is discussed
in Section 4.3. Our numerical experiments show that our heuristic is significantly faster than
solving the MILP.

4.1 A test-by-test heuristic

Our heuristic consists of a serial application of single-test allocations. We describe two single-test
allocation algorithms below in Section 4.2, one based on a fully polynomial-time approximation
scheme (FPTAS) and another formulating the problem as a mixed-integer conic optimization
problem (MICP). For now, fix a single-test allocation mechanism. Our algorithm uses this
mechanism to find an (approximately) optimal test among the population, and adds this test to
the overall test allocation. Disregarding all individuals that have already been included in tests,
the single-test mechanism is used again to find the next (approximately) optimal test allocation
among the remaining individuals. The procedure continues in the same fashion until the testing
budget or the population is exhausted. This results in a non-overlapping test allocation, as we
never consider individuals that have already been included in a test. We refer to this algorithm
as Greedy. The performance of Greedy depends, unsurprisingly, on the performance of the
single-test allocation mechanism. Given some population J , suppose OPT(1, J) denotes the
welfare achieved by an optimal single-test allocation mechanism, and let ÕPT(1, J) denote the
welfare achieved by a single-test approximation algorithm. For both our single-test allocation
mechanisms it holds that ÕPT(1,J)

OPT(1,J) = 1− ε, where the approximation error ε is 10−7 for the conic
program, and can be set arbitrarily small for the FPTAS.

Theorem 4.1. For any population and testing budget, Greedy achieves at least 1−ε
5 of the welfare

of the optimal non-overlapping test allocation, where ε is the error tolerance of the single-test
allocation mechanism.

To provide an overview of the proof of Theorem 4.1, suppose that T ∗ is an optimal non-
overlapping test allocation and that T is the test allocation returned by Greedy which tests
individuals N ′. Without loss of generality, we can assume that N ′ = {1, . . . , n′} for some n′ ≤ n.
The first step of the proof demonstrates that T obtains (1− ε) of the welfare achieved by T ∗ from
individuals not in N ′, so u(T ) ≥ (1− ε)

∑
j∈B qt∗j ·

(∑
i∈t∗j\N ′ ui

)
. This follows from the fact that

Greedy picks tj , and not t∗j \ N ′, as the j-th test. Indeed, the fact that it chooses tj means
that tj contributes a utility of at least (1− ε) of the utility of test t∗j \N ′; and this, in turn, is
at least the utility T ∗ obtains from individuals in t∗j \N ′. The second part of the proof shows

that T obtains at least (1−ε)2

4 of the total expected utility of healthy individuals contained in N ′,
which is given by

∑
i∈N ′ qi · ui. The latter is also an upper bound on the utility that allocation

T ∗ obtains from individuals in N ′. Hence, T ∗ achieves a utility of at most 4
(1−ε)2

u(T ) utility
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from individuals in N ′ and at most 1
(1−ε)2

u(T ) from individuals in [n] \N ′. Summing these two
utilities shows us that T ∗ achieves a utility no higher than 5

(1−ε′)u(T ) for ε′ ≥ 2 · ε.
Note that we can also combine Theorem 4.1 with Theorem 3.5 to show a constant-factor

bound on how well Greedy performs in comparison to overlapping testing.

Homogeneous utilities. Next we consider the special case in which all the individuals have
the same utility. The following example demonstrates that Greedy may produce suboptimal
allocations (though necessarily bounded in their suboptimality via Theorem 4.1). In the example,
all individuals have the same utility and health probability; the health probability is chosen such
that Greedy will exhaust the entire population with a single test, rendering the remaining B− 1
tests useless. In the limit, as the population size goes to infinity, the example shows that Greedy
can perform a factor of e worse than optimal overlapping testing.

Example 4.2. Consider a population of n individuals with homogeneous utilities u = 1 and
probabilities q = n−1

n , and a testing budget of n. Clearly, the optimal testing strategy is to test
every person individually, which yields an expected welfare of nq = n−1. The Greedy algorithm
tests the entire population with its first test, as nqn ≥ kqk for all k ≤ n. Hence Greedy achieves
an expected welfare of nqn = n(n−1

n )n, implying a welfare ratio of (n−1
n )1−n → e as n→∞.

We design a variant of Greedy which sorts the individuals in decreasing order with respect
to the probability of being healthy and, in each step, adds individuals to the current test
as long as the expected utility of the test increases. In Appendix B.2.2, we show that this
OrderedGreedy algorithm returns an e-approximate non-overlapping test allocation. When
applying OrderedGreedy to Example 4.2, all individuals are also pooled into a single test,
hence this shows that the approximation ratio achieved by OrderedGreedy is tight.

Proposition 4.3. If all individuals have the same utility, OrderedGreedy returns an e-
approximate non-overlapping test allocation.

Suppose that T is a test allocation returned by OrderedGreedy which tests individuals
[n′] ⊆ [n]. The proof of approximate optimality of T rests on showing that if an individual i is
included in test tj of size |tj | = k, then qi ≥ (k− 1)/k. This implies that qtj ≥ qi

(
k−1
k

)k−1 ≥ qi
1
e .

It follows that u(T ) ≥ 1
e

∑
i∈[n′] qi · ui. On the other hand, the welfare of T ∗ is upper-bounded by

u(T ∗) ≤
∑

i∈[n′] qi · ui, as this is the expected utility of healthy individuals tested in T ∗.

Optimal performance with clusters. Finally we consider the scenario in which individuals
can only exhibit utilities and probabilities from a finite set of values. Specifically, we assume that
the population at hand can be partitioned into m disjoint clusters, C1, . . . Cm, where Cℓ, has nℓ

individuals with identical utility, uℓ, and probability of infection pℓ (probability of health qℓ).
Since individuals are indistinguishable within a cluster, we can identify a test t with the number
of individuals included from each cluster. We let t(ℓ) denote the number of individuals from
cluster Cℓ included in t. Suppose that t∗ is a single test that achieves optimal utility and that t
is a near-optimal test with u(t) ≥ (1− ε)u(t∗). We can show that if the population at hand is
such that t can be repeated B times, then not only does Greedy return this allocation, but it is
also obtains (1− ε) welfare of what is obtained by an optimal overlapping test allocation.

Proposition 4.4. Suppose that t is a (1− ε)-optimal test and B · t(ℓ) ≤ nℓ holds for each ℓ ∈ [m].
Then Greedy returns an optimal allocation that applies B tests with the same composition as t.
This allocation obtains (1− ε) welfare of what is obtained in an optimal overlapping test allocation.

The intuition behind this result is simple. Suppose that T ∗ = (t∗1, . . . , t
∗
B) is an optimal

overlapping test allocation and that t∗ is an optimal single pooled test for the population. Using
Observation A.2, we can decompose u(T ∗) as the sum of marginal utility obtained from each
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test when T ∗ is assumed, for the sake of the proof, to be applied sequentially. We can show
that each marginal utility is bounded by u(t∗), and so u(T ∗) ≤ B · u(t∗). On the other hand,
u(t) ≥ (1 − ε)u(t∗) and the fact that B · t(ℓ) ≤ nℓ holds for each ℓ ∈ [m] means that t can be
applied B times in the population. This what Greedy does, returning an allocation T with
welfare u(T ) ≥ (1− ε)u(T ∗).

4.2 Optimally allocating a single test

4.2.1 Designing an FPTAS

Goldberg and Rudolf (2020) introduce a type of algorithm commonly known as a fully polynomial-
time approximation scheme (FPTAS) that runs in time O

(
n5/ϵ

)
.13 This FPTAS returns a test

with an almost-optimal welfare; the test returned achieves a factor of 1− ε of the optimum achiev-
able welfare. Here ε > 0 is a positive value that can be chosen arbitrarily small. The algorithm
of Goldberg and Rudolf (2020) returns a test with an arbitrary pool size. In Appendix B.3, we
show how their algorithm can be adapted to return an almost-optimal single-test allocation when
a constant pool size constraint is imposed.

To provide intuition for the FPTAS, we first describe at a high level a dynamic program
that exactly solves for an optimal test. For i ∈ [n], let P (i, C, L) = max{qS | S ⊆ [i], |S| =
L, and

∑
ℓ∈S uℓ = C} denote the largest negative probability of a subset of [i] of cardinality L

and total utility C. Note that C̄ =
∑

i∈[n] ui is an upper bound on the sum of utilities of an
optimal test, and pooled tests are bounded by G. We can compute P (i, C, L) for C ∈ [C̄] and
L ∈ [G] via dynamic programming in O(nGC̄) = O(n2C̄) time. The test with maximal utility is
the test that maximizes C · P (i, C, L). Our approach is similar to the dynamic program used in
Goldberg and Rudolf (2020), but differs in that we keep track of pool sizes using parameter L.

This dynamic program does not run in polynomial time due to the time dependence on C̄,
which is exponential in the binary representation of the population data. Instead, our polynomial-
time algorithm uses a similar dynamic program as described above, but replaces each agent’s
utility by ⌊ui/κ⌋.14 Larger values of κ give rise to better running times (as the resulting problem
is smaller), but result in worse approximation guarantees. Choosing the value of κ carefully as
a function of the desired approximation parameter ϵ, we achieve a polynomial running time of
O(n5/ϵ) while retaining an approximation factor of 1− ε.

Proposition 4.5. The FPTAS presented in Appendix B.3 finds an almost-optimal single-test
allocation with pool size at most G in time O(n5/ϵ).

4.2.2 Formulating a conic optimization problem

The problem of allocating a single test can also be formulated as a mixed-integer conic optimization
program (MICP), and solved using a commercial conic solver. This implementation is used in the
web app accompanying our pilot study. We formulate the MICP as follows.

Define the indicator vector x ∈ {0, 1}n with xi = 1 if individual i is included in the (single)
test, and xi = 0 otherwise. Our objective is to maximize the expected utility from the test given by∑

i∈[n] uixi ·
∏

i∈[n] q
xi
i . We impose a pool size between 1 and G with constraint 1 ≤

∑
i∈[n] xi ≤ G.

In order to isolate the non-linear element of the optimization problem, we maximize the logarithm
of the original objective, and introduce the variables z =

∑
i∈[n] uixi and y = log z. Note that

we can we relax the equality in the only remaining non-linear constraint y = log z to y ≤ log z
without affecting the outcome. The resulting optimization problem is given by

13An FPTAS is an algorithm that achieves (1 − ε) optimality, where for a given ε, the running time of the
algorithm is polynomial in the problem instance (in this case n) as well as 1/ε.

14This approach is commonly used to design FPTASs for knapsack problems in the computer science literature.
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max y +
∑
i∈[n]

xi log qi (1a)

s.t. y ≤ log(z), (1b)

z =
∑
i∈[n]

uixi, (1c)

1 ≤
∑
i∈[n]

xi ≤ G, (1d)

xi ∈ {0, 1}, ∀i ∈ [n]. (1e)

Moreover, Constraint 1b can be formulated as the conic constraint (z, 1, y) ∈ Kexp. Here Kexp

is the exponential cone defined as

Kexp = {(x1, x2, x3) | x1 ≥ x2e
x3/x2 , x2 > 0} ∪ {(x1, 0, x3) | x1 ≥ 0, x3 ≤ 0}.

We show in our numerical experiments that the resulting MICP can be solved rapidly with the
conic solver MOSEK (ApS, 2023). Example running times can be found in Table 1 (Section 5.3)
and Table 4 (Appendix D).

4.3 Optimal test allocation of any number of tests

When multiple tests are to be allocated, the optimal allocation problem no longer admits a conic
formulation. Instead, we can formulate a mixed-integer convex program. Unfortunately, the
time it takes to solve this program directly is prohibitive. Thus, we approximate the convex
program with a mixed-integer linear program (MILP), resulting in a near-optimal non-overlapping
solution. The MILP formulation approximates exponential constraints of the convex program
with piecewise-linear functions that can be formulated as a collection of mixed integer linear
constraints. The accuracy of this approximation can be adjusted by tuning the number K of
segments of the piecewise-linear function, at the cost of introducing more (integer) variables and
thus the time to solve the program. We provide practical (additive) approximation guarantees
for solutions computed by the MILP as a function of parameter K. The MILP formulation is
competitive when test budgets are low but too computationally intensive when budgets increase.

For the MILP program it can also be valuable to cluster identical individuals in the population.
A formulation of the MILP with clusters, which may speed up computations, is provided in
Appendix B.4.

4.3.1 Formulating a mixed-integer linear program

We can assume that the testing budget B is at most the population size n, and so pool sizes lie
between 1 and G. We proceed similarly to our formulation of the conic program. For each test
j ∈ [B], we introduce an indicator vector xj ∈ {0, 1}n with xji = 1 if individual i is included in j

and xji = 0 otherwise, and let variable wj denote its expected utility wj = u · xj
∏

i∈[n] q
xj
i

i . We
impose pool sizes between 1 and G with constraints 1 ≤

∑
i∈[n] x

j
i ≤ G for all j ∈ [B], and non-

overlapping testing with constraints
∑

j∈[B] x
j
i ≤ 1 for all i ∈ [n]. Our objective is to maximize

welfare
∑

j∈[B]w
j . In order to isolate the non-linear elements of the optimization problem, we

reformulate the problem with additional variables: variables lj denote the logarithm of wj , and
variables yj and zj allow us to isolate the non-linear elements of each wj into constraints (2b)
and (2d).
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max
∑
j∈[B]

wj (2a)

s.t. wj = exp lj , ∀j ∈ [B], (2b)

lj = yj +
∑
i∈[n]

xji log qi, ∀j ∈ [B], (2c)

yj = log zj , ∀j ∈ [B], (2d)

zj = u · xj , ∀j ∈ [B], (2e)∑
j∈[B]

xji ≤ 1, ∀i ∈ [n], (2f)

1 ≤
∑
i∈[n]

xji ≤ G, ∀j ∈ [B], (2g)

xji ∈ {0, 1}, ∀i ∈ [n],∀j ∈ [B] (2h)

In order to make the problem tractable, we assume that the utility vector u is integral and
non-negative. This assumption is benign, as the problem is invariant to scaling of utilities.
We describe in Appendix B.4 how the non-linear constraints (2b) and (2d) can respectively be
captured approximately and exactly by integer linear constraints. The exponential constraints
are approximated with piecewise-linear functions that can be formulated as a collection of mixed
integer linear constraints. The accuracy of this approximation can be adjusted by tuning the
number K of segments of the piecewise-linear function, at the cost of introducing more (integer)
variables and thus the time to solve the program. As described in Appendix B.4, this allows us
to compute (additive) approximation guarantees for the MILP as a function of K.

5 Our algorithms in practice

On 9 June 2021, Mexico performed 0.07 COVID-19 tests per 100,000 inhabitants, whereas,
e.g., the UK performed 13.48 tests per 100,000 people.15 In light of this discrepancy, variable
contagion rates and vaccine hesitancy, there was an urgent need for alternative strategies to
manage the pandemic. While laboratories with qPCR testing capabilities were few and lateral
flow tests prohibitively expensive, private and public institutions had some liberty in developing
institutional health policies. Thus, in late 2021, we partnered with the Potosinian Institute for
Scientific and Technological Research (IPICYT), a higher education and research institute in San
Luis Potosí, Mexico. At the time, academics, administrative staff, and students performed all
their tasks remotely and the IPICYT administration was eager to find a safe way to allow their
staff and students to return to campus. Within this context, our utility-maximizing Greedy
algorithm for pooled testing was accepted as a phase-in experiment. In preparation for this
pilot study and during the development of our algorithmic framework, numerous consultations
with the IPICYT administration, faculty, and lead scientists from their in-house LANBAMA
laboratory informed our algorithms and their implementation. Some constraints, including the
testing budget of B = 30 per week, a pool size of G = 5, and a preference for non-overlapping
tests were set by the institution and the lab.16

Our goals as researchers for the implementation of our algorithm were two-fold: first, we
wanted to capitalize on the opportunity to obtain real-world data that could provide valuable
input for simulation experiments. Second, we wanted to evaluate the impact of our testing
framework as a whole on IPICYT’s population. In this section, we describe the transfer and

15Numbers were retrieved from Our World in Data.
16LANBAMA had validated and implemented pooled testing with saliva samples for pool sizes up to 5.
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deployment of (some) of our algorithms in practice and how we evaluated their performance and
impact.

In Section 5.1, we outline the design of our algorithmic implementation and the pilot study.
Section 5.2 details the crucial building block of probabilities and utilities as input to our algorithms.
In Section 5.3 we showcase our simulations on the performance of our algorithms based on real-
world data input. Finally, Section 5.4 presents the impact evaluation of our Greedy algorithm
and testing framework at IPICYT.

5.1 Experimental design

We implemented our utility-based non-overlapping pooled testing regime based on Greedy in a
two-group randomized controlled trial at IPICYT in September 2022. A heterogeneous population
of 130 individuals participated, including students, academics, and administrative staff.17 Shortly
before the trial commenced, IPICYT resumed full access for all its members. Having the academic
community return to in-person activities allowed us to define a treatment and control group, each
of them clustered by field and working group.18 The treatment group followed a safety protocol,
including scheduled testing and onsite work conditional on a negative result. The control group
followed no protocol and returned to onsite activities. The control was in essence a ‘first-best’
benchmark, generating the outcomes one would expect without any COVID-19 restrictions and
impositions from testing requirements - but without the guarantee of being in a infection-free
environment. Our outcomes of interest were the staff and students’ productivity, performance,
learning, stress score, and subjective well-being.

All elements of the pilot study, including consent, a baseline and an endline survey, email
invitations for testing, data processing, and computing test allocations, were coordinated in a web
app developed specifically for the trial. A demo version is available at https://demo.c-sef.com.

At the beginning of each week, we computed an optimal test allocation among the treatment
group for each day of the week, given a budget of 30 tests, and invited individuals to submit their
saliva samples for testing at the LANBAMA facility. Among submitted samples, we determined
once more the optimal test allocation on a daily basis. The treatment group was allowed access to
university facilities after a negative test result, for at most 72 hours, and otherwise was required
to work remotely. Participants were assigned to an experimental condition with peers from their
working group, so that the majority of their social institutional interaction was contained in their
experimental condition.19

5.2 Determining population data: utilities and health probabilities

The crucial input for our algorithms are the individuals’ utilities and health probabilities.
Our rationale for developing a three-dimensional utility measure lies in documented effects of

COVID-19 social-distancing policies. Firstly, an individual’s need for in-person work or study
depends on the nature of their work: e.g., an experimentalist in a lab must attend more frequently
than a theoretician must visit their campus office. This specific need for in-person access was
inferred from questions about use of digital media, which were designed, ordered and worded
to make it difficult to judge how to answer a question in order to be prioritized for testing.
Secondly, we considered evidence that the closure of learning environments disproportionately

17At the end of the pilot, we collected between 118 and 122 complete data points, depending on the outcome of
analysis. More on attrition in Appendix E.4.

18In practice, field and working group were analogous, as only one working group from each participating field
volunteered to be a part of the experiment.

19If non-treated participants had encountered treated participants, possible contagions would be contained
within our health protocol due to the 72-hour non-contagious access window. Although not strictly enforced,
participants were encouraged not to socialize with non-treatment participants as to avoid psychological spillovers.
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affects vulnerable individuals, e.g. with low-income.20 We queried vulnerability with data on
participants’ self-perceived socio-economic status, a characteristic known to correlate with most
forms of protected vulnerability attributes in Mexico.21 Thirdly, mental health is known to
be negatively affected by pandemic-induced remote learning and work for younger and and
older individuals,22 and students and employees in Mexico have struggled with mental health
problems associated with COVID-19 institutional closures23. Mental health status was queried
with standard, validated survey questions (cf. Appendix E.3).

We denote by upri the utility subject i gains from increased productivity, by upsyi the ben-
efit on i’s mental health from attending in-person, and by usei a bonus for socio-economically
disadvantaged individuals, who are likely to be more affected by working remotely. The overall
utility is a weighted sum ui =

∑
k∈{pr,psy,se}w

kuki .
24 We define the composition of uki for category

k ∈ {pr, psy, se}. Let P k
i,z denote the number of points achieved by the answer of subject i to

question z, and Zk the number of questions relevant in category k.25 For each category, the score
is uki = 1

Zk

∑
z P

k
i,z.

Health probabilities were estimated for age and gender categories using Bayesian updates of
local public health data. We computed the probability of being infected conditional on being
in one of the following 6 groups: {male, female} × {age 15-29, 30-59, ≥60}. The baseline
probability of infection for a given age group is determined using Bayesian updates of local
public health data, under the guidance of local epidemiologists. More specifically, we used
publicly available epidemiological models from the Institute of Health Metrics and Evaluation
(IHME) to estimate baseline infection rates in San Luis Potosí.26 These estimates provided us
with values for Pr[infection] for all individuals in the population, irrespective of their category.
Furthermore, we estimated the probability that an individual belongs to a given category given an
infection via official national data on testing results.27 These estimates provide us with values for
Pr[category | infected] for each category. Finally, we used census data to compute the probability
of membership to a given category at the state/national level.28 This provides us with an estimate
for Pr[category] for the population. With Bayes’ rule, we compute the desired probability of
infection per category as follows: Pr[infection | category] = Pr[category|infection] Pr[infection]

Pr[category] . The
probabilities of being healthy were approximately 99.5% for each group. The probabilities stayed
constant throughout this trial, as it only ran for 4 weeks. If applied over a longer period, the
health probabilities may also be updated.29

20See e.g. (Azevedo et al., 2021; Gorgen and McAleavy, 2020; Goudeau et al., 2021; Hossain, 2021). These
studies of heterogeneous effects on vulnerable populations are primarily conducted with students ranging from
K-12 to Higher Education; however, they also document similar issues for teaching staff and generally academic
environments.

21Low income is highly correlated with belonging to an ethnic minority, the elderly, or being female (Or-
dóñez Barba, 2018).

22E.g. (Asanov et al., 2021; Bertoni et al., 2022)
23See e.g. (Limón-Vázquez et al., 2020; Martinez Arriaga et al., 2021)
24The weights were

(
1
3
, 1
3
, 1
3

)
in our trial. We refrained from any value judgment on importance of category.

25Relevance of a question to a specific category is marked in the survey in Appendix F by the corresponding
abbreviation just after the question numbering. Not all questions are relevant for the construction of utilities.

26Estimated infection rates for SLP with IHME models can be found at their dashboard for different public be-
havior regimes: https://covid19.healthdata.org/mexico/san-luis-potosi?view=infections-testing&tab=
trend&test=infections.

27National testing aggregates can be found at https://datos.covid-19.conacyt.mx and https://covid19.
healthdata.org/mexico/san-luis-potosi?view=infections-testing&tab=trend&test=infections.

28Census data can be found at https://www.inegi.org.mx/programas/ccpv/2020/.
29If the random element of time spent offsite can be controlled for, Bayesian updating using test results may be

preferred.
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5.3 Performance evaluation of Greedy and the MILP

We evaluate the accuracy and running times of the Greedy algorithm and the MILP on
populations reflecting real-world scenarios. In our first numerical experiment, we test both
algorithms on population data from the pilot study with testing budgets B up to 34 and pool
size constraints G of 5 and 10.30 These simulations illustrate the efficacy of Greedy with low
disease incidence. In order to study how well Greedy performs when faced with higher infection
rates, we also ran simulations on synthetic data in which health probabilities range from 0.5 to 1,
and explore test budgets B up to 12. Moreover, we also study outcomes when pool sizes increase
to G = 10 (a typical pool size for nasopharyngeal samples).

In our synthetic experiments, we showcase the average-case behavior of Greedy and the
MILP by generating random populations of size n = 150. Health probabilities are drawn
independently and uniformly at random from the interval [0.5, 1], and utilities are drawn from
a normal distribution that was fitted to the utilities observed in the pilot study. We then run
Greedy and the MILP on each population for both pool sizes G ∈ {5, 10} and for all testing
budgets B ∈ {2, 4, . . . , 12}, recording the welfare achieved for both algorithms, as well as their
running times (in milliseconds).31

For all experiments, we document the true welfare achieved by the test allocations returned
by both algorithms, and not the objective values of the underlying MILP and conic optimization
problems. For the MILP algorithm, we tune the parameter K of the formulation so that the
additive approximation guarantee (cf. Appendix B.4) is small (K = 25 for the simulations on pilot
data, and K = 20 for the simulations on synthetic data). The code used to run our simulations
can be found at https://github.com/edwinlock/pooled-testing.git.

Results. Table 1 lists the welfares achieved by Greedy and the MILP on the pilot data for
pool size G = 5, as well as the running times for both algorithms, the approximation guarantee
achieved by the MILP, and an upper bound on how much better the MILP does compared to
Greedy in terms of a welfare ratio. This upper bound is determined by summing the welfare
and the approximation guarantee of the MILP to upper bound the optimum achievable welfare,
and then dividing by the welfare achieved by Greedy. Table 3 in Appendix D shows analogous
results for pool size constraint G = 10. We observe that Greedy achieves near-optimal welfare
for budgets up to 10 for both pool sizes. Moreover, the running time of the MILP increases
significantly faster with the test budget B than Greedy, and the latter is extremely fast (even for
larger populations and testing budgets). This makes Greedy attractive for implementations that
rely on a quick turnaround, run on ‘budget hardware’ or wish to avoid costly cloud computing
services.

In our synthetic simulations with lower health probabilities, Greedy performs as well as
the MILP when G = 5, and remains highly competitive also when G = 10. Figures 1 and 2 in
Appendix D plot the mean welfare achieved by both algorithms for pool size constraints G = 5
and G = 10, as well as the welfare ratios. For the latter, we divide the welfare achieved by the
MILP by the welfare of Greedy for each population, and depict the resulting ratios as black
dots. In Appendix D, Tables 4 and 5 list the mean welfare and running times of both algorithms,
as well as the approximation guarantee of the MILP, for G ∈ {5, 10}.

Comparing the outcomes between different pool sizes G ∈ {5, 10}, we see that increasing
pool sizes from 5 to 10 significantly increases mean welfare if health probabilities are very high
(cf. Tables 1 and 3). This effect is less pronounced in the experiment with synthetic data, in

30As the MILP is designed to admit integral utilities only, and the problem of computing test allocations is
invariant to scaling utilities, we first scale up the utilities of all individuals in the population by a factor of 50, and
then round the resulting number to the nearest integer. Choosing a larger scaling factor increases the running
time, as the number of variables in the MILP increases (cf. Appendix B.4).

31The experiments were run on an AWS EC2 instance type ‘c6g.8xlarge’ with 32 vCPUs and 64GiB memory.
Gurobi 9.5.0 was used for the MILP algorithm, and MOSEK 10 for the MICP.
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MILP Greedy

Budget Welfare Guarantee Time Welfare Apx To Optimal Time

2 461.24 0.18 292 ms 461.22 1.000028 49 ms
6 1292.04 0.53 1911 ms 1291.91 1.000097 48 ms
10 2070.82 0.89 5345 ms 2070.58 1.000115 71 ms
14 2814.82 1.25 2550656 ms 2814.50 1.000115 400 ms
18 3524.78 1.61 1523318 ms 3524.24 1.000154 2718 ms
22 4189.57 1.97 569366 ms 4188.85 1.000170 42869 ms
26 4790.46 2.32 12160741ms 4789.37 1.000227 747631 ms
30 4805.24 2.68 69541821 ms 4789.37 1.003313 750206 ms
34 4816.37 3.04 408803099 ms 4789.37 1.005637 757912 ms

Table 1: Summary showing welfare and computation time for the MILP and Greedy on the
pilot data with a population of n = 130 and pool size constraint G = 5, with testing budgets
B ∈ {2, 6, . . . , 34}. We also state the additive approximation guarantee of MILP (compared to
optimal non-overlapping welfare).

which participants have lower health probabilities on average (cf. Tables 4 and 5). These results
suggest that the pool size limit of 5 imposed by saliva sampling, as opposed to the typical limit of
10 for nasopharyngeal samples, may be considered a limitation in some scenarios, and institutions
may wish to weigh the positives and negatives of saliva and nasopharyngeal sampling carefully.

5.4 Pilot Study

In this section, we report the outcomes of the implementation of our test allocation framework in
the pilot at IPICYT.

Our algorithm in practice. The Greedy algorithm, as described in Section 4.1, demonstrated
favorable trade-offs between speed and accuracy (cf. Section 5.3). For that reason, we implemented
a version of Greedy in our web application for computing test allocations. For the purpose of the
trial, we allowed individuals to express onsite work preferences for two-day windows through the
allocation of a virtual token budget in the web app. This helped us avoid scheduling individuals
for testing on days they did not wish to access IPICYT facilities in the first place, and allocate
more tests to particular days that were more popular. Moreover, our partner institute observed –
in an independent pool testing trial – that a small fraction of participants invited to submit a
saliva sample for testing fail to do so. In order to optimize pooling in this setting, we perform a
second optimization round, in which we compute an (approximately) optimal pooling among the
samples that have been submitted. It is immediate that the second optimization round cannot
decrease the expected welfare achieved.

Evaluation and methods. In the trial we measured subjects’ stress levels and subjective
well-being (life satisfaction), as well as self-assessed performance, productivity, and learning.
We obtain these measures through survey questions that subjects are invited to answer before
(baseline) and after (endline) the trial period. A detailed description of these variables is given in
Appendix E.3. The treatment effect is estimated with bivariate linear regressions32, using the
above-mentioned outcomes as dependent variables. The main regressor is a binary treatment

32Note that we also include equivalence tests in Table 7, and multinomial logistic regression models for non-
normally distributed outcomes discussed in Appendix E.6 and Tables 14 and 15. These robustness checks
corroborate our results from our preferred model specification.
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variable, which takes on the value one if the subject is in the treatment group and zero otherwise.
We estimate level effects on endline outcomes as well as the effect on the difference in outcomes
(delta models) between our two points of measurement before and after the trial. We further
collected a number of covariates for robustness checks of our estimations.

Results. We present the results on performance from the linear models in Table 2. Further
results on performance and mental health are shown in Tables 10 and 11 in Appendix E.6. For
the levels models, treatment group participants exhibit, on average, higher scores in self-perceived
performance, productivity, and learning.33 These group differences are not statistically significant.
Similarly, participants in the treatment group report, on average, higher levels of stress and
higher levels of subjective well-being (life satisfaction). These differences are not statistically
significant either. Despite following different protocols, participants in both experimental groups
react similarly to partially or fully lifting lockdown restrictions.

Importantly, throughout the month of the trial, only one pooled test returned positive. As per
the protocol, treatment participants in the positive pool were asked to work remotely until such
a time where they were again scheduled to submit a sample. The LANBAMA lab ran individual
tests to identify the infected individual(s), to make sure that regardless of a show or no show of
symptoms, the infected individual(s) had certainty of their status and reacted accordingly.

Dependent variable

Performance Productivity Learning ∆ Performance ∆ Productivity ∆ Learning

Treatment 0.120 0.076 0.175 −0.053 −0.256. 0.086
(0.143) (0.133) (0.287) (0.143) (0.130) (0.323)

Constant 1.984∗∗∗ 2.097∗∗∗ 8.194∗∗∗ 0.000 0.081 0.177
(0.086) (0.082) (0.206) (0.110) (0.090) (0.209)

Observations 119 120 119 118 119 119
R2 0.006 0.003 0.003 0.001 0.032 0.001
Adjusted R2 −0.002 −0.006 −0.005 −0.007 0.024 −0.008

Sig. p codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Table 2: Linear regression models of performance, productivity, and learning outcomes. Note
that regression coefficients are expressed in the unit of the score. HC1 standard errors are in
parentheses.

We also estimate delta models, or first-differences in scores (between endline and baseline),
to correct for probable time-dependent confounders. The positive trend in increased stress in
the treatment group disappears, while the trend in life satisfaction increases. All treatment
effects related to performance, productivity, and learning are corrected downwards, but remain
statistically insignificant, with the exception of productivity, where we report a small and
borderline statistically significant negative.34 This may stem from treatment group individuals
having to exert additional effort to schedule their week according to their sample submission date,
and actually submitting their sample at the testing facilities. These extra tasks can result in a
loss in productivity as they take up working time and constitute a higher cognitive load when
mental bandwidth is limited. Individuals in positive pools who are required to work from home
may also face productivity constraints, but during our trial only one pooled test returned positive
and, within the pool, only one individual was identified as infected.

In summary, we find no statistical evidence that our test allocation strategy has a negative
effect on participants’ work/study performance, learning, or mental health, despite the increased

33This also holds for the measures of achieving their own and their supervisors’ goals, see Appendix E.6.
34The estimated p-value is 0.051, exactly on the cutoff of statistical significance. We consider statistical

significance for all values p < 0.05, but not for values on or above that cutoff (Zhu, 2016).
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effort in coordination it demands from them compared to a full reopening (the protocol followed
by the control group). At the same time, our strategy ensures greater safety for all participating
individuals compared to a full reopening without any safety mechanisms in place. We conjecture
that accounting for welfare is the crucial ingredient in our mechanism, enabling in-person access
for those who need and benefit from it the most.

6 Discussion

This work introduces a novel utility-based approach to pooled testing in resource-constrained
environments. In a setting where the population exhibits heterogeneity in health probabilities and
utilities, we provide strong theoretical and empirical performance guarantees of our near-optimal
test allocation mechanism, which justify the implementation of non-overlapping testing regimes
beyond their essential logistical simplicity. We test a version of our test allocation procedure in a
real-world experiment at the higher education research institute IPICYT, in Mexico. We use the
trial data to evaluate two algorithms, Greedy and a MILP formulation, through simulations.
Our simulations with real-world and synthetic data demonstrate that Greedy performs almost
optimally and is significantly faster than our alternative MILP implementation. Our randomized
controlled trial also provides evidence that our test allocation performs no worse than a ‘first-best’
benchmark of allowing full institutional access for all individuals, where performance is measured
with respect to participants’ work and study performance and productivity, as well as subjective
well-being and mental health (proxied by stress levels).

Our pooled-testing protocol ensures that everyone released for onsite work is guaranteed to be
non-infectious. Thus, it provides a safe work environment during high, variable, and low infection
rate periods, while imposing no penalties on well-being and productivity in periods with low
infection rates. Resource-saving alternatives such as self-testing, by contrast, cannot provide the
same level of safety and may expose a community to asymptomatic but contagious carriers. Our
testing regime provides institutions with an economical and safe solution to keep their entire
community safe.

There are many directions for future work. On a theoretical level, there is a gap between our
upper bound of 4 and lower bound of 7/6 on the overlap welfare ratio, and an upper bound of 5
on the approximation factor of the Greedy algorithm. Beyond the tight approximation bound of
e for Greedy that we establish for the case with identical utilities for individuals, we expect that
tighter bounds are achievable when utilities take a fixed number of values (e.g. for dichotomous
or trichotomous populations). On a more practical level, the overall testing and re-integration
policy we propose is static in nature, as we consider the one-shot setting where a testing budget
is to be fully utilized by a policymaker. Testing could also be dynamic, with allocations chosen
adaptively as a function of previous test results, and it is valuable to understand what potential
benefits this extended functionality may bring. Additionally, policymakers potentially have access
to different types of tests, each with different associated costs and performance (i.e., pool size
and sensitivity), and providing optimal budget-constrained allocations in this heterogeneous test
setting is a key open question.

Most importantly, we hope that the insights in performance and efficacy of our welfare-
maximizing test allocations can help better protect resource-constrained communities when
confronted with an outbreak of an infectious disease. Our pooled testing framework may find
further, equally important applications in mass screening for HIV/AIDS and pooled frameworks
for organ donation.
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A Proofs for Section 3 (Performance of Non-Overlapping Testing)

A.1 Proof of Proposition 3.3

Fix some population J , and suppose T ∗ = (t∗1, t
∗
2) is an optimal two-test allocation for population J

in the overlapping testing regime. We assume that t∗1 ∩ t∗2 ̸= ∅ (otherwise the overlap welfare ratio
is 1, and we are done) and let A = t∗1\t∗2, B = t∗2\t∗1 and C = t∗1∩t∗2. Note that t∗1∪t∗2 = A∪B∪C.
Without loss of generality, we assume that qA ≥ qB and denote uA =

∑
i∈A ui, uB =

∑
i∈B ui,

and uC =
∑

i∈C ui. In order to prove Proposition 3.3, we consider the four non-overlapping test
allocations T 1 = (A ∪ C,B), T 2 = (A,C), T 3 = (B,C) and T 4 = (A ∪ B,C), and make use of
the following lemma.

Lemma A.1. For any T ∈ {T 1, T 2, T 3, T 4}, the ratio u(T ∗)
u(T ) is maximized when qC = 1.

Proof. Consider T = T 1. We need to show that

u(T ∗)

u(T 1)
=

qC (qA · uA + qB · uB + (qA + (1− qA) · qB) · uC)
qC · qA · uA + qB · uB + qC · qA · uC

≤ qA · uA + qB · uB + (qA + (1− qA) · qB) · uC
qA · uA + qB · uB + qA · uC

,

which is equivalent to
qC ≤

qC · qA · uA + qB · uB + qC · qA · uC
qA · uA + qB · uB + qA · uC

.

But this is true because

qC = qC ·
qA · uA + qB · uB + qA · uC
qA · uA + qB · uB + qA · uC

≤ qC · qA · uA + qB · uB + qC · qA · uC
qA · uA + qB · uB + qA · uC

.

Next, consider the case that T = T 2. Here, we need to show that

u(T ∗)

u(T 2)
=

qC (qA · uA + qB · uB + (qA + (1− qA) · qB) · uC)
qA · uA + qC · uC

≤ qA · uA + qB · uB + (qA + (1− qA) · qB) · uC
qA · uA + uC

⇔ qC ≤
qA · uA + qC · uC
qA · uA + uC

.

This is true because

qC = qC ·
qA · uA + uC
qA · uA + uC

≤ qA · uA + qC · uC
qA · uA + uC

.

Analogously, the ratio u(T ∗)
u(T 3)

is maximized when qC = 1. Lastly, we consider the case T = T 4.

u(T ∗)

u(T 4)
=

qC (qA · uA + qB · uB + (qA + (1− qA) · qB) · uC)
qA · qB · (uA + uB) + qC · uC

≤ qA · uA + qB · uB + (qA + (1− qA) · qB) · uC
qA · qB · (uA + uB) + uC

⇔ qC ≤
qA · qB · (uA + uB) + qC · uC
qA · qB · (uA + uB) + uC

.

This holds because

qC = qC ·
qA · qB · (uA + uB) + uC
qA · qB · (uA + uB) + uC

≤ qA · qB · (uA + uB) + qC · uC
qA · qB · (uA + uB) + uC

.
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We are now ready to complete the proof of Proposition 3.3.

Proof of Proposition 3.3. Recall the optimal overlapping two-test allocation T ∗, its sub-populations
A,B and C, and the four non-overlapping allocations T1, T2, T3 and T4 from above. Our goal
is to show that u(T ∗)

u(T ) ≤
7
6 at least one T = Ti. Without loss of generality, we can assume that

qC = 1 by Lemma A.1. Suppose first that qA ≥ 5/6. Note that

(qA + (1− qA) · qB) · uC
qA · uC

≤ (qA + (1− qA) · qA) · uC
qA · uC

= 2− qA ≤
7

6
,

where the first inequality holds since we assume qA ≥ qB and the last inequality follows from
qA ≥ 5/6. Hence, we see that

u(T ∗)

u(T 1)
=

qA · uA + qB · uB + (qA + (1− qA) · qA) · uC
qA · uA + qB · uB + qA · uC

≤ 7

6
.

Now assume that qA < 5/6. For the sake of contradiction, suppose that u(T ∗)
u(T ) > 7

6 for all
T ∈ {T 1, T 2, T 3, T 4}. Thus

u(T ∗)

u(T 1)
=

qA · uA + qB · uB + (qA + (1− qA) · qB) · uC
qA · uA + qB · uB + qA · uC

>
7

6
(3)

implies
(6 · (qA + (1− qA) · qB)− 7qA) · uC > qA · uA + qB · uB. (4)

Similarly,
u(T ∗)

u(T 2)
=

qA · uA + qB · uB + (qA + (1− qA) · qB) · uC
qA · uA + uC

>
7

6

implies

qB · uB >
1

6
qA · uA +

(
7

6
− (qA + (1− qA) · qA)

)
· uC , (5)

where we used the assumption that qA ≥ qB. Analogously, u(T ∗)
u(T 3)

> 7
6 implies

qA · uA >
1

6
qB · uB +

(
7

6
− (qA + (1− qA) · qA)

)
· uC . (6)

Equations (5) and (6) together imply

qA · uA + qB · uB >
6

5
· 2 ·

(
7

6
− (qA + (1− qA) · qA)

)
· uC , (7)

and from Equation (4) we conclude that

(6 · (qA + (1− qA) · qB)− 7qA) >
6

5
· 2 ·

(
7

6
− (qA + (1− qA) · qA)

)
, (8)

which is true when 1
2 < qA < 2

3 . Hence, from now on we assume that 1
2 < qA < 2

3 .
Equations (3) and (4) together imply

(6 · (qA + (1− qA) · qB)− 7qA) · uC + (qA + (1− qA) · qB) · uC
qA · uA + uC

>
7

6
,

and so
(6 · (1− qA) · qB − 1) · uC > qAuA. (9)
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Analogously, u(T ∗)
u(T 3)

> 7
6 implies

(6 · (1− qA) · qB − 1) · uC > qB · uB (10)

Lastly,
u(T ∗)

u(T 4)
=

qA · uA + qB · uB + (qA + (1− qA) · qB) · uC
qA · qB · (uA + uB) + uC

>
7

6

implies

qA · uA + qB · uB >
(7− 6(qA + (1− qA) · qB)) · uC

6− 7 · qB
, (11)

where the last inequality follows from the fact that qB ≤ qA < 5
6 < 6

7 by assumption. Equations (9)
to (11) together tell us that

u(T ∗)

u(T 1)
=

qA · uA + qB · uB + (qA + (1− qA) · qB) · uC
qA · uA + qB · uB + qA · uC

≤ 2 · (6 · (1− qA) · qB − 1) · uC + (qA + (1− qA) · qB) · uC
7−6(qA+(1−qA)·qB)·uC

6−7·qB + qA · uC

which is maximized when qA = qB = 1/2, given that 1/2 < qA < 2/3. But this implies that
u(T ∗)
u(T 1)

≤ 7
6 , a contradiction.

Proof of Proposition 3.4. Consider first the case B = 3. Suppose T ∗ is an optimal overlapping
test allocation for some population. We partition the individuals that are tested under T ∗ into
seven sets as following. The first three sets, denoted S1, S2 and S3, consist of the individuals
that are contained only in the first, the second and the third test, respectively. The next
three sets, denoted S4, S5 and S6 consist of individuals that are included only in the first
and second test, in the first and third test, and in the second and third test, respectively; the
last set, denoted by S7, consists of individuals that are included in all three tests. Note that
u(T ∗) ≤

∑
j∈[7] qSj ·

∑
i∈Sj

ui. Without loss of generality, assume that the tests in T ∗ are ordered
such that qSj

∑
i∈Sj

ui ≥ qSj+1

∑
i∈Sj+1

ui for every j ∈ [6]. Finally, we define the non-overlapping

test allocation T = {S1, S2, S3}, so that u(T ) =
∑

j∈[3] qSj ·
∑

i∈Sj
ui, and u(T ∗)

u(T ) ≤
7
3 .

Now consider the case B = 4. We partition the individuals into 15 sets similarly: the first fours
sets consist of individuals included in exactly one test, the next six tests consist of individuals
included in exactly two tests, the next four tests consist of individuals included in exactly three
tests and the last set consists of individuals that included in all four tests. We then construct a
non-overlapping test allocation with four tests that pools individuals from the four sets with the
highest utility to get an approximation of 15

4 .

A.2 Proof of Theorem 3.5

We now prepare for the proof of Theorem 3.5. We first introduce some notation. Given a test
allocation T = (t1, . . . , tB) and individual i ∈ [n], we let T (i) = {tj ∈ T | i ∈ tj} be the tests
in which individual i is included. Furthermore, T (i; j) = {tj′ ∈ T (i) | j′ < j} denotes the tests
with index less than j that contain i. We say that test tj is pivotal for individual i if it is the
negative test of smallest index in T (i). That is, we have tj ∈ Ti, the outcome of tj is negative,
and all tests in T (i; j) are positive. It is immediate that at most one test can be pivotal for each
individual. We let P T

i,j denote the probability that tj is pivotal for individual i under random
infection realizations:

P T
i,j =

{
Pr[tj is negative, and ∀tj′ ∈ T (i; j) : tj′ is positive] if tj ∈ T (i),

0 otherwise.
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Observation A.2. The notion of pivotal tests permits a convenient equivalent formulation of the
expected utility of a test allocation. Note that individual i is in a negative test if and only if exactly
one test, tj ∈ T , is pivotal for i, hence P T

i =
∑

j∈[B] P
T
i,j . Recalling that u(T ) =

∑
i∈[n] ui · P T

i ,
we can expand the expression with pivotal test probabilities and switch the order of summation
to obtain

u(T ) =
∑
j∈[B]

∑
i∈[n]

ui · P T
i,j

 .

For each test tj ∈ T , we can interpret
∑

i∈[n] ui ·P T
i,j as the expected marginal utility gained from

applying test tj after tests t1, . . . , tj−1 have been applied.

Suppose T is an optimal overlapping test allocation, and i is an individual in the population.
In order to prove Theorem 3.5, we first rewrite the probability P T

i,j that the test tj containing i is
pivotal for individual i using conditional probabilities.

P T
i,j = Pr[tj is negative and ∀tk ∈ T (i; j), tk is positive]

= Pr[tj is negative] · Pr[∀tk ∈ T (i; j), tk is positive | tj is negative]
= Pr[tj is negative] · Pr[∀tk ∈ T (i; j), tk \ tj is positive]
= qtj · Pr[∀tk ∈ T (i; j), tk \ tj is positive]

(12)

where the third equality follows since tk is positive if and only if some individual in tk\tj is infected
(as tj is negative by assumption), and the health probabilities of individuals are independent by
assumption. We now introduce two lemmas that are used in the proof of Theorem 3.5.

Lemma A.3. There exists an optimal overlapping test allocation T = (t1, . . . , tB) such that for
every tj ∈ T (i) we have P T

i,j > 0.

Proof. Suppose T is an ‘inclusion-wise minimal’ optimal overlapping test allocation in the sense
that no test can be reduced in size while keeping the other tests the same, without reducing the
welfare obtained. Fix individual i and tj ∈ T (i). Using the reformulation of Eq. (12), we now
show that P T

i,j = qtj · Pr[∀tk ∈ T (i; j), tk \ tj is positive] is strictly positive.
First note that qtj > 0. Indeed, if this were not the case, there would be some individual

i′ ∈ tj with qi′ = 0, and it is straightforward to see that it is sub-optimal to include such an
individual in any test allocation. It remains to show that the second term is non-zero. This holds
if there exists an i′ ∈ tk \ tj with qi′ < 1 for each tk ∈ T (i; j). We now prove this property.

If the difference tk \ tj is empty, or contains only healthy individuals, then the probability of
being in a healthy test either stays the same or increases for every individual. Hence the test
allocation obtained from T by reducing tj to tj \ tk achieves the same or better welfare. But this
contradicts our assumption that T is an inclusion-wise optimal overlapping test allocation.

Lemma A.4. Suppose that T ∗ = (t∗1, . . . , t
∗
B) is either an optimal overlapping or an optimal

non-overlapping test allocation and that α ∈ (0, 1). For any t∗j and any S ⊂ t∗j , if qS < α, then
qt∗j\S ≥ 1− α.

Proof. Assume for the sake of contradiction that qS < α and qt∗B\S < 1−α for test t∗B and subset
S ⊆ t∗B . The choice of test tB is without loss of generality, as we can relabel the tests if necessary.
By Lemma A.3, we know that P T ∗

i,B > 0 for any individual i contained in t∗B. It follows that

u(T ∗) =
∑
i∈[n]

P T
i · ui =

∑
i∈[n],j∈[B]

P T ∗
i,j · ui

=
∑

j∈[B−1],i∈[n]

P T ∗
i,j · ui +

∑
i∈[n]

IT
∗

i,B · qt∗B · Pr[∀t
∗
j ∈ T ∗(i;B), t∗j \ t∗B is positive] · ui
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=
∑

j∈[B−1],i∈[n]

P T ∗
i,j · ui + qS · qt∗B\S ·

∑
i∈t∗B

Pr[∀t∗j ∈ T ∗(i;B), t∗j \ t∗B is positive] · ui

=
∑

j∈[B−1],i∈[n]

P T ∗
i,j · ui + qt∗B\S ·

(
qS ·

∑
i∈S

Pr[∀t∗j ∈ T ∗(i;B), t∗j \ t∗B is positive] · ui

)

+ qS

qt∗B\S ·
∑

i∈t∗B\S

Pr[∀t∗j ∈ T ∗(i;B), t∗j \ t∗B is positive] · ui


≤
∑

j∈[B−1],i∈[n]

P T ∗
i,j · ui + qt∗B\S ·

(
qS ·

∑
i∈S

Pr[∀t∗j ∈ T ∗(i;B), t∗j \ S is positive] · ui

)

+ qS

qt∗B\S ·
∑

i∈t∗B\S

Pr[∀t∗j ∈ T ∗(i;B), t∗j \ (t∗B \ S) is positive] · ui


<
∑

j∈[B−1],i∈[n]

P T ∗
i,j · ui +max

{
qS ·

∑
i∈S

Pr[∀t∗j ∈ T ∗(i;B), t∗j \ S is positive] · ui,

qt∗B\S ·
∑

i∈t∗j\S

Pr[∀t∗j ∈ T ∗(i;B), t∗j \ (t∗B \ S) is positive] · ui


To justify the first inequality, we begin by showing that, for all i ∈ S,

Pr[∀t∗j ∈ T ∗(i; j), t∗j \ t∗B is positive] ≤ Pr[∀t∗j ∈ T ∗(i; j), t∗j \ S is positive].

Since S ⊆ t∗B, it follows that t∗j \ t∗B ⊆ t∗j \ S for every t∗j ∈ T ∗(i; j). This in turn implies that if
t∗j \t∗B is positive, then t∗j \S is positive. It follows that the event [∀t∗j ∈ T ∗(i : j), t∗j \t∗B is positive]
implies the event [∀t∗j ∈ T ∗(i : j), t∗j \ S is positive], and so the inequality follows. Furthermore,
the argumentation above can be replicated with t∗B \S rather than S to fully justify the inequality
from the main derivation. The second inequality follows from our assumptions qS < α and
qt∗B\S < 1− α.

To reach a contradiction, let T be a test allocation with tj = t∗j for every j ∈ [B − 1] and
tB = S if

qS ·
∑
i∈S

Pr[∀t∗j ∈ T ∗(i;B), t∗j \ S is positive] · ui

≥ qT ∗
B\S ·

∑
i∈T ∗

B\S

Pr[∀t∗j ∈ T ∗(i;B), t∗j \ (t∗B \ S) is positive] · ui

and tB = t∗B \ S, otherwise. Then,

u(T ) =
∑

i∈[n],j∈[B]

P T
i,j · ui

=
∑

j∈[B−1],i∈[n]

P T ∗
i,j · ui +

∑
i∈tB

qtB · Pr[∀t
∗
j ∈ T ∗(i;B), t∗j \ tB is positive] · ui

=
∑

j∈[B−1],i∈N

P T ∗
i,j · ui +max

{
qS ·

∑
i∈S

Pr[∀t∗j ∈ T ∗(i, B), t∗j \ S is positive] · ui,

qt∗B\S ·
∑

i∈TB\S

Pr[∀t∗j ∈ T ∗(i;B), t∗j \ (t∗B \ S) is positive] · ui


> u(T ∗),
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contradicting the optimality of T ∗. Notice that if T ∗ is non-overlapping, then so is T , which is why
optimality is contradicted in both the scenario where T ∗ is assumed to be optimal non-overlapping
as well as when T ∗ is assumed to be optimal overlapping.

We are now ready to prove Theorem 3.5.

Proof of Theorem 3.5. We begin by constructing an intermediate non-overlapping test allocation
T from T ∗ as follows. Every individual who is tested under T ∗ is contained in one or more tests.
Let T be the allocation obtained by removing each such individual i from all but the first test
in T ∗ in which i appears. Note that some tests in T may be empty. Thus we have tj ⊆ t∗j and
so qtj ≥ qt∗j for every j ∈ [B]. We let Sj be the smallest subset of tj such that qSj < 1/2 (if
qtj ≥ 1/2, then Sj = ∅). Note that this implies qSj\{i} ≥ 1/2 for every i ∈ Sj . We can also
show that qtj\Sj

≥ 1/2. To see this, note that Sj ⊆ tj ⊆ t∗j and qSj < 1/2. By Lemma A.4,
qt∗j\Sj

≥ 1/2, and it follows that qtj\Sj
≥ qt∗j\Sj

≥ 1/2 since tj \ Sj ⊆ t∗j \ Sj .
Next, consider the two disjoint test allocations T 1 and T 2 given by t1j = Sj and t2j = tj \ Sj .

Using the properties established in the previous paragraph, we now show that P T ℓ

i ≥ qi · 1/2
for every i ∈ tℓj where ℓ ∈ {1, 2}. For ℓ = 1, we see that P T 1

i = qt1j
= qi · qt1j\{i} ≥ qi · 1/2, as

qt1j\{i}
≥ 1/2. For ℓ = 2, we see similarly that P T 2

i = qt2j
= qi · qt2j\{i} ≥ qi · 1/2, as our choice of

Sj ensures that qt2j\{i}
≥ qt2j

= qtj\Sj
≥ 1/2.

Note that the same individuals are tested under T ∗ and under the intermediate test allocation T ,
as every individual included in some test under T ∗ is also included in some test under T , and
tj ⊆ t∗j for every j ∈ [B]. We can write the welfare of T ∗ as

u(T ∗) =
∑
i∈[n]

P T ∗
i · ui =

∑
j∈[B],i∈Sj

P T ∗
i · ui +

∑
j∈[B],i∈Tj\Sj

P T ∗
i · ui.

Suppose that
∑

j∈[B],i∈Sj
P T ∗
i · ui ≥

∑
j∈[B],i∈tj\Sj

P T ∗
i · ui. Then

u(T ∗) ≤ 2 ·
∑

j∈[B],i∈Sj

P T ∗
i · ui ≤ 2 ·

∑
j∈[B],i∈Sj

qi · ui

and u(T 1) =
∑

j∈[B],i∈Sj

P T 1

i · ui ≥
∑

j∈[B],i∈Sj

1/2 · qi · ui,

so u(T ∗)
u(T 1)

≤ 4. Finally, suppose that
∑

j∈[B],i∈Sj
P T ∗
i · ui <

∑
j∈[B],i∈tj\Sj

P T ∗
i · ui. An analogous

argument shows that u(T ∗)
u(T 2)

≤ 4. Hence either T 1 or T 2 achieves the required overlap welfare ratio
of at most 4.

B Proofs for Section 4 (Finding Near-Optimal Test Allocations)

B.1 Correctness of Greedy

Proof of Theorem 4.1. Let T be the test allocation that is returned by Greedy, and T ∗ be an
optimal non-overlapping test allocation. Without loss of generality, let N ′ = {1, . . . , n′} be the
individuals included in T . We can write out the welfares of T and T ∗ as

u(T ∗) =
∑
j∈[B]

u(t∗j ) =
∑
j∈[B]

qt∗j ·

(∑
i∈N ′

It
∗
i,j · ui

)
+
∑
j∈[B]

qt∗j ·

 ∑
i∈[n]\N ′

It
∗
i,j · ui

 ,

and

u(T ) =
∑
j∈[B]

u(tj) =
∑
j∈[B]

qtj ·

(∑
i∈N ′

ITi,j · ui

)
=
∑
j∈[B]

qtj ·

∑
i∈tj

ui

 .
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Now, let T ′ = (t′1, . . . , t
′
B) be the test allocation created from T ∗ by removing any individuals

in N ′, so t′j = t∗j \ N ′ for every j ∈ [B]. Note that since every t′j consists of individuals that
are not included in any test in T , all the individuals in t′j are available at the j-th iteration of
Greedy. Thus for each j ∈ [B], we have u(tj) ≥ (1− ε)u(t′j), as otherwise Greedy would have
chosen t′j instead of tj at the j-th iteration. Thus, we get that

u(T ) =
∑
j∈[B]

u(tj) ≥ (1− ε)
∑
j∈[B]

u(t′j) = (1− ε) · u(T ′).

Note also that

u(T ′) =
∑
j∈[B]

qt′j ·

 ∑
i∈[n]\N ′

IT
′

i,j · ui

 =
∑
j∈[B]

qt′j ·

 ∑
i∈[n]\N ′

IT
∗

i,j · ui

 ≥ ∑
j∈[B]

qt∗j ·

 ∑
i∈[n]\N ′

IT
∗

i,j · ui


where the second equality follows from the fact that IT

′
i,j = IT

∗
i,j for any i ∈ [n] \N ′ and j ∈ [B],

and the last inequality follows from the fact that qt′j ≥ qt∗j since t′j ⊆ t∗j for any j ∈ [B]. Thus,

u(T ) ≥ (1− ε)2 ·
∑
j∈[B]

qt∗j ·

 ∑
i∈[n]\N ′

IT
∗

i,j · ui

 .

From all the above we have

u(T ∗)

u(T )
=

∑
j∈[B] qt∗j ·

(∑
i∈N ′ IT

∗
i,j · ui

)
+
∑

j∈[B] qt∗j ·
(∑

i∈[n]\N ′ IT
∗

i,j · ui
)

u(T )

≤

∑
j∈[B] qt∗j ·

(∑
i∈N ′ IT

∗
i,j · ui

)
+ u(T )

(1−ε)2

u(T )

=

∑
j∈[B] qt∗j ·

(∑
i∈t∗j∩N ′ ui

)
u(T )

+
1

(1− ε)2

≤

∑
j∈[B]

(∑
i∈t∗j∩N ′ qi · ui

)
u(T )

+
1

(1− ε)2

=

∑
i∈N ′ qi · ui
u(T )

+
1

(1− ε)2
(13)

where the second inequality follows since qi ≥ qtj when i is included in tj .
In what follows, we will show that each test tj ∈ T obtains at least a (1−ε)2

4 ratio of
the maximal possible utility to be gained from individuals in tj . In other words, we show
that the following holds: u(tj) = qtj ·

∑
i∈tj ui > (1−ε)2

4

∑
i∈tj qiui. To do so, we first show

that, in a similar nature to Lemma A.4, for any tj ∈ T there cannot exist S ⊆ tj such that
qS + qtj\S < 1 − ϵ. Suppose that this is not the case, and we have such a subset S. From
the definition of Greedy, we know that u(tj) ≥ (1 − ε)u(S) and u(tj) ≥ (1 − ε)u(tj \ S),
otherwise the algorithm would return S or (tj \ S) respectively at the j-th step of its execution.
It follows that u(tj) ≥ (1 − ε)max{u(S), u(tj \ S)}. At the same time, we can also express
the welfare of tj as u(tj) = qtj\S

(
qS ·

∑
i∈S ui

)
+ qS

(
qtj\S ·

∑
i∈tj\S ui

)
. From this we obtain

u(tj) = qtj\S ·u(S)+ qS ·u(tj \S) ≤ (qtj\S + qS)max{u(S), u(tj \S)}. Under the assumption that
qS + qtj\S < 1− ε, it follows that u(tj) < (1− ε)max{u(S), u(tj \ S)} , which is a contradiction,
hence no such S ⊆ tj can exist.

Now let us consider the case where there exists i′ ∈ tj such that qi′ < (1− ε)/2. From the
definition of the Greedy algorithm, we know that

(1− ε) · qtj\{i′} ·
∑

i∈tj\{i′}

ui ≤ qtj ·
∑
i∈tj

ui
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otherwise the algorithm would return tj \ {i′} instead of tj at step j and also,

(1− ε) · qi′ · ui′ ≤ qtj ·
∑
i∈tj

ui

as otherwise the algorithm would return {i′} instead of tj at step j. Moreover, we know that
qtj\{i′} ≥ (1− ε)/2 since it must be the case that qi′ + qtj\{i′} ≥ 1− ε. Thus, we get that

qtj ·
∑
i∈tj

ui ≥
(1− ε)

2
(qtj\{i′} ·

∑
i∈tj\{i}

ui + qi′ · ui′) ≥
(1− ε)

2

1− ε

2
·
∑

i∈tj\{i}

ui + qi′ · ui′


=

(1− ε)2

4

 ∑
i∈tj\{i′}

ui + qi′ · ui′


≥ (1− ε)2

4

∑
i∈tj

qiui.

As a second case, assume that for any ℓ ∈ tj , qℓ ≥ (1 − ε)/2. We show that for any i ∈ tj ,
qtj\{i} ≥ (1− ε)2/4. If qtj ≥ (1− ε)/2, then indeed qtj\{i} ≥ qtj > (1− ε)2/4. Hence we focus on
the scenario where qtj < (1− ε)/2 and consider an arbitrary i ∈ tj . Let S be a non-empty subset
S ⊆ tj \{i} such that qS ≥ (1−ε)/2 and qS∪{i} < (1−ε)/2. Since we know that qℓ ≥ (1−ε)/2 for
each ℓ ∈ tj and that qtj < (1− ε)/2, there must exist such an S. Since tj can be decomposed into
S ∪ {i} and tj \ (S ∪ {i}), it follows that qS∪{i} + qtj\(S∪{i}) ≥ 1− ε, hence qtj\(S∪{i}) ≥ (1− ε)/2.
Putting everything together, qS\{i} = qtj\(S∪{i}) · qS ≥ (1− ε)2/4 as desired. Now we have

qtj ·
∑
i∈tj

ui =
∑
i∈tj

qtj\{i} · qi · ui ≥
(1− ε)2

4
·
∑
i∈tj

qi · ui.

Overall, we see that it is always the case that u(tj) = qtj ·
∑

i∈tj ≥
(1−ε)2

4 ·
∑

i∈tj qi · ui, hence:

u(T ) =
∑
j∈[B]

qtj ·

∑
i∈tj

ui

 >
∑
j∈[B]

(1− ε)2

4
·
∑
i∈tj

qi · ui

 =
(1− ε)2

4

∑
i∈N ′

qiui

Along with Equation (13), we get that u(T ∗)/u(T ) ≤ 5/(1− ε)2 ≤ 5/(1− ε′) for any 0 < ε′ < 1
with ε′ ≥ 2ε and the theorem follows.

B.2 Homogeneous Utilities

In this section, we consider the case in which population utilities are homogeneous, so ui = ui′

for all i, i′ ∈ [n]. Without loss of generality, assume that ui = 1 for any i ∈ [n] and qi ≥ qi+1 for
any i ∈ [n− 1].

B.2.1 Structural Lemmas for Optimal Test Allocations

In the context of homogeneous utilities, we say that a test allocation T = (t1, . . . , tB) is proper if
the following hold:

• |t1| ≥ |t2| ≥ . . . |tB|

• for all j, j′ ∈ [B] such that j < j′, if i ∈ tj and i′ ∈ tj′ , then i < i′.

The following crucial lemma shows that there exist proper optimal test allocations.
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Lemma B.1. Let T ∗ = (t∗1, . . . , t
∗
B) such that |t∗j | ≥ |t∗j+1| for any j ∈ [B − 1]. Then, there exists

a proper optimal test allocation T ′ such that for each j ∈ [B], |t′j | = |t∗j |.

Proof. First we show that without loss of generality, we can assume that T ∗ tests precisely
[k] ⊆ [n] for some k ≤ n. Suppose that this is not the case, and there exist i, i′ ∈ [n] such that
i < i′ where i is not tested in T ∗ yet i′ is tested tj . It is straightforward to see that the test
allocation which replaces i′ with i in tj obtains at least as much utility as T ∗ and is hence optimal
by assumption.

We prove the lemma by induction on the number of tests. We start from the case where
B = 2. Let T ∗ be an optimal test allocation with |t∗1| ≥ |t∗2|. Assume that t∗1 = S1 ∪ S′

1, where
S1 ⊂ {1, . . . , |t∗1|}, and S′

1 ⊂ {|t∗1| + 1, . . . , k} and t∗2 = S2 ∪ S′
2, where S2 ⊂ {1, . . . , |t∗1|} and

S′
2 ⊂ {|t∗1|+1, . . . , k}. Since t∗1 ∪ t∗2 = [k], we get that |S′

1| = |S2| and since |t∗1| ≥ |t∗2|, we get that
|S1| ≥ |S′

2|. Now, consider the test allocation T such that t1 = S1 ∪ S2 and t2 = S′
1 ∪ S′

2. Notice
that t1 ∪ t2 = [k], |t1| = |t∗1| and |t2| = |t∗2|. Then, we have

u(T ∗) = qS1 · qS′
1
· |t∗1|+ qS2 · qS′

2
· |t∗2|

and

u(T ) = qS1 · qS2 · |t∗1|+ qS′
1
· qS′

2
· |t∗2|.

and hence,

u(T )− u(T ∗) =
(
qS2 − qS′

1

)
·
(
qS1 · |t∗1| − qS′

2
· |t∗2|

)
. (14)

Due to optimality of T ∗, we have that for any Ŝ1 ⊆ S1

qS1 · qS′
1
· |t∗1| ≥ qŜ1

· qS′
1
· (|Ŝ1|+ |S′

1|)

as otherwise if T ′ is a test allocation with t′1 = Ŝ1 ∪ S′
1 and t′2 = t∗2, then it would hold that

u(T ′) > u(T ∗) which is a contradiction to the optimality of T ∗. Now, choose an arbitrary
Ŝ1 ⊆ S1 such that |Ŝ1| = |S′

2|. We know that this is feasible since |S1| ≥ |S′
2|. We know that

qS1 · qS′
1
· |t∗1| ≥ qŜ1

· qS′
1
· |Ŝ1 ∪ S′

1| = qŜ1
· qS′

1
· |t∗2|, where we also used the fact that |Ŝ1| = |S′

2|.
Finally, by construction qŜ1

≥ qS′
2
, hence it follows that qS1 · qS′

1
· |t∗1| ≥ qS′

2
· qS′

1
· |t∗2|. We thus

obtain

qS1 · |t∗1| − qS′
2
· |t∗2| ≥ 0.

Now from Eq. (14), we have that u(T ) ≥ u(T ∗) since
(
qS2 − qS′

1

)
≥ 0 as for each i ∈ S2 and each

i′ ∈ S′
1 it holds that qi ≥ qi′ and |S′

1| = |S2|. Thus, we conclude that if T ∗ is optimal, so is T ,
which is in turn a proper test allocation as desired.

Now, suppose that the claim holds for B − 1. We will show that it holds for B. Let
T ∗ = (t∗1, . . . , t

∗
B) be an optimal test allocation with |t∗j | ≥ |t∗j+1| for any j ∈ [B − 1]. It must be

the case that the allocation (t∗1, . . . , t
∗
B−1) is optimal for the population given by ∪B−1

j=1 t
∗
j , hence we

can apply our inductive assumption to obtain a proper optimal test allocation T ′ = (t′1, . . . , t
′
B−1)

for ∪B−1
j=1 t

∗
j such that |t′j | = |t∗j |. Let T 0 = (t′1, . . . , t

′
B−1, t

∗
B).

We proceed to create a proper test allocation for all of [n] in B−1 rounds. In the ℓ-th round we
begin with an optimal test allocation T ℓ−1 = (tℓ−1

1 , . . . , tℓ−1
B ) such that |tℓ−1

j | = |t∗j | for all j ∈ [B]

and (tℓ−1
1 , . . . , tℓ−1

ℓ−1) is an optimal proper test allocation for ∪ℓ−1
j=1t

ℓ−1
j = {1, . . . ,

∑ℓ−1
j=1 |t∗j |}. We

consider the allocation (tℓ−1
ℓ , tℓ−1

B ) which must be optimal for the population given by tℓ−1
ℓ ∪ tℓ−1

B .
We can apply the lemma for the case of B = 2 to obtain an optimal proper test allocation for
tℓ−1
ℓ ∪ tℓ−1

B which is given by (tℓℓ, t
ℓ
B) such that |tℓ−1

ℓ | = |tℓℓ| and |tℓ−1
B | = |tℓB|. For j ̸= ℓ, B, we let
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tℓj = tℓ−1
j . It follows that T ℓ is such that |tℓj | = |t∗j | for all j ∈ [B] and (tℓ1, . . . , t

ℓ
ℓ) is an optimal

proper test allocation for ∪ℓj=1t
ℓ
j = {1, . . . ,

∑ℓ
j=1 |t∗j |}. Given the construction, it follows that T ℓ

for ℓ = B is a proper optimal test allocation for the entire population such that |tℓj | = |t∗j | for all
j ∈ [B] as desired.

Observation B.2. Using Lemma B.1, we can find an optimal test allocation as follows: for all
k ∈ [n] and k1 ≥ k2 . . . ≥ kB with

∑
ℓ∈[B] kℓ = k, we calculate the welfare of the test allocation,

T = (t1, . . . , tB), such that

tj =
{ ∑

ℓ∈[j−1]

kℓ + 1, . . .
∑

ℓ∈[j−1]

kℓ + kj

}
.

The allocation which returns the highest welfare amongst the O(nB+1/B!) choices of k and
k1, . . . , kB values must necessarily be optimal.

B.2.2 The OrderedGreedy Algorithm

Here, we show that when the utilities are identical, we can find an e-approximate test allocation
with respect to the optimal non-overlapping test allocation, for any value B. This result is tight,
as shown in Example 4.2. Once more, we assume a population, [n], such that ui = 1 for all i and
q1 ≥ q2 ≥ · · · ≥ qn. Specifically, we consider a variation of the Greedy algorithm introduced
in Section 4.2 which we call OrderedGreedy. The algorithm proceeds in B rounds. In the
j-th round it computes a test tj composed of individuals not yet tested in previous rounds as
follows: it sequentially adds untested individuals of highest health probability to tj until adding
any further untested individual reduces the welfare of tj . Note that OrderedGreedy always
returns a proper test allocation, T , which tests [n′] ⊆ [n] within the population. We start with
the following lemma.

Lemma B.3. Suppose that T ∗ = (t∗1, . . . , t
∗
B) is proper optimal test allocation and that T is a

proper test allocation computed by OrderedGreedy. If T ∗ tests [n′] ⊆ [n] within the population
and T tests [n′′] ⊆ [n] within the population, then n′′ ≤ n′.

Proof. Since T ∗ is proper, suppose that for j ∈ [B], t∗j = {i∗j−1 + 1, . . . , i∗j} with i∗0 = 0 and
i∗j−1 < i∗j . Since T is also proper, for j ∈ [B] we let tj = {ij−1 + 1, . . . , ij}, with i0 = 0 and
ij−1 < ij . We show that for each j ∈ [B], i∗j ≤ ij . Suppose for contradiction that t∗j is the first test
such that i∗j > ij . Due to the structure of T ∗ and T , this means that ∪j′∈[j−1]t

∗
j′ ⊆ ∪j′∈[j−1]tj′ ,

and hence i∗j−1 ≤ ij−1. Given that OrderedGreedy does not pool ij + 1 in tj , we have that

qij−1+1 · . . . · qij · |tj | > qij−1+1 · . . . · qij · qij+1 · (|tj |+ 1)

⇒ |tj |
|tj |+ 1

> qij+1.

as otherwise, from the definition of OrderedGreedy, ij + 1 would have been included in tj .
We also note that,

qi∗j <
|tj |
|tj |+ 1

≤
|t∗j | − 1

|t∗j |
.

The first inequality holds due to the fact that i∗j ≥ ij + 1 (resulting from the integrality of the
indices) and the fact that we have assumed health probabilities are in decreasing order, hence
qi∗j ≤ qij+1 <

|tj |
|tj |+1 . As for the second inequality, we note that by assumption i∗j−1 ≤ ij and

i∗j > ij , hence |t∗j | > |tj |, and from integrality of indices, we get |t∗j | − 1 ≥ |tj |. The function

f(x) = x−1
x is increasing in x, hence |tj |

|tj |+1 ≤
|t∗j |−1

|t∗j |
. Thus, we have that,

qt∗j\{i∗j} · (|t
∗
j | − 1) > qt∗j\{i∗j} · qi∗j · |t

∗
j |.
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This means that u(t∗j \ {i∗j}) > u(t∗j ) and hence, we have that if T ′ is the test allocation with
t′j′ = t∗j′ for each j′ ≠ j and t′j = t∗j \ {i∗j}, then u(T ′) > u(T ∗) which is a contradiction. We
conclude that for each j ∈ [B], i∗j ≤ ij , and the statement follows.

Now, we are ready to show that OrderedGreedy returns an e-approximate test allocation
for any population. This is complemented by a matching lower bound shown in Example 4.2
below.

Theorem B.4. OrderedGreedy returns an e-approximate test allocation.

Proof. Let T be the test allocation that is returned by OrderedGreedy which tests the first
n′ ≤ n individuals. We start by showing that for each i, P T

i ≥ qi · 1e . Consider a test tj in T of
size k and let i′ be the final individual included in tj . It must be the case that qi′ ≥ (k − 1)/k,
for otherwise

qi′
∏

i′′∈tj\{i′}

qi′′ · k <
∏

i′′∈tj\{i′}

qi′′ · (k − 1)

which is a contradiction. Since i′ was assumed to be the final individual added to tj in Or-
deredGreedy, it follows that for all i ∈ tj , qi ≥ q′i ≥ (k − 1)/k. With this in hand, we get
that

P T
i = qtj = qi ·

∏
i′∈tj\{i}

qi′ ≥ qi ·
(
k − 1

k

)k−1

≥ qi ·
1

e
. (15)

From Lemma B.3, we know that it exists an optimal non-overlapping test allocation T ∗ that
pools the first n′′ individuals with n′′ ≤ n′. Then, we have

u(T ∗)

u(T )
=

∑
i∈[n′′] P

T
i · ui∑

i∈[n′] P
T
i · ui

≤
∑

i∈[n′] qi · ui∑
i∈[n′] qi ·

1
e · ui

≤ e,

where the third inequality follows from Equation (15).

B.2.3 Optimality of Greedy for Clustered Populations

Proof of Proposition 4.4. Suppose that T ∗ = (t∗1, . . . , t
∗
B) is an optimal overlapping test allocation

and that t∗ is an optimal single group test for the population. By Observation A.2, the welfare of
T ∗ is

u(T ∗) =
∑
j∈[B]

∑
i∈t∗j

ui · P T ∗
i,j ,

and
∑

i∈t∗j
ui · P T ∗

i,j is the marginal utility of t∗j . Since P T ∗
i,j ≤ qt∗j , it follows that the marginal

utility of t∗j is at most qt∗j
∑

i∈t∗j
ui = u(t∗j ) ≤ u(t∗). It follows that u(T ∗) ≤ B · u(t∗). On the

other hand, u(t) ≥ (1− ε)u(t∗). The fact that B · t(ℓ) ≤ nℓ holds for each ℓ ∈ [m] means that t
can be applied B times in the population, which is what Greedy does, returning allocation T .
It follows that u(T ) = B · u(t) ≥ B(1− ε)u(t∗) ≥ (1− ε)u(T ∗).

B.3 An FPTAS for single-test allocations

We describe a fully polynomial-time approximation scheme (FPTAS) for optimally allocating a
single test with pool size constraint G < n. This FPTAS is obtained by modifying the FPTAS of
Goldberg and Rudolf (2020), which finds an approximately optimal single test of arbitrary size.
We use similar notation as Goldberg and Rudolf (2020) where possible.

For any i ∈ [n], let P (i, C, L) = {qS | S ⊆ [i], |S| = L,
∑

i∈S ui = C} denote the maximum
probability of a subset of [i] to be negative with utility sum C and size L. Analogous to Eq. (6)
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of (Goldberg and Rudolf, 2020), we consider the dynamic program (DP) given by the recurrence
relations

P (i, C, L) =


max{P (i− 1, C, L), qi · P (i− 1, C − ui, L− 1)} i ≥ 2 and ui < C,

P (i− 1, C, L) i ≥ 2 and ui ≥ C,

qi i = 1 and u1 = C,

0 otherwise.

(16)

With a slight abuse of notation, we denote by t(P (i, C, L)) a test that forms a subset of [i] and
satisfies qt(i,C,L) = P (i, C, L),

∑
ℓ∈[t(i,C,L)] uℓ = C and |t(i, C, L)| = L.

Let C̄ be an upper bound on the sum of utilities of an optimal test (C̄ =
∑

i∈[n] ui suffices).
It is straightforward that the test t(n,C∗, L∗) with C∗, L∗ = argmaxC∈[C̄],L∈[G]C · P (n,C,L) is
welfare-maximizing and has pool size at most G. The running time of this dynamic program is
given by O(nGC̄) ≤ O(n2C̄), since G ≤ n. This is pseudo-polynomial in the input size as C̄ is
potentially exponential in the size of its representation.

In what follows, we describe a modification of the utilities in order to approximately solve
the dynamic programming with a polynomial running time. In order to achieve this, we need
to scale down and round the utility coefficients whose magnitudes, through the upper bound C̄,
determine the running time of the program. We can achieve this using identical arguments as in
Section 3.2 of Goldberg and Rudolf (2020). We present the full proof here for completeness.

We scale down utilities using factor κ and round the result, by setting ûi = ⌊ui/κ⌋ for every
i ∈ [n]. Before choosing κ, we introduce notation. Let N1/2 = {i ∈ [n] : qi ≥ 1

2} be the set
of individuals with health probability at least 1

2 . Without loss of generality, we assume that
N1/2 = [h] and [n] \ N1/2 = {h + 1, . . . , n}, relabeling individuals if necessary. Let P̂ (i, C, L)
denote the DP in Equation (16) by replacing ui with ûi. Moreover, we assume that there exists a
dummy individual n+ 1 with ûn+1 = 0 and qn+1 = 1. Then, for i ∈ [n] and j > i the scaled DP
problem is defined as

ẑκ(i, j) = max
C∈[C̄(i)],L∈[G]

(κ · C + uj) · P̂ (i, C, L) · qj , (17)

where C̄(i) =
∑

i′∈[i] ui′ . Let

Ĉi,j , L̂i,j = argmax
C∈[C̄(i)],L∈[G]

(κ · C + uj) · P̂ (i, C, L) · qj .

Note that t̂ = t(P̂ (i, Ĉi,j , L̂i,j) ∪ {j}) returns an optimal test by replacing ui with ûi and adding
the constraint that for any ℓ ∈ [i + 1, . . . , n] \ {j}, ℓ is not pooled into the test, while j is
pooled into it. From Lemma A.4, we know that it suffices to evaluate ẑ(i, j) for i ∈ [h] and
j ∈ {h+1, . . . , n} in order to evaluate ẑκ(n, n+1), as at most one individual from [n] \N1/2 may
be included in t̂. The specific reason for this being that if j, j′ ∈ {h+ 1, . . . , n} form a part of t̂,
then qj ≤ 1/2 and qt̂\j < qj′ ≤ 1/2. The following lemma establishes an upper bound on a value
of κ that suffices to bound the relative error of solutions of ẑκ in approximating the optimal test
within a given ε > 0.

Lemma B.5. Let t∗ be an optimal single test with
∑

ℓ∈t∗ uℓ = C∗ and |t∗| = L∗. For a given
ε > 0, there exist i ∈ [h] and j ∈ {h, . . . , n+1}, such that if t̄ = t∗ \{j} and κ ≤ εmaxi∈t̄ qi·ui

n then

ẑκ(i, j) ≥ (1− ε) · C∗ · P (n,C∗, L∗) = (1− ε) · u(t∗).

Proof. First note∑
i∈t∗

ui − κ
∑
i∈t∗

ûi =
∑
i∈t∗

ui − κ
∑
i∈t∗
⌊ui/κ⌋ ≤

∑
i∈t∗

ui − κ
∑
i∈t∗

(ui/κ− 1) ≤ κn,
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Algorithm 1 The FPTAS for computing an ε-optimal single-test allocation.
1: κ← (ε · 1/2 ·maxi∈N1/2

ui)/n
2: z∗ ← 0; t← ∅
3: for j = h+ 1, . . . n do
4: if ẑ(h, j) < qj · uj then
5: if qj · uj > z∗ then
6: z∗ ← qj · uj
7: t← {j}
8: end if
9: else

10: if ẑ(h, j) > z∗ then
11: z∗ ← ẑ(h, j)
12: t← t(P̂ (h, Ĉi,j , L̂i,j))
13: end if
14: end if
15: end for
16: return t

where the last inequality follows since |t∗| ≤ n.
Let j be the individual with the smallest probability of being healthy in t∗ by breaking ties

with respect to individuals that have higher index, and let i be the individual with the highest
index in t∗ \ {j}. We denote by t̂ ⊆ [i] the set that maximizes Equation (17). We have

ẑκ(i, j) = qj

κ
∑

ℓ∈t̂\{j}

ûℓ + uj

 qt̂\{j} = qj

κ
∑

ℓ∈t∗\{j}

ûℓ + uj

 qt∗\{j}

≥
(
1− nκ∑

i∈t∗ ui

)
· qt∗

∑
i∈t∗

ui,

where the first equality follows from optimality of t̂ under the scaled utilities. The second equality
follows from the fact that t∗ must necessarily also be optimal for truncated utilities. Finally the
inequality holds from the fact that we showed

∑
i∈t∗ ui − κ

∑
i∈t∗ ûi ≤ κn. Thus, to ensure an

ε-approximate solution, we need

nκ∑
ℓ∈t∗ uℓ

≤ ε⇔ κ ≤
ε ·
∑

ℓ∈t∗ uℓ

n
.

Thus, it suffices to choose

κ ≤
ε ·maxℓ∈[t∗\{j}] uℓ · qℓ

n
≤

ε · qt∗ ·
∑

i∈t∗ ui

n
≤

ε ·
∑

ℓ∈t∗ ui

n
.

Even though we do not know t∗ a priori, we can choose a value for κ that satisfies the
above lemma and hence guarantees that method of computing the optimal test for truncated
utilities indeed gives rise to an FPTAS. We detail how such a value of κ can be set as per the
initialization of Algorithm 1. Before continuing, we recall that from Lemma A.4, we know that
t∗ ∩ ([n] \N1/2) ≤ 1.

Algorithm 1 eventually fixes the single individual j ∈ [n+ 1] \N1/2 that is pooled into the
optimal test t∗ (where j = n+ 1 indicates the case that t∗ ∩ ([n] \N1/2) = 0). Hence, we can
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apply Lemma B.5 with the given j by setting i = h and thus t̄ ⊆ N1/2. Since for each ℓ ∈ N1/2,
qℓ ≥ 1/2, we have that maxℓ∈t̄ qℓ · uℓ ≥ 1/2maxℓ∈t̄ ·uℓ. Thus, we can choose κ such that

κ =
ε · 1/2 ·maxℓ∈[t̄] uℓ

n
≤

ε ·maxℓ∈[t̄] qℓ · uℓ
n

≤
ε · qt∗ ·

∑
i∈t∗ ui

n
,

where the last inequality follows from optimality of t∗.
Now we show that Algorithm 1 is indeed an FPTAS for the optimal test. First note that if

|t∗| = 1, then Algorithm 1 finds the optimal test in Lines 5-7. Hence, we focus on the case that
|t∗| > 1. Using Lemma A.4, we distinguish between two cases.

Case I: |t∗ \N1/2| = 0. For each given ε > 0, κ satisfies the supposition of Lemma B.5. So
following Lemma B.5 with C̄ = C̄(h) =

∑
ℓ∈N1/2

≥
∑

ℓ∈t∗ ûℓ, for Ĉh,n+1 and L̂h,n+1, we have

u(t) = ẑκ(h, n+ 1) = κ · Ĉh,n+1 · P̂ (h, Ĉh,n+1, L̂h,n+1) ≥ (1− ε) · C∗ · P (h,C∗, L∗)

≥ (1− ε) · C∗ · P (n,C∗, L∗)

= (1− ε)u(t∗)

Case II: |t∗ \N1/2| = 1. Then, for each ε > 0, there is a j ∈ [n] \N1/2 such that the choice of
κ satisfies

ẑκ(h, j) ≥ (1− ε) · C∗ · P (n,C∗, L∗) = (1− ε)u(t∗)

where the inequality follows from Lemma B.5. The algorithm must determine j since it enumerates
all elements of [n] \N1/2 in the main loop. The complexity of the algorithm is determined by at
most n evaluations of Equation (17). Hence the running time is

O
(
n3C̄

)
⊆ O

n3
∑

ℓ∈N1/2

uℓ
κ

 ⊆ O

(
n5

ε

)
.

B.4 Details on the MILP formulation

B.4.1 Approximating the non-linear constraints

Here we describe how to approximate the exponential constraints and reformulate the logarithmic
constraints from the mixed-integer program in Section 4.3.1.

Handling the logarithmic constraints. We can replace (2d) with integer linear constraints
as follows. Fix some test j ∈ [B]. Note that zj takes integral values in the range [L,U ], where
L = mini ui and U = Gmaxi ui. We introduce an indicator vector γj ∈ {0, 1}[L,U ] indexed by
k ∈ [L,U ] with constraints

∑
k∈[L,U ] γ

j
k = 1 and

∑
k∈[L,U ] k · γ

j
k = zj to encode which value z

holds, and ensure yj = log(zj) with the constraint yj =
∑

k∈[L,U ] log(k) · γ
j
k.

Approximating the exponential constraints. We now describe how to approximate (2b)
from above by a piecewise-linear function f using integer linear constraints. Fix some test
j ∈ [B]. Note first that we can relax the equality in (2b) to wj ≤ exp(lj) without affecting
the outcome. The variable lj takes values between A = mini(log ui) + Gmini(log qi) and
B = log(Gmaxi ui) + maxi(log qi) (and these values will be generically non-integral). We
approximate exp from above by a piecewise-linear function f : [A,B]→ R with K linear segments.
(Here the parameter K is given exogenously.) Partitioning [A,B] into K parts [ck, ck+1], k ∈ [K],
we define the k-th line segment as the linear function fk(x) = akx + bk on domain [ck, ck+1]
with slope ak =

exp ck+1−exp ck
ck+1−ck

and residual bk = exp ck+1 − akck+1. Note that the number of
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integer variables in the MILP increases with K, so this parameter must be chosen judiciously.
Moreover, given a fixed number of segments K, we wish to determine a partitioning of [A,B]
that minimizes the approximation error ε = maxx∈[A,B](f(x)− exp(x)). In our implementation,
we apply binary search techniques to numerically determine the partition of [A,B] such that
the error maxx∈[ck−ck+1](fk(x) − exp(x)) is the same for all parts [ck, ck+1], which minimizes
ε. We introduce indicator vectors δj ∈ {0, 1}K to encode in which part [ck, ck+1] the value
of lj lies, as well as the vector vj ∈ RK whose k-th entry agrees with lt if lj lies in the k-th
part, and is 0 otherwise. This is guaranteed by constraints

∑
k∈[K] δ

j
k = 1, lj =

∑
k∈[K] v

j
k and

ck · δjk ≤ vjk ≤ ck+1 · δjk, ∀k ∈ [K]. Finally, we require that wj ≤ fk(l
j) for the k-th part [ck, ck+1]

that lt lies in. This is expressed by constraint wj ≤
∑

k∈[K] akv
j
k + bk · δjk.

Bounding the approximation error. Recall that the piecewise-function f with K segments
approximates exp on domain [A,B] from above with error ε. Let σ(x) =

∑
j∈[B] exp(l

t) and
σ′(x) =

∑
j∈[B] f(l

t) respectively denote the corresponding objective values of the convex program
(2) and the MILP described above for testing x. Let x∗ denote an optimal non-overlapping testing,
so x∗ maximizes σ, and x′ be an optimal solution for the MILP. Clearly, x∗ and x′ are both feasible
for both programs and satisfy σ(x′) ≤ σ(x∗) as well as σ′(x∗) ≤ σ′(x′). By construction of f , we
have σ(x) ≤ σ′(x) and σ(x) ≥ σ′(x)− εB, which implies σ(x∗) ≤ σ′(x∗) ≤ σ′(x′) ≤ σ(x′) + Tε.
Here ε is the additive approximation error of f with regard to exp. Hence, 0 ≤ σ(x∗)−σ(x′) ≤ εB.
This allows us to compute a bound on the additive gap between the welfare achieved by the
optimal solution of our MILP and the optimal non-overlapping testing.

C Introducing clusters

In order to speed up the computation, we can consider groups of individuals with the same
utilities and health probabilities as clusters. Clusters are particularly pertinent when utilities
are integral and health probabilities are discretized, as is the case in our pilot study. Suppose
we have C clusters. We introduce a population vector n ∈ NC

0 so that ni denotes the number
of individuals in cluster i ∈ [C]. In order to incorporate clustering into the MILP, we now let
the index i refer to a cluster (instead of an individual), and allow variables xji to take arbitrary
non-negative integral values (instead of binary values in (2h)); these values represent the number
of individuals from cluster i that are included in test j. Additionally, we relax the non-overlapping
test constraint in (2f). to

∑
j∈[B] x

j
i ≤ ni. As an aside, it is not difficult to show that if cluster

populations are much larger than the testing budget at hand, then non-overlapping tests are
optimal. We now state the full MILP with clustering below. Note that constraints (18b)–(18f)
capture the exponential constraint (2b) , while (18h)–(18j) capture the logarithmic constraint
(2d).

max
∑
j∈[B]

wj (18a)

s.t. wj ≤
∑
k∈[K]

akv
j
k + bk · δjk ∀j ∈ [B], (18b)

∑
k∈[K]

δjk = 1 ∀j ∈ [B], (18c)

∑
k∈[K]

vjk = lj ∀j ∈ [B], (18d)

ck · δjk ≤ vjk ∀j ∈ [B], k ∈ [K], (18e)

ck+1 · δjk ≥ vjk ∀j ∈ [B], k ∈ [K], (18f)
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lj = yj +
∑
i∈[C]

xji log qi ∀j ∈ [B], (18g)

1 =
∑

k∈[L,U ]

γjk ∀j ∈ [B], (18h)

zj =
∑

k∈[L,U ]

k · γjk ∀j ∈ [B], (18i)

yj =
∑

k∈[L,U ]

log(k) · γjk ∀j ∈ [B], (18j)

zj = u · xj , ∀j ∈ [B], (18k)∑
j∈[B]

xji ≤ ni, ∀i ∈ [C], (18l)

∑
i∈[C]

xji ≥ 1, ∀j ∈ [B], (18m)

∑
i∈[C]

xji ≤ G, ∀j ∈ [B], (18n)

xji ∈ N0, ∀j ∈ [B], i ∈ [C], (18o)

vjk ∈ R, ∀i ∈ [C], k ∈ [K], (18p)

δjk ∈ {0, 1}, ∀i ∈ [C], k ∈ [K], (18q)

γjk ∈ {0, 1}, ∀i ∈ [C], k ∈ [L,U ] (18r)

D Additional figures and tables from experiments

Here we show figures and summary tables for our experiments comparing the MILP and Greedy
on the pilot study data with pool size constraint G = 10, and on synthetic populations of size
n = 200 and pool size constraints G ∈ {5, 10}. For details on the experiments, we refer to
Section 5.3.

Figure 1: Outcomes of Greedy and the MILP on synthetic data with n = 200, pool size bound
G = 5 and testing budgets B ∈ {2, 4, . . . , 12}. Left: Welfares achieved by the MILP (left regions,
blue) and Greedy (right regions, green). Right: Ratios between the welfares of the MILP
and Greedy. In both figures, each black dot corresponds to one of the 20 randomly generated
populations.
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Figure 2: Outcomes of Greedy and the MILP on synthetic data with n = 200, pool size bound
G = 10 and testing budgets B ∈ {2, 4, . . . , 12}. Left: Welfares achieved by the MILP (left regions,
blue) and Greedy (right regions, green). Right: Ratios between the welfares of the MILP
and Greedy. In both figures, each black dot corresponds to one of the 20 randomly generated
populations.

MILP Greedy

Budget Welfare Guarantee Time Welfare Apx To Optimal Time

2 866.58 0.47 470 ms 866.47 1.000127 52 ms
6 2391.49 1.42 3504 ms 2390.99 1.000210 50 ms
10 3775.35 2.36 1781766 ms 3774.20 1.000305 87 ms
14 4696.30 3.31 19293052 ms 4678.52 1.003800 279 ms
18 4741.30 4.25 62784039 ms 4678.52 1.013417 672 ms
22 4770.00 5.19 88422845 ms 4678.52 1.019554 1086 ms
26 4790.29 6.13 133956040 ms 4678.52 1.023889 289 ms
30 4805.25 7.08 284989519 ms 4678.52 1.027088 1215 ms
34 4816.15 8.03 545021914 ms 4678.52 1.029417 1175 ms

Table 3: Summary showing welfare and computation time for the MILP and Greedy on pilot
study data (with a population of n = 130) and pool size constraint G = 10 with testing budgets
B ∈ {2, 6, . . . , 34}. We also state the additive approximation guarantee of MILP (compared to
optimal non-overlapping welfare).

E The randomized controlled trial

E.1 Randomization

Sufficient separation of treatment and control groups is important for our protocol to work,
primarily to disentangle psychological dynamics. If non-treated participants were to run into
treated participants, possible health spillovers would be contained within our health protocol:
participants have a non-infectious 72 hour window, starting from sample submission, in which
they are allowed into the building after receiving a negative qPCR test result. In practice, this
translated into a 48 hour window of access. Note that we cannot control offsite socialization.

Many individuals participating in our trial belong to a research ‘discipline’, and within
that discipline, to a working group. Similarly, staff in the administration belong to specific
departments, e.g. accounting, which we label as their working group. We followed a clustering
approach, randomly assigning the working groups to treatment and control. Because only one
group from each discipline volunteered to participate in the trial, discipline and working group
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MILP Greedy

Budget Welfare Guarantee Time Welfare Time

2 366.90 0.56 285 ms 366.85 35 ms
4 675.51 1.11 837 ms 675.29 67 ms
6 947.86 1.67 2585 ms 947.48 98 ms
8 1188.80 2.23 9933 ms 1188.24 134 ms
10 1399.83 2.78 202447 ms 1399.30 175 ms
12 1584.99 3.34 949195 ms 1584.43 226 ms

Table 4: Experiment summary on synthetic data with pool size bound G = 5 and testing budgets
B ∈ {2, 4, . . . , 12}. Welfares and times are averaged over 20 randomly generated populations.
We also state the additive approximation guarantee of the MILP (compared to optimal non-
overlapping welfare).

MILP Greedy

Budget Welfare Guarantee Time Welfare Time

2 587.20 1.24 389 ms 587.16 33 ms
4 941.65 2.48 2089 ms 941.34 83 ms
6 1177.26 3.71 9297 ms 1170.46 171 ms
8 1368.17 4.95 33184 ms 1345.93 265 ms
10 1533.75 6.19 75437 ms 1491.34 379 ms
12 1680.95 7.43 350039 ms 1617.25 566 ms

Table 5: Experiment summary on synthetic data with pool size bound G = 10 and testing budgets
B ∈ {2, 4, . . . , 12}. Welfares and times are averaged over 20 randomly generated populations.
We also state the additive approximation guarantee of the MILP (compared to optimal non-
overlapping welfare).

are henceforth analogous.
Students, researchers and staff are clustered based on their discipline/working group and

each cluster is randomly assigned to treatment or control groups. Treatment and control groups
work were spatially separated by different floors or offices, or even buildings. Crucial for this
approach to be effective is that individuals across working disciplines are comparable. Given
IPICYT’s reports about their staff, we know that staff, research students and researchers are
assigned to work/study in each of the teams contingent only on their academic discipline, based
on no individual characteristics. Hence, we may consider the assignment as good as random.
Nevertheless, we further collect a number of covariates to conduct a balance analysis.

Covariate balance. In Table 6 we provide a covariate balance analysis table. Due to our
clustered randomization strategy, it is important to observe whether baseline covariates and
outcome variables are balanced across experimental conditions, without accounting for clustering.
Of the 15 observed variables, only 2 variables are unbalanced with negligible differences: firstly,
the Digital Resources Score35, which is one of the three composite scores with which we construct
individual utilities for onsite work and study.

The imbalance in this score is also reflected in the distribution of individual utilities per
experimental condition. In Fig. 3 we visualize the overlap between these distributions, and the

35This variable is a computed measure of the need for digital and other resources found in the institute.
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Covariate Difference Method p−value Status(mean)
Gender N/A Wilcoxon rank sum test w/ continuity corr. 0.9809 balanced
Age 1.22727 Welch two sample t-test 0.5163 balanced
Role (Staff vs. Academics) N/A Wilcoxon rank sum test w/ continuity corr. 0.2724 balanced
C19 recovered N/A Wilcoxon rank sum test w/ continuity corr. 0.9704 balanced
Household size 0.304804 Welch two sample t-test 0.3196 balanced
Socioeconomic status 0.119889 Welch two sample t-test 0.302 balanced
Sociability 0.75325 Welch two sample t-test 0.8636 balanced
Stress 0.154151 Welch two sample t-test 0.0676 balanced
Learning 0.012127 Welch two sample t-test 0.9643 balanced
Life satisfaction 0.082386 Welch two sample t-test 0.8132 balanced
Productivity 0.272727 Welch two sample t-test 0.03328 unbalanced
Institutional satisfaction 0.032649 Welch two sample t-test 0.9314 balanced
Digital resources score 0.260182 Welch two sample t-test 0.004235 unbalanced
Own goals (achieving) 0.243845 Welch two sample t-test 0.1445 balanced
Supervisor goals (achieving) 0.295928 Welch two sample t-test 0.07726 balanced

Table 6: Covariate balance analysis

non-overlapping areas. We notice that the treatment group’s distribution exhibits bunching at
the right tail, meaning that there are more people in the treatment group that would benefit from
working onsite. The inverse is also true, there are more people in the control group that derive less
value from working onsite. Recall that the experimental protocol gives more freedom to control
group participants and less so to treatment group participants; neutral results (i.e. no difference
in endline outcomes) between experimental conditions might, in fact, reflect conservative results,
since treatment participants could potentially benefit more from full mobility and no scheduling
limitations.
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Figure 3: K-Density distributions of baseline utilities by experimental condition.
.

Secondly, the outcome variable ‘Productivity’ is not balanced, with a higher average produc-
tivity in the treatment group. This is likely to have implications for the linear model analyses.
Specifically, the models are more likely to be sensitive to positive changes experienced by the
control group. Covariate-controlled regressions are included in Appendix E.7 to control for the
observed imbalance, and the main results remain unchanged.

Based on the covariate balance discussion above, the randomization process was successful.
Some minor imbalance is to be expected as a result of chance (Bruhn and McKenzie, 2009;
Altman, 1985), and it is not a likely source of bias for an experimental analysis.
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E.2 Scheduling preferences

Our mechanism allowed individuals in the treatment group to indicate their preferences over
days on which they wished to access the institute. A negative pooled test on a given day allowed
individuals in the pool to access the campus for 72 hours starting from sample submission, which
meant 2 days after receiving their result in practice. In the web app, participants were given
a set of 10 virtual tokens that they could distribute arbitrarily among all consecutive two-day
windows (Monday & Tuesday, Tuesday & Wednesday, etc.) on which they wished to enter the
institute. This distribution of tokens then expressed the agent’s relative preferences. (Assigning
more tokens to some two-day window indicated a stronger preference for these two days.) The
individual’s utility for each two-day block is then computed from baseline utilities as described in
Section 5.2 and their relative preference for the block.

E.3 Outcomes and covariates

Mental health outcomes. Mental health problems related to social isolation as a consequence
of the COVID-19 pandemic have been documented for students and the general population
(Martinez Arriaga et al., 2021). We conjecture that putting in place a safe education protocol
decreases stress levels among students, researchers, and staff, by increasing safe sociability
(Becchetti et al., 2017) and modulating the perception of health risk in the institute (Shan et al.,
2022). Consequently, subjective well-being may also be positively affected. Stress is measured
via the validated 4-item Perceived Stress Scale by Sheldon Cohen (Cohen et al., 1994) and we
use a variation of the European Quality of Life Survey measure of subjective well-being, using a
‘life/subject evaluation’ approach (OECD., 2013)36

Performance, productivity, and learning. The pandemic has disrupted learning processes
and decreased productivity of Mexican students (Limón-Vázquez et al., 2020; Martinez Arriaga
et al., 2021) and female researchers (King and Frederickson, 2021). A significant portion of
this downfall in productivity may be due to remote work with limited access to the necessary
resources for work, research, and learning. We conjecture that our testing protocol improves
(self-assessed) productivity and performance (in learning environments), and self-assessed learning
experience when compared to a remote work policy. In the presence of an alternative reopening
strategy - as is our case - we expect to see no difference between groups. That is, two competing
opening strategies that allow all or some individuals in the population to socialize within the
institutional premises should increase productivity. Since our mechanism imposes a greater
logistical burden on subjects than the status-quo reopening policy of IPICYT, no difference in
performance, productivity and learning is an indication that a utility-maximizing approach to
partial reopening is a successful strategy.

We use a composite score for the evaluation of performance, productivity. Let P ppa
i,z denote the

number of points ‘achieved’ by the answer of subject i to question z pertaining to ‘Performance,
productivity, and sense of achievement’. Let Zppa denote the number of relevant questions. Then
the score is computed as pi =

1
Zppa

∑
z P

ppa
i,z . For learning, we use a self-assessment Likert scale

that ranges between 1 and 10, where 1 is poor and 10 is excellent.

Covariates. Besides outcome variables, we have collected additional socioeconomic and psy-
chosocial data of participants. These data are used in two ways. First, some of these features
enter into the utility estimations needed for the testing algorithm. Second, we use relevant
features/variables to check for group balance and, as needed for robustness checks as covariates
in our proposed models. We collect the following covariates:

36Note that we use baseline Stress and Subjective Well-being in our utilites’ computation. On the other hand,
we use endline Stress and Subjective Well-being to analyze between-group intervention effects.
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1. Socio-economic attributes: gender, age, ethnicity, educational affiliation, perceived socio-
economic status, financial dependents.

2. Academic or job resources: internet access, access to job materials, need to collaborate in
person, access to a dedicated working space outside of the office.

3. Psychosocial attributes: Sociability, fear of the virus, subjective well-being.

All covariates and their measurement strategy can be found in the baseline survey in Appendix F.

E.4 Power and sample size

We estimate statistical power given the five outcome vectors outlined in Appendix E.3. All our
outcome variables are continuous scores, where ‘perceived stress’ is a non-integer vector ranging
from 1 to 4, and ‘life satisfaction’, ‘learning’, ‘productivity’, and ‘performance’ are integer vectors
with ranges 1 to 10 for the first two vectors, and 1 to 5 for the remaining three. We perform two
types of tests to determine power. We calculate the power of a post-hoc two one-sided (TOST)
equivalence test, given that we are interested in observing no difference in outcomes between
experimental groups. Equivalence tests are usually a good complement to a null hypothesis test to
avoid the misinterpretation of p-values higher than α being considered as evidence of the absence
of an effect (Lakens, 2017).

Lower bound Upper bound Equivalence p Result

Stress -0.453 0.453 2.44e-02 reject null equivalence
Life satisfaction -0.822 0.822 0.2.5e-02 reject null equivalence

Performance -0.371 0.371 2.3e-02 reject null equivalence
Productivity -0.403 0.403 1.61e-02 reject null equivalence

Learning -0.742 0.742 2.38e-02 reject null equivalence

Table 7: TOST Equivalence test, using the R package ‘TOSTER’, assuming ICC ≈ 0.

Table 7 shows the lower and upper bounds for each outcome variable in our analysis. We set
the bounds as follows: we use the lower bound of the realized confidence intervals from the null
hypothesis tests as the equivalence test lower bound. This grounds our range in an empirically
observed and statistically probable value. We set the upper bound as a full unit increase from
the lower bound, as we expect any changes in means to be positive, i.e. our equivalence bounds
are set more conservatively than what we observed in the null hypothesis test.37 In all cases, the
equivalence p-values are statistically significant at p < 0.02, and we can reject the null hypothesis
of the TOST equivalence test.

Mean 1(t) Mean 2(c) SD 1 (t) SD 2(c)

Stress 2.4237 2.2379 0.7547 0.7291
Life satisfaction 7.6440 7.5556 2.0406 2.0539

Performance 2.1724 2.0968 0.7978 0.6455
Productivity 2.1034 1.9836 0.7978 0.6455

Learning 8.3684 8.1935 1.5075 1.6179

Table 8: TOST equivalence test, input means and standard deviations for treatment (t) and
control (c).

37There is no theoretically-informed way to specify equivalence bounds, so we aimed to set realistic, robust, and
empirically informed bounds.
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Value Var P-2.5% P-97.5%

Stress
Lohr ρ -0.0009 0.0183 -0.3069 0.2449
Adj. R2 0.0083 0.0180 -0.2943 0.2528
ANOVA ρ 0.0081 0.0197 -0.3122 0.2645

Life Satisfaction
Lohr ρ -0.1794 0.0146 -0.4573 0.0310
Adj. R2 -0.1688 0.0142 -0.4414 0.0383
ANOVA ρ -0.1790 0.0160 -0.4688 0.0399

Performance
Lohr ρ 0.0243 0.0170 -0.2371 0.2721
Adj. R2 0.0333 0.0166 -0.2237 0.2793
ANOVA ρ 0.0333 0.0182 -0.2371 0.2875

Value Var P-2.5% P-97.5%

Productivity
Lohr ρ 0.0378 0.0128 -0.1860 0.2511
Adj. R2 0.0464 0.0125 -0.1713 0.2566
ANOVA ρ 0.0475 0.0135 -0.1809 0.2638

Learning
Lohr ρ 0.0501 0.0162 -0.1959 0.2969
Adj. R2 0.0587 0.0158 -0.1818 0.3041
ANOVA ρ 0.0603 0.0171 -0.1937 0.3143

Own Goals
Lohr ρ 0.1472 0.0165 -0.0954 0.4021
Adj. R2 0.1550 0.0163 -0.0846 0.4077
ANOVA ρ 0.1601 0.0172 -0.0917 0.4157

Supervisor Goals
Lohr ρ 0.1075 0.0177 -0.1429 0.3688
Adj. R2 0.1156 0.0175 -0.1312 0.3746
ANOVA ρ 0.1189 0.0186 -0.1411 0.3821

Table 9: Intracluster correlation coefficients for all outcomes computed with the R fishmethods
package. We report the Pearson correlation coefficient between pairs (Lohr, 2021), an adjusted
R2, and the ANOVA ρ, a coefficient based on a one-way random effects model (Donner, 1986)
(variance estimates are bootstrapped).

Table 8 includes the means and standard deviations per experimental condition and outcome
vector that were used to compute the equivalence bounds.

Our randomization approach relied on the affiliation of experiment participants to a working
group. Our post-hoc power calculations do not include an intra-cluster correlation coefficient (ICC)
parameter based on the realized ICCs in our sample, shown in Appendix E.4. We calculated the
ICC coefficient with the ‘fishmethods’ R package. The function computes the Pearson correlation
coefficient between pairs (Lohr, 2021), an adjusted R2, and a coefficient based on a one-way
random effects model (Donner, 1986) (variance estimates are bootstrapped). The cluster variable
used in the randomization (and for computation of the ICC) is each subject’s working group.
Appendix E.4 includes the estimated ρ value for all outcome vectors. All ICC scores are ρ < 0.2,
too low to be considered reliable (Koo and Li, 2016).

Attrition. We observed two sources of missingness: non-systematic missing values across survey
variables, for a total of 24 missing values spread across the dataframe at baseline, and 34 at endline.
We further note that between baseline and endline, there was a total of 8 trial attriters, equivalent
to 6 percent of our sample. We evaluated the relationship between attriters and experimental
conditions using a logistic regression model. With p = 0.065, attrition is uncorrelated to treatment
assignment. Note that here as for the rest of the analysis, statistical significance is only considered
for p < 0.05.

E.5 Metrics and methods

We propose a two-group experimental design where n = 130 subjects are randomly assigned to
either a treatment or a control group, conditional on some affiliation to a cluster. Group balance
in observed and unobserved heterogeneity is a direct result of random assignment, allowing for
treatment status to be the only source of exogenous variation. As such, the mean group difference
in the outcomes of interest can be presented as the causal effect of our testing strategy in those those
dimensions. We estimate the average treatment effect on the five, previously introduced, outcome
variables. We are interested in non-significant differences between experimental conditions, given
that the control group is not defined as participants working remotely, but participants working
onsite with complete freedom of movement. We therefore refer to the p-values in bivariate
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regressions as evidence of no association.There is an ongoing debate over whether one can use
insignificant p-values as evidence of no effect (Lakens, 2021). We resort to the equivalence tests
in Table 7 as robustness checks for our findings.

We previously explain that, while we hope to deliver an ATE, we are likely to deliver ITT
results, based on the assumption that some treatment participants may not fully comply with
the protocol by, for instance, not attending an invitation for saliva sample submission. The
protocol is designed such that opting out of sample submission does not affect results, as the
grouping algorithm (for test pools) is run only on the subsample of compliers. The non-attendee
is simply restricted from entering the premises until they get a negative test result, and they are
not penalized when generating new sample submission invitations.

We denote our outcomes as yi ∈ {si, wi, li, pi, pri} :

• The average stress level and subjective well-being, measured by each individual’s stress
score si and life satisfaction score wi

• Subjects’ self-assessed learning li, performance pi and productivity scores pri.38

The treatment effect of endline outcomes is estimated using a linear model, with HC1 standard
errors. Let Y denote the stacked vector of outcomes (y1, . . . , yn) ∈ {si, wi, li, pi, pri}. Let β
denote the vector of parameters to be estimated, and τi the treatment dummy. The independent
variables are subsumed in X = (1n,T, C), where 1n is an n−vector of ones, T is a vector of
treatment status τi, and C is a matrix of covariates39. Let ε denote the vector of error terms εi.
We estimate the model

Y = Xβ + ε (19)

for Y ∈ {S,W,P, Pr, L} and test the hypothesis β1 ≈ 0. We collect baseline and endline data for
the set of outcome vectors. Let ∆Y = Yendline − Ybaseline denote the change in outcome Y from
baseline to endline. We estimate the delta model

∆Y = Xβ′ + ε′ (20)

to identify the effect of our intervention on the change in outcomes throughout the duration
of the experiment. This analysis complements the analysis of endline outcomes: it eliminates all
observed and unobserved confounds that are constant between our two points of measurement
(Allison, 1990). This allows for the interpretation of results not only as static differences but also
in the context of possible outcome trajectories, and adjusted for static unobservables.

E.6 Results

We present the results from the regression analyses based on Eqs. (19) and (20) in Tables 2, 10
and 11. On a high level, we are able to report for performance outcomes (in Table 2, in the main
text) as well as mental health outcomes (Table 11) that our testing protocol has no negative
effect, despite the increased effort it demands from participants.

To check the robustness of these outcomes, we estimate delta models for performance, produc-
tivity, and learning (also in Tables 2 and 10). All treatment effects are corrected downwards,40

but remain non-significant with one exception. At p = 0.05, the change in treatment participants’
productivity from t0 to t1 is at the border of statistical significance. It shows a downward effect
of 0.25 score points. Mean self-reported productivity for treatment participants went from 2.27
at t0, down to 2.17 at t1. This small decrease of 0.1 may be due to the added coordination

38We adapt a measure based on the fit of 10 and 5 point likert scales, respectively, as per Versteeg and Steendijk
(2019)

39We present covariate-controlled linear models in Appendix E.3 as robustness checks. They are not, however,
part of the main analysis.

40During the course of the month, treatment participants experience a small and statistically insignificant
decrease in performance and goals; however, they still report higher learning, on average.
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effort exerted by treatment participants, and time invested in familiarizing themselves with the
protocol. On the other hand, control participants experienced an increase in mean self-reported
productivity of 0.09 points; they went from 2.00 at t0 up to 2.09 at t1. This small increase in
productivity may be a benefit from transitioning from remote work to full institutional access.
Together, they explain the negative and borderline statistically (in)significant coefficient.

Mental health outcomes. Table 11 shows that there are no significant effects of the pooled-
testing protocol on the subjects’ stress level or subjective well-being (life satisfaction). On average,
subjects in the treatment group report a stress score that is 0.186 points higher than for subjects
in the control group. At p = 0.17, this difference is not statistically significant. When looking
at the change in stress from baseline to endline in the delta bivariate model, the magnitude
of the coefficient decreases to 0.009 at p = 0.95. That is, treatment status induces little to
no variation in the change in stress between t0 and t1. Further, treatment participants report
higher average life satisfaction scores. At endline, the difference in scores is small at 0.089,
and insignificant (p = 0.81). However, the magnitude of the coefficient drastically increases for
treatment participants by 0.284 points when looking at the change in scores pre and post trial.
The change in life satisfaction score is, again, statistically insignificant (p = 0.37).

Dependent variable:

Own goals Supervisor goals ∆ Own goals ∆ Supervisor goals

Treatment 0.035 0.250 −0.307 −0.115
(0.170) (0.159) (0.192) (0.191)

Constant 2.344∗∗∗ 2.129∗∗∗ −0.131 −0.113
(0.107) (0.099) (0.101) (0.098)

Observations 119 120 118 119
R2 0.0004 0.021 0.022 0.003
Adjusted R2 −0.008 0.012 0.014 −0.005

Sig. p codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Table 10: Linear model regressions of further performance outcomes.

Dependent variable

Overall stress Life satisfaction ∆ Overall stress ∆ Life satisfaction

Treatment 0.186 0.089 0.009 0.373
(0.135) (0.371) (0.146) (0.414)

Constant 2.238∗∗∗ 7.556∗∗∗ −0.813∗∗∗ −0.270
(0.093) (0.259) (0.096) (0.276)

Observations 121 122 121 121
R2 0.016 0.0005 0.00004 0.007
Adjusted R2 0.007 −0.008 −0.008 −0.002

Sig. p codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Table 11: Linear model regressions of mental health outcomes.
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E.7 Covariate analysis and secondary results

We also ran covariate-controlled regressions as robustness checks for our bivariate models (see
Tables 14 and 15), and find no contradictions to our main findings in our preferred model
specification. All covariates are taken from the baseline survey, whereas the dependant variables
are taken from the endline survey. We find that baseline utilities are strongly positively correlated
with most measures of performance, except learning, suggesting that the higher the need to work
onsite, the more productive the individual is (at endline). Interestingly, learning is negatively
correlated with all performance measures. Further exploration is beyond the scope of this study.

Dependent variable

Performance Own goals Supervisor goals Productivity Learning

Treatment 0.120 0.035 0.250 0.076 0.175

Age -0.0002 -0.003 -0.007 -0.002 -0.002

Gender:Female 0.196 0.262 0.180 0.257∗ 0.360

Academics:Yes 0.367 ∗ 0.210 -0.042 0.342∗ -0.319

Utility 1.375∗∗∗ 1.003∗ 1.588∗∗∗ 1.268∗∗∗ -0.627

Sociability t0 0.006∗ 0.002 0.003 0.005. -0.002

Fear (of Covid) 0.013 0.086 0.111 -0.010 0.015

Institute satisfaction t0 -0.069. -0.063 -0.040 -0.067∗ 0.089

Life satisfaction t0 0.099. 0.116. 0.148∗ 0.082. 0.193.

Stress score t0 -0.263 0.092 -0.087 0.064 0.799∗

C19 recovered -0.382 -0.616 -0.568 -0.333 -1.245

Not recovered -0.403 -0.679 -0.784. -0.333 -0.865

Household size -0.009 -0.079 -0.066 -0.006 -0.009

Digital resources score -0.557∗∗∗ -0.263 -0.138 -0.370∗ 0.130

Socio-economic score -0.177 -0.114 -0.229 -0.241 -0.251

Learning -0.128∗∗ -0.189∗∗ -0.135∗ -0.158∗∗∗

Constant 1.927. 2.075 0.165 1.473 6.312∗∗

Observations 110 110 111 111 111
R2 0.381 0.252 0.345 0.369 0.279
Adjusted R2 0.266 0.114 0.225 0.254 0.157

Sig. p codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Table 12: Linear model regressions of performance, productivity, and learning outcomes, with
covariates.

E.7.1 Distributions of outcome variables

We chose to evaluate the testing allocation protocol with linear models, under the assumption that
all outcomes were normally distributed and with the understanding that our interest was not in the
magnitude of the coefficients but in mean equivalence between experimental conditions. Subjective
well-being and stress are both continuous and normally distributed variables. Subjective well-
being is coded as a likert scale that ranges from 1 to 10, and stress is a numeric score that goes
from 1 to 5, including fractions. Learning is also normally distributed, and coded as a 1 to
10 likert scale. Performance and Productivity, however, are coded as 1 to 5 categorical scales.
In practice, the last category (coded as 5) was never picked in the survey. Due to the integer
restriction of these outcome variables, their distribution is not fully normal. To address this
issue, we estimate multinomial logistic bivariate models (see Tables 14 and 15) as robustness
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Dependent variable difference (∆)

Performance Own goals Supervisor goals Productivity Learning

Treatment 0.053 −0.307 −0.115 −0.256∗ 0.086

Utility -0.490. -0.977∗∗ -0.445 -0.449. -0.137
Sociability t0 -0.001 -0.005 -0.005 -0.002 -0.004

Fear (of Covid) 0.034 0.069 0.197∗ 0.009 0.128

Institute satisfaction t0 -0.077∗ -0.050 -0.017 -0.028 -0.167∗

Life satisfaction t0 0.008 0.103. 0.190∗∗∗ -0.028 0.082

Stress score t0 -0.128 -0.202 -0.189 0.138 0.726∗

Constant 2.116∗ 2.482∗ −0.175 1.270 -1.276

Observations 115 115 116 116 115
R2 0.080 0.188 0.193 0.067 0.077
Adjusted R2 0.020 0.135 -0.176 0.007 0.016

Sig. p codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Table 13: Linear model regressions of change in performance, productivity, and lerning outcomes,
with covariates.

checks. The multinomial models corroborate our linear models’ results for performance and
productivity. We evaluated productivity and performance as aggregate scores instead of ordinal
scores for comparability purposes across the set of outcomes, but nevertheless provide a model
that better fits the outcomes variables’ functional form. We note that we prefer a multinomial
over an ordered model due to our interest in behavior relating to a reference point, the ‘average’,
and not in the explicit increasing order in the categories.

Dependent variable: Performance
Reference category: Average (3)

Poor Below Average Above Average

(1) (2) (4)

treatment 0.928 0.549 11310.1
(0.523) (0.461) (68.097)

Constant 1.077079e+00 2.615192e+00∗∗∗ 1.658985e-05
(0.385) (0.326) (68.094)

Akaike Inf. Crit. 275.894 275.894 275.894

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 14: Multinomial Logistic Regression of Performance. Coefficients are reported as relative
risk ratios.

Table 14 shows that a treated individual is likely to remain an above-average performer
compared to an average performer. The odds of treated participants to indicate a Below Average
performance, as compared to an Average performance, are high. The odds to indicate Poor
performance, as compared to Average, however, are very low. None of these results are statistically
significant, as reported in the main linear models, section 5 of the paper. Similarly, Table 15 shows
that for a treated individual, the odds of staying a highly productive person are large. Treated
individuals also have high odds of going from Average to Below Average productivity. Again,
these results are not statistically significant.41 These results are consistent with the inference we
made from the linear levels and delta models.

41Note that the Below Average category has a p-value of 0.09.
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Dependent variable: Productivity
Reference category: Average (3)

Poor Below Average Above Average

(1) (2) (4)

treatment 0.990 0.486. 2334.027
(0.536) (0.426) (55.362)

Constant 6.250105e-01 2.250052e+00∗∗ 2.039955e-05
(0.403) (0.300) (55.353)

Akaike Inf. Crit. 263.197 263.197 263.197

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 15: Multinomial Logistic Regression of Productivity. Coefficients are reported as relative
risk ratios.

F Survey

1. Socio-demographic attributes

1.1 Identifier

Please write down your IPICYT ID number:

1.2 Role

What is your role at the university?

2 Taught student

2 Research student

2 Researcher

2 Staff (Administration, maintenance, other employees of IPICYT)

1.3 Affiliation [Only for students and researchers]

Which department are you affiliated with?

2 Maths and Computer Science

2 Natural Sciences

2 Other:

1.4 Gender

Which gender do you identify yourself with?

2 Female

2 Male

2 Other:

2 Prefer not to say

1.5 Age

Please indicate your age in two digits:
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1.6 Ethnicity

Which ethnic group do you identify most with?

2 White

2 Indigenous

2 Mestizo

2 Afrolatino

2 Other:

2. Family, work, and socio-economics features

2.1 (se) How many dependants do you have?

This could be children, children and partner, other relatives, etc.

2 Answer:

2 0-1 [1pt.]

2 2 [2pt.]

2 3 [3pt.]

2 4 [4pt.]

2 5+ [5pt.]

2.2 (pr) How many people live in the same household as you?

This could be children, children and partner, siblings, other relatives, housemates etc.

2 Answer:

2 0-1 [1pt.]

2 2 [2pt.]

2 3 [3pt.]

2 4 [4pt.]

2 5+ [5pt.]

2.3 (pr) How much of your time during a normal work day do you spend working on a computer?

2 0-10% [5pt.]

2 11-30% [4pt.]

2 31-50% [3pt.]

2 51-70% [2pt.]

2 70-100% [1pt.]
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2.4 (pr) How much of your time during a normal work day do you spend on communication
with colleagues?

2 0-10% [1pt.]

2 11-30% [2pt.]

2 31-50% [3pt.]

2 51-70% [4pt.]

2 70-100% [5pt.]

2.5 (pr) How much of your time during a normal work day do you spend working in a team?

2 0-10% [1pt.]

2 11-30% [2pt.]

2 31-50% [3pt.]

2 51-70% [4pt.]

2 70-100% [5pt.]

2.6 Socio-economic class

(se) Look at the image of the ladder below. Imagine this ladder pictures how Mexican
society is set up:

· At the top of the ladder are the people that are best off - they have the most money,
the highest amount of schooling, and the jobs that bring the most respect.

· At the bottom are the people who are the worst off - they have the least money, little
or no education, no job or jobs that no one wants or respects.

Now think of your family, please tell us where you think your family would be on this
ladder:

2 10-9 [1pt.]

2 8-7 [2pt.]

2 6-5 [3pt.]

2 4-3 [4pt.]

2 2-1 [5pt.]
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2.7 (se) Perceived socio-economic status

People sometimes describe themselves as belonging to the working class, the middle class,
or the upper or lower class. Would you describe yourself as belonging to the

2 Upper class [1pt.]

2 Upper middle class [2pt.]

2 Lower middle class [3pt.]

2 Working class [4pt.]

2 Lower class [5pt.]

2 Prefer not to answer [0pt.]

3. Using digital media

3.1 (pr) How much of your work time do you spend using the internet?

2 0-10% [5pt.]

2 11-30% [4pt.]

2 31-50% [3pt.]

2 51-70% [2pt.]

2 70-100% [1pt.]

3.2 (pr) How much of your leisure time do you spend using the internet?

2 0-10% [5pt.]

2 11-30% [4pt.]

2 31-50% [3pt.]

2 51-70% [2pt.]

2 70-100% [1pt.]

3.3 (pr) How do access the internet from home most of the time?

2 Through laptop + wifi [1pt.]

2 Through laptop + mobile connection [2pt.]

2 Through phone + wifi [3pt.]

2 Through phone + mobile connection [4pt.]

2 N/A [5pt.]

4. Psychosocial features
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4.1 (psy) Sociability

Please write down the percentage of individuals (in your social circle) who would agree with
the following statement about yourself: ‘I spend a lot of time visiting friends’

2 0-10% [5pt.]

2 11-30% [4pt.]

2 31-50% [3pt.]

2 51-70% [2pt.]

2 70-100% [1pt.]

4.2 Fear

Please rate the extent to which you experience the following feelings at this moment: Fear
because of the COVID-19 disease/ the SARS COV-2 virus.

2 Not at all

2 Not really

2 Neutral

2 Somewhat

2 Very much

4.3 (psy) Perceived Stress Scale

1 2 3 4 5
Never Almost never Sometimes Fairly often Very Often

Based on the scale above, where zero indicates never experiencing that situation and four
indicates experiencing that situation very often, please rate the following statements:

· In the last month, how often have you felt that you were unable to control the important
things in your life?

· In the last month, how often have you felt confident about your ability to handle your
personal problems?

· In the last month, how often have you felt that things were going your way?

· In the last month, how often have you felt difficulties were piling up so high that you
could not overcome them?

[Each score translates into the identical number of points. Then the average of the four
sub-questions is computed.]

4.4 (psy) Subjective well-being

All things considered, how satisfied would you say you are with your life these days? Please
tell me on a scale of 1 to 10, where 1 means very dissatisfied and 10 means very satisfied:

2 10-9 [1pt.]

2 8-7 [2pt.]
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2 6-5 [3pt.]

2 4-3 [4pt.]

2 2-1 [5pt.]

4.5 Subjective well-being

Taking all things together on a scale of 1 to 10, how satisfied are you about IPICYT’s
efforts to keep you safe in the institute throughout the pandemic?

5. Performance self-assessment

5.1 (ppa) Self-assessment of performance

How would you rate your overall performance for your job or degree in the past 4 weeks?

2 Poor [5pt.]

2 Below average [4pt.]

2 Average [3pt.]

2 Above average [2pt.]

2 High [1pt.]

5.2 Self-assessment of learning

After the COVID-19 pandemic began, the way we learn and interact with our peers
drastically changed. How would you say your learning experience has been in the past 4
weeks?

Please rate your learning process and experience between 1 and 10, where 1 is poor and 10
is excellent:

5.3 (ppa) Self-assessment of productivity

How would you rate your day-to-day productivity in your work in the past 4 weeks?

2 Poor [5pt.]

2 Below average [4pt.]

2 Average [3pt.]

2 Above average [2pt.]

2 High [1pt.]

5.4 (ppa) Self-assessment of achievement (supervisor goals)

Considering again the work for your job or degree during the past 4 weeks, please select the
statement that fits your situation best.

2 I have struggled to achieve the goals set by my supervisor/employer/course teachers [5pt.]

2 I have managed to achieve some of the goals set by my supervisor/employer/course
teachers [4pt.]

2 I have achieved many of the goals set by my supervisor/employer/course teachers [3pt.]

2 I have achieved most of the goals set by my supervisor/employer/course teachers [2pt.]
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2 I have achieved all or exceeded the goals set by my supervisor/employer/course teachers
[1pt.]

5.5 (ppa) Self-assessment of achievement (own goals)

Considering again the work for your job or degree during the past 4 weeks, please select the
statement that fits your situation best.

2 I have struggled to achieve the goals I set for myself [5pt.]

2 I have managed to achieve some of the goals I set for myself [4pt.]

2 I have achieved many of the goals I set for myself [3pt.]

2 I have achieved most of the goals I set for myself [2pt.]

2 I have achieved all or exceeded the goals I set for myself [1pt.]

F.1 Consent form

You are invited to take part in a research project conducted by researchers from the University
of Oxford, Harvard University, and the United Nations University in conjunction with IPICYT.
This project is funded by IPICYT. In accordance with international standards in the practice of
randomized studies, this project has received ethical approval from the Research Ethics Committee
at IPICYT and The Central University Research Ethics Committee at Oxford University, ethics
reference R81719/RE001.

We ask that you read this form carefully prior to deciding to participate in the study. If you
decide you do not want to participate, you may leave at any time without providing a reason and
without penalty.
Purpose: The purpose of this study is to understand how the implementation of an algorithmic-
base safe education protocol influences students and staff well-being and productivity during a
pandemic.
What happens during the study: This study requires you to follow one of two protocols.

If you are selected to be part of the treatment group, you will participate in COVID-19 pooled
testing. Throughout the course of the study, you may receive emails inviting you to submit a
saliva sample, which will be pooled with other samples and tested at the LANBAMA laboratory
at IPICYT. If your test is negative, then everyone in your pool is healthy and permitted to enter
the institute for 48 hours. If your test is positive, then at least one person in your pool is infected,
and you (as well as all other individuals in your pool) are not permitted to enter the institute
until you are selected for re-testing and the next test result is negative. At no point are you
obliged to submit a saliva sample, or to enter the building.

If you are selected to be part of the control group, you will be asked to follow the same remote
working policy that is currently in place at IPICYT. If you would like to access the institute, you
must contact the head of your department for permission.

We also ask all participants to respond to a short survey at the beginning and at the end of
the trial - within a month’s time - where you will be asked sociodemographic questions, alongside
a set of psychological questions. You are not required to answer any questions that you may find
uncomfortable. Furthermore, for the purpose of COVID-19 testing, you may be asked to give a
saliva sample to the technicians at LANBAMA if you are selected for pooled testing. The sample
will be used directly on the day of reception and will be destroyed after being processed for a
qPCR test. The sample(s) will not be stored. You will be informed about the result of all pooled
tests that contain your sample.
Participation: The trial is expected to run for a month, throughout August 2022, during which
participants in the treatment group will receive free COVID-19 testing. Participants are asked to
fill in a survey at the beginning and end of the study. In addition, participants in the treatment
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group are able to indicate their preference for which days they wish to be tested. Throughout
the course of the month, the principal investigators will link health data (i.e. COVID-19 test
results) to survey data (collected at the beginning and end of the trial). However, at the end of
the trial all gathered data will be anonymized. If you wish to withdraw consent on the use of
your data at any point during the study, please contact mail@c-sef.com. You always have the
option of stopping your participation in the study and you may leave at any time during the
study (4 weeks from the start of the trial) without providing a reason and without penalty. If
you decide to leave, the data you have provided up to this point will be anonymized immediately
and deleted after attrition analysis.
Potential risks: If you choose not to participate in the study, or you participate and are selected
into the control group, you will not be exposed to any additional risk. If you choose to participate
and are selected into the treatment group, there is a risk that you will be infected if you are
permitted to enter the institute and decide to do so. This risk is small, as all individuals must test
negative in order to enter the institute. In particular, the C-SEF protocols are much safer than
reopening without monitoring for infections. While the probability of infection can be minimized
and contained, it is not guaranteed to be zero. There is always a very small chance to get infected
when participating in social activities, and COVID-19 comes with small and major consequences;
among which, fever, cough, loss of taste and smell, respiratory problems and, in some cases,
death.

Your survey responses are strictly confidential and will only be accessible to the researchers.
Below, we describe the steps we are taking to protect your privacy. In addition, your decision
on whether to participate will not adversely affect your relationship with IPICYT or any other
institution to which the researchers are affiliated.
Benefits: Participating in this study means that you are aiding further development of science.
Additionally, a successful trial would allow IPICYT to reformulate the institutional policy
regarding work and study during the current and future waves of the pandemic into one that
gives you more social interactions and flexibility with a minimized risk of contagion.
Data protection and privacy: The information collected during the study will be kept private.
In concordance with the UK General Data Protection Regulation and Data Protection Act of
2018, the University of Oxford is the data controller with respect to your personal data, and as
such will determine how your personal data is used in the research. The University will process
your personal data for the purpose of the research outlined above. Research is a task that is
performed in the public interest. Further information about your rights with respect to your
personal data is available at https://compliance.admin.ox.ac.uk/individual-rights.

Responsible members of the University of Oxford and IPICYT may be given access to data for
monitoring and or audit of the study to ensure we are complying with the guidelines or as otherwise
required by law. Moreover, in concordance with the signed Memorandum of Understanding, the
Potosinian Institute of Scientific Research and Technology (IPICYT) will store and anonymize
the original data in a secure server. During the trial, no one other than the head of the IPICYT
Supercomputing Centre and responsible members of the University of Oxford and the United
Nations University (Maastricht) will have access to any records of this trial. The data will be
stored in electronic form, encrypted and password protected. At the conclusion of the trial, all
data will be anonymized, and none of the records will identify you. A copy of the anonymized
data will be provided to the primary investigators of the trial. The data that we collect from you
may be transferred to, and stored or processed at a destination outside Mexico. Archived/stored
data, once anonymized, is available for research purposes upon request (primarily for peer-review
replication processes). By submitting your personal data, you agree to this transfer, storing,
or processing. After completion of the study, you cannot withdraw your personal information.
Your individual privacy will be maintained in all publications or presentations resulting from this
study. No information about you provided by you during this research will be disclosed to others
without your written permission, except:
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- if necessary to protect your rights or welfare (for example, if you are injured and need
emergency care); or

- if required by law.

Additional information: If you are interested in receiving additional information about the
results of the study, please contact the study authors.
Concerns: If you have any questions or concerns about any aspect of this project, you can
contact the study authors at mail@c-sef.com, who will do their best to answer your query. The
researcher(s) should acknowledge reception of your concern within 10 working days and give you
an indication of how they intend to address it. If you fail to receive a response, are dissatisfied
with the response you receive, or desire to report an aspect of how the study is being conducted,
please contact the relevant Chair of Research Ethics Committee at the University of Oxford:

Chair, Social Sciences & Humanities Inter-Divisional Research Ethics Committee;
Email: ethics@socsci.ox.ac.uk
Address: Research Services, University of Oxford, Wellington Square, Oxford OX1 2JD

The Chair will seek to resolve the matter in a reasonably expeditious manner.

Consent form

Please confirm the following by marking each of the boxes next to the statements.

Please Mark Each Box

• I confirm that I have read and understand
the information for the above study and
have had the opportunity to properly con-
sider the information provided. 2

• I understand that my participation is vol-
untary and that I am free to withdraw at
any time, without giving any reason and
without any adverse consequences. 2

• I understand the risks associated with par-
ticipating in this study as explained in the
information sheet. 2

• I understand that a saliva sample will be
taken during the study and that this sam-
ple will be tested for COVID-19. I under-
stand that the sample will be destroyed
after completion of this test or if I with-
draw my consent. 2

• I consider these samples a gift to Univer-
sity of Oxford and the LANBAMA lab-
oratory and I understand I will not gain
any direct personal benefit from this. 2

• I understand that research data collected
during the study may be looked at by des-

ignated individuals from the University of
Oxford and IPICYT where it is relevant
to my taking part in this study. I give per-
mission for these individuals to access my
data. I give permission for anonymized
data to be made publicly available at the
end of the research. 2

• I understand that this project has been
reviewed by, and received ethics clearance
through, the Research Ethics Committee
at IPICYT and the Central University Re-
search Ethics Committee at Oxford Uni-
versity. 2

• I understand who will have access to the
personal data provided, how the data will
be stored, and what will happen to the
data at the end of the project. 2

• I understand how this research will be
written up and published. 2

• I understand how to raise a concern or
make a complaint. 2

• I agree to take part in the study. 2
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By selecting “Yes, I agree to participate” below you are signifying that you have read and
understood the above information and are agreeing to have the data that you provide during the
course of the study to be processed accordingly.

2 Yes, I agree to participate

2 No, I do not agree to participate

G Additional Elements: Pre-registration and Open Source Code

You can find the pre-registered experiment on the American Economic Association RCT Registry
using the following DOI: https://doi.org/10.1257/rct.9466-1.0

If you would like to install and run the web application used in the experiment, the open-source
code is available on GitHub: https://github.com/edwinlock/csef
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