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Abstract

The two-sided matrix regression model Y = A∗XB∗ + E aims at predicting Y by
taking into account both linear links between column features of X, via the unknown
matrix B∗, and also among the row features of X, via the matrix A∗. We propose low-
rank predictors in this high-dimensional matrix regression model via rank-penalized and
nuclear norm-penalized least squares. Both criteria are non jointly convex; however, we
propose explicit predictors based on SVD and show optimal prediction bounds. We give
sufficient conditions for consistent rank selector. We also propose a fully data-driven
rank-adaptive procedure. Simulation results confirm the good prediction and the rank-
consistency results under data-driven explicit choices of the tuning parameters and the
scaling parameter of the noise.

Key Words: Matrix regression, Multivariate response regression, Nuclear norm penalized,
Oracle inequality, Rank penalized, Rank selection, Two-sided matrix regression.

1 Introduction

Supervised learning is often performed on large data bases. Matrix regression assumes that
the data Y can be well explained by a set of features given by the columns of the matrix X
and linear combinations of these columns. It is often the case in real-life that the rows of Y
can be explained by linear combinations of the rows of X.

For example, economic data store economic indicators as column features and countries
as rows. Such a matrix is usually explained by a smaller matrix roughly containing a smaller
number of countries (representatives of groups of geographically or economically close coun-
tries) and a few economic features or some factors produced out of all these indicators. We
would like to predict a larger number of indicators for a larger number of countries, i.e. Y a
n× p matrix, using the features X a m× q matrix.
Recommendation systems want to predict the opinion of n clients concerning p items. We
can use publicly available data on a number m of different groups of clients and their affin-
ity to a number q of large categories of items in order to predict by evaluating the client’s
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correlation to the prescribed groups in the population and the item’s weight in its category.
We may include a multiple-label situation where the items belonging to a main category are
also related to other categories.
Other examples can be given for meteorological data, medical or pharmaceutical data and so
on.

Model. We observe the matrix Y ∈ Rn×p and a design matrix X ∈ Rm×q related via the
two-sided matrix regression (2MR) model involving two parameter matrices A∗ ∈ Rn×m
and B∗ ∈ Rq×p:

Y = A∗XB∗ + E, (1)

where the noise matrix E is assumed to have independent centered σ−sub-Gaussian entries.
The 2MR model encompasses known models like, e.g. matrix regression and matrix

factorisation. Indeed, if n = m and A∗ is the identity, the matrix model (1) becomes the
(one-sided) matrix regression (MR) model Y = XB∗ + E, see [18], [5], [17].
Assume now that m = q and that the design matrix X is the identity matrix of rank m
smaller than both n and p. Our model becomes a factorisation model of the signalM∗ = A∗B∗

observed with noise. The idea is to recover a low-rank structure generating the observed data.
In [12] the authors have considered structured factorisation of the signal under assumptions
that the rows of A∗ and the columns of B∗ have a common sparsity parameter and X, which
they do not observe, has a much smaller dimension than Y .

The 2MR model (1) is strongly related to other models, but we argue that it cannot be
reduced to these other models of a different nature. Indeed, note that the entry Yij of the
matrix Y can be written

Yij = Tr(X ·B∗·,jA∗i,·) + Eij ,

for any i in [n], where [n] = {1, . . . , n}, and for any j in [p]. Thus every entry Yij brings
information through the same design matrix X on the rank 1 matrix B∗·,jA

∗
i,·. This is unlike

the trace-regression model or the more general matrix completion studied by [19], [14], where
a different design matrix brings information on the parameter matrix B∗A∗.
Another way of writing model (1) is in the form of vector regression model, by stacking the
columns of matrices Y , X and E into vec(Y ), vec(X) and vec(E), respectively, to get

vec(Y )> = vec(X)> ·A> ⊗B + vec(E)>, (2)

where ⊗ denotes the tensor product of two matrices. Under this relation, we predict a row
vector of size np using a row vector of size mq (the matrix of features has rank 1) via a
parameter of size (mq)× (np) which cannot go well unless the structure of A and B is trivial.
This approach cannot take into account the matrix structure of the features, of the matrices
A∗, B∗, and it gives poor results on that account.

This model has been introduced in time series by [6] as the auto-regressive matrix-valued
model of order 1, MAR(1), Yt = A∗Yt−1B

∗ + Et, observed at times t in [T ]. In this case A∗

and B∗ are squared matrices with spectral radii strictly less than 1 in order to ensure stability
of the time series (Xt is thus stationary and causal). The authors propose three estimation
methods: first, they use the vector form analogous to (2), stack the T lines of vec(Yt)

> and
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they use the nearest Kronecker product (NKP) problem to give estimators of A∗ and B∗ out
of the global least squares estimator of A∗> ⊗ B∗; then, their next method minimizes the
least squares over A and B

min
A,B

1

T

T∑
t=1

‖Yt −AYt−1B‖2F ,

by a sequential procedure minimizing over A for fixed given B, then over B for fixed A, and
iterating; finally, they give an MLE procedure over A and B under a particular structure
of the covariance matrix of E and proceed also sequentially. Theoretical results state the
asymptotic normality as T tends to infinity, for fixed dimensions. However, the first procedure
is cumbersome as the estimated matrix is very large, while the other two procedures are
based on non-convex minimization without theoretical guarantees as to the limit points of
the algorithm.
Least squares and MLE estimators with AIC and BIC penalties have been numerically studied
by [10] of a more general time series model

Yt =

L∑
`=1

A`Yt−`B` + Et, t = 1, . . . , T,

which is treated as Yt = A∗XtB
∗ +Et, where Xt is the block diagonal matrix containing the

L−past observed matrices Yt−1, . . . , Yt−L and A∗ = (A1, . . . , AL) and B∗ = (B>1 , . . . , B
>
L )>

are the concatenated matrices in the previous equation.
Thus, our paper is motivated by the need to deal with high-dimensional data and finite
(non-asymptotic) time (say T = 1) in order to provide theoretical guarantees for prediction.

Contributions. We show in Section 2 that by using the SVD of matrices Y = UY ΣY V
T
Y

and X = UXΣXV
T
X , the least squares procedure can be reduced to fitting predictors of the

form A0ΣXB0 to the diagonal matrix ΣY with explicit relations between A0, B0 and A,B.
There is a natural choice of predictors of A0 and of B0 under diagonal form. We study
these predictors for given ranks r and that we transform back into the original space of Y
without loss of prediction rate. Then we give a data-dependent rank selector and show that
the predictors associated to it attain optimal bounds. We give sufficient conditions so that
the rank selector is consistent. Finally, we slightly modify the procedure to be free of the
parameter σ of the noise and show new upper bounds in this case. In Section 3, we study the
nuclear norm penalized least squares and show it attains the optimal bounds too. All proofs
are in a dedicated section in the Appendix. Finally, we illustrate in Section 4 via numerical
simulations the excellent prediction results of these fast running, explicit predictors.

Notations. For any integers n and m we denote n ∧m for the minimum between n and
m and n ∨ m for the maximum between n and m. For any matrix M of size n×m and
rank rM , we denote its singular value decomposition (SVD) by M = UMΣMV

>
M , where UM

belongs to On - the set of orthogonal matrices of size n× n, VM belongs to Om and

ΣM = Diagn,m(σk(M), 1 ≤ k ≤ rM ).

Note that σ1(M), . . . , σrM (M) are the positive singular values of M listed in decreasing order,
and the n×m diagonal matrix Diagn,m(σk(M), 1 ≤ k ≤ rM ) has diagonal entries in the list
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and 0 elsewhere. Furthermore, denote ‖M‖2F =
n∧m∑
k=1

σk(M)2 its Frobenius norm, ‖M‖2(2,q) =

q∑
k=1

σk(M)2 its Ky-Fan (2, q) norm, ‖M‖op = σ1(M) its operator norm, ‖M‖∗ =
n∧m∑
k=1

σk(M)

its nuclear norm, M † its Moore-Penrose inverse, rM its rank and MT its transpose. For
any matrices M1 and M2 in Rn×m, 〈M1,M2〉F denotes the canonical scalar product, i.e.
〈M1,M2〉F = Tr(MT

1 M2). For any r ∈ [rM ], we denote [M ]r the best rank r approximation
of M for the Frobenius norm. In the model (1), let us denote by r∗ the rank of A∗XB∗.

2 Rank penalized learning

In this section we propose rank adaptive predictors and provide theoretical guarantees for
their error. First we give explicit predictors under the assumption that the ranks of the
parameter matrices are known, then a selection procedure will allow to provide a data-
dependent rank selector and the associated rank-adaptive predictor. Even though we follow
classical results for rank penalized (one-sided) matrix regression, e.g. [5], [9] and [3], we
give details for the fixed rank two-sided matrix regression which is novel to the best of our
knowledge. Surprisingly, explicit predictors can be proposed despite the identifiability issues
of this model. Only after this, we proceed to rank selection and rank-adaptive learning.

2.1 Prediction for given ranks

Let r belong to [n ∧ p ∧ rX ]. Let us build explicit predictors (Âr, B̂r) solutions to the non-
convex minimization problem

min
A,B:

rankA∧rankB≤r

‖Y −AXB‖2F . (3)

Notice that the rank constraints on A and B use the same value r. Indeed the objective is
to build a predictor for the signal A∗XB∗ which satisfies rank(A∗XB∗) ≤ min (rA∗ , rX , rB∗).
In the steps of the proof of our results, we see that the upper bound of the risk depends on
the ranks of A∗ and of B∗ only through their least value and no information can be recovered
on the largest rank of the two. Hence it makes sense to look for A and B sharing the same
rank as a dimension reduction technique without any impact on the final results.

The model (1) can be rewritten using the SVD of the observed matrix Y and of the design
matrix X as

ΣY = A∗0 · ΣX ·B∗0 + E0, (4)

where A∗0 = UTY A
∗UX , B∗0 = V T

XB
∗VY and E0 := UTY · E · VY . In the particular case where

E has independent entries with distribution N (0, σ2) than so does E0, see Lemma 5.1. Now,
ΣY and ΣX are diagonal matrices, not necessarily squared, not necessarily full rank. Given
the invariance of the Frobenius norm by left or right multiplication with orthogonal matrices,
we get that for any matrices A ∈ Rn×m and B ∈ Rq×p we have

‖Y −AXB‖2F = ‖ΣY −A0ΣXB0‖2F ,
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where A0 = UTY AUX and B0 = V >X BVY are obtained via analogous transformations to those
relating the true underlying parameters.

Obviously, matrices A and A0 have the same rank, and the same holds for B and B0.
Therefore, solving (3) is equivalent to solving for Â0r and B̂0r solutions of

min
A0,B0:

rankA0∧rankB0≤r

‖ΣY −A0ΣXB0‖2F . (5)

Theorem 2.1 Let us define for r ∈ [n ∧ p ∧ rX ]

Â0r = Diagn,m(σk(Y ), 1 ≤ k ≤ r ∧ rY ) and B̂0r = Diagq,p(σk(X)−1, 1 ≤ k ≤ r). (6)

Then, (Â0r, B̂0r) belong to the set of solutions of problem (5) and the predictor Â0rΣXB̂0r

satisfies for an absolute constant C > 0 and for any t > 0, the oracle inequality

‖A∗0ΣXB
∗
0 − Â0rΣXB̂0r‖2F ≤ 9 inf

A0,B0:
rankA0∧rankB0≤r

‖A∗0ΣXB
∗
0 −A0ΣXB0‖2F

+ 24Cσ2(1 + t)2 · r(n+ p),

with probability larger than 1− 2 exp(−t2(
√
n+
√
p)2).

Next, from the explicit solutions (Â0r, B̂0r) of (5) we deduce explicit solutions of (3).

Corollary 2.2 Let us define for r ∈ [n ∧ p ∧ rX ]

Âr = UY Â0rU
T
X and B̂r = VXB̂0rV

T
Y , (7)

with Â0r and B̂0r defined in (6). Then (Âr, B̂r) are solution to the problem (3) and the
predictor ÂrXB̂r satisfies for an absolute constant C > 0 and for any t > 0, the oracle
inequality

‖A∗XB∗ − ÂrXB̂r‖2F ≤ 9 inf
A,B:

rankA∧rankB≤r

‖A∗XB∗ −AXB‖2F + 24Cσ2(1 + t)2 · r(n+ p),

with probability larger than 1− 2 exp(−t2(
√
n+
√
p)2).

The proofs of Theorem 2.1 and of Corollary 2.2 can be found in Section 5. In the proofs we
explicit the bias in terms of the unknown matrix parameters:

inf
A,B:

rankA∧rankB≤r

‖A∗XB∗ −AXB‖2F =
r∗∑

k=r+1

σk(A
∗XB∗)2 · 1r<r∗ .

Note that our choice for the couple of predictors (Â0r, B̂0r) is not unique and we can
easily derive families of solutions to the problem (5). Each family of solutions can be turned
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into a solution to the problem (3). Indeed, consider (αÂ0r,
1

α
B̂0r) with arbitrary α > 0.

Alternatively, let λi for all i ≤ m ∧ q be arbitrary positive numbers, then

(Â0rDiagm,m(λ1, . . . , λm∧q), Diagq,q(λ
−1
1 , . . . , λ−1

m∧q)B̂0r)

give the same prediction. Let us see that the same transformations applied to the parameter
matrices A∗0 and B∗0 also lead to the same signal matrix A∗0ΣXB

∗
0 . Indeed, the model is

non-identifiable and so, without further strong assumptions, we can only hope to learn the
global signal, and not the parameters of the model.

Alternative predictors. Let us define a second couple of predictors (Ã, B̃r) producing
exactly the same prediction as (Âr, B̂r) with the same theoretical properties, but having the
advantage that Ã is full rank and does not depend on r. Define

Ã0 = In,m and B̃0r = Diagq,p

(
σk(Y )

σk(X)
, 1 ≤ k ≤ r ∧ rY

)
where In,m denotes the identity matrix of dimension n ×m, whereas B̃0r has rank r ∧ rY .
Using the analogous transformations we obtain

Ã = UY In,mU
T
X and B̃r = VXB̃0rV

T
Y .

It is easy to see that Theorem 2.1 is valid for Ã0 and B̃0r, and that Corollary 2.2 is valid for
Ã and B̃r.

2.2 Rank-adaptive prediction

In this section, we propose rank-adaptive predictors (Âr̂, B̂r̂) which are selected from the
family {(Âr, B̂r) : r ∈ [n ∧ p ∧ rX ]} by a model selection procedure analogous to that of [5].
Let us first define, for a generic matrix M and any λ > 0, the λ−rank of M as

rM (λ) = 1 ∨
rankM∑
k=1

1σk(M)2≥λ.

For given λ > 0, let

r̂ := arg min
r∈[n∧p∧rX ]

{
‖Y − ÂrXB̂r‖2F + λr

}
. (8)

Consider the predictors introduced in (7) for the data-driven rank r̂ as defined in (8). The next
Theorem extends the oracle inequality to the rank-adaptive predictors (Âr̂, B̂r̂) associated to
the estimated rank r̂ and to some λ > 0 large enough.

Theorem 2.3 The rank-adaptive predictors (Âr̂, B̂r̂) associated to r̂ in (8) and to λ such
that, for some absolute constant C > 0 and for any t > 0, λ ≥ 4C(1 + t)2σ2(n + p), satisfy
the oracle inequality

‖A∗XB∗ − Âr̂XB̂r̂‖2F ≤ min
r∈[n∧p∧rX ]

{
9

r∗∑
k=r+1

σk(A
∗XB∗)2 · 1r<r∗ + 6λr

}
,

with probability larger than 1− 2 exp(−t2(
√
n+
√
p)2).

6



Note that the minimum on the right-hand side of the previous display is always smaller than
the value at r = r∗, giving under the assumptions of Theorem 2.3 that

‖A∗XB∗ − Âr̂XB̂r̂‖2F ≤ 6r∗λ,

with probability larger than 1− 2 exp(−t2(
√
n+
√
p)2).

The bounds of order r∗(n+ p) attained by our procedure are analogous to those for the low-
rank matrix regression models in [19] and [9]. Indeed, the 2MR model is more difficult than
the MR model, (i.e. one of the matrices is known) and we will suppose known the matrix
with larger rank in order to achieve the correct lower bounds. Thus the lower bounds for
prediction in the low-rank MR model will be valid for our model.

2.3 Consistent rank selection

We study the consistency of the rank selector r̂ in (8) and see when it recovers the true rank
r∗ with high probability. First, we show that, for properly chosen λ, the data-driven rank r̂
is actually the unique solution and coincides with the λ−rank of Y , r̂ = rY (λ).

Proposition 2.4 If λ > σrY (Y )2, there is a unique solution r̂ to the optimisation problem
in (8) and it is actually the λ−rank of Y , i.e. r̂ = rY (λ).

Next, we prove that r̂ recovers with high probability the λ−rank of A∗XB∗.

Proposition 2.5 Let λ > 0 and denote by r∗(λ) the λ−rank of A∗XB∗ . If for some constant
c in (0,1), σr∗(λ)(A

∗XB∗)2 > (1 + c)2λ and σr∗(λ)+1(A∗XB∗)2 < (1− c)2λ, then

P(r̂ = r∗(λ)) ≥ P(‖E‖2op ≤ c2λ).

In particular, if λ ≥ 2C(n + p)σ2(1 + t)2/c2 for some absolute constant C > 0 and for any
t > 0, then r̂ = r∗(λ) with probability larger than 1− 2 exp(−t2(

√
n+
√
p)2).

Finally, remember that the fact that r∗(λ) coincides with the true underlying rank r∗ is
equivalent to having σr∗(A∗XB∗)2 ≥ λ > 0. The rank selector will then coincide with r∗ if λ
also satisfies σ1(E)2 ≤ c2λ, for some absolute constant c > 0. It is therefore necessary that a
signal-to-noise ratio, given here by σr∗(A∗XB∗)2/σ1(E)2 be significant in order to have the
true underlying rank selected by r̂. By combining this with the previous Propositions we get
the following.

Proposition 2.6 Let λ > 0. If for some constant c in (0,1), σr∗(A∗XB∗)2 > (1+c)2λ, then

P(r̂ = r∗) ≥ P(‖E‖2op ≤ c2λ).

In particular, if λ ≥ 2C(n + p)σ2(1 + t)2/c2 for some absolute constant C > 0 and for any
t > 0, then r̂ = r∗ with probability larger than 1− 2 exp(−t2(

√
n+
√
p)2).
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2.4 Data-driven rank-adaptive prediction

The rank selector r̂ in (8) is used for building consistent predictors as detailed in Theorem 2.3
provided that the condition λ ≥ 4C(1+t)2σ2(n+p) is satisfied. However the noise parameter
σ is not known in general settings. Thus a data dependent rank selector is needed for building
consistent predictors in those cases. Motivated by the previous case where σ2 was supposed
known, we proceed as follows. First, we change the penalty to λ · rσ̂2

r with

σ̂2
r =

1

np
‖Y − ÂrXB̂r‖2F .

Note that in the particular case of Gaussian noise σ̂2
r estimates the variance σ2 of the noise.

Next, given a largest possible value for the true rank rmax ≤ n ∧ p ∧ rX , we define the
data-driven rank selector

r̄ := arg min
r∈[rmax]

{
‖Y − ÂrXB̂r‖2F + λ · rσ̂2

r

}
. (9)

Finally, we use the predictors (Âr̄, B̂r̄). The next theorem extends the upper bounds of
Theorem 2.3 to these data-driven rank-adaptive predictors.

Theorem 2.7 The data-driven rank-adaptive predictors (Âr̄, B̂r̄) associated to r̄ in (9) with
rmax ≤ n∧p∧rX , and to λ = (1+ε)np/(rmax∨rY ) for some ε > 0, satisfy for some absolute
constant C > 0 and for any t > 0 the oracle inequality

‖A∗XB∗ − Âr̄XB̂r̄‖2F ≤ min
r∈[rmax]

{
9‖A∗XB∗ − ÂrXB̂r‖2F + 6(1 + ε) · rσr+1(A∗XB∗)2

}
+ 12C(2 + ε)(1 + t)2 · σ2rmax(n+ p),

with probability larger than 1− 2 exp(−t2(
√
n+
√
p)2).

Apply the Corollary 2.2, to get under the assumptions of Theorem 2.7 that

‖A∗XB∗ − Âr̄XB̂r̄‖2F ≤ min
r∈[rmax]

92 inf
A,B:

rA∧rB≤r

‖A∗XB∗ −ArXBr‖2F + 6(1 + ε) · rσr+1(A∗XB∗)2


+ 12(20 + ε)C(1 + t)2 · σ2rmax(n+ p),

with probability larger than 1− 2 exp(−t2(
√
n+
√
p)2).

Note that the minimum on the right-hand side of the previous display is always smaller
than its value at r = r∗ if rmax is larger than r∗, giving under the assumptions of Theorem 2.7
that

‖A∗XB∗ − Âr̄XB̂r̄‖2F ≤ 12(20 + ε)C(1 + t)2 · σ2rmax(n+ p).

In order to compare to the previous results, note that the upper bound derived from Theo-
rem 2.3 for the value r = r∗ and the least value λ = 4C(1+ t)2σ2(n+p) gives the very similar
bound

‖A∗XB∗ − Âr̂XB̂r̂‖2F ≤ 24C(1 + t)2 · σ2r∗(n+ p).

8



From a computational point of view, it is preferable to change σ̂2
r in some cases. For

example, we use in our numerical simulations

σ̂2
r =

1

np− (m ∧ q)rX
‖Y − ÂrXB̂r‖2F

when n ≥ m, p ≥ q and thus np > (m ∧ q)rX . It is straightforward to prove the analogue of
Theorem 2.7 by considering λ = (1 + ε)(np− (m ∧ q)rX)/(rmax ∨ rY ).

3 Nuclear norm penalized learning

Nuclear norm penalized least squares is known to exhibit good properties, see [1] or [16].
Hence it may show advantages over rank-penalized methods. Let us define the nuclear norm
penalized (NNP) optimisation problem

min
A,B
‖Y −AXB‖2F + 2λ · ‖AXB‖∗, (10)

for some λ > 0. The objective of the optimization problem is non-jointly convex in A and
B. Note that in matrix regression (when A∗ is the identity matrix) the nuclear norm of XB
has been used , see [14], or other adaptive forms depending on the feature matrix X, [15].
However, we exhibit explicit predictors belonging to the set of solutions of this problem and
show an oracle inequality they satisfy.

Theorem 3.1 The predictors (Ā, B̄) defined by

Ā = UY In,mU
>
X and B̄ = VX ·Diagq,p

(
(σk(Y )− λ)+

σk(X)
, 1 ≤ k ≤ rY ∧ rX

)
V >Y (11)

are solutions to the problem in (10). Moreover, if λ is such that, for some absolute constant
C > 0 and for any t > 0, λ ≥ 2C(1 + t)2σ2(n+ p), they satisfy the oracle inequality

‖A∗XB∗ − ĀXB̄‖2F ≤ 9 min
r∈[n∧p∧rX ]

{
r∗∑

k=r+1

σk(A
∗XB∗)2 · 1r<r∗ + 16λr

}
,

with probability larger than 1− 2 exp(−t2(
√
n+
√
p)2).

The proof can be found in Section 5.
Remark. Another approach could be to consider the model under the vectorized form

(2) and solve the problem

min
A,B
‖vec(Y )> − vec(X)> ·A> ⊗B‖22 + 2λ‖A> ⊗B‖∗,

for some λ > 0. Recall that A> ⊗ B denotes the tensor product of matrices A> and B and
that we can write ‖A>⊗B‖∗ =

∑
k,j≥1 σk(A)σj(B). However, the features are 1-dimensional

9



and we loose the structured information contained in the original matrix X. This approach
could make more sense in the case of repeated observation (Yt, Xt) for t in [T ], by stacking
the rows vec(Yt)

> and vec(X>t ) into matrices Y and X, respectively, and do a classical matrix
regression. Even so, the usual assumptions on the feature matrix X in order to achieve good
prediction are not reasonable in this context as they are not much related to the original
matrix data sets Xt, t in [T ].

Remark (Sufficient conditions for identifiability) We have indicated at several
times that many couples of matrices (A,B) solve the equation M = AXB for a given matrix
M . Given the SVD of the matrix M , we may reduce the dimensionality of the problem by
choosing the solution (A,B) given by A = UMA0U

>
X and B = VXB0V

>
M , with A0 and B0

diagonal matrices such that

σk(A)σk(X)σk(B) = σk(M), for all k ≤ rX ∧ rA ∧ rB.

Thus, even under diagonal forms we can only identify the product of respective singular
values of A and B. We can only hope to identify matrices A and B under very restrictive
conditions where X>X has full rank and either the matrix A or the matrix B is assumed to
have known singular values, e.g. like a projector with singular values 1 or 0. Few other setups
are known to be identifiable in the literature of factorisation of matrices, e.g. non-negative
matrix factorisation (NMF), see [7], NMF for topic models [11], [2], [13] or covariance matrix
factorization [8].

4 Numerical Results

Let us set the dimensions of the observed matrix Y to be n = 100 and p = 300, the dimensions
of the design matrix X to be m = 50 and q = 60. We randomly generate three matrices: A∗,
B∗, and X, with independent random gaussian entries with mean 0 and variance 1. These
matrices are then projected onto the best low-rank matrix approximation, with the matrix
A∗ having a rank r∗A = 16, the matrix B∗ having a rank r∗B = 12, and the matrix X having
a rank rX = 25. The signal matrix is defined as A∗XB∗ and shows a rank of 12 in all
experiments. We also define various settings for the variance σ2 of the Gaussian noise E
so that the signal-to-noise ratio SNR := σr∗(A∗XB∗)2/σ1(E)2 varies approximately in the
range [0.5, 2].

Figure 1 illustrates the prediction performances of the predictor ÂrXB̂r, defined in (7),
for different values of r. For σ < 8 giving the SNR approximately above the value 1, the
prediction risk decreases when the rank increases while remaining bounded from above by 12
and then increases with the rank when the rank is above 12. For σ ≥ 8 giving the SNR below
the value 1, the prediction risk decreases when the rank increases while remaining bounded
from above by 11 and then increases with the rank when the rank is above 11. It highlights
that the best predictor is achieved when r = r∗ = 12 for small noise variance levels (i.e.
σ < 8) and when r = 11 for strong noise variance levels (i.e. σ ≥ 8). This shows that there
is a strong overfitting phenomenon in the case of strong noise and that it is therefore better
to slightly underestimate the rank in these situations.
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Figure 1: Evolution of the risk
‖ÂrXB̂r −A∗XB∗‖2F

‖A∗XB∗‖2F
in function of r for different values of

σ

Figure 2: Evolution of the estimated r̂ as a function of log(λ) for different values of σ
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Figure 2 represents the predicted r̂, defined in (8), for various values of λ. Independently
of the noise variance level, for small values of λ the estimated r̂ is maximal and there is
r̂ = rX = 25. This illustrates the previously exposed overfitting phenomenon, that is the
higher the rank r, the lower the error ‖Y − ÂrXB̂r‖2F . As λ increases the penalty on the
rank r becomes more important in the minimization procedure and r̂ decreases. However,
for moderate values of λ (i.e. approximately log(λ) ≤ 5) the smaller the noise variance level
σ, the faster r̂ decreases. Ultimately, for large values of λ (i.e. approximately log(λ) > 5)
the rate of decay of r̂ as a function of λ no longer depends on σ.

The numerical value of λ is an important issue. We exhibit explicit (fast to calculate)
procedures for the choice of this tuning parameter. In the case of known noise variance, the
rule of thumb suggested by [4] indicates to choose

λ(σ) = 2C(n+ p)σ2(1 + t)2

in Theorem 2.3 with t = 0, and C = 2. The two solid vertical lines represent λ(4.5) (blue)
and λ(10) (green). With these choices of the tuning parameter we get successful estimators
of the underlying rank of the signal r̂ ≈ 12 = r∗. We underline that in the small noise regime
the rank is slightly overestimated and in the strong noise regime it is slightly underestimated.
This behaviour perfectly matches the results drawn from Figure 1 showing that overestimating
the rank in small noise regime does not impact the performances and slightly underestimating
it in strong noise regime improves the performances.

However, in real world applications the noise has unknown variance. This raises the
question of how to choose a data-driven λ in this case, without deteriorating the prediction.
This situation is more challenging as it first requires an estimator of σ2 before using the
previously exposed rule of thumb. We choose the initial value of r equal to rX ∧ n ∧ p

and propose the r-dependent estimator σ̂2
r :=

‖Y − ÂrXB̂r‖2F
np− (m ∧ q)rX

. It allows to compute the

previously defined λ(σ̂r) and using this data-driven tuning parameter we produce the rank
estimator r̄. This procedure takes r as an argument and returns λ(σ̂r) and r̄. However, when
r is substantially larger than r∗, ÂrXB̂r is overfitting Y and performing this procedure once
will not lead to a satisfying output r̄. Hence we iterate while r̄ < r. We note λ(σ̂r̄) and r̄ the
final outputs of the procedure. The two dashed vertical lines represent λ(σ̂r̄) when σ = 4.5
(cyan) and σ = 10 (magenta). The proposed procedure exhibits great numerical properties.

Finally, numerical simulations generated in the same context, with different values for
the true underlying ranks, show similar excellent prediction bounds, combined with correct
rank selection. Together with the current case where min(r∗A, rX , r

∗
B) = r∗B, we have explored

successfully the cases min(r∗A, rX , r
∗
B) = r∗A, min(r∗A, rX , r

∗
B) = rX and min(r∗A, rX , r

∗
B) =

r∗A = rX = r∗B.

5 Proofs

Basic facts For any matrix M ∈ Rn×m, ‖M‖2∗ ≤ rM‖M‖2F . In addition, for any matrices
M1 and M2 in Rn×m, the following inequalities hold 〈M1,M2〉F ≤ ‖M1‖∗‖M2‖op and ‖M1 +

12



M2‖F ≤ ‖M1‖F + ‖M2‖F . Furthermore, if we set a = rankM1 ∧ rankM2 then 〈M1,M2〉F ≤
‖M1‖(2,a)‖M2‖(2,a).

Lemma 5.1 Let E be a n × p random matrix whose entries are independent and having
Gaussian distribution N (0, σ2). If U and V belong to On and Op respectively, then E0 :=
U>EV has independent entries with Gaussian distribution N (0, σ2).

Proof of Lemma 5.1. Note that we can vectorize the matrix E0 and get that

vec(E0) = (V > ⊗ U>) · vec(E),

where vec(E) is a Gaussian vector of dimension np, centered, with variance σ2Inp. Moreover,
the tensor product V > ⊗ U> belongs to Onp, thus vec(E0) is still a Gaussian vector with
distribution Nnp(0, σ2Inp).

Recall that, for an arbitrary matrix M , we denote UMΣMV
>
M its SVD.

Lemma 5.2 If M∗ is a n× p matrix of rank r∗, than for any r ≤ n ∧ p, we have

inf
M :rankM≤r

‖M −M∗‖2F =
r∗∑

k=r+1

σk(M
∗)2 · 1r<r∗ ,

and the infimum is attained by the projection [M∗]r of M∗ on the space of n × p matrices
with rank r given by the matrix

[M∗]r = UM∗ ·Diagn,p(σ1(M∗), ..., σr∧r∗(M∗)) · V >M∗ .

5.1 Proof of Theorem 2.1

Let r ∈ [n ∧ p ∧ rX ] and (Â0r, B̂0r) defined in (6). Let us denote here M∗0 = A∗0ΣXB
∗
0 and

M̂0 = Â0rΣXB̂0r. By construction, M̂0 is the projection [ΣY ]r of ΣY onto the set of matrices
with rank less than or equal to r, in the sense of Lemma 5.2. Therefore,

‖ΣY − M̂0‖2F ≤ ‖ΣY − [M∗0 ]r‖2F
We recall that in our model ΣY = M∗0 + E0 which leads to

‖M∗0 − M̂0 + E0‖2F ≤ ‖M∗0 − [M∗0 ]r + E0‖2F .

We expand the squares and arrange terms to get

‖M∗0 − M̂0‖2F ≤ ‖M∗0 − [M∗0 ]r‖2F + 2〈M̂0 − [M∗0 ]r, E0〉F .

Now, since rank(M̂0) = r and rank([M∗0 ]r) ≤ r, we get that rank(M̂0 − [M∗0 ]r) ≤ 2r. This
inequality gives

‖M∗0 − M̂0‖2F ≤ ‖M∗0 − [M∗0 ]r‖2F + 2‖E0‖(2,2r) · ‖M̂0 − [M∗0 ]r‖(2,2r)
≤ ‖M∗0 − [M∗0 ]r‖2F + 2‖E0‖(2,2r) · ‖M̂0 − [M∗0 ]r‖F

≤ ‖M∗0 − [M∗0 ]r‖2F + 2‖E0‖(2,2r) ·
(
‖M̂0 −M∗0 ‖F + ‖M∗0 − [M∗0 ]r‖F

)
.
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We apply the inequality 2xy ≤ αx2 + α−1y2 with x, y ≥ 0 and α > 0. We obtain, for real
numbers α > 1 and β > 0,

(1− α−1) · ‖M∗0 − M̂0‖2F ≤ (1 + β−1) · ‖M∗0 − [M∗0 ]r‖2F + (α+ β) · ‖E0‖2(2,2r).

Let us use that ‖E0‖2(2,2r) ≤ 2r · ‖E0‖2op and Lemma 5.2 to further get

‖M∗0 − M̂0‖2F ≤
1 + β−1

1− α−1
· inf
M :rankM≤r

‖M∗0 −M‖2F +
α+ β

1− α−1
· 2r‖E0‖2op. (12)

Noticing that for any matrices A0, B0 having rank less than or equal to r, rank(A0ΣXB0) ≤
rA0 ∧ rX ∧ rB0 ≤ r, we deduce that

inf
M :rankM≤r

‖M∗0 −M‖2F ≤ inf
A0,B0:

rankA0∧rankB0≤r

‖M∗0 −A0ΣXB0‖2F .

Indeed, the second inf is taken over a possibly smaller family of matrices. We actually
show that equality holds in the previous display. Indeed, by Lemma 5.2 we have that
infM :rankM≤r ‖M∗0 −M‖2F =

∑r∗

k=r+1 σk(M
∗
0 )2 · 1r<r∗ , where r∗ = rank(M∗0 ). Recall that

M∗0 = A∗0ΣXB
∗
0 is a product of diagonal matrices, giving that r∗ = min(rX , rA∗

0
, rB∗

0
) and

σk(M
∗
0 ) = σk(A

∗
0)σk(X)σk(B

∗
0) · 1k≤r∗ . Thus, the particular choice

A0r := Diagn,m(σ1(A∗0), . . . , σr∧rA∗
0
(A∗0)) and B0r := Diagq,p(σ1(B∗0), . . . , σr∧rB∗

0
(B∗0))

solves exactly the problem giving M∗0 = A0rΣXB0r. Finally,

inf
M :rankM≤r

‖M∗0 −M‖2F = inf
A0,B0:

rankA0∧rankB0≤r

‖M∗0 −A0ΣXB0‖2F . (13)

Plugging this into (12) and considering the particular choice α = 3/2 and β = 1/2 give
the theorem:

‖A∗0ΣXB
∗
0 − Â0rΣXB̂0r‖2F ≤ 9 inf

A0,B0:
rankA0∧rankB0≤r

(
‖A∗0ΣXB

∗
0 −A0ΣXB0‖2F

)
+ 12r‖E0‖2op.

The last step is the high-probability bound on ‖E0‖op. Recall that E0 = U>Y EVY with
UY in On and VY in Op and therefore E0 and E have the same singular values. Therefore
‖E‖op = ‖E0‖op. The noise matrix E has independent, centered, σ−sub-Gaussian entries
and its spectral norm verifies (see [20]) for some absolute constant C > 0

P
(
‖E‖2op ≤ 2Cσ2 · (1 + t)2(n+ p)

)
≥ 1− 2e−t

2(
√
n+
√
p)2 , for any t > 0. (14)

Moreover, E [‖E‖op] ≤
√
Cσ(
√
n+
√
p).
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5.2 Proof of Corollary 2.2

Recall the notation M∗0 = A∗0ΣXB
∗
0 and M̂0 = Â0rΣXB̂0r with Â0r and B̂0r given by (6)

and let us denote M∗ = A∗XB∗ and M̂ = ÂrXB̂r with Âr and B̂r given by (7). Notice
that the Frobenius norm and the rank are invariant under left or right multiplication by
orthogonal matrices. Therefore, we follow the lines of the proof of Theorem 2.1 and see that
‖Y − M̂‖2F = ‖ΣY − M̂0‖2F and rankM∗ = rankM∗0 = r∗. Also, M̂ is the projection [Y ]r of
Y on the space of matrices with rank less than or equal to r. Finally, the equality (13) can
be pushed forward

inf
M :rankM≤r

‖M∗0 −M‖2F = inf
A0,B0:

rankA0∧rankB0≤r

‖M∗0 −A0ΣXB0‖2F = inf
A,B:

rankA∧rankB≤r

‖M∗−AXB‖2F .

Indeed, we have one-to-one transformations of A0, B0 into A, B, respectively, and equality
of the Frobenius norms. This finishes the proof.

5.3 Proof of Theorem 2.3

By definition of r̂ = r̂(λ), we have that, for all r ∈ [n ∧ p ∧ rX ],

‖Y − Âr̂XB̂r̂‖2F + λr̂ ≤ ‖Y − ÂrXB̂r‖2F + λr.

Since ÂrXB̂r is the projection [Y ]r of Y on the space of matrices M with rankM ≤ r, we
get that for all matrices A and B such that rankA ∧ rankB ≤ r

‖Y − ÂrXB̂r‖2F ≤ ‖Y −AXB‖2F .

Indeed, rank(AXB) ≤ r and Pythagora’s theorem gives the former inequality. We deduce
that

‖Y − Âr̂XB̂r̂‖2F + λr̂ ≤ ‖Y −AXB‖2F + λr.

Next, replace Y = A∗XB∗ + E, expand the squares and rearrange terms to get

‖A∗XB∗ − Âr̂XB̂r̂‖2F ≤ ‖A∗XB∗ −AXB‖2F + λ(r − r̂)
+ 2〈E, Âr̂XB̂r̂ −AXB〉.

Let us denote by M̂(r̂) = Âr̂XB̂r̂, M(r) = AXB and see that rank(M̂(r̂) −M(r)) ≤ r̂ + r.
We have

〈E, Âr̂XB̂r̂ −AXB〉 ≤ ‖E‖op · ‖M̂(r̂)−M(r)‖∗
≤ ‖E‖op ·

√
r̂ + r‖M̂(r̂)−M(r)‖F

≤ ‖E‖op ·
√
r̂ + r(‖M∗ − M̂(r̂)‖F + ‖M∗ −M(r)‖F ).
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Then, using twice the inequality 2xy ≤ αx2 + α−1y2 with x, y ≥ 0 and α > 0, we obtain for
arbitrary real numbers α > 1, β > 0:

(1− α−1)‖M∗ − M̂(r̂)‖2F ≤ (1 + β−1)‖M∗ −M(r)‖2F
+ (α+ β)‖E‖2op(r + r̂) + λ(r − r̂).

Consequently, if (α+ β)‖E‖2op ≤ λ:

(1− α−1)‖M∗ − M̂(r̂)‖2F ≤ (1 + β−1)‖M∗ −M(r)‖2F + 2λr,

for all r in [n∧ p∧ rX ] and all M(r) = AXB with rankA∧ rankB ≤ r. We get the result by
replacing again α = 3/2 and β = 1/2. Then we use that

min
A,B

rankA∧rankB≤r

‖A∗XB∗ −AXB‖2F =

r∗∑
k=r+1

σk(A
∗XB∗)2

and the high-probability bounds in (14).

5.4 Proofs of results in Section 2.3

Proof of Proposition 2.4. For any r in [n ∧ p ∧ rX ], we have that ÂrXB̂r = [Y ]r is the
projection of Y on the space of matrices having rank smaller than or equal to r. Now, write

F (r) : = ‖Y − ÂrXB̂r‖2F + λr

=

rY∑
k=r+1

σk(Y )2 · 1r<rY + λr

=

rY∑
k=r+1

(σk(Y )2 − λ) · 1r<rY + λrY .

It is easy to see that F as a function of r has a unique minimum at rY (λ) if λ > σrY (Y )2,
but is minimal and constant for r = rY , . . . , (n ∧ p ∧ rX) whenever λ ≤ σrY (Y )2.
Proof of Proposition 2.5. By definition of r̂, we have k > r̂ if and only if λ > σk(Y )2

and k < r̂ if and only if λ ≤ σk+1(Y )2. In our model Y = A∗XB∗ + E, the Weyl inequality
gives |σk(A∗XB∗) − σk(Y )| ≤ σ1(E) for all k. The events on r̂ can be written in terms of
σ1(E) = ‖E‖op as follows. We have

{k > r̂} implies λ > (σk(A
∗XB∗)− σ1(E))2,

{k < r̂} implies λ ≤ (σk+1(A∗XB∗) + σ1(E))2.

Thus {r̂ 6= k} implies either σ1(E) > σk(A
∗XB∗)−

√
λ or σ1(E) ≥

√
λ− σk+1(A∗XB∗). Let

us take k = r∗(λ). Then the assumption that σr∗(λ)(A
∗XB∗) > (1+c)

√
λ gives that σ1(E) >

c
√
λ and the assumption that σr∗(λ)+1(A∗XB∗) < (1 − c)

√
λ gives also that σ1(E) > c

√
λ.

Thus,

P (r̂ 6= r∗(λ)) ≤ P
(
σ1(E) > c

√
λ
)
.

The proof is finished using the inequality (14).
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5.5 Proof of Theorem 2.7

The optimization problem (9) can be written, after replacing σ̂2
r , as follows

r̄ ∈ arg min
r∈[rmax]

‖Y − ÂrXB̂r‖2F
(

1 +
λr

np

)
.

We denote by M̄ = Âr̄XB̂r̄, M̂r = ÂrXB̂r and M∗ = A∗XB∗. With this notation it follows
that, for r ≤ rmax,

‖Y − M̄‖2F
(

1 +
λr̄

np

)
≤ ‖Y − M̂r‖2F

(
1 +

λr

np

)
.

Developing the squares and using the equality Y = M∗ + E, we get

‖M∗ − M̄‖2F ≤ ‖M∗ − M̂r‖2F + 2〈E, M̄ − M̂r〉F +
λr

np
‖Y − M̂r‖2F −

λr̄

np
‖Y − M̄‖2F .

We now use the upper bound 〈E, M̄ − M̂r〉F ≤ ‖E‖op‖M̄ − M̂r‖∗ and the definition of M̄
and M̂r to derive

‖M∗ − M̄‖2F ≤ ‖M∗ − M̂r‖2F + 2‖E‖op‖M̄ − M̂r‖∗ +
λr

np

∑
k>r

σk(Y )2 − λr̄

np

∑
k>r̄

σk(Y )2.

Let us note that we use σk(Y ) = 0 in case k > rY . We recall that ‖M̄ − M̂r‖∗ ≤
√
r + r̄ ·

‖M̄ − M̂r‖F and further obtain

‖M∗ − M̄‖2F ≤ ‖M∗ − M̂r‖2F + 2‖E‖op
√
r + r̄

(
‖M∗ − M̄‖F + ‖M∗ − M̂r‖F

)
+
λr

np

∑
k>r

σk(Y )2 − λr̄

np

∑
k>r̄

σk(Y )2.

Using twice the inequality 2ab ≤ αa2 + α−1b2 for a, b > 0, with α > 1 first and with β > 0
second, we get

(1− α−1)‖M∗ − M̄‖2F ≤ (1 + β−1)‖M∗ − M̂r‖2F + (α+ β)‖E‖2op(r + r̄)

+
λr

np

∑
k>r

σk(Y )2 − λr̄

np

∑
k>r̄

σk(Y )2. (15)

We now distinguish the two cases: r ≤ r̄ and r > r̄. In the first case, namely r ≤ r̄, we
bound from above as follows:

λr

np

∑
k>r

σk(Y )2 − λr̄

np

∑
k>r̄

σk(Y )2 =
λ

np

(
r

r̄∑
k=r+1

σk(Y )2 + (r − r̄)
∑
k>r̄

σk(Y )2

)

≤ λ

np
r(r̄ − r)σr+1(Y )2

≤ 2λr

np
(r̄ − r)(σr+1(M∗)2 + ‖E‖2op)

≤ 2λr

np
rmaxσr+1(M∗)2 +

2λrmax
np

(r̄ − r)‖E‖2op,
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where we used Weyl inequality σr+1(Y ) ≤ σr+1(M∗)+‖E‖op leading to σr+1(Y )2 ≤ 2‖E‖2op+
2σr+1(M∗)2. We plug this into (15) to get

(1− α−1)‖M∗ − M̄‖2F ≤ (1 + β−1)‖M∗ − M̂r‖2F +
2λrmax
np

rσr+1(M∗)2

+ r‖E‖2op(α+ β − 2λrmax
np

)

+ r̄‖E‖2op(α+ β +
2λrmax
np

),

for all r ≤ r̄ belonging to [rmax]. Thus, for λ such that 2λ·(rmax∨rY )
np = (1 + ε)(α+β) for some

ε > 0 we get

(1− α−1)‖M∗ − M̄‖2F ≤ min
r∈[r̄]

{
(1 + β−1)‖M∗ − M̂r‖2F + (1 + ε)(α+ β)rσr+1(M∗)2

}
+ (2 + ε)(α+ β)rmax‖E‖2op.

We now focus on the second case, namely r > r̄. We observe that in this case,

λr

np

∑
k>r

σk(Y )2 − λr̄

np

∑
k>r̄

σk(Y )2 =
λ

np

(
(r − r̄)

∑
k>r

σk(Y )2 − r̄
r∑

k=r̄+1

σk(Y )2

)

≤ λ(r − r̄)
np

(rY − r)σr+1(Y )2

≤ 2λr

np
rY · σr+1(M∗)2 +

2λ(r − r̄)
np

· (rY ∨ rmax)‖E‖2op,

by a similar reasoning in the previous case. We plug this into (15) to get

(1− α−1)‖M∗ − M̄‖2F ≤ (1 + β−1)‖M∗ − M̂r‖2F +
2λ · rmax ∨ rY

np
rσr+1(M∗)2

+ r‖E‖2op(α+ β +
2λ · rmax ∨ rY

np
)

+ r̄‖E‖2op(α+ β − 2λ · rmax ∨ rY
np

).

With the same choice of λ such that 2λ·rmax∨rY
np = (1 + ε)(α+ β) for some ε > 0 we get also

in this case that

(1− α−1)‖M∗ − M̄‖2F ≤ min
r̄<r≤rmax

{
(1 + β−1)‖M∗ − M̂r‖2F + (1 + ε)(α+ β)rσr+1(M∗)2

}
+ (2 + ε)(α+ β)rmax‖E‖2op.

Taking α = 3/2 and β = 1/2 and combining both cases leads to the following result

‖M∗ − M̄‖2F ≤ min
r∈[rmax]

{
9‖M∗ − M̂r‖2F + 6(1 + ε) · rσr+1(M∗)2

}
+ 6(2 + ε) · rmax‖E‖2op,

where we choose λ such that λ · rmax ∨ rY = (1 + ε)np for some ε > 0. We conclude by using
the inequality (14).
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5.6 Proof of Theorem 3.1

We proceed by solving the problem in two steps for solving the optimization problem (10)
which can be equivalently written as

min
A,B

M=AXB

min
M
‖Y −M‖2F + 2λ · ‖M‖∗,

for λ > 0. The solution to the problem in M is explicit and it is known to be obtained from
Y by soft-thresholding of its eigenvalues: M̄ = UYDiagn,p((σk(Y )− λ)+)V >Y , where we used
the SVD of Y : UY ΣY V

>
Y . Next, we project M̄ on the space of matrices AXB for A and B

in Frobenius norm. It is easy to check that our choice of Ā, B̄ are exact solutions, that is
M̄ = ĀXB̄.

Similarly to the proof of Theorem 2.3, by applying the definition of M̄ , expanding the
squares and rearranging terms we get for all M :

‖M̄ −M∗‖2F ≤ ‖M∗ −M‖2F + 2〈E, M̄ −M〉+ 2λ(‖M‖∗ − ‖M̄‖∗)

≤ ‖M∗ −M‖2F + 2
√
λ(‖M̄ −M‖∗ + ‖M‖∗ − ‖M̄‖∗),

under the event that ‖E‖2op ≤ λ. We use the decomposability of the nuclear norm of matrices
as in [5], to find M̄1 and M̄2 such that M̄ = M̄1 + M̄2, ‖M̄‖∗ = ‖M̄1‖∗ + ‖M̄2‖∗ and
‖M̄ −M‖∗ = ‖M̄1 −M‖∗ + ‖M̄2‖∗. Moreover, rank(M̄1) ≤ 2 rank(M). This implies

‖M̄ −M∗‖2F ≤ ‖M∗ −M‖2F + 4
√
λ‖M̄1 −M‖∗

≤ ‖M∗ −M‖2F + 4
√
λ
√

3 rank(M) · ‖M̄1 −M‖F
≤ ‖M∗ −M‖2F + 4

√
λ
√

3 rank(M) · (‖M̄ −M∗‖F + ‖M −M∗‖F ).

We obtain for arbitrary real numbers α > 1 and β > 0, for all M ,

(1− α−1)‖M̄ −M∗‖2F ≤ (1 + β−1)‖M∗ −M‖2F + 4(α+ β)λ · 6 rank(M).

For the particular values α = 3/2 and β = 1/2, we get

‖M̄ −M∗‖2F ≤ min
M

{
9‖M∗ −M‖2F + 144λ · rank(M)

}
≤ 9 min

r∈[n∧p∧rX ]

{
min

M :rankM=r
‖M∗ −M‖2F + 16λ · r

}
.

Recall that minM :rankM=r ‖M∗ −M‖2F =
∑r∗

K=r+1 σK(M∗)2 · 1r<r∗ to get the final result.
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6 Auxiliary results

Algorithm 1 Data-driven procedure for selecting r̄ and λ

Input: data X, Y
Require: np ≥ (m ∧ q)rX > 0

Define: σ̂2
r :=

‖Y − ÂrXB̂r‖2F
np− (m ∧ q)rX

Define: λ(σ) := 4(n+ p)σ2

Define: r̂λ := arg minr∈[n∧p∧rX ]

(
‖Y − ÂrXB̂r‖2F + λ · r

)
Initialize: r ← rX ∧ n ∧ p, r̄ ← r̂λ(σ̂2

r)

while r̄ < r do
r ← r̄
r̄ ← r̂λ(σ̂2

r)

end while
Output: r̄, λ(σ̂2

r̄ )
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