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Abstract

In this paper, we introduce a new shape functional defined for toroidal domains that we call harmonic
helicity, and study its shape optimization. Given a toroidal domain, we consider its associated harmonic
field. The latter is the magnetic field obtained uniquely up to normalization when imposing zero normal
trace and zero electrical current inside the domain. We then study the helicity of this field, which is a
quantity of interest in magneto-hydrodynamics corresponding to the L2 product of the field with its image
by the Biot–Savart operator. To do so, we begin by discussing the appropriate functional framework and an
equivalent PDE characterization. We then focus on shape optimization, and we identify the shape gradient
of the harmonic helicity. Finally, we study and implement an efficient numerical scheme to compute
harmonic helicity and its shape gradient using finite elements exterior calculus.
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1 Introduction

For a given vector field F on a three-dimensional domain Ω, we define its helicity (also known as Biot–Savart
helicity) by the formula

H (F ) =
1

4π

∫
Ω×Ω

F (y) ·
(
F (x)× y − x

|y − x|3

)
dxdy. (1)

This quantity plays an important role in plasma physics, fluid dynamics and magnetohydrodynamics (see e.g.
[Arn66; AK21]). In the context of electromagnetism, helicity of a magnetic field (called magnetic helicity) can
be seen as a scalar quantifying the linkage and twist of the magnetic field [Mof69; Arn14]. Equation (1) can
be interpreted as a volumic version of the writhe of a curve.

When working with magnetic fields, that is divergence free vector fields, tangent to the boundary of Ω, a
natural connection with vector potentials appears. First note that if one introduces the Biot–Savart operator
of F

BS (F )(y) =
1

4π

∫
Ω

F (x)× (y − x)

|y − x|3
dx, (2)

one obtains that the helicity of F is the L2 inner product of F with BS (F ). For simply connected domains,
the latter remains true if we replace BS (F ) by any vector potential of F (we recall that curl BS (F ) = F ).
For three-dimensional domains that are not simply connected, the connection between helicity and vector
potentials is slightly more involved and have been established by Bevir and Gray in [BG80] for toroidal
domains1 and [MV19] for more general ones. We recall the definition and main properties of the magnetic
helicity in Section 2.3.

A classical mathematical problem related to helicity studied in e.g. [Can+00; Can+99; Val19; Mon23] is the
maximization of the helicity on H0(div 0,Ω)2 with fixed L2 norm. The critical vector field of this optimization
problem are in fact eigenfields of the curl operator which can be seen thanks to a modified Biot–Savart operator
denoted here BS ′ [Can+00].

Elements of shape optimization were also discussed in [Can+00] and [Can+99] to characterize the domain
with the highest eigenvalue of BS ′ for a given volume. Some properties of the maximizing fields on such a
domain were given, but it is also unclear whether the optimal shape exists, as some computations suggest that
it would have to be a singular sphere, with North and South Pole collapsed to a single point. Recent works
on the existence of an optimal shape and its characterization can be found in [EP23; Ger23b; Ger23a].

In this paper, we are interested in a slightly different problem. Given a toroidal domain Ω, we consider
the set of harmonic fields, that is the set of vector fields that are divergence free, curl free and tangent to
the boundary. By classical results of Hodge theory, this set is a one-dimensional vector space. We are then
interested in the helicity of a normalized harmonic field of Ω, where the normalization is related to total flux
of currents through the central hole of the torus. Thus, for any regular enough toroidal domain, we define a
scalar quantity that we call the harmonic helicity of the domain Ω.

Designing a numerical scheme to compute this shape functional is not obvious. A close problem is the
spectral approximation of the curl operator in multiply connected domains; this has been tackled in [LRV15;
Alo+18] using finite elements methods. For efficiency considerations, it is important to avoid the computation
of the double integral in Eq. (1) and use another vector potential than the Biot–Savart. Using classical results
on vector potentials characterizations [Amr+98] and tools from finite elements exterior calculus [AFW10], we
provide efficient numerical approximation schemes and implementation for the harmonic helicity.

Physical motivations for considering harmonic helicity arise from the design of stellarators, advanced nuclear
fusion devices that rely on the confinement of intensely hot plasma through a sophisticated magnetic field. A
significant challenge arises due to the inherent impossibility of creating a non-zero magnetic field with constant
magnitude on a toroidal domain. Additionally, variations in the magnetic field amplitude, typically inversely
proportional to the major radius, result in a vertical drift, which can be mitigated through the implementation
of a twisted magnetic field. Optimization of the shape of the coils is a very active field [Pau+18; PRS22b]. A
measure of the twisted nature of the magnetic field is expressed by the magnetic helicity. We refer to [IPW20]
for a very nice introduction to the topic.

In contrast to Tokamaks, which are axisymmetric devices inducing a current inside the plasma to generate
a twisting magnetic field, stellarators aim for stability without requiring a current within the plasma. Conse-
quently, the magnetic field employed to stabilize the plasma in a stellarator can be reasonably approximated

1 That is bounded open subsets of R3 homeomorphic to a full torus.
2we refer to Section 2.1 for the definition of this Hilbert space.
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as a harmonic field within the domain representing the plasma. Hence, we believe that the optimization of
the shape of the plasma to increase the harmonic helicity could give rise to interesting new forms of plasma.

This paper is organized as follows:

• In Section 2, we recall classical notions used throughout the paper. We begin by the definitions of some
functional spaces. Then we properly define the harmonic fields, give two equivalent constructions and
define their circulations. Next, we give two PDE formulations to characterize vector potentials. Finally,
we make the connection between vector potentials and the helicity through the Bevir–Gray formula.

• Section 3 contains the main contribution of the paper. We begin by introducing the precise definition
of the harmonic helicity of a toroidal domain. The rest of the section is dedicated to the computation
of the shape derivative of the harmonic helicity. This is done using shape differentiation of several PDE
problems and a subtle use of Piola transforms. To the best of the authors’ knowledge, the employed
methodology is original and may hold applicability in addressing new shape differentiation problems
involving other Hilbert complexes.

• In Section 4, we recall the framework of finite element exterior calculus. We then use classical results
on approximations of Hodge Laplacian problems. The adaptations of these tools to our problem is not
straightforward and provides a method to compute both the helicity and the shape gradient.

• In Section 5, we provide numerical results of the proposed numerical methods on specific shapes motivated
by the study of stellarator plasmas. Then we present two numerical experiments to improve the harmonic
helicity of a standard plasma shape.

• In Appendix A, we recall classical results of Hodge theory used throughout the paper. In particular the
Hodge decomposition and its connection with the De Rham cohomology.

2 Prerequisites

In this section, Ω denotes a Lipschitz toroidal domain of R3, that is ∂Ω is locally the graph of a Lipschitz
function and Ω̄ is homeomorphic to D2 × S1 with D2 the closed unit disk and S1 the unit circle.

2.1 Functional spaces

We recall the definitions of the following classical functional spaces:

H(curl ,Ω) =
{
V ∈ L2(Ω)3 | curlV ∈ L2(Ω)3

}
,

H(div ,Ω) =
{
V ∈ L2(Ω)3 | div V ∈ L2(Ω)

}
.

(3)

On H(curl ,Ω) and H(div ,Ω), the tangential and normal traces V × n : ∂Ω → R3 and V · n : ∂Ω → R are
defined respectively by ∫

∂Ω

(V × n) · ϕ = 〈V, curlϕ〉 − 〈curlV, ϕ〉, (4)

for every ϕ in H1(Ω)3, and ∫
∂Ω

(V · n)ϕ = 〈V,∇ϕ〉+ 〈div V, ϕ〉, (5)

for every ϕ in H1(Ω). Since the traces of H1(Ω)3 and H1(Ω) are H1/2(∂Ω)3 and H1/2(∂Ω) respectively, V ×n
can be defined in H−1/2(∂Ω)3, and V · n in H−1/2(∂Ω). Then, we can define

H0(curl ,Ω) =
{
V ∈ L2(Ω)3 | curlV ∈ L2(Ω)3, V × n = 0

}
,

H0(div ,Ω) =
{
V ∈ L2(Ω)3 | div V ∈ L2(Ω), V · n = 0

}
.

(6)

We also denote by L2
0(Ω) the set of functions in L2(Ω) which have zero average in Ω. Introducing the following

spaces where the differential operator vanishes will also prove to be useful

H
(
curl 0,Ω

)
= {V ∈ H(curl ,Ω) | curlV = 0} ,

H
(
div 0,Ω

)
= {V ∈ H(div ,Ω) | div V = 0} ,

H0

(
curl 0,Ω

)
= H

(
curl 0,Ω

)
∩H0(curl ,Ω),

H0

(
div 0,Ω

)
= H

(
div 0,Ω

)
∩H0(div ,Ω).

(7)
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Figure 1: Illustration of the curves γ and γ′, and the surfaces Σ and Σ′

2.2 Harmonic fields

The set of harmonic fields in Ω is defined in the following way

K(Ω) =
{
V ∈ L2(Ω)3 | div V = 0, curlV = 0, V · n = 0

}
(8)

= H
(
curl 0,Ω

)
∩H0

(
div 0,Ω

)
,

Through the identifications with differential forms given in Appendix A, it is classical that this space is iso-
morphic to the first De Rham cohomology space of Ω, with each harmonic field giving a natural representent of
the corresponding cohomology class. Another characterization based on Hodge decomposition is the following

K(Ω) = H
(
curl 0,Ω

)
∩∇H1(Ω)⊥.

We refer to Proposition 14 of Appendix A.
We introduce a poloidal cut Σ of Ω, that is, a Lipschitz surface included in Ω, with boundary γ contained

in ∂Ω which generates the first homology group of Ωc = R3 \Ω. Similarly, we introduce Σ′ a Lipschitz surface
in Ωc with boundary γ′ that generates the first homology group of Ω̄. Fig. 1 illustrates these objects.
We also define t (resp. t′) as unit tangent vector fields on γ (resp. γ′), and nΣ (resp. nΣ′) as a unit normal
vector field on Σ (resp. Σ′). These vector fields define orientations on Σ, Σ′, γ and γ′ which are compatible
with each other. We refer to [Alo+18, Section 1] and [Amr+98, Section 3.a] for the constructions and more
precise definitions of these objects.

Formally, we normalize the harmonic field B by fixing its circulation along the toroidal loop γ′ to be equal
to 2π. Hence, as shown in [Amr+98, Proposition 3.14], we can define the normalized harmonic field B on Ω
by B = ∇u with u ∈ H1(Ω\Σ) defined as follows. u is the unique solution of the variational problem{

〈∇u,∇v〉Ω\Σ = 0,

[[u]]Σ = 2π,
(9)

for all v ∈ H1(Ω), where [[u]]Σ denote the jump of u across Σ, that is the difference of traces of u in the
direction of γ′ [Amr+98, Notation 3.9.i]. Note that Ω\Σ is a pseudo-Lipschitz domain, we refer to [Amr+98,
Definition 3.1] for further details.

Remark 1. The normalized harmonic field is uniquely defined up to a sign, depending on the orientation of
γ′.

Once we have the normalized harmonic field of Ω, we can define rigorously the circulation of vector fields
in H(curl ,Ω) with curl tangent to the boundary. To do this, we define similarly the harmonic field of Ωext =
B ∩ Ω̄c, denoted Bext, where B is an open ball containing Ω̄. The normalized harmonic field of Ωext is the
gradient of uext ∈ H1(Ωext\Σ′), which verifies{

〈∇uext,∇v〉Ω\Σ = 0,

[[u]]Σ′ = 2π,
(10)
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for all v in H1 (Ωext). Then, as in [Alo+18, Section 2], we are able to define the circulations of a vector field
V in H(curl ,Ω) with curl tangent to the boundary as∫

γ′
V · t =

1

2π

∫
Ωext

curl Ṽ ·Bext, (11)∫
γ

V · t′ =
1

2π

∫
Ω

curlV ·B, (12)

where Ṽ is a continuous extension of V from H(curl ,Ω) to H(curl ,B). Similarly, we can also write∫
γ′
V · t = − 1

2π

∫
∂Ω

(V × n) ·Bext, (13)∫
γ

V · t′ = − 1

2π

∫
∂Ω

(V × n) ·B. (14)

Note that the definition of the normalized harmonic field in Eq. (9) is equivalent to the following mixed
formulation that will prove to be useful, both for the computation of the shape gradient, and for the numerical
scheme.

Proposition 1. There exists a unique solution to the following problem. Find (Bdiv , udiv ) ∈ H0(div ,Ω) ×
L2

0(Ω) such that, for all (τ, v) ∈ H0(div ,Ω)× L2
0(Ω) we have

〈divBdiv , v〉 = 0,

〈Bdiv , τ〉+ 〈udiv ,div τ〉 = 2π

∫
Σ

τ · nΣ.
(15)

Furthermore, we have Bdiv = B defined in Eq. (9).

Proof. For the well-posedness, we notice that this corresponds to a problem similar to the mixed Hodge
Laplacian studied in [AFW06, Section 7]. To be more precise, this corresponds to the case k = 3, with
the slight modification that we are working with essential boundary conditions, corresponding to the fact
that Eq. (15) is a mixed formulation of a Neumann Poisson equation on udiv . However, the inf-sup conditions
derived in [AFW06, Section 7.5] still apply in these traceless spaces, as the Hodge decompositions and Poincaré
inequalities work in the same way (see [AFW06, Section 7.5 Remark]). The reason a zero average condition
appears on udiv is that we are directly working on the space orthogonal to constants (that is, orthogonal to
the harmonic 3-forms with zero trace) instead of using a Lagrange multiplier.

As a consequence, we only need to show that the linear form on the right-hand side is bounded by
‖τ‖H(div ,Ω) to prove well-posedness. This comes from the continuity of the normal trace from H(div ,Ω)

to H−1/2(Σ). As a consequence, we get∣∣∣∣∫
Σ

τ · nΣ

∣∣∣∣ ≤ ‖1‖H1/2(Σ)‖τ · nΣ‖H−1/2(Σ)

≤ C‖τ‖H(div ,Ω).

To prove that Bdiv and B coincide, we show that Bdiv is a harmonic field, and that they are normalized in
the same way. Equality then follows from the fact that the set of harmonic fields is one-dimensional. To find
that Bdiv is a harmonic field, we prove it is orthogonal to ∇H1(Ω) and curlH0(curl ,Ω).
The first fact follows from the first equation of (15). Indeed, we find that divBdiv = 0, so that Bdiv ∈
H0(div 0,Ω) = ∇H1(Ω)⊥.
Now, take τ = curlσ in the second equation of (15), with σ ∈ H0(curl ,Ω). As a consequence, we have
div τ = 0, and ∫

Σ

τ · nΣ =

∫
γ

σ · t = 0.

This gives us 〈Bdiv , τ〉 = 0 for all τ ∈ curlH0(curl ,Ω). Since Bdiv is orthogonal to both ∇H1(Ω) and
curlH0(curl ,Ω), we get that it is a harmonic field by Hodge decomposition (see Proposition 14 of Appendix A).

Finally, we set Bdiv = λB, and want to prove that λ = 1. First, by plugging τ = Bdiv in Eq. (15), we get

‖Bdiv ‖2 = 2π

∫
Σ

Bdiv · nΣ.
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Now, using the jump condition on u as defined in Eq. (9), and an integration by parts, we get

‖B‖2 =

∫
Ω\Σ

B · ∇u

= 2π

∫
Σ

B · nΣ.

Now, on the one side we have

2π

∫
Σ

Bdiv · nΣ = 2πλ

∫
Σ

B · nΣ,

and on the other side

2π

∫
Σ

Bdiv · nΣ = ‖Bdiv ‖2

= λ2‖B‖2

= 2πλ2

∫
Σ

B · nΣ.

Since B and Bdiv are both nonzero, we come to the conclusion that λ = 1.

2.3 Vector potentials and Bevir–Gray formula

As was mentioned earlier, the numerical computation of the Biot–Savart operator can be very costly. As a
consequence, we chose to compute the helicity of the normalized harmonic field by substituting BS(B) by
an appropriate vector potential of B. Indeed, since curl BS(B) = B, we know that any vector potential A
of B can only differ from BS(B) by the sum of a gradient and a harmonic field (see Eqs. (38) and (43) in
Appendix A). Since vector fields of H0

(
div 0,Ω

)
are orthogonal to gradient vector fields, we know that 〈B,A〉

can differ from H(B) only through the harmonic part of the difference between A and BS(B). However, this
difference can be accounted for by modifying the formula of the magnetic helicity, giving a quantity which is
invariant under a change of the vector potential. This is given by the well known Bevir–Gray formula [BG80]
in toroidal domains, which was later generalized to a large class of non-simply connected domains in [MV19].
In our case, for a vector field V in H0

(
div 0,Ω

)
and A any of its vector potentials, this invariant quantity is

given by

H(V ) = 〈V,A〉 −
∫
γ

A · t
∫
γ′
A · t′. (16)

Note that BS(V ) has zero circulation along γ′[CDG01, Section III.A], so that this invariant quantity does
correspond to the usual Biot–Savart helicity.

From this formulation, a natural problem is to find good vector potentials, which are simple to study, both
theoretically and numerically. Getting back to the helicity of the normalized harmonic field, we will study two
natural vector potential candidates. First, a vector potential given by a classical vector Laplacian problem,
which is orthogonal to B, therefore canceling the first term of Eq. (16). Second, a vector potential given in
[Val19], which is of zero circulation along the toroidal loop γ′, therefore canceling the second term. As we will
see in Section 5, using these two vector potentials also allows us to stay in a finite elements exterior calculus
setting throughout the numerical computation of the harmonic helicity, and its shape gradient.

The first vector potential, which we denote by A1, is given by the following proposition.

Proposition 2. There exists a unique
(
A1, u

)
∈ H(curl ,Ω)×H(div ,Ω) such that, for all (τ, v) ∈ H(curl ,Ω)×

H(div ,Ω)

〈A1, τ〉 = 〈curl τ, u〉, (17)

〈curlA1, v〉+ 〈div u,div v〉 = 〈B, v〉. (18)

Furthermore, A1 verifies

1. A1 is in H0(div 0,Ω),

2. curlA1 = B,

3. 〈A1, B〉 = 0.
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Proof. Since the second De Rham cohomology space of Ω is trivial, the space of harmonic 2-forms of Ω
vanishes, and this variational problem is equivalent to [AFW06, Equation (7.1)] for the case k = 2. Existence
and uniquenesss is then given by [AFW06, Theorem 7.2].

To prove Item 1, we simply take τ in ∇H1(Ω) in Eq. (17). This gives us 〈A1, τ〉 = 0, so that A1 is
orthogonal to ∇H1(Ω), and therefore is in H0

(
div 0,Ω

)
by Eq. (40) in Appendix A. To find Item 2, we

proceed with the same splitting analysis used in [AFW06]. We define using the Hodge decomposition Eq. (39),
u = u∇+ucurl with ucurl ∈ curlH(curl ,Ω) and u∇ ∈ ∇H1

0 (Ω). We now want to prove that u∇ = 0. Choosing

v ∈ H
(
div 0,Ω

)⊥ ∩H(div ,Ω) in Eq. (18), we get

〈div u∇,div v〉 = 〈B, v〉 = 0.

Using the Poincaré inequality from Proposition 15 of Appendix A, we get u∇ = 0, so that div u = 0 as claimed.
Finally, since curlB = 0, we simply get by choosing τ = B in Eq. (17)

〈A1, B〉 = 0,

proving Item 3.

For the second vector potential A2, we first need to introduce the following spaces.

X (Ω) = {V ∈ H(curl ,Ω) | curlV · n = 0} ,

Z(Ω) =

{
V ∈ X (Ω) |

∫
γ′
V · t′ = 0

}
.

We then introduce the second vector potential A2, given by the following result proven in [Val19]

Proposition 3. The following problem has a unique solution. Find (A2, u) ∈ Z(Ω) ×∇H1(Ω) such that for
all (τ, v) ∈ Z(Ω)×∇H1(Ω)

〈curlA2, curl τ〉+ 〈u, τ〉 = 〈B, curl τ〉,
〈A2, v〉 = 0.

(19)

Furthermore, we have curlA2 = B and A2 ∈ H0

(
div 0,Ω

)
.

Of course, the two choices of potential vectors are related to each other. Since A1 and A2 are in H0

(
div 0,Ω

)
and have the same curl, we get that A1 − A2 is in K(Ω). The fact that A1 has zero circulation along γ′, and
that B has a circulation of 2π allows us to find the relation

A2 = A1 − 1

2π

(∫
γ′
A1 · t′

)
B. (20)

3 Harmonic helicity and its shape derivative

As we have seen in the previous section, with each Lipschitz toroidal domain Ω, we are able to associate a
normalized harmonic field B(Ω) and a vector potential of B(Ω), denoted A2(Ω), with zero circulation along
γ′. As a consequence of the Bevir–Gray formula Eq. (16), the magnetic helicity of B(Ω) is then given by
H(B(Ω)) =

∫
Ω
B(Ω) · A2(Ω). In turn, this allows us to define the helicity of the normalized magnetic field

of Ω, which we refer to as the harmonic helicity of Ω for simplicity. As was noted in Remark 1, B(Ω) is
actually defined as a function of Ω only up to a sign. However, since the helicity is a quadratic form, this sign
indetermination is not relevant, and the harmonic helicity is well-defined as a shape functional.

Definition 1. Let Ω be a Lipschitz toroidal domain. Then, the harmonic helicity of Ω is defined as

H(Ω) =

∫
Ω

B(Ω) ·A2(Ω),

where B(Ω) and A2(Ω) are given by the solutions to Eq. (9) and Eq. (19).

The aim of this section is to study how the harmonic helicity varies as a function of the domain Ω. More
precisely, we prove that the harmonic helicity is shape Fréchet differentiable under Lipschitz deformation, and
we give a formula for its shape derivative.
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Remark 2. The following scaling and symmetry properties hold:

• We get for λ > 0 H(λΩ) = λH(Ω) using homotheties on B and A2.

• Given a planar reflection R ∈ O3, we verify that B(RΩ) = −RB(Ω) ◦ R and A2(RΩ) = RA2(Ω) ◦ R.
Hence, H(RΩ) = −H(Ω).

In order to write the shape derivative of the harmonic helicity as a surface integral, we need to assume that
Ω is s-regular for some s > 1/2 [AFW06, Section 7.7], that is we have the continuous embedding

H(curl ,Ω) ∩H0(div ,Ω) ↪−→ Hs(Ω). (21)

Indeed, we need B(Ω) and A1(Ω) to have traces in L2(∂Ω)3. For example Ω being Lipschitz-polyhedral or C1,1

is sufficient [Amr+98, Prop. 3.7 or Th. 2.9].

Theorem 1. Let Ω be a s-regular toroidal domain, with s > 1/2, and θ a vector field in W 1,∞(R3). Denoting
Ωθ = (I + θ)(Ω), we have

H(Ωθ) = H(Ω) +H′(Ω; θ) + o (‖θ‖W 1,∞) , (22)

where

H′(Ω; θ) = 2

∫
∂Ω

B(Ω) ·A1(Ω)θ · n. (23)

In order to prove this theorem, we begin by introducing some transformations in Section 3.1. These
transformations, which correspond to usual pullbacks in the language of differential forms, allow us to transform
functions and vector fields on the deformed domain Ωθ onto the fixed domain Ω. Since these transformations
have good commutation properties with the differential operators, we are then able to use them to differentiate
the variational formulations of B(Ωθ) and A2(Ωθ) in Section 3.2. Once this is done, we can prove Theorem 1
in Section 3.3 by pulling back the integral defining H onto a fixed domain, and using the differentiated vector
fields from the previous section.

Throughout the rest of this section, θ denotes a vector field in W 1,∞(R3) with ‖θ‖W 1,∞ < 1, Ωθ the
deformed domain (I + θ)(Ω), and Jθ = det(I + Dθ) the Jacobian of the transformation. To have notations
which are less cumbersome, we will also denote B = B(Ω), Bθ = B(Ωθ) the solutions to Eq. (15) in Ω and Ωθ
respectively, and A = A2(Ω), Aθ = A2(Ωθ) the solutions to Eq. (19) in Ω and Ωθ respectively. We also denote
by nθ the unit outward pointing vector field on ∂Ωθ, and define γθ, γ

′
θ, Σθ and Σ′θ in the deformed domain Ωθ

as the image by (I + θ) of the corresponding geometrical constructions given in Section 2.2, with tangent and
normal vector fields tθ, t

′
θ, nΣθ , nΣ′θ

respectively.

3.1 Pullback of the De Rham complex on a fixed domain

In this section, we define maps which allow us to transform elements of our functional spaces on a deformed
domain Ωθ back to Ω. These transformations correspond to pullbacks in the language of differential forms, and
the corresponding formulas are therefore similar to the Piola mappings used in finite elements exterior calculus.
This non-naive treatment is needed as composition by I + θ does not map H(curl ,Ωθ) (resp. H(div ,Ωθ)) to
H(curl ,Ω) (resp. H(div ,Ω)).

Definition 2. Let u0, u1, u2 and u3 be in H1(Ωθ), H(curl ,Ωθ), H(div ,Ωθ) and Lp(Ωθ) respectively, with p
being 1 or 2. We define

Φ0
θu0 = u0 ◦ (I + θ),

Φ1
θu1 =

(
I +DθT

)
u1 ◦ (I + θ),

Φ2
θu2 = Jθ(I +Dθ)−1u2 ◦ (I + θ),

Φ3
θu3 = Jθu3 ◦ (I + θ).

Before giving the key properties of these transformations, we start by stating the following useful algebraic
identities. These can be found by direct computations.

Lemma 1. We have the following identities.(
Φ0
θu
) (

Φ3
θv
)

= Φ3
θ(uv) ∀u ∈ H1(Ωθ), v ∈ L2(Ωθ),(

Φ1
θu
)
·
(
Φ2
θv
)

= Φ3
θ(u · v) ∀u ∈ H(curl ,Ωθ), v ∈ H(div ,Ωθ),

(α(θ)Φ1
θu) ·

(
Φ1
θv
)

= Φ3
θ(u · v) ∀u ∈ H(curl ,Ωθ), v ∈ H(curl ,Ωθ),

(α(θ)−1Φ2
θu) ·

(
Φ2
θv
)

= Φ3
θ(u · v) ∀u ∈ H(div ,Ωθ), v ∈ H(div ,Ωθ),
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where α(θ) = Jθ(I +Dθ)−1(I +DθT )−1.

Proposition 4. The diagram

H1(Ωθ) H(curl ,Ωθ) H(div ,Ωθ) L2(Ωθ)

H1(Ω) H(curl ,Ω) H(div ,Ω) L2(Ω)

∇ curl div

Φ0
θ Φ1

θ Φ2
θ Φ3

θ

∇ curl div

is commutative. Furthermore, the same diagram can be made with the corresponding traceless spaces.

Proof. For the proof of the first statement, we choose smooth functions or vector fields for simplicity (both for
u and θ). The general cases can then be obtained by density arguments.
We begin by proving ∇ ◦ Φ0

θ = Φ1
θ ◦ ∇. We choose u in C∞(Ω̄θ), and compute

D
(
Φ0
θu
)

= Du ◦ (I + θ)(I +Dθ),

so that by taking the transpose, we get

∇Φ0
θu = (I +DθT )∇u ◦ (I + θ)

= Φ1
θ∇u.

Now, we prove that curl ◦ Φ1
θ = Φ2

θ ◦ curl by taking u in C∞(Ω̄θ)
3. We have

D
(
Φ1
θ

)
u = D

(
(I +DθT )u ◦ (I + θ)

)
= D

(
DθT

)
u ◦ (I + θ) +

(
I +DθT

)
Du ◦ (I + θ)(I +Dθ),

where D
(
DθT

)
u is a symmetric matrix given by

(
D
(
DθT

)
u
)
i,j

=

3∑
k=1

∂2θk

∂xi∂xj
uk,

Therefore, we find

D
(
Φ1
θu
)
−
(
D
(
Φ1
θu
))T

=
(
I +DθT

)
(Du−DuT ) ◦ (I + θ)(I +Dθ).

Now, defining cr : so(3)→ R3, where so(3) is the space of skew-symmetric matrices, by

cr

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 =

v1

v2

v3

 ,

we can prove that, for any invertible matrix B and skew-symmetric matrix A, cr(BTAB) = det(B)B−1cr(A).
Since curlu = cr

(
Du−DuT

)
, we find

curl Φ1
θu = Jθ(I +Dθ)−1curlu ◦ (I + θ)

= Φ2
θcurlu.

For the last commutativity relation div ◦ Φ2
θ = Φ3

θ ◦ div , we proceed by duality. Take u in C∞(Ω̄θ)
3 and v in

C∞0 (Ωθ). First, we notice that the Φkθ are isomorphisms, as
(
Φkθ
)−1

= Φk(I+θ)−1−I. Therefore,∫
Ω

(
div Φ2

θu
)
v = −

∫
Ω

(
Φ2
θu
)
· ∇v

= −
∫

Ω

(
Φ2
θu
)
·
[
Φ1
θ

(
∇
(
Φ0
θ

)−1
v
)]
,
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where we used Φ1
θ∇v = ∇Φ0

θv. Using Lemma 1, we then find∫
Ω

(
div Φ2

θu
)
v = −

∫
Ω

Φ3
θ

(
u · ∇

(
Φ0
θ

)−1
v
)

= −
∫

Ωθ

u · ∇
(
Φ0
θ

)−1
v

=

∫
Ωθ

div u ·
(
Φ0
θ

)−1
v

=

∫
Ω

(
Φ3
θdiv u

)
v.

Now, we prove that traceless functions or vector fields are preserved by the maps Φkθ . For k = 0, we simply
take u ∈ C∞0 (Ω), and verify that u ◦ (I + θ) is in H1

0 (Ω). We then find the desired result by density.
The proofs for k = 1 and k = 2 being similar, we only write the first one. Take u in H0(curl ,Ωθ) and v in
H(curl ,Ω). Then, we have∫

∂Ω

((
Φ1
θu
)
× n

)
· v =

∫
Ω

curl
(
Φ1
θu
)
· v −

∫
Ω

(
Φ1
θu
)
· curl v

=

∫
Ω

Φ2
θ (curlu) · Φ1

θ

((
Φ1
θ

)−1
v
)
−
∫

Ω

(
Φ1
θu
)
· Φ2

θ

(
curl

(
Φ1
θ

)−1
v
)

=

∫
Ωθ

curlu ·
((

Φ1
θ

)−1
v
)
−
∫

Ωθ

u ·
(

curl
(
Φ1
θ

)−1
v
)

= 0,

so that Φ1
θu is in H0(curl ,Ω) as claimed.

As the Φkθ transformations correspond to pullbacks of k-forms, it is not surprising that Φ1
θ preserves

circulations, and Φ2
θ preserves fluxes. This result is given by the following lemma.

Lemma 2. Let u be in H(curl ,Ωθ) with curlu · n = 0, and v be in H0(div ,Ωθ). We then have the following
identities ∫

γ′θ

u · t′θ =

∫
γ′

Φ1
θu · t′,∫

Σθ

v · nΣθ =

∫
Σ

Φ2
θv · nΣ.

Proof. For the first equality, we suppose that u is smooth so that we can study the circulation in the usual
sense. The general case then follows from a density argument, and the continuity of the circulation as defined
in [Alo+18, Section 2] with respect to the H(curl ,Ω) norm. We identify γ′ with a Lipschitz embedding
γ′ : S1 → ∂Ω, so that the derivative γ̇′(s) is defined for a.e. s ∈ S1. γ′θ is then identified as the embedding
(I + θ) ◦ γ′, for which the derivative is given by

γ̇′θ = ((I +Dθ) ◦ γ′) γ̇′.

The circulation of u along γ′θ is then given by∫
γ′θ

u · t′θ =

∫
S1

[u ◦ γ′θ] (s) · γ̇′θ(s)ds.

Using the formula for γ′θ and its derivative as an embedding, we get∫
γ′θ

u · t′θ =

∫
S1

[u ◦ (I + θ) ◦ γ′] (s) · [((I +Dθ) ◦ γ′) γ̇′] (s)ds

=

∫
S1

[(
I +DθT

)
u ◦ (I + θ)

]
◦ γ′(s) · γ̇′(s)ds

=

∫
γ′

Φ1
θu · t′.
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For the second equality, we choose v ∈ H0 (div ,Ωθ) and use the following equality given in [Alo+18, Lemma
1] for ψ ∈ H1(Ωθ\Σθ) ∫

Σθ

v · nΣθ [[ψ]]Σθ =

∫
Ωθ\Σθ

v · ∇ψ +

∫
Ωθ\Σθ

(div v)ψ. (24)

Taking uθ to be the solution of Eq. (9) in Ωθ, we get

2π

∫
Σθ

v · nΣθ =

∫
Ωθ\Σθ

v · ∇uθ +

∫
Ωθ\Σθ

(div v)uθ

=

∫
Ω\Σ

(
Φ2
θv
)
· ∇
(
Φ0
θuθ
)

+

∫
Ω\Σ

(
div Φ2

θv
) (

Φ0
θuθ
)

=

∫
Σ

(
Φ2
θv
)
· nΣ

[[
Φ0
θuθ
]]

Σ
.

From the definition of Φ0
θ, we then see that

[[
Φ0
θuθ
]]

Σ
= [[uθ]]Σθ ◦ (I + θ) = 2π, which proves the desired

equality.

We know from Lemma 1 that when we pullback products in H(curl ,Ω) or H(div ,Ω), there is a non-
homogeneous term α(θ) which appears. We will have to consider such products in the next sections to
differentiate the harmonic helicity. The next lemma shows how θ 7→ α(θ) behaves under differentiation when
integrated against products of vector fields.

Lemma 3. The mapping θ 7→ α(θ) from W 1,∞ (R3
)3

to L∞
(
R3; GL(3,R)

)
defined in Lemma 1 is smooth,

and if u, v are in H(curl ,Ω) ∩H0(div ,Ω), its differential at 0 verifies∫
Ω

(α′(0; θ)u) · v =

∫
Ω

div uθ · v +

∫
Ω

u · θdiv v +

∫
Ω

u× θ · curl v −
∫

Ω

curlu× θ · v +

∫
∂Ω

u · vθ · n.

Proof. We recall that α(θ) = Jθ(I + Dθ)−1
(
I +DθT

)−1
. To find that α is smooth, we simply notice that

the maps defined on the unit ball of M3(R) given by A 7→ (I + A)−1, A 7→ (I + AT )−1 and A 7→ det(I + A)

are smooth. We also have that θ 7→ Dθ is linear and bounded from W 1,∞ (R3
)3

to L∞
(
R3; GL(3,R)

)
. We

conclude by composition that α is smooth.
Using that the differential of the determinant and the inverse at the identity are, respectively, the trace and
minus the identity, we find

α′(0; θ) = div θI−Dθ −DθT .
To prove the final point, we choose u and v in H1(Ω)3 such that u · n = v · n = 0. Then, u · θ and u× θ are in
H1, and we have

∇(u · θ) = DuT θ +DθTu,

curl (u× θ) = Duθ −Dθu− div uθ + div θu.

Combining these formulas, we find

∇(u · θ)− curl (u× θ) = −Duθ +Dθu+ div uθ − div θu+DuT θ +DθTu

= −α′(0; θ)u− (Du−DuT )θ + div uθ

= −α′(0; θ)− curlu× θ + div uθ,

so that
α′(0; θ)u = div uθ + curl (u× θ)− curlu× θ · v −∇(u · θ).

Now, using integration by parts∫
Ω

α′(0; θ)u · v =

∫
Ω

div uθ · v + curl (u× θ) · v − curlu× θ · v −∇(u · θ) · v

=

∫
Ω

div uθ · v +

∫
Ω

u× θ · curl v +

∫
∂Ω

(u× θ)× n · v −
∫

Ω

curlu× θ · v +

∫
Ω

u · θdiv v

=

∫
Ω

div uθ · v +

∫
Ω

u× θ · curl v +

∫
∂Ω

u · vθ · n−
∫

Ω

curlu× θ · v +

∫
Ω

u · θdiv v.

Finally, by density, taking any u and v in H(curl ,Ω) ∩H0(div ,Ω), we get the desired formula. Note that we
need s-regularity Eq. (21) with s > 1/2, to ensure that u, v ∈ L2(∂Ω)3.
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3.2 Differentiability of the PDEs

In this section we prove the differentiability of θ 7→ Φ2
θBθ and θ 7→ Φ1

θAθ. As is classical in shape variation
of PDEs (see for example [HP18, Chapter 5]), this is done using an implicit function argument on a pulled
back version of the variational formulations. Although it is quite common in the literature to recover Eulerian
derivatives from this, that is, the differential of θ 7→ Bθ and θ 7→ Aθ directly, we chose to skip this step here.
Indeed, we will see that this step is not necessary to recover the shape derivative of the harmonic helicity.
Furthermore, these Eulerian derivatives often suffer from a loss of regularity compared to the material ones,
and satisfy affine variational formulations which are less practical to deal with in our case.

Proposition 5. Let (Bθ, uθ) be the solution to the following variational problem.
Find (Bθ, uθ) ∈ H0(div ,Ωθ)× L2

0(Ωθ) such that, for all (τ, v) ∈ H0(div ,Ωθ)× L2
0(Ωθ) we have∫

Ωθ

Bθ · τ +

∫
Ωθ

uθdiv τ = 2π

∫
Σθ

τ · nΣθ , (25)∫
Ωθ

(divBθ) v = 0. (26)

Then, θ 7→ (Φ2
θBθ,Φ

0
θuθ) is C1 in a neighborhood of 0, and its differential at zero (B′, u′) verifies∫

Ω

B′ · τ +

∫
Ω

u′div τ =

∫
Ω

(α′(0; θ)B) · τ,∫
Ω

(divB′) v = 0,

(27)

for all (τ, v) in H0(div ,Ω)× L2
0(Ω).

Proof. We know from Proposition 1 that (Bθ, uθ) is defined uniquely. Pulling back the integrals of Eq. (25)
onto Ω, and using Lemmas 1 to 3, we get∫

Ω

Φ3
θ(Bθ · τ) +

∫
Ω

Φ3
θ(uθdiv τ) = 2π

∫
Σ

(
Φ2
θτ
)
· nΣ,∫

Ω

(
α(θ)−1Φ2

θBθ
)
·
(
Φ2
θτ
)

+

∫
Ω

(
Φ0
θuθ
) (

div Φ2
θτ
)

= 2π

∫
Σ

(
Φ2
θτ
)
· nΣ.

Similarly, we get from Eq. (26) ∫
Ω

(
div Φ2

θBθ
) (

Φ0
θv
)

= 0.

Of course, since the Φkθ define isomorphisms, we can take test functions (τ, v) in H0(div ,Ω)×L2
0(Ω). We now

define
F : W 1,∞(R3)3 ×

(
H0(div ,Ω)× L2

0(Ω)
)
→
(
H0(div ,Ω)× L2

0(Ω)
)′

by

F (θ;σ, u)(τ, v) =

∫
Ω

(
α(θ)−1σ

)
· τ +

∫
Ω

udiv τ +

∫
Ω

(div σ) v − 2π

∫
Σ

τ · nΣ,

so that (Bθ, uθ) solving Eqs. (25) and (26) is equivalent to F (θ; Φ2
θBθ,Φ

0
θuθ) = 0.

Now, we know from Lemma 3 that θ 7→ α(θ)−1 is C1. Since (σ, u) 7→ F (θ;σ, u) is linear and bounded, we
deduce that F is C1. Furthermore, denoting by Dσ,uF the differential of F with respect to the (σ, u) variables,

Dσ,uF (0;B0, u0)(σ′, u′)(τ, v) =

∫
Ω

σ′ · τ +

∫
Ω

u′div τ +

∫
Ω

(div σ′) v.

We therefore find that Dσ,uF (0;B0, u0) is an isomorphism from H0(div ,Ω)×L2
0(Ω) to

(
H0(div ,Ω)× L2

0(Ω)
)′

by the same inf-sup inequalities used to prove the well-posedness of Proposition 1. Using the implicit function
theorem, we deduce that for small enough θ, there is a unique C1 mapping θ 7→ (σ(θ), u(θ)) such that
F (θ;σ(θ), u(θ)) = 0. From uniqueness, we find that (σ(θ), u(θ)) = (Φ2

θBθ,Φ
0
θuθ).

Now, to get a variational formulation, we simply differentiate F (θ; Φ2
θBθ,Φ

0
θuθ) = 0 at θ = 0. Denoting

Φ2
θBθ = B +B′ + o(||θ||C1,1) and Φ0

θuθ = u+ u′ + o(||θ||C1,1), this gives us∫
Ω

B′ · τ +

∫
Ω

u′div τ +

∫
Ω

(divB′) v =

∫
Ω

(α′(0; θ)B0) · τ,

which concludes the proof.
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Proposition 6. Let (A2
θ, uθ) be the solution to the following variational problem.

Find (A2
θ, uθ) in Z(Ωθ)×∇H1(Ωθ) such that, for all (τ, v) in Z(Ωθ)×∇H1(Ωθ) we have∫

Ωθ

curlA2
θ · curl τ +

∫
Ωθ

uθ · τ =

∫
Ωθ

Bθ · curl τ, (28)∫
Ωθ

A2
θ · v = 0. (29)

Then, θ 7→ (Φ1
θA

2
θ,Φ

2
θuθ) is C1 in a neighborhood of 0.

Proof. We proceed with an implicit function theorem argument, similar to the one used for Proposition 5.
First, we note that from Proposition 4 and Lemma 2, we get Φ1

θZ(Ωθ) = Z(Ω), so that the functional spaces
of Eqs. (28) and (29) are preserved by the pullbacks.

Pulling back Eqs. (28) and (29) onto Ω and using Lemma 1, we get∫
Ω

(
α(θ)−1curl Φ1

θA
2
θ

)
·
(
curl Φ1

θτ
)

+

∫
Ω

(
α(θ)Φ1

θuθ
)
·
(
Φ1
θτ
)

=

∫
Ω

(
α(θ)−1Φ2

θBθ
)
·
(
curl Φ1

θτ
)
,∫

Ω

(
α(θ)Φ1

θA
2
θ

)
·
(
Φ1
θv
)

= 0.

We therefore define
G : W 1,∞(R3)3 ×

(
Z(Ω)×∇H1(Ω)

)
→
(
Z(Ω)×∇H1(Ω)

)′
by

G(θ;σ, u)(τ, v) =

∫
Ω

(
α(θ)−1curlσ

)
· curl τ +

∫
Ω

(α(θ)u) · τ +

∫
Ω

(α(θ)σ) · v −
∫

Ω

(
α(θ)−1Φ2

θBθ
)
· curl τ,

so that (Aθ, uθ) solves Eqs. (28) and (29) if and only if G(θ; Φ1
θA

2
θ,Φ

1
θuθ) = 0.

By Lemma 3, we know that θ 7→ α(θ) and θ 7→ α(θ)−1 are C1. Furthermore, we know from Proposition 5
that θ 7→ Φ2

θBθ is C1. Therefore, by linearity and continuity of G with respect to (σ, u), we know that G is C1.
We have

Dσ,uG(0;A0, v0)(σ′, u′)(τ, v) =

∫
Ω

curlσ′ · curl τ +

∫
Ω

u′ · τ +

∫
Ω

σ′ · v,

so that Dσ,uG(0;A0, v0) is an isomorphism by the inf-sup conditions proven in [Val19, Section IV]. This proves,
by the implicit function theorem, that for θ small enough there is a unique mapping θ 7→ (σ(θ), u(θ)) such
that G(θ;σ(θ), u(θ)) = 0. By uniqueness, we get (σ(θ), u(θ)) = (Φ1

θAθ,Φ
1
θuθ).

3.3 Proof of Theorem 1

Now that we have introduced ways to pullback functions and vector fields onto the fixed domain Ω, and that
we have derived differentiability of Φ2

θBθ and Φ1
θA

2
θ, we can conclude the proof of Theorem 1. To do so, we

simply pullback the integral of Bθ against A2
θ onto Ω using Lemma 1, and use the differentiability results from

the last section.

Proof. We have

H(Ωθ) =

∫
Ωθ

Bθ ·A2
θ

=

∫
Ω

Φ3
θ(Bθ ·A2

θ)

=

∫
Ω

(
Φ2
θBθ

)
·
(
Φ1
θA

2
θ

)
.

From Propositions 5 and 6, we know that Φ2
θBθ and Φ1

θAθ are differentiable at zero, so that H is differentiable
at Ω and, denoting their differentials in the direction θ as B′ and A′, we have

H′(Ω; θ) =

∫
Ω

B′ ·A2 +

∫
Ω

B ·A′.
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Since B = curlA2, and A2, A′ are both in Z(Ω), we know from [Alo+18, Lemma 7] that∫
Ω

B ·A′ =

∫
Ω

curlA2 ·A′ =

∫
Ω

curlA′ ·A2.

Furthermore, since curlA2
θ = Bθ, we get curl Φ1

θA
2
θ = Φ2

θBθ. By differentiating, we get curlA′ = B′, so that

H′(Ω; θ) = 2

∫
Ω

B′ ·A2.

Using the first equation in Eq. (27), we get∫
Ω

B′ ·A2 =

∫
Ω

(α′(0; θ)B) ·A2.

Finally, since B and A are in H(curl ,Ω) ∩H0(div ,Ω), we can use Lemma 3 to get∫
Ω

(α′(0; θ)B′) ·A2 =

∫
Ω

divB ·A2 +

∫
Ω

B × θ · curlA2 −
∫

Ω

curlB × θ ·A2 +

∫
Ω

B · θdivA2 +

∫
∂Ω

B ·A2θ · n

=

∫
∂Ω

B ·A2θ · n.

4 Approximation by finite element exterior calculus

In this section we assume that Ω is a toroidal domain with polyhedral boundary and that (Th)h>0 is a quasi-
uniform family of tetrahedron meshes of Ω̄, with h the largest diameter of the cells. From [Amr+98, Proposition
3.7], we know that we can choose s > 1/2 so that Ω is s-regular. We denote by ∆0(Th), ∆1(Th), ∆2(Th) and
∆3(Th) the sets of points, edges, faces and cells of the mesh Th, respectively. For a k-simplex S of the mesh
Th, we define ∆i(S) as the set of i-simplices which have non-empty intersection with S̄ for i < k. Throughout
this section, inequality constants denoted by C are independent of h, but may depend on the domain Ω.

Our goal is to provide a finite elements scheme to compute both the harmonic helicity of the domain Ω
and its shape gradient. In Section 4.1, we recall the main properties of classical families of elements coming
from finite elements exterior calculus. Then, we recall in Section 4.2 some notions related to the discrete
version of the De Rham complex, and the related discrete harmonic fields. Finally, in Section 4.3 we prove the
convergence of the numerical harmonic helicity.

4.1 Classical finite elements exterior calculus families

Here, we introduce some classical families in finite elements exterior calculus. The main idea is to define a
discretized version of each functional space in the De Rham complex, and stable projections onto these spaces
which commute with the differential operators. All these notions were first introduced in [RT77; Ned80], and
later generalized for differential forms in [AFW06].
For r an integer and T a tetrahedral domain in R3, we define Pr(T ) as the set of polynomials on T with degree
at most r, and P̃r(T ) the set of homogeneous polynomials on T of degree r. Then, P−r (T ) is defined as

P−r (T ) = Pr−1(T )3 ⊕
{
p ∈ P̃r(T )3 | p · x = 0

}
.

For r positive, we then define the discretizations

V 0
h (T )(Ω) =

{
u ∈ H1(Ω) | u|K ∈ Pr(T ) ∀T ∈ Th

}
,

V 1
h (T )(Ω) =

{
u ∈ H(curl ,Ω) | u|K ∈ P−r (T ) ∀T ∈ Th

}
,

V 2
h (T )(Ω) =

{
u ∈ H(div ,Ω) | u|K ∈ P−r (T ) ∀T ∈ Th

}
,

V 3
h (T )(Ω) =

{
u ∈ L2(Ω) | u|K ∈ Pr−1(T ) ∀T ∈ Th

}
.

We then obtain the following sequence

V 0
h (Ω) V 1

h (Ω) V 2
h (Ω) V 3

h (Ω)∇ curl div .
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These finite element spaces correspond respectively to the Lagrange P r elements, the Nedelec first kind ele-
ments of order r, the Raviart Thomas elements of order r, and the Lagrange P r−1 elements.

One can check easily, using integration by parts, that u is in V 1
h (Ω) if and only if the tangential trace of u

is continuous along all shared faces of Ω. More precisely, if T1 and T2 are in ∆3(Th) and S1, S2 are in ∆2(K1)
and ∆2(K2) respectively with T1 ∩ T2 = S1 = S2, we have

u× nS1
+ u× nS2

= 0.

Similarly, we have that u is in V 2
h (Ω) if and only the normal trace of u is continuous along all shared faces of

Ω.
We also introduce the discrete affine space V aff

h to solve Eq. (9) numerically. It is defined by

V aff
h (Ω) =

{
v ∈ H1(Ω\Σ) | v|T ∈ Pr(T ) ∀T ∈ Th, and [[v]]Σ = 2π

}
,

where [[v]]Σ denotes the jump of v across Σ. The corresponding linear space is V 0
h (Ω).

We also use the smoothed quasi interpolators built in [AFW06, Section 5.4.] for differential forms, denoted
by Πk

h. It is known that these quasi interpolators are stable, and that they make the following diagram
commute

H1(Ω) H(curl ,Ω) H(div ,Ω) L2(Ω)

V 0
h (Ω) V 1

h (Ω) V 2
h (Ω) V 3

h (Ω)

∇ curl div

Π0
h Π1

h Π2
h Π3

h

∇ curl div

.

We then have the following approximation estimates on the quasi interpolators (see for example [EG18, The-
orem 2.2. and 2.3.]).

Proposition 7. We have, for all k between 0 and 3 and u Hs regular,∥∥u−Πk
hu
∥∥
L2 ≤ Chs ‖u‖Hs .

4.2 Discretization of the De Rham complex

In this section we state some results about the discretization of the De Rham complex. We borrow here most of
our notations and lemmas from [AFW06]. We begin by defining discrete equivalents of closed and exact fields,
which allow us to define the discrete harmonic fields. This then allows us to derive Hodge decompositions in
the discrete setting, and uniform Poincaré inequalities. We then state some lemmas which will be useful for
the coming convergence results.

First, we use some notations from the differential forms setting to unify some definitions and results. We
denote

HΛ0(Ω) = H1(Ω), HΛ1(Ω) = H(curl ,Ω), HΛ2(Ω) = H(div ,Ω), and HΛ3(Ω) = L2(Ω),

as well as
d0 = ∇, d1 = curl , and d2 = div .

We also denote dk = 0 when k is negative or larger than 3. The corresponding traceless spaces are denoted
H̊Λk(Ω), and the discrete traceless spaces are given by V̊ kh (Ω) = V kh (Ω) ∩ H̊Λk(Ω).

We are now able to define the discrete harmonic fields. We denote

Bkh(Ω) = dk−1V k−1
h (Ω), Zkh(Ω) =

{
u ∈ V kh (Ω) | dku = 0

}
,

and
Kkh(Ω) = Zkh(Ω) ∩ Bkh(Ω)⊥.

Similarly, we define for traceless spaces

B̊kh(Ω) = dk−1V̊ k−1
h (Ω), Z̊kh(Ω) =

{
u ∈ V̊ kh (Ω) | dku = 0

}
,

and
K̊kh(Ω) = Z̊kh(Ω) ∩ B̊kh(Ω)⊥.
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From the equivalence of discrete and continuous De Rham cohomology (see e.g. [AFW10, Section 5.6]), we get

K0
h(Ω) ∼= R, K1

h(Ω) ∼= R, K2
h(Ω) ∼= 0 and K3

h(Ω) ∼= 0.

Similarly, from the equivalence of discrete and continuous De Rham cohomology with boundary condition,
and Poincaré duality, we get

K̊0
h(Ω) ∼= 0, K̊1

h(Ω) ∼= 0, K̊2
h(Ω) ∼= R and K̊3

h(Ω) ∼= R.

Remark 3. In the continuous case, we defined the harmonic fields as K(Ω) = H
(
curl 0,Ω

)
∩H0

(
div 0,Ω

)
.

By using H0

(
div 0,Ω

)
= ∇H1(Ω)⊥ and H

(
curl 0,Ω

)
= curlH0 (curl ,Ω)

⊥
from Proposition 16 of Appendix A,

we recover two expressions for K(Ω) which are similar to the discrete ones. However, in the discrete case,
the two spaces K1

h(Ω) and K̊2
h(Ω) do not coincide. This is because, in the first space the divergence and trace

condition are imposed only weakly, whereas the opposite is true in the second space.

From these definitions, it is now straightforward to find the discrete Hodge decompositions.

V kh (Ω) = Zkh(Ω)⊥ ⊕Kkh(Ω)⊕ Bkh(Ω),

V̊ kh (Ω) = Z̊kh(Ω)⊥ ⊕ K̊kh(Ω)⊕ B̊kh(Ω).

There is also an equivalent of the Poincaré inequality in the discrete case given in [AFW06][Lemma 5.11].

Proposition 8. There exists a constant C, independent of h, such that for all u in Zkh(Ω)⊥

‖u‖L2 ≤ C
∥∥dku∥∥

L2 .

We will also be using the following lemma for the proof of convergence of the harmonic field. This lemma
is proven in [AFW06][Lemma 5.9] for harmonic forms.

Lemma 4. For all uh in K1
h(Ω) there exists u in K(Ω) such that ‖u‖ ≤ ‖uh‖ and

‖uh − u‖L2 ≤
∥∥u−Π1

hu
∥∥
L2 .

4.3 Numerical convergence of the harmonic helicity

We begin by studying the approximation of the harmonic field. As we have seen in Section 2.2, there are two
different variational formulations for the harmonic fields. Although they give the same fields in the continuous
case, this will not be true at the discrete level. As we will see, the classical Poisson formulation will give a
discrete harmonic field in K1

h(Ω), and the mixed formulation will give a discrete harmonic field in K̊2
h(Ω).

Before studying the convergence of the numerical solutions, we state their well-posedness.

Proposition 9. There exists a unique solution to the following variational formulation. Find uh ∈ V aff
h (Ω)

such that, for all vh ∈ V 0
h (Ω),

〈∇uh,∇vh〉 = 0. (30)

Furthermore, Bcurl
h = ∇uh is in K1

h(Ω).

Proof. We denote by u the solution to Eq. (9), and B = ∇u the normalized harmonic field of Ω. We begin by
noticing that there is a unique solution to the following variational problem. Find ũh ∈ V 0

h (Ω) such that for
all vh ∈ V 0

h (Ω)
〈∇ũh,∇vh〉 = −〈Π1

hB, vh〉. (31)

Indeed, this problem is a classical discretization of a Poisson equation, so the Lax–Milgam theorem applies.
Now, define uh = ũh + Π0

hu. Since ∇uh = ∇ũh + Π1
hB, and Π0

hu is in V aff
h (Ω), we notice that uh is solution

to 30 if and only if ũh is solution to 31. As a consequence, 30 is also well-posed.
We now prove that ∇uh is in V 1

h (Ω). It is straightforward that interelement continuity will be verified on all
surfaces which are not included in Σh. Therefore, we take S ∈ ∆2(Th) included in Σh. We know that there exist
two cells T1 and T2 in ∆3(Th) such that S ∈ ∆2(T1)∩∆2(T2). We then denote S = S1 when seen as an element
of ∆2(T1), and S = S2 when seen as an element of ∆2(T2), and order T1 and T2 so that the exterior normal of
T1 on S1 is nΣh . Since uh is in V aff

h (Ω), we have uh|S2
− uh|S1

= 2π, so that ∇uh × nΣh |S2
= ∇uh × nΣh |S1

.

As a consequence, interelement continuity is verified across S, so that Bcurl
h = ∇uh is in V 1

h (Ω).
Finally, we prove that Bcurl

h is in K1
h(Ω). The fact that Bcurl

h is in B1
h(Ω)⊥ is given directly by Eq. (30).

Now, we take T in ∆3(Th). Since Bcurl
h

∣∣
T

= ∇uh|T , we have Bcurl
h

∣∣
T
∈ B1

h(T ).

Now, using that B1
h(T ) is a subset of Z1

h(T ), and that Bcurl
h is in Z1

h(Ω) if and only if Bcurl
h

∣∣
T

is in Z1
h(T ) for

all T , we are able to conclude.
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Proposition 10. There exists a unique solution to the following variational formulation. Find (uh, B
div
h ) ∈

V 3
h (Ω)× V̊ 2

h (Ω) such that, for all (vh, τh) ∈ V 3
h (Ω)× V̊ 2

h (Ω)

〈divBdiv
h , vh〉 = 0,

〈Bdiv
h , τh〉+ 〈uh,div τh〉 = 2π

∫
Σ

τh · nΣ.
(32)

Furthermore, Bdiv
h is in K̊2

h(Ω).

Proof. The well-posedness comes from the exact same arguments as in the continuous case, by replacing the
Poincaré inequalities and Hodge decompositions by their discrete counterparts.

We now prove that Bdiv
h is in K̊2

h(Ω). The fact that Bdiv
h is in Z̊2

h(Ω) comes directly from the first equation
of (32). Now, taking τh = curl ρh in the second equation for ρh ∈ H0(curl ,Ω), we get

〈Bdiv
h , curl ρh〉 =

∫
Σh

curl ρh · nΣh

=

∫
γ′h

ρh · t′

= 0,

so that Bdiv
h is in B̊2

h(Ω)⊥.

We prove the two following approximation results.

Proposition 11. There exists a constant C independent of h such that∥∥Bcurl
h −B

∥∥
L2 ≤ Chs ‖B‖L2 ,∥∥Bdiv

h −B
∥∥
L2 ≤ Chs ‖B‖L2 .

Proof. We begin by proving the convergence for Bcurl
h . From Lemma 4, we know there exists B̃h in K(Ω) such

that ∥∥∥B̃h −Bcurl
h

∥∥∥
L2
≤
∥∥∥B̃h −Π1

hB̃h

∥∥∥
L2
.

From the continuity of the circulation along γ with respect to the Hcurl norm, we have∣∣∣∣∫
γ

(
B̃h −B

)
· t
∣∣∣∣ =

∣∣∣∣∫
γ

(
B̃h −Bcurl

h

)
· t
∣∣∣∣

≤ C
∥∥∥B̃h −Bcurl

h

∥∥∥
Hcurl

≤ C
∥∥∥B̃h −Bcurl

h

∥∥∥
L2

≤ C
∥∥∥B̃h −Π1

hB̃h

∥∥∥
L2
.

Since B and B̃h are in K(Ω), we get from [Val19, Lemma 5] that∥∥∥B̃h −B∥∥∥
L2
≤ C

(∥∥∥div B̃h − divB
∥∥∥
L2

+
∥∥∥curl B̃h − curlB

∥∥∥
L2

+

∣∣∣∣∫
γ

(
B̃h −B

)
· t
∣∣∣∣)

≤ C
∥∥∥B̃h −Π1

hB̃h

∥∥∥
L2
.

We then get by triangle inequality∥∥Bcurl
h −B

∥∥
L2 ≤

∥∥∥Bcurl
h − B̃h

∥∥∥
L2

+
∥∥∥B̃h −B∥∥∥

L2

≤ C
∥∥∥B̃h −Π1

hB̃h

∥∥∥
L2
.
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Finally, using Proposition 7 and the continuous injection of H(curl ,Ω) ∩ H0(div ,Ω) into Hs(Ω) for some
1/2 < s ≤ 1, we get ∥∥Bcurl

h −B
∥∥
L2 ≤ Chs

∥∥∥B̃h∥∥∥
Hs

≤ Chs
∥∥∥B̃h∥∥∥

L2

≤ Chs ‖B‖L2 .

We now prove the convergence of Bdiv
h to B. Using Eqs. (15) and (32), we have

〈B, τ〉+ 〈u,div τh〉 =

∫
Σ

τh · nΣ,

〈Bdiv
h , τ〉+ 〈uh,div τh〉 =

∫
Σ

τh · nΣ,

for all τh in V̊ 2
h (Ω). As a consequence, for all τh in Z̊2

h(Ω), we get

〈Bdiv
h −B, τh〉 = 0.

Since both Bdiv
h and Π2

hB are in Z̊2
h(Ω), we have

〈Bdiv
h −B,Bdiv

h −B〉 = 〈Bdiv
h −B,Π2

hB −B〉,

so that ∥∥Bdiv
h −B

∥∥
L2 ≤

∥∥Π2
hB −B

∥∥
L2 .

Using again Proposition 7 and the fact that Ω is s-regular, we get the desired result∥∥Bdiv
h −B

∥∥
L2 ≤ Chs‖B‖L2 .

We now study the well-posedness and the convergence of the vector potentials of B. A first remark is that
the vector potential orthogonal to B is well studied in the literature via the Hodge Laplacian (see for example
[AFW06]). As such, we study the approximation of such vector potentials which we denote A1

h, and recover
A2
h, the one which is circulation free, by the discrete counterpart of Eq. (20)

A2
h = A1

h −
1

2π

(∫
γ′
A1
h · t′

)
Bcurl
h . (33)

Proposition 12. There exists a unique solution to the following variational formulation. Find (uh, A
1
h) ∈

V 2
h (Ω)× V 1

h (Ω) such that, for all (vh, τh) ∈ V 2
h (Ω)× V 1

h (Ω),

〈A1
h, τh〉 = 〈curl τh, uh〉,

〈curlA1
h, vh〉+ 〈div uh,div vh〉 = 〈Bdiv

h , vh〉.
(34)

Furthermore, we have curlA1
h = Bdiv

h .

Proof. The well posedness is proven in the exact same way as in the continuous case Proposition 2, by replacing
the Hodge decomposition and Poincaré inequality by their discrete counterparts. The fact that curlA1

h = Bdiv
h

is also proven in a similar way as in Proposition 2. Using K2
h(Ω) = 0, and the discrete Hodge decomposition

(see Section 4.2), we have
V 2
h (Ω) = Z2

h(Ω)⊥ ⊕ B2
h(Ω),

so that uh = u∇h + ucurl
h with

〈
u∇h , v

〉
= 0 for all vh in V 2

h (Ω) with div vh = 0, and div ucurl
h = 0. Therefore,

taking vh = ucurl
h in the second equation of Eq. (34), we get〈

div uh,div u∇h
〉

= 0,

so that, since div ucurl
h = 0, we obtain div u∇h = div uh = 0. From this, we get

〈
A1
h, vh

〉
=
〈
Bdiv
h , vh

〉
for all

vh ∈ V 2
h (Ω), and Bdiv

h ∈ V 2
h (Ω) implies the desired equality.
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Proposition 13. There exists a constant C independent of h such that∥∥A1
h −A1

∥∥
L2 ≤ Chs ‖B‖L2 .

Proof. Define
(
ũh, Ã

1
h

)
as the solution to the following variational problem. Find

(
ũh, Ã

1
h

)
∈ V 2

h (Ω)× V 1
h (Ω)

such that, for all (vh, τh) ∈ V 2
h (Ω)× V 1

h (Ω),〈
Ã1
h, τh

〉
= 〈curl τh, ũh〉 ,〈

curl Ã1
h, vh

〉
+ 〈div ũh,div vh〉 = 〈B, vh〉 .

The well-posedness of this equation is obtained in the same way as for A1
h. Furthermore, by continuity of the

resolvant, and independence of the discrete Poincaré inequality constants in h, we get∥∥∥Ã1
h −A1

h

∥∥∥
L2
≤ C

∥∥B −Bdiv
h

∥∥
L2 .

Furthermore, we obtain from of [AFW06, Theorem 7.9] and ‖B‖Hs ≤ C‖B‖L2 that∥∥∥Ã1
h −A1

∥∥∥
L2
≤ Chs‖B‖L2 .

We then get the desired result from a triangle inequality and Proposition 11.

As we have seen in Section 2.3, there are two ways of computing the harmonic helicity of Ω. The first one
is done by computing circulations of A1, and the second by taking the L2 product of B and A2. As we shall
see in the following results, we can also recover the numerical harmonic helicity in two similar ways. To do
this, we first need to establish convergence of the circulation of A1

h, which is given by the following lemma.

Lemma 5. We have ∣∣∣∣∫
γ′

(A1
h −A1) · t′

∣∣∣∣ ≤ Chs‖B‖L2 .

Proof. From Proposition 12, we have∥∥A1
h −A1

∥∥2

Hcurl
=
∥∥A1

h −A1
∥∥2

L2 +
∥∥curlA1

h − curlA1
∥∥2

L2

=
∥∥A1

h −A1
∥∥2

L2 +
∥∥Bdiv

h −B
∥∥2

L2 ,

so that by Propositions 11 and 13, we get∥∥A1
h −A1

∥∥
Hcurl

≤ Chs‖B‖L2 .

Now, since curlA1
h = Bdiv

h , which is in H0(div ,Ω), the circulation of A1
h along γ′ is well-defined by Eq. (13),

and this circulation is bounded by the H(curl ,Ω) norm. We therefore have∣∣∣∣∫
γ′

(A1
h −A1) · t

∣∣∣∣ ≤ Chs‖B‖L2 .

Corollary 1. Defining A2
h as in Eq. (33), we get∥∥A2

h −A2
∥∥
L2 ≤ Chs‖B‖L2 .

Proof. We get this result by writing

A2
h −A2 = A1

h −A1 − 1

2π

(∫
γ′

(
A1
h −A1

)
· t
)
Bcurl
h +

1

2π

(∫
γ′
A1 · t

)(
B −Bcurl

h

)
.

We are then able to conclude using Propositions 11 and 13 and Lemma 5.
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Theorem 2 (Convergence of harmonic helicity). We have∣∣H(Ω)−H(Bdiv
h )

∣∣ ≤ Chs‖B‖2L2 ,

where H(Bdiv
h ) can be either computed as

H(Bdiv
h ) = −

(∫
γ′
A1
h · t′

)(∫
γ

A1
h · t

)
,

or as

H(Bdiv
h ) =

∫
Ω

Bdiv
h ·A2

h.

Proof. We use the formulation of the helicity through A2
h, the other one being a simple consequence of the

Bevir–Gray formula. To obtain the desired estimate, we write∫
Ω

Bdiv
h ·A2

h −H(Ω) =

∫
Ω

(Bdiv
h −B) ·A2

h +

∫
Ω

B · (A2
h −A2).

The conclusion then follows from Proposition 11 and Corollary 1.

Remark 4. Although we have proven convergence of the harmonic helicity, convergence of the shape gradient
is a harder task. Indeed, such a result is related to traces of the numerical solutions. From the estimates
obtained in this section, we only have convergence of Bcurl

h and A2
h in H(curl ,Ω), and of Bdiv

h in H(div ,Ω).
Hence, the tangential traces of both A2

h and Bcurl
h converges in H−1/2(∂Ω). Nevertheless, as we do not expect

the numerical solutions to have any higher regularity than the ones prescribed by the discretized functional
spaces3, this is not sufficient to ensure convergence toward the shape gradient Eq. (23). This means that we
cannot simply use Sobolev estimates inside Ω, and need to work on the boundary directly in order to obtain, for
example, convergence in L2(∂Ω)3 (or at least on the tangential part). Such a convergence result is therefore
non-trivial with usual techniques, and this problem remains open.

5 Numerical implementation and results

5.1 Specificity of simulations for stellarators

For both historical and practical considerations, it is frequently advantageous for the surfaces under examina-
tion to exhibit specific symmetries. In particular, a majority of stellarators are invariant under discrete rota-
tions along the Oz axis, with an angle of 2π/Np, where Np takes values of 3 (as in the case of NCSX [Zar+01])
or 5 (as observed in W7X [War+17]). Additionally, stellarators commonly exhibit invariance under the con-
tinuous symmetry known as stellarator symmetry, as discussed in detail in [IPW20, Section 12.3] and [DH98].
In practice, these surfaces are represented by a set of coefficients (Rm,n), (Zm,n) for m ∈ N and n ∈ Z which
define the functions

R(u, v) =
∑
m≥0

∑
n∈Z

Rm,n cos(2π(mu+ nv)), (35)

Z(u, v) =
∑
m≥0

∑
n∈Z

Zm,n sin(2π(mu+ nv)). (36)

Note the absence of sin terms for R and cos terms for Z due to the imposition of stellarator symmetry.
The surface is then parametrized in cylindrical coordinates by (R(u, v), 2πv

Np
, Z(u, v)) where Np stands for the

discrete symmetry imposed.
For the numerical simulation, we truncate the number of Fourier components in (35) and (36).

5.2 Implementation

Using the symmetries of the system, we only work with one section of the stellarator, characterized by the coef-
ficients (Rm,n, Zm,n). Our first step is to use Gmsh [GR09] to mesh the interior of a polyhedral approximation
of the surface.

3In the continuous setting, the reasoning works because A2 and B are in H(curl ,Ω)∩H0(div ,Ω). Nevertheless, the divergence
of A2

h and Bcurl
h is not in L2(Ω) for Nedelec elements
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Figure 2: One section (i.e. one third) of NCSX plasma. In the upper plot, we represent the function uh of
Eq. (30). Its gradient Bcurl

h is shown in the middle figure. Note that the boundary conditions on the left
and right cuts are a jump 2π/3, whereas we have Neumann boundary condition on the plasma surface. The
bottom figure is a reprentation of A2

h.
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Then we use the finite element library FEniCSx ([Scr+22b; Scr+22a; Aln+14]) to assemble the finite
element problems Eqs. (30), (32) and (34) to obtain Bdiv

h , Bcurl
h and A1

h. We implemented both first or second
order FEEC elements defined in Section 4.1 with adequate periodic conditions at the cuts of our section.
To solve the linear system required to get Bcurl

h , that is a Poisson equation, we use the solver MUMPS:
MUltifrontal Massively Parallel sparse direct Solver [Ame+01; Ame+06]. Bdiv

h and Ah are more expensive
and complex to solve as both are defined in mixed formulations. Both are solved using the iterative Krylov
method GMRES [SS86] applied after a careful preconditioning. More precisely, we use the block diagonal
preconditioner proposed by Arnold et al. in [AFW06, Section 10.2] for Hodge-Laplacian problems. The
preconditioning problems are solved using MUMPS. We believe that using an Auxiliary-space Maxwell (AMS)
Solver [HX07] instead4 of a direct solver for the preconditioner would improve the efficiency and scalability of
our method when using more than a few million degrees of freedom.

5.3 Numerical tests

Once we have computed Bdiv
h , Bcurl

h and Ah that are represented in Fig. 2, we compute the harmonic helicity
and its shape gradient. We have checked that for an axisymmetric torus, we obtain numerically a helicity of
order 10−6 (instead of 0). For more interesting shapes, as NCSX’s plasma, we do not have a reference. As
mentioned in Section 5.1, we have a continuous description of the shape (i.e. not a polyhedral one), thus we
perform two tests.

1. On the left side of Fig. 3, we perform a better and better approximation of the continuous shape. To
this aim we provide finer and finer grid description of the surface to the mesher. Hence, variation
of the obtained magnetic helicity are due both to variations of the domain and to the finite element
approximation error.

2. On the right side of Fig. 3, we fix at the beginning a polyhedral shape that is an approximation of the
continuous surface described by the set of coefficients (Rm,n, Zm,n) and use finer and finer meshes of
this fixed polyhedral shape as h goes to 0. Hence, variations of the magnetic helicity are only due to
the numerical approximation of the fields. This is the situation described by the theoretical analysis in
Section 4.

Reference points on the right plot have been obtained thanks to the resolution of a linear problem with 2-3
millions of DOFs for Ah and Bdiv

h . This corresponds to 1-2 minutes of computation in a Laptop with 32 GO
RAM (memory is the limiting factor in our implementation).

The shape gradient is shown in Fig. 4. As mentioned in Remark 4, we have not proven that this numerical
approximation converges toward the correct shape gradient. However, we performed numerical tests using
finite differences on the Fourier coefficients of the surface, which were consistent with the numerical shape
gradient computed with A2

h and Bcurl
h .

5.4 Two optimization programs

After obtaining the harmonic helicity shape gradient, our next step involves optimizing the shape. As the
harmonic helicity of NCSX plasma is a negative quantity5, we want to minimize it while adhering to constraints
on volume, area, and/or maximum curvature. Regarding the latter, we consider the minimal curvature radius
of the surface and impose a prescribed lower limit on it. These parameters, along with their corresponding
shape gradients, can be efficiently computed using the smooth parametrization of the surface outlined in
Eqs. (35) and (36) and performing quadrature across either ∂Ω or Ω.

Subsequently, we introduce smooth non-linear costs that blow up to guarantee the fulfillment of the specified
constraints. Once all the costs are assembled, we apply the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
minimization algorithm from the scipy library [Vir+20] on the Fourier components of the description of the
surface.

Remark 5. The curvature penalization is here to ensure the regularity of the surface. Imposing a constraint
on the reach (i.e. ensuring that ∂Ω satisfies a uniform ball condition) is a classical tool to ensure existence of
optimal shapes [PRS22a; Ger23a].

4We had issues porting AMS hypre [FY02] solvers to the background sparse linear library Petsc [Bal+98]
5Using a planar symmetry, we could also choose to take a positive value, see Remark 2.
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Figure 3: On the left, we provide better and better approximations of the surface to the mesher. We then
plot the characteristic size of an element versus the harmonic helicity. On the right, we mesh with different
characteristic size h the same polyhedral approximation of the continuous surface.

Figure 4: One section of NCSX plasma. The plot shows the shape gradient 2A2
h · Bcurl

h on the boundary.
NCSX plasma configuration has a negative harmonic helicity. Improving our criterion implies following the
opposite of the shape gradient.
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Plasma shape Perimeter (m2) Volume (m3) max curvature (m−1) Harmonic helicity
NCSX (ref) 24.52 2.96 119.3 -0.0220

BPC 25.02 5.45 53.0 -0.6427
BVC 33.5 2.99 50.0 -0.0726

Table 1: harmonic helicity and geometric properties of the optimized shapes in Fig. 5.

Bounded Perimeter and Curvature (BPC) We initially focus on optimization with a bounded perimeter,
employing a soft threshold set at 25 m2 to ensure comparability with the NCSX plasma shape. Our goal also
involves achieving a minimal inverse curvature radius of 50 m−1, surpassing the regularity of the NCSX
reference. The results of this simulation are depicted in Fig. 5 and summarized in Table 1. Notably, we
observe a remarkable 30-fold improvement in harmonic helicity. While the shape appears to collapse toward
the Oz axis, this effect is restrained by the imposed curvature constraints. This behavior may be attributed
to our normalization choice for the harmonic field; as proximity to the Oz axis increases, the magnitude rises,
given our fixed toroidal circulation.

Bounded Volume and Curvature (BVC) We also perform the optimization using a constraint on the
volume instead of the perimeter. We apply an upper bound at 3 m3 along with the same curvature constraints.
This time, we achieve more than a 3-fold improvement, and the shape does not seem to collapse toward the
Oz axis. The shape is more intricate than the initial plasma shape of NCSX.

6 Conclusion and perspectives

We introduced a new shape functional for toroidal domains capturing the linkage of the corresponding harmonic
field. Then, using carefull differential form pullbacks, we have been able to compute its shape derivative. We
also showed that this functional can be efficiently computed numerically. We illustated this using finite elements
exterior calculus and applied it to a stellarator device for magnetic confinement in nuclear fusion.

It seems to us that the pure optimization of harmonic helicity provides degenerate forms, which appear
to be less usable for applications in magnetic confinement. However, given the very significant potential gain
(factors of 3 and 30 in our two simulations), studying multi-objective optimization with more conventional
costs could yield interesting results.

We also believe that the following perspectives are of interest:

• The convergence of the numerical shape gradient is currently incomplete, as mentioned in Remark 4.
The tools to solve this problem, could be of importance outside the scope of this article.

• Our numerical results strongly indicate that removing the reach constraints might result in the non-
existence of an optimal shape, However this is only a conjecture.

Data availability statement The code created for this article is openly accessible through the GitLab
repository https://plmlab.math.cnrs.fr/rrobin/helicity.
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A Translation from differential forms and Hodge decomposition

It is common in the literature to find the types of problems we are studying in the language of differential
forms. Although this approach deals with more abstract mathematical objects, it allows the use of a unique
framework. This approach can notably be found in [AFW06], and is relatively common in the finite elements
exterior calculus literature.

6https://www.ljll.math.upmc.fr/~sigalotti/cage/stellacage.html
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Figure 5: The results of the two optimization problems, BPC (shown in green above) and BVC (shown in blue
below). The associated costs are reported in Table 1. Additionally, the reference NCSX plasma is plotted in
transparent orange.
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Since the aforementioned book is quite often referenced in this article, we chose to write a small appendix
to explain how to translate problems from the language of differential forms to the one of functions and vector
fields. This is done using usual identifications from Riemannian geometry and Hodge theory, that is, the mu-
sical isomorphisms and Hodge star operator. In the case of a three-dimensional manifold, these identifications
work perfectly to equate 0 and 3 forms with functions, 1 and 2 forms with vector fields, and to translate
the exterior derivatives and coderivatives with the usual differential operators of electromagnetism. These
identifications are then summed up in the following commutative diagram, and table.

HΛ0(Ω) HΛ1(Ω) HΛ2(Ω) HΛ3(Ω)

H1(Ω) H(curl,Ω) H(div,Ω) L2(Ω)

d d d

id # #∗ ∗

∇ curl div

(37)

HΛk(Ω) H∗Λk(Ω) d δ Tr(ω)

k = 0 H1(Ω) L2(Ω) ∇ 0 ω|∂Ω

k = 1 H(curl ,Ω) H(div ,Ω) curl −div ω × n
k = 2 H(div ,Ω) H(curl ,Ω) div curl ω · n
k = 3 L2(Ω) H1(Ω) 0 −∇ –

Figure 6: Table of correspondence between differential forms language and vector calculus language

Here, HΛk(Ω) denotes the set of square integrable k-forms whose exterior derivative is square integrable,
H∗Λk(Ω) the set of square integrable k-forms whose exterior coderivative is square integrable, d the exterior
derivative, δ the exterior coderivative, ∗ the Hodge star operator, # the musical isomorphism taking 1-forms
to vector fields, and Tr(ω) the trace of a differential form ω defined by the pullback of ω onto ∂Ω by the
inclusion map i : ∂Ω→ Ω̄.

Once these identifications are given, a tool which is used quite often throughout the paper is the Hodge
decomposition. It is given by the following proposition.

Proposition 14. Let Ω be a Lipschitz toroidal domain as defined in Section 2. We have the following L2

orthogonal decompositions

L2(Ω)3 = curlH0(curl ,Ω)⊕⊥ K(Ω)⊕⊥ ∇H1(Ω), (38)

L2(Ω)3 = curlH(curl ,Ω)⊕⊥ ∇H1
0 (Ω). (39)

Proof. This is a simple consequence of the Hodge decomposition given in [AFW06, Section 2], in the cases
k = 1 and k = 2 respectively. The reason no harmonic term appears in Eq. (39) is that the second De Rham
cohomology space vanishes in Ω, and thus, that the set of harmonic two forms is trivial.

Proposition 15. There exists C such that for all V1 ∈ H
(
curl 0,Ω

)⊥ ∩ H(curl ,Ω), V2 ∈ H
(
div 0,Ω

)⊥ ∩
H(div ,Ω)

‖V1‖ ≤ C ‖curlV1‖ ,
‖V2‖ ≤ C ‖div V2‖ .

Proof. This is given by [AFW06, Eq. (2.17)] in the cases k = 1 and k = 2.

Proposition 16. We have the following orthogonality relations in L2(Ω)3

∇H1(Ω)⊥ = H0

(
div 0,Ω

)
, (40)

curlH(curl ,Ω)⊥ = H0

(
curl 0,Ω

)
, (41)

∇H1
0 (Ω)⊥ = H

(
div 0,Ω

)
, (42)

curlH0(curl ,Ω)⊥ = H
(
curl 0,Ω

)
. (43)

Furthermore, all these linear subspaces are L2 closed, so that the relations are still correct by taking the
orthogonal to the other side.
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Proof. Eqs. (40) to (43) are given by [AFW06, Eqs. (2.15) and (2.16)] in the cases k = 1 and k = 2.
The fact that all the subspaces are L2 closed is given by the continuity of div : H(div ,Ω) → L2(Ω) and
curl : H(curl ,Ω) → L2(Ω)3 on the right-hand sides of Eqs. (40) to (43), and by [AFW06, Th. 2.3.] for the
left-hand side.

References

[Aln+14] M. S. Alnæs et al. “Unified form language: A domain-specific language for weak formulations of
partial differential equations”. In: ACM Transactions on Mathematical Software 40.2 (2014). doi:
10.1145/2566630.
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