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Abstract

In this paper, a reduced order model based on the Proper Generalized Decomposition (PGD) is applied

to the numerical modeling of the incompressible Navier-Stokes equations. Despite of all the advances

achieved in numerical analysis in the last decades, the simulation of large-scale, real-time and para-

metric problems remain a challenge, especially in the Computational Fluid Dynamics (CFD) context.

This can be associated to several aspects such as the solution of large algebraic systems, the governing

equations nonlinearities and numerical instabilities, computational limitations, among others. This work

focuses on providing low cost solution for incompressible flows with low Reynolds numbers by means of

a PGD reduced basis built under a space-time decomposition employing a mixed-stabilized approach for

two-dimensional flows. The methodology is evaluated with a set of numerical examples, confirming its

robustness and precision, as well as a reduction in the number of linear systems to be solved and the run

time compared to the standard stabilized finite element approach.

Keywords: Computational Fluid Dynamics; Proper Generalized Decomposition; Reduced Order

Modeling; Mixed Formulation; Stabilized Finite Elements.

1. Introduction

Computational fluid dynamics (CFD) is a wide field of research in engineering. Its application ranges

from aeronautics, improving aircraft and spaceship designs, to bio-engineering, with the simulation of

blood flow on vessels and organs boosting the development of new medical procedures and bio-mechanical

devices. However, computation of fluid flow problems can be a challenging task since it depends, e.g., on

a robust technique to describe and approximate the governing equations, and a suitable representation of

the computational domain, which can easily lead to a problem in the order of millions degrees of freedom.

In CFD analysis, applying reduced order models can also be difficult, since these problems can present

strong nonlinearities and multiscale phenomena, which may not be properly reproduced by a low rank

basis. Nevertheless, model order reduction has been the subject of many researchers for solving several
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physical problems, including CFD, in the last decades. The main idea of this family of methods is to

represent a complex problem involving a great number of variables by means of a reduced basis. Reduced

order modeling can also be sorted in two classes: a posteriori and a priori methods. In the former, a

reduced basis is built taking into account previous simulations of the full order model. Then, the reduced

basis is projected to the governing equations, leading to an explicit reduced-order model. On the other

hand, in the latter family of methods, separation of variables is employed to the problem unknowns, and

these approximations are projected directly to the governing equations with no a priori knowledge on

the solution.

Regarding CFD analysis, a posteriori methods, such as the Proper Orthogonal Decomposition (POD)

and Reduced Basis (RB), were developed for solving Stokes flows in parameterized domains [1, 2], Navier-

Stokes problems [3, 4] as well as fluid-structure modeling and flow control [5–9]. More recently, this family

of methods was also explored in the simulation of complex flows involving moving boundaries [10, 11],

for the simulation of turbulent flows by means of a residual-based variational multiscale (VMS) ap-

proach [12], considering porous media, rheology and non-Newtonian fluids [13], among other applications

that can be found in the extensive literature review carried by Lassila et al. [14], Rowley and Dawson

[15] and Mendonça et al. [16].

A priori techniques, such as the Proper Generalized Decomposition (PGD), have also been investi-

gated in CFD analysis. For instance, the first approach for incompressible flows was presented by Dumon

et al. [17], where a stream function-vorticity formulation was employed for the unsteady Navier-Stokes

equations. Later, PGD approaches in a fractional step algorithm were also introduced, coupled to finite

volume [18, 19] and spectral [20] discretizations, and also for parameterized incompressible flows in the

OpenFOAM environment [21].

Space-time separated representations within PGD was firstly investigated by Ladevèze [22], with

a non-incremental integration procedure. In the context of CFD, this concept was firstly employed

by Aghighi et al. [23] for the simulation of transient nonlinear Navier-Stokes problems with temperature

dependent density. On the other hand, an incremental PGD approach was also introduced by Dumon

et al. [24] for the simulation of non-isothermal Navier-Stokes equations with mass transport in cavity

flows.

In the work of Tamellini et al. [25], an alternative strategy suppressing the pressure terms employing

spectral elements was presented for the stochastic steady incompressible Navier-Stokes equations. More

recently, Le-Quoc et al. [26] developed an immersed boundary-PGD-based technique for incompressible

flow modeling. The Navier-Stokes equations were solved in a fractional-step algorithm where PGD is

applied for solving the Poisson’s equation needed for the pressure field updating.

Regarding the use of stabilized formulations, González et al. [27] have introduced the well known

Streamline Upwind/Petrov-Galerkin (SUPG) strategy to the analysis of high-dimensional advection-

diffusion equation within PGD. The authors have explored two versions of the stabilization technique,

which have shown similar results. In the fist one, the stabilization terms are introduced into the decom-

posed problem, while in the second PGD is applied directly to the stabilized weak form.
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Although the collection of methods described before show important advances for the construction

of PGD reduced order models for the simulation of incompressible flows, mixed formulations were few

investigated in this context. It may be related to the strong enforcement of the incompressibility, the

drawbacks of the LBB condition [28] and the difficulties on obtaining a PGD-reduced basis in this scenario.

In this sense, the first PGD-mixed approach was presented by Dı́ez et al. [29] for the parametric modeling

of Stokes flows. The authors analyzed several options of the PGD solution separated forms with the

application of a PGD compression algorithm based on a Least Squares projection to improve convergence.

Later, Ghnatios and Hachem [30] presented a Galerkin Least Squares (GLS) stabilized mixed formulation

for the simulation of Stokes flows. Finally, it is important to mention the significant advances achieved

by Sevilla et al. [31] with the introduction of the isogeometric concept to PGD approximation of the

Stokes equations within a mixed formulation.

In this work we extend the application of residual-based stabilized formulations to the transient

Navier-Stokes equations, more specifically, the Pressure-Stabilizing/Petrov-Galerkin (PSPG) [32] ap-

proach, which can be viewed as a PSPG version of formulation 1 in [27] applied to incompressible flows.

Stabilized mixed formulations are a class of consistent Finite Element techniques that have proven to

be robust as they circumvent the LBB condition [28] allowing the use of equal-order interpolations for

both velocity and pressure, while provide a better conditioned system, enhancing performance on the

use of iterative solvers. Although widely employed on CFD analysis, in spite of the advances achieved

in the last years on model order reduction, this family of methods are still few explored in this context.

The reduced order model proposed introduces a space-time PGD for two-dimensional flows providing an

alternative for the simulation of moderate (maybe change moderate to low?) Reynolds number laminar

flows.

The paper is organized as follows: Section 2 presents the incompressible flow governing equations

as well as the spatial discretization employing the PSPG residual-based formulation. In Section 3 the

space-time decomposition is introduced and the PGD reduced basis is built. A set of numerical tests is

presented in 4 in order to evaluate the proposed methodology. Conclusions and further discussions are

drawn in Section 5.

2. Governing equations

Incompressible flows are modeled by the Navier-Stokes equations and may be stated as: find the

velocity u(x, t) and pressure p(x, t) fields, where x refers to an arbitrary point of the computational

domain Ωx, i.e., x ∈ Ωx and t ∈ Ωt = [0, T ] is an instant in the time domain Ωt, such that

ρ

(
∂u

∂t
+ u · ∇u− f

)
−∇ · σ = 0 (1)

and

∇ · u = 0, (2)
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where ρ, f , u and σ are, respectively, the fluid density, body force, velocity field and the Cauchy stress

tensor, given by

σ(u, p) = −pI + 2µε(u), (3)

with p denoting the pressure field, I the identity tensor, µ the fluid dynamic viscosity and the strain rate

ε(u) =
(
∇u +∇uT

)
/2.

The problem statement is completed by taking into account initial as well as Dirichlet and Neumann

boundary conditions on portions ΓD and ΓN , respectively, of the computational domain boundary Γ =

ΓD ∪ ΓN , defined as

u(x, t = 0) = u0(x) in Ωx, (4)

u = g on ΓD (5)

and

σn = h on ΓN , (6)

where n represents the outward unit vector, g and h are known functions and u0 the initial velocity field,

assumed to be divergence free, i.e., ∇ · u0 = 0.

As it is well known, mixed formulations must satisfy the LBB or inf-sup condition [28] in order to

yield a well-posed problem. However, in the past decades numerous techniques have been developed

for circumventing the LBB condition [32–34]. One of the most successful, the residual-based Pressure-

Stabilizing/Petrov-Galerkin (PSPG)[32] consists in modifying the test functions in a suitable and con-

sistent way, enhancing stability. For further considerations over stabilized formulations, see for instance

[32, 33, 35–39]. In the sense of residual-based stabilized formulations, the governing equations weak

form is directly derived in the finite dimensional form, where the superscript h denotes a standard finite

element discretization, such as

∫
Ωx

wh · ρ
(
∂uh

∂t
+ uh · ∇uh − fh

)
dx +

∫
Ωx

ε
(
wh
)

: σ
(
uh, ph

)
dx −

∫
ΓN

wh · hh dx = 0 (7)

and ∫
Ωx

qh∇ · uh dx +

nel∑
e=1

∫
Ωe

τPSPG

(
∇qh

ρ

)
· rM

(
uh, ph

)
dx = 0, (8)

where wh and qh are test functions, τPSPG is a stabilization parameter, nel is the number of finite elements

in the domain discretization and rM

(
uh, ph

)
is the residual of the momentum equation. Therefore we

adopt

rM

(
uh, ph

)
= ρ

(
∂uh

∂t
+ uh · ∇uh − fh

)
−∇ · σ

(
ph,uh

)
. (9)
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The proper definition of τPSPG has been the topic of an extensive investigation by many researchers

in the past decades. The more recent works (see e.g. [38, 40] and references therein) have adopted

nonlinear expressions to derive τPSPG, dependent on the velocity field, in the same sense as other well

known residual-based stabilizations such as the Streamline-Upwind/Petrov-Galerkin (SUPG) and the

Least Square Incompressibility Constraint (LSIC). Nonetheless, a simpler alternative solution consists on

taking an element-level constant value of τPSPG, dependent on the finite element discretization such as

in [32, 33]. This choice is particularly indicated in our case since the nonlinear terms in the governing

equations are reduced and is given by

τPSPG =
αehe

2µ
, (10)

where αe is an arbitrary real positive constant and he is the characteristic element size, taken as the

diameter of a circle with the same element area.

It can also be noticed from (8) that this strategy includes velocity second-order derivatives to the

weak formulation. These terms vanish for linear finite element basis functions, and are often neglected

for higher-order finite elements [35].

Under such considerations the time-continuous FEM approach of (7)-(8) can be written in a matrix

form as

M 0

B 0

U̇

ṗ

+

 K + C
(
uh
)

G

GT + V
(
uh
)

Q

U

p

 =

F

D

 , (11)

with the FEM sub-matrices explicitly described in Appendix Appendix A. Notice that, in the case of a

velocity-dependent definition of τPSPG, the terms B, Q and D are also nonlinear, while V is derived from

the convective portion of the residual and is always dependent on uh.

3. PGD Algorithm

The PGD reduced basis is built over a separated space-time decomposition of velocity and pressure

fields given by

uh (x, t) ≈
Nmod∑
j=1

Uj (x) ◦ Φj (t) (12)

and

ph (x, t) ≈
Nmod∑
j=1

Pj (x) ·Ψj (t) , (13)

where ◦ refers to the element-wise (Hadamard) product and Nmod is the number of PGD modes, unknown

a priori.
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Both space and time functions are approximated in a FEM context, such that Uj (x) = Nu (x)Uj ,

Pj (x) = Np (x)Pj , Φj (t) = N t (t) Φj and Ψj (t) = N t (t) Ψj , where Nu, Np and N t are, respectively,

the velocity, pressure ant time finite element basis functions and Uj , Pj , Φj and Ψj refers to the nodal

values of Uj , Pj , Φj and Ψj , respectively.

3.1. PGD enrichment step

The PGD couple is constructed iteratively by means of a fixed-point algorithm. The first stage of

this process is described in this section. To ease the comprehension on the notation used in subsequent

developments, we define the indexes n and k which refers to the current PGD mode and fixed-point

iteration, respectively.

Thus, at a certain point of the computation, for a given PGD mode n, the velocity and pressure

solution fields can be written as

uhn (x, t) =

n−1∑
i=1

Ui(x) ◦ Φi (t) + U (k)
n (x) ◦ Φ(k)

n (t) = uhn−1 (x, t) + U (k)
n (x) ◦ Φ(k)

n (t) , (14)

and

phn (x, t) =

n−1∑
i=1

Pi(x) ·Ψi (t) + P(k)
n (x) ·Ψ(k)

n (t) = phn−1 (x, t) + P(k)
n (x) ·Ψ(k)

n (t) . (15)

It is important to mention that both, initial velocity and pressure fields, respectively u0(x, 0), and

p0(x, 0), as well as Dirichlet boundary conditions, namely g, may be introduced in the space-time de-

composition (14)-(15). This will include analogous additional terms in the formulation, but are omitted

in the following developments for the sake of simplicity and in order to avoid cumbersome expressions,

without loss of generality.

Then, the PGD couple is obtained by employing the alternating direction strategy (see e.g. [41]),

which states that for a given fixed point iteration k, obtaining the n-th pair of PGD modes Un ◦ Φn and

Pn ·Ψn is performed in two steps:

1) Compute the spatial modes U (k)
n e P(k)

n from previously computed time modes Φ
(k−1)
n and Ψ

(k−1)
n :

At this point, the solution for velocity and pressure fields (14)-(15), respectively, can be represented

by

uhn (x, t) = uhn−1 (x, t) + U (k)
n (x) ◦ Φ(k−1)

n (t), (16)

and

phn (x, t) = phn−1 (x, t) + P(k)
n (x) ·Ψ(k−1)

n (t). (17)

Following the alternating direction algorithm, the natural choice [42] for the weighting functions wh

and qh are
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wh = δuh = δUn(x) ◦ Φ(k−1)
n (t) (18)

and

qh = δph = δPn(x) ·Ψ(k−1)
n (t). (19)

Introducing (16)-(17) and (18)-(19) onto the governing equations (7)-(8), assuming that the convective

velocity uh is also known and making use of the FEM matrices previously described, one obtain the so-

called space problem, given by

S11 S12

S21 S22

U (k)
n

P(k)
n

 =

R1 − Z1

R2 − Z2

 (20)

where

S11 =

∫
Ωt

Φ(k−1)
n M Φ̇

(k−1)

n dt +

∫
Ωt

Φ(k−1)
n

[
K + C

(
uh
)]

Φ(k−1)
n dt , (21)

S12 =

∫
Ωt

Φ(k−1)
n G Ψ(k−1)

n dt, (22)

S21 =

∫
Ωt

Ψ(k−1)
n B Φ̇

(k−1)

n dt+

∫
Ωt

Ψ(k−1)
n

[
GT + V

(
uh
)]

Φ(k−1)
n dt, (23)

S22 =

∫
Ωt

Ψ(k−1)
n Q Ψ(k−1)

n dt, (24)

R1 =

∫
Ωt

Φ(k−1)
n F(t) dt, (25)

R2 =

∫
Ωt

Ψ(k−1)
n D (t) dt, (26)

Z1 =

n−1∑
i=1

[∫
Ωt

Φ(k−1)
n M Φ̇i dt−

∫
Ωt

Φ(k−1)
n

[
K + C

(
uh
)]

Φi dt

]
Ui −

n−1∑
i=1

[∫
Ωt

Φ(k−1)
n G Ψi dt

]
Pi

(27)

and

Z2 =

n−1∑
i=1

[∫
Ωt

Ψ(k−1)
n B Φ̇i dt+

∫
Ωt

Ψ(k−1)
n

[
GT + V

(
uh
)]

Φi dt

]
Ui +

n−1∑
i=1

[∫
Ωt

Ψ(k−1)
n Q Ψi dt

]
Pi.

(28)
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From problem (20), spatial modes U (k)
n and P(k)

n are updated and the PGD enrichment step advances

to the time modes computation.

2) Compute the temporal modes Φ
(k)
n and Ψ

(k)
n from the updated spatial modes U (k)

n and P(k)
n :

Analogously to the previous step, at this stage velocity and pressure fields can be expressed by

uhn (x, t) = uhn−1 (x, t) + U (k)
n (x) ◦ Φ(k)

n (t) (29)

and

phn (x, t) = phn−1 (x, t) + P(k)
n (x) ·Ψ(k)

n (t). (30)

On the other hand, following the alternating directions algorithm, wh and qh are taken as

wh = δuh = U (k)
n (x) ◦ δΦn(t) (31)

and

qh = δph = P(k)
n (x) · δΨn(t). (32)

Thus, introducing (29)-(29) and (31)-(31) into (7)-(8) and making use of the same FEM machinery,

one obtain the so-called time problem given by

ṫ11 0

ṫ21 0

Φ̇
(k)

n

Ψ̇
(k)

n

+

t11 t12

t21 t22

Φ(k)
n

Ψ(k)
n

 =

r1 − z1

r2 − z2

 (33)

where

ṫ11 = U (k)
n

T
M U (k)

n , (34)

ṫ21 = P(k)
n

T
B U (k)

n , (35)

t11 = U (k)
n

T [
C
(
uh
)

+ K
]
U (k)
n , (36)

t12 = U (k)
n

T
G P(k)

n , (37)

t21 = P(k)
n

T [
V
(
uh
)

+ GT
]
U (k)
n , (38)

t22 = P(k)
n

T
Q P(k)

n , (39)
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r1 = U (k)
n

T
F(t), (40)

r2 = P(k)
n

T
D (t) , (41)

z1 =

n−1∑
i=1

[
U (k)
n

T
M UiΦ̇i(t) + U (k)

n

T [
K + C

(
uh
)]

UiΦi(t)− U (k)
n

T
G PiΨi(t)

]
(42)

and

z2 =

n−1∑
i=1

[
P(k)
n

T
B UiΦ̇i(t) + P(k)

n

T [
GT + V

(
uh
)]

UiΦi(t) + P(k)
n

T
Q PiΨi(t)

]
. (43)

The time problem (33) is a system of ordinary differential equation and, in the developments presented

in this work, implicit Euler scheme is employed to solve it incrementally as it is well known to be

unconditionally stable (see for instance [43, 44]).

3.2. Linearization

At this stage let us focus on the treatment of the nonlinear terms C(uh) and V(uh). Two different

choices have been generally used for the linearization of the convective term [23, 45]. The first and

simplest one consists of linearizing the nonlinear terms explicitly from the previous PGD enrichment

steps, namely

uhn · ∇uhn ≈ uhn−1 · ∇uhn. (44)

As discussed in details by [23, 45], this choice is not optimal since the number of terms in the

decomposition may be affected by the convergence rate of the fixed point iteration process on the PGD

enrichment step as well as approximation errors. Another alternative, less sensitive to the fixed point

algorithm convergence rate[23, 45], consists of an incremental linearization process, which takes into

account the enrichment functions just computed in the previous fixed point iteration, i.e.,

uhn · ∇uhn ≈
(
uhn−1 + U (k−1)

n ◦ Φ(k−1)
n

)
· ∇
(
uhn−1 + U (k−1)

n ◦ Φ(k−1)
n

)
. (45)

The two options differ in the sense that, in the former, uh is not updated throughout the fixed-

point algorithm while in the latter uh, C(uh) and V(uh) need to be updated at each iteration k. The

second option provides a better approximation for the nonlinear terms by taking into account the current

PGD mode, but implies in the re-computation of all nonlinear portion throughout the PGD enrichment

step, increasing substantially the computational cost. For this reason, we follow the procedure adopted

by Favoretto et al. [46], which consists in computing the first PGD couple by incremental (45) and the

remaining PGD modes by explicit (44) linearizations.
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3.3. PGD update step

Once the convergence criterion in the fixed-point algorithm is reached, a new couple Un ◦ Φn and

Pn · Ψn is established. At this point, to ensure the orthogonality of the PGD basis, the new pair of

space functions is subjected to a Gram-Schmidt orthonormalization procedure, taking into account the

previous PGD modes. With this change, all time functions also need to be updated. This procedure

follows the same idea of Favoretto et al. [46].

With the orthogonalization process, the partial PGD solution is given by uh = U i ◦ Φi and ph = Pi·Ψi,

for i = 1, .., n, where U i and Pi refers to an orthogonal vector basis.

Finally, projecting the partial solution into the governing equations results in

n∑
i,j=1

UT

j M U iΦ̇i +

n∑
i,j=1

UT

j

[
C
(
uh
)

+ K
]
U iΦi +

n∑
i,j=1

UT

j G PiΨi =

n∑
j=1

UT

j F(t) (46)

and

n∑
i,j=1

PT

j B U iΦ̇i +

n∑
i,j=1

PT

j

[
V
(
uh
)

+ GT
]
U iΦi +

n∑
i,j=1

PT

j Q PiΨi =

n∑
j=1

PT

j D (t) . (47)

Problem (46)-(47) is analogous to the time problem in the PGD enrichment step and allows to re-

compute all time functions incrementally by the implicit Euler method.

The developments previously presented are summarized in the Algorithm 1. In addition, the fixed-

point iteration needs to be initialized by a given value of Φ
(0)
n and Ψ

(0)
n , which are taken as linear functions.

4. Numerical tests

In this section a set of numerical tests are presented in order to evaluate the proposed formulation.

In all cases the space modes are approximated by P2P2 finite elements, i.e., triangles with quadratic

approximation for both velocity and pressure fields. Time modes are also approximated by quadratic

functions.

4.1. Stokes problem

In this first example we consider a simple problem modeled by the Stokes equations, obtained by

suppressing the convective terms in (7)-(8), leading to the variational problem given by

∫
Ωx

wh · ρ
(
∂uh

∂t
− fh

)
dx +

∫
Ωx

ε
(
wh
)

: σ
(
uh, ph

)
dx−

∫
ΓN

wh · hh dx = 0 (48)

and ∫
Ωx

qh∇ · uh dx +

nel∑
e=1

∫
Ωe

x

τPSPG

(
∇qh

ρ

)
· rM(uh, ph) dx = 0, (49)

with rM(uh, ph) given by
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Algorithm 1 Stabilized Navier-Stokes space-time PGD

Require: M, K, G, GT , F(t), B, Q, D(t), boundary and initial conditions;

1: for n = 1 to Nmod do

2: k=0;

3: - Initialize Φ
(0)
n and Ψ

(0)
n .

4: if n ≥2 then

5: - Nonlinear enrichment: Compute uh, C(uh) and V(uh);

6: end if

7: while εPGD ¡ tolPGD do

8: k + +;

9: if n=1 then

10: - Nonlinear enrichment: Compute uh, C(uh) and V(uh);

11: end if

12: PGD enrichment step:

13: - Space problem: Compute U (k)
n and P(k)

n from Φ(k−1)
n and Ψ(k−1)

n known, i.e., solve (20);

14: - Time problem: Compute Φ(k)
n and Ψ(k)

n from U (k)
n and P(k)

n known, i.e., solve (33);

15: - Compute εPGD = min(εu, εp), such that

εu =

2

∫
T

(
Φk
n −Φk−1

n

)2

dt∫
T

(
Φk
n + Φk−1

n

)2

dt

and εp =

2

∫
T

(
Ψk
n −Ψk−1

n

)2

dt∫
T

(
Ψk
n + Ψk−1

n

)2

dt

;

16: end while

17: PGD update step:

18: - Space modes Un and Pn orthogonalization (Gram-Schmidt process);

19: - Update step: Re-computation of all time functions

Φ1, ...,Φn

Ψ1, ...,Ψn

;

20: end for

11



rM

(
uh, ph

)
= ρ

(
∂uh

∂t
− fh

)
−∇ · σ

(
ph,uh

)
. (50)

If the following source term is taken

f =

(1− 2π)(8π2ν − 1) cos(2πx) sin(2πy)e−t

(1 + 2π)(1− 8π2ν) cos(2πy) sin(2πx)e−t

 , (51)

the problem has analytic solution given by

ua =

 cos(2πx) sin(2πy)e−t

− sin(2πx) cos(2πy)e−t

 (52)

and

pa =
(
1− 8π2ν

)
cos(2πx) sin(2πy)e−t, (53)

where ν = µ/ρ is the kinematic viscosity.

The analysis is performed over a square domain Ωx = [0.25; 0.50] × [1.25; 1.50] with boundary and

initial conditions directly derived by (52)-(53). ρ and ν are taken, respectively, as 1.0 and 0.01 and the

stabilization parameter τPSPG is computed with αe = 0.05, empirically chosen (see [33] for more details).

All variables are also taken in the non-dimensional form.

The first test consists of a convergence analysis over the spatial discretization. In this case the time

step is fixed in ∆t = 0.001 and the time interval Ωt=[0,1]. All variables are considered dimensionless.

The simulations are performed increasing progressively nh, the number of nodes in each direction of the

structured finite element discretization.

In the context of PGD analysis, this problem was also investigated by Dumon et al. [18], which have

employed the following norms to evaluate the convergence

eu =
∥∥uh − ua

∥∥
L∞(L2(Ωx))

= max
0<t≤T

[∫
Ωx

∣∣uh − ua
∣∣2 dx] 1

2

(54)

and

ep =
∥∥ph − pa∥∥L2(L2(Ω))

=

[∫
T

∫
Ω

∣∣ph − pa∣∣2 dΩ dT

] 1
2

. (55)

The same error norms eu and ep are employed in this work.

As one can notice, the analytical solution (52)-(53) describes a time exponential decay of constant

velocity and pressure profiles. In this case, we take 2 PGD modes for both pressure and velocity. The

obtained results are presented in Fig. 1.

In the work of Dumon et al. [18] the PGD reduced basis is built over a fractional-step approach, which

splits the full coupled equations in two sub-problems, one to obtain velocity and other to obtain pressure

12
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Figure 1: Stokes problem: velocity and pressure spatial convergence.

fields. In the present work, with mixed approach, both variables are kept coupled in a single problem,

which may explain the better convergence obtained for the pressure field. On the other hand, slightly

higher values of eu were obtained for the velocity fields. This can be due to the definition of eu that takes

the maximum time-discrete value of the L2(Ωx) norm.

Following, we perform a second convergence analysis regarding time discretization. In this case four

different time steps are chosen: ∆t = 0.001, 0.005, 0.01 and 0.02, whose results are presented in Fig. 2.

10
 −4

10
 −3

10
 −2

10
 −1

 50  100  150  200  250  300  350  400  450  500

e p

nh 

Dumon et al. (2011)
∆t = 0.02
∆t = 0.01

∆t = 0.005
∆t = 0.001

10
 −5

10
 −4

10
 −3

10
 −2

10
 −1

 50  100  150  200  250  300  350  400  450  500

e
u

nh 

Dumon et al. (2011)
∆t = 0.02
∆t = 0.01

∆t = 0.005
∆t = 0.001

Figure 2: Stokes problem: velocity and pressure convergence for different ∆t.

For the case of ∆t = 0.001 and nh = 501, the PGD space (Fig. 3) and time (Fig. 4) modes are

presented. The PGD solution at t = 1 is also presented in Fig. 5. In the case of time modes, it can

be noticed that both Φ2 and Ψ2 present much lower magnitude than Φ1 and Ψ1, respectively, showing

that a single pair of PGD modes is sufficient to represent the flow behavior in this case. It can also be

observed in Fig. 6 which plots the convergence of velocity and pressure fields related to the number of

PGD couples.

4.2. Taylor-Green problem

In the following numerical tests the flow complexity is gradually increased and nonlinear cases are

explored. Similarly to the previous one, the Taylor-Green problem is a benchmark of unsteady flow with

decaying vortex, which presents the general analytical solution for the Navier-Stokes equations given by
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Figure 3: Stokes problem: space modes.
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Figure 4: Stokes problem: time modes.
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Figure 5: Stokes problem: velocity and pressure fields at t = 1.

u =

− cos(2πx) sin(2πy)e−8π2νt

sin(2πx) cos(2πy)e−8π2νt

 (56)
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Figure 6: Stokes problem: velocity and pressure convergence as a function of Nmod.

and

p = −1

4
(cos(4πx) + cos(4πy)) e−16π2νt, (57)

with f = 0.

The solution is again performed in the square domain Ωx = [0.25; 0.50]× [1.25; 1.50], with initial and

boundary conditions derived by (56)-(57), ρ=1.0, ν = 0.01 and ∆t = 0.001. As in the previous example,

the analytical solution describes constant velocity and pressure fields subjected to an exponential decay,

allowing the adoption of two PGD modes to represent the solution.

In the first test we aim to evaluate the influence of the τPSPG stabilization parameter in the convergence

over the spatial discretization. Thus, two definitions of τPSPG are taken in account: the constant element-

level value of τPSPG given in (10) (with αe=0.05) and a nonlinear definition from [36] and [40], given

by

τPSPG =

(
1

τ2
SUGN1

+
1

τ2
SUGN2

+
1

τ2
SUGN3

)− 1
2

, (58)

with

τSUGN1 =

(
nen∑
i=1

∣∣uh · ∇Nu
i

∣∣)−1

, (59)

τSUGN2 =
∆t

2
, (60)

τSUGN3 =
h2

RGN

4ν
, (61)

hRGN = 2

(
nen∑
i=1

|r · ∇Nu
i |

)−1

(62)

and

r =
∇
∣∣uh∣∣

‖∇ |uh|‖
, (63)
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where nen is the number of element nodes.

This problem was also studied by Dumon [47] in the PGD fractional-step approach and the results

obtained for both parameters as well as the reference values are presented in Fig. (7).
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Figure 7: Taylor-Green problem: error analysis for constant and nonlinear definitions of τPSPG.

It is important to highlight that the adoption of a velocity-dependent definition of τPSPG increases

the computational effort to obtain a reduced basis as more terms become nonlinear, for instance B, Q

and D. However, it may be noticed that, for both constant and nonlinear τPSPG, similar error values are

obtained, which supports the choice of a more simple expression for its definition. In addition, the same

pattern obtained for the Stokes problem is recovered in this case, with smaller pressure errors, similar

velocity errors and close convergence rates in both cases compared to the reference .

In Figs. 8, 9 and 10 both, space and time, PGD modes are presented, as well as the solution at t=1.
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Figure 8: Taylor-Green problem: space modes.

Finally, the CPU time is also evaluated in this example. For this purpose, we have considered solutions
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Figure 9: Taylor-Green problem: time modes.
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Figure 10: Taylor-Green problem: velocity and pressure fields at t = 1.

from 1 to 5 PGD modes and a standard FEM approach with the same spatial discretization. In addition,

the nonlinear term in the FEM approach is approximated by means of the Newton’s method. Both FEM

and PGD implementations are performed in a MPI parallel environment and all simulations are carried

in an Intel Xeon CPU E5-2640 v3 with 8 MPI processes. The results are presented in Fig. 11. As a

matter of comparison, Fig 12 also presents the convergence as a function of the number of PGD couples

for nh=201, 161 and 121.
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Figure 11: Taylor-Green problem: CPU time.

In standard FEM approaches the most time consuming task, in general, consists of assembling and

solving the algebraic system of equations, solved 3-4 times per time step in average, which is the case
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Figure 12: Taylor-Green problem: velocity and pressure convergence as a function of Nmod.

of the standard FEM model adopted, where the Jacobian operator is reconstructed at each Newton’s

iteration. In our PGD approach, most of the FE-based matrices are constant throughout the analysis

and can be computed in a pre-process step. In addition, most of the operations can easily be carried at

the element-level, and the full order linear system only needs to be solved at the space problem stage,

which makes the PGD approach more scalable in terms of parallelization compared to standard FEM

solvers.

Although the solution of this problem could be achieved with fewer number of PGD modes, even the

solution with 5 PGD modes has shown to be 2.65 times faster than the full FEM model while the solution

considered in the previous analysis is 5.18 times faster in the most refined model with nh=201.

4.3. Lid-driven cavity

This example consists on the well known benchmark problem of a lid-driven cavity. It is a square

domain fulfilled by fluid with a lid driven, which promotes the vortex formation inside the cavity. Both

geometry and boundary conditions are illustrated in Fig. 13.
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Figure 13: Lid-driven cavity: geometry and boundary conditions.

This problem is analyzed in four different scenarios: Reynolds numbers (Re = u∞L/ν) equal to 100,

400, 1000 and 5000. Such values are computed taking the cavity side as characteristic length (L), unitary

density and lid velocity (ρ = u∞ = 1) and variable viscosity to achieve the respective Reynolds number.
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In addition, all simulations are performed with 5 PGD modes. The computational domain is discretized

with a structured finite element mesh with nh=201, the time step is taken as ∆t = 0.05 and the PSPG

stabilization parameter is computed with αe=0.05.

As in usual finite element computations, the solution obtained for lower Reynolds numbers is used as

initial field for the higher ones, in order to reduce the number of time steps needed to achieve the steady

state solution, while for the case of Re = 100 the flow starts from rest.

Our results are evaluated by means of the velocity profiles uy over the line y = 0 and ux over the line

x=0 and compared to the Ghia et al. [48] in Fig. 14. Velocity and pressure fields for the steady-state

solution are also presented in Fig. 15 and 16, respectively, for Re = 100, 400 and 1000. In all cases the

PGD results have shown to be in agreement with the reference values of [48].
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Figure 14: Lid-driven cavity: velocity profiles for ux at x = 0 and for uy at y = 0.

For the case of Re = 5000 we present in Figs. 17 and 18 the PGD velocity and pressure modes, that

compose the solution. Notice that all time modes have an asymptotic behavior. If the magnitude of

each temporal mode is taken at t = T , one can notice that the steady-state solution is mainly given by

the first PGD mode. Approximately 85.41% and 89.83% of the steady-state velocity and pressure fields,
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(a) Re=100. (b) Re=400. (c) Re=1000.
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Figure 15: Lid-driven cavity: PGD velocity magnitude |uh|.
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Figure 16: Lid-driven cavity: PGD pressure magnitude |ph|.

respectively, are given by the first PGD mode. This major contribution of the first PGD mode can be

attributed, e.g., to the nonlinear enrichment step, which in this case is performed at each fixed point

iteration.
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Figure 17: Lid-driven cavity: velocity space and time PGD modes for Re = 5000.
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Figure 18: Lid-driven cavity: pressure space and time PGD modes for Re = 5000.
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Figure 19: Lid-driven cavity: steady-state solution for Re = 5000.

4.4. Flow past a cylinder

In this example one evaluate the proposed formulation for the problem of a flow past a circular cylinder

at low Reynolds numbers. In summary, two scenarios are evaluated: with Re=30 and 40. In both cases

the analysis start with the solution of a flow with Re=1. In addition, the simulation is performed with

200 time steps of ∆t = 0.1 and taking αe = 0.1 and Nmod=10.

The computational domain consists on a rectangle Ωx = [0, 0]× [75, 20] with a unit-diameter circular

cylinder vertically centered and 15 units far from the left edge. Uniform flow (ux = 1,uy=0) is prescribed

at x = 0, symmetry (slip) boundary conditions are enforced at the upper and lower edges and free-stream

velocity is prescribed at the upstream boundary.

The simulations are performed with an unstructured finite element mesh with 58,753 elements and

118,167 nodes. Results are evaluated by means of the pressure coefficient (Cp) at t = 20 as a function

of θ, the angle from the uniform flow direction, as shown in Fig. 20. Moreover, the results are compared

to the experimental data of Grove et al. [49] and the numerical simulations of Hamielec and Raal [50]

and Sen et al. [51] and presented in Fig. 20. The comparison shows good agreement with the references,

evidencing the PGD approach precision, specially when compared to the results of Sen et al. [51], which
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have also employed a similar residual-based finite element formulation in their analysis.
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Figure 20: Flow past a cylinder: Pressure coefficient as a function of θ.

Similarly to the previous examples, for the case of Re=30, some spatial PGD couples as well as the

time modes are presented in Figs. 21-22 and the steady-state solution at t=1 for both cases in Fig. 23.
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Figure 21: Flow past a cylinder: velocity space and time PGD modes for Re = 30.

5. Conclusions

In this work we have presented a PGD reduced order model for solving the transient incompressible

Navier-Stokes equations with a residual-based stabilized finite element formulation. The proposed strat-

egy was applied for solving cavity flow problems, showing that the PGD results are in agreement with the

reference results for a range of Reynolds numbers from 100 to 5000, even with a reduced basis built over

a low number of PGD couples, confirming its robustness and precision. This formulation also presents

considerable CPU time saving compared to a full order finite element solver, as one can see form the

numerical tests.
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Figure 22: Flow past a cylinder: pressure space and time PGD modes for Re = 30.
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Figure 23: Flow past a cylinder: steady-state solution for Re = 30 (left) and Re=40 (right).

Finally, we consider this work as a first step on the use of PGD for the simulation of the transient

Navier-Stokes equations in a fully implicit residual-based stabilized context, with focus in the application

of the technique for 2D analysis, in order to evaluate its potential for both scientific and industrial

large scale applications. In further developments this formulation should be extend to the 3D case, and

improvements on the PGD algorithm for solving more complex problems, such as convection-dominated

flows.
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Appendix A. Finite element sub-matrices

The sub-matrices derived from a Finite Element approximation of the PSPG-stabilized formulation

of the Navier-Stokes equations are given by

M = [Mij ] =

∫
Ωx

ρNu
i ·Nu

j δab dx, (A.1)

K = [Kij ] =

∫
Ωx

µ

[
∇Nu

i · ∇Nu
j δab +

∂Nu
i

∂xb

∂Nu
j

∂xa

]
dx, (A.2)

C
(
uh
)

= [Cij ] =

∫
Ωx

ρNu
i · uh · ∇Nu

j δab dx, (A.3)

G = [Gil] =

∫
Ωx

Nu
i · ∇N

p
l dx, (A.4)

GT = [Gkj ] =

∫
Ωx

Np
k∇ ·N

u
j dx, (A.5)

F(t) = [Fj ] =

∫
Ωx

ρNu
j · fh dx +

∫
ΓN

Nu
j · hh dx, (A.6)

B = [Bkj ] =

nel∑
e=1

∫
Ωe

x

τPSPG∇Np
k ·N

u
j dx, (A.7)

V
(
uh
)

= [Vkj ] =

nel∑
e=1

∫
Ωe

x

τPSPG∇Np
k · u

h · ∇Nu
j dx, (A.8)

Q = [Qkl] =

nel∑
e=1

∫
Ωe

x

τPSPG

ρ
∇Np

k · ∇N
p
l dx (A.9)

and

D (t) = [Dl] =

nel∑
e=1

∫
Ωe

x

τPSPG∇Np
k · f

h dx, (A.10)

where Nu and Np are, respectively, velocity and pressure shape functions, i, j are velocity degrees of

freedom, k, l are pressure degrees of freedom, δab refers to the Kronecker delta and a, b = 1, ..., nsd and

with nsd denoting the number of space dimensions.
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