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On students’ ways of dealing with area and perimeter’s relation 

Jérôme Proulx 

Université du Québec à Montréal, Canada; proulx.jerome@uqam.ca  

This paper reports on an experiment conducted in Grade-7 classrooms, where students solved tasks 

about area and perimeter in a mental mathematics environment. The analysis of students’ ways of 

solving highlights three types of approaches: localized, globalized, and flexible-curve strategies. 

Close examination of these points to how students’ detachment from the figure, as well as their fluency 

to navigate between 1D and 2D, acted as key elements for solving tasks on area and perimeter. 
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Introduction – area and perimeter entanglements 

The study of students’ difficulties with concepts of area and perimeter has a long-standing history in 

mathematics education. Through the years, researchers have raised numerous challenges students 

face when attempting to give meaning to, or simply distinguish, area and perimeter. Without being 

exhaustive, these challenges can be grouped along four main categories, as follows:  

(1) The association of variations and equivalences. Students’ frequently associate variations in area 

with ones in perimeter. For example, it is often believed that any modification (increase or decrease) 

in the perimeter of a figure has necessarily a similar or equivalent effect on the figure’s area, and 

vice-versa (Douady & Perrin-Glorian, 1989). In the same way, it is often thought that the same 

perimeter conserves the same area, and vice-versa as well. 

(2) The reference to measure and measurement units. The choice of units when measuring the surface 

or boundary of a figure can create difficulties. That perimeter offers a measure in units, and area in 

square-units, is not always clear for students. On different drawings, the thickness of the boundary of 

the figure can induce difficulties in determining what is perimeter and what is area, or simply blurs 

surface and length altogether (Moreira & Comiti, 1994). As well, when a figure is given on a grid, 

the perimeter can be thought to be the surrounding squares. 

(3) The effect of the shape of the figure. Piaget’s studies alerted us to the effect that an object’s shape 

or its spatial arrangement can have on students. For example, a figure’s geometric shape can have an 

important impact on one’s evaluation of its area and perimeter: long or “cumbersome” figures are 

often considered to have bigger area than compact ones (Douady & Perrin-Glorian, 1989). As such, 

Marchett et al. (2005) highlight the dominance of the two-dimensional aspects of a figure over its 

one-dimensional ones: when asked to compare perimeters, students state (previous) strategies used 

for area, or become confused with the size of area in assessing perimeter. 

(4) The use of formulas and calculations. Formulas are omnipresent when considering area and 

perimeter, where for many students these two concepts are their formulas or become conceived as a 

multiplication or an addition of lengths (Douady & Perrin-Glorian, 1989). This often reduces the 

measurement of area and perimeter to an arithmetic exercise, to the extent that some students have 

difficulties assessing the area of a figure if they cannot calculate it directly (Marchett et al., 2005). 

Hence, irregular or composite figures, which do not necessarily have formulas attached to them, have 

been shown to be challenging for students. 
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Although more details could be accounted for, these challenges illustrate well the extensive nature of 

students’ experience with area and perimeter. It helps explain how area and perimeter can be 

conceived as entangled, leading to potential complications. Even if progress has been accomplished 

in helping students develop more robust understandings relative to area and perimeter (see papers in 

this CERME WG), varieties of difficulties and misconceptions remain, year after year. This situation 

points to the need to continue studying how students experience the intricate relationship between 

area and perimeter, and to draw some insights from it. This paper reports on findings gathered through 

experiments conducted in Grade-7 classrooms, where students had to solve tasks about both area and 

perimeter in a mental mathematics environment. 

Research objectives – studying students’ work  

As the literature abounds with reports on students’ difficulties with area, perimeter, and their relation, 

one other way to contribute to this growing understanding is to attempt at studying key elements that 

students put forth when having to manage both area and perimeter. As Lamon argues (e.g. 1993), 

moreover to focusing on their difficulties, the detailed analysis and identification of students’ thinking 

processes has the potential to enhance understandings of how to work with specific mathematical 

contents, thus offering “explanatory power for children’s performances in the domain” (p. 42). As 

such, the study of students’ mathematical processes when dealing simultaneously with area and 

perimeter might reveal insightful ways in which to overcome these often-experienced challenges with 

area and perimeter. This paper aims to report on such mathematical processes. 

Our own research work in mental mathematics aligns with this objective. We investigated the 

potential of doing mental mathematics on topics like equation solving, geometry, statistics, and 

functions (at CERME: Proulx, 2013, Proulx et al., 2017). This research led to significant outcomes 

in relation to students’ solving processes and the elements they bring forth in these mental 

mathematics environments: e.g. uncovering specific patterns and regularities to orient the solving of 

equations (doubling, tripling, cancelling); pointing to and engaging with graphical cues to operate on 

functions (x-intercept, intersections, parallelism of curves), assessing various characteristics of a 

distribution before calculating its mean (attending to extrema, clustering and number of data). It thus 

appears that mental mathematics contexts could afford a space where solvers can engage in specific 

ways of solving as well as raise elements of mathematical significance. This study, about which 

aspects are reported here, aims to investigate solving processes that students are engaging in when 

solving tasks about both area and perimeter concepts in a mental mathematics environment. 

Conceptual grounding – mental mathematics and enactivism  

Mental mathematics as mathematics without paper-and-pencil 

What does mental mathematics on area and perimeter mean? Because most work on mental 

mathematics is on numbers (often referred to as mental arithmetic or mental calculations), no 

definition of mental mathematics that would encompass other mathematical topics appears in the 

literature. Based on the work on mental calculations, one tentative definition is: Mental mathematics 

is the solving of mathematical tasks without paper and pencil or other computational/material aids. 

Thus, this research program is situated in the existing research literature on mental mathematics, 

where it is the context of study, that is, the fact that there are no paper, pencils or other material aids 

available, that defines it. For this study, doing mental mathematics on area and perimeter means to 



deliberately avoid any use of measurement or construction tools (e.g. rules, tapes, scissors, square 

tiles), to engage students in what Nunes et al. (1993) call “direct perceptual comparison”. As such, 

they assert that “different measurement systems will structure both physical and intellectual activities 

in different ways” (p. 41), leading to infer that alternative measurement contexts (e.g. with or without 

tools) might trigger students to engage in different or alternative ways of doing. These mental 

mathematics constraints have in that sense the potential to make emerge key elements for better 

understanding students’ experiences with area and perimeter. As mentioned, the intention is to 

scrutinize students’ mathematical solving processes (strategies, key elements) brought forth when 

solving tasks on area and perimeter in a mental mathematics context. 

Mental mathematics strategies and enactivism 

Recent work in mental mathematics points to the need to better conceptualize how students develop 

mental strategies. Faced with significant varieties of students’ creative solutions and dissatisfaction 

about their “classification” in known categories, researchers have criticized the notion that students 

“choose” from a toolbox of predetermined strategies in order to solve problems in mental 

mathematics (the so-called selection-then-execution hypothesis). Threlfall (2002) insists rather on the 

organic emergence and contingency of strategies in relation to the tasks and the solver (e.g. what he 

understands, prefers, knows, has experienced with those tasks, is confident with). This view aligns 

with Lave’s (1988) situated cognition perspective that conceives of mental strategies as flexible 

emergent responses, adapted and linked to specific contexts and situations. In mathematics education, 

the enactivist theory of cognition has been concerned with issues of emergence, adaptation and 

contingency of learners’ mathematical activity (from the work e.g. of Maturana & Varela, 1992; 

Varela et al., 1991). Therefore, aspects of the theory are used to ground this study in its intention to 

study students’ strategy processes. Varela’s (Varela et al., 1991) distinction between problem posing 

and problem solving offers ways to clarify notions related to the emergence of strategies generated 

for solving tasks in mental mathematics. 

For Varela, problem-solving implies that problems are already in the world, “out there”, waiting to 

be solved. In contrast, he explains that we specify, we pose, the problems that we encounter through 

the meanings we make of the world in which we live: we do not “choose” or “take” problems as if 

they were lying “out there,” objective and independent of our actions, we bring them forth. The 

problems that we encounter and the questions we ask are thus as much a part of us as they are a part 

of our environment: they emerge from our interaction with it, as we interpret events as issues to 

address, as problems to solve. In that perspective, we are not acting on preexisting situations; our 

interaction with the environment creates the possible situations for us to act upon, and the ways we 

engage with them. Hence, it is claimed that reactions to a task do not reside inside either the solver 

or the task: they emerge from the solver’s interaction with the task, through posing the task. If one 

adheres to this perspective, one cannot assume that “instructional properties” are present in the 

(mental mathematics) tasks offered and that these will determine solvers’ reactions. Strategies are 

emerging in the interaction of solver and task, influenced by the task but determined by the solver’s 

experiences and understandings: in his solving habits for similar or different tasks, in his successes 

in mathematics with specific approaches, in his understanding of the task, etc. With this perspective, 

the solver is not seen as choosing from a group of predetermined strategies to solve the task, but as 

engaging with the problem and as generating a strategy tailored to the task posed: 



As a result of this interaction between noticing and knowledge each solution ‘method’ is in a sense 

unique to that case, and is invented in the context of the particular calculation – although clearly 

influenced by experience. It is not learned as a general approach and then applied to particular 

cases. […] The ‘strategy’ […] is not decided, it emerges. (Threlfall, 2002, p. 42) 

Students are then seen to generate strategies in order to solve the(ir) tasks, seen as adapted responses, 

locally tailored and emerging in interaction with these tasks. This enactivist perspective orients this 

study, aiming to investigate students’ solving processes when engaging with area and perimeter tasks 

in a mental mathematics environment, for drawing out key elements they bring forth in solving. 

Methodological considerations 

Over three days, six 75-minutes sessions were held in two Grade-7 classrooms (each with 26 to 27 

students of 12-13 years). Although they had obviously discussed issues of perimeter and area in their 

elementary school years, it was the first time these two concepts were discussed in their Grade-7 

class. The research sessions were conducted by the PI (J.Proulx). These sessions included presenting 

various tasks for students to solve mentally; tasks that engaged on both area and perimeter 

simultaneously. In line with previously conducted studies on mental mathematics, the activities had 

the following structure: (1) The PI offers orally, or on the white board when an image came into play, 

the task to solve; (2) The students have about 15 seconds to solve the task, without access to paper-

and-pencil or any other material; (3) The students, when signaled, are invited to describe orally their 

answer in detail; (4) The PI notes the solution on the white board and confirms with the student that 

this adequately represents their strategy (in some cases, students come at the front board to better 

explain their solution); (5) The PI invites other students who may have solved differently to offer 

their solutions (and step (3) continues). 

The tasks given in all six research sessions were chosen and designed in collaboration with the 

teacher. The criteria in selecting these tasks was that they needed to simultaneously call forth both 

area and perimeter, thus directly immersing students in the relation between both concepts to study 

their ways of managing it. The mental mathematics context forced selecting tasks along Nunes et al. 

(1993) mentioned “direct perceptual comparisons”, as no material was allowed for concretely 

measuring or physically manipulating the perimeter or area of figures. One typical example of a task 

given to students, and about which the following analysis focuses on, is the hexagonal task (Figure 

1): students had to transform the figure in order to reduce its area while enlarging its perimeter. 

 

Figure 1. The hexagonal task: how can you reduce its area while enlarging its perimeter? 

The sessions were all videotaped. Classrooms used electronic boards, which enabled to get electronic 

copies of students’ solutions noted on them. Students’ responses (in the form of verbal explanations, 

and the different notes made on the board) generated the data for the study. Strategies engaged in for 

both Grade-7 classrooms were similar, and no difference between classrooms is made in the analysis. 

The data is analysed in relation to students’ solving processes (strategies and key elements) brought 



forth when solving tasks. The intention, following Lamon (1993), is to gain a better understanding of 

ways of handling both area and perimeter concepts. As well, because this analysis is dependent on 

the type of mathematical objects worked with, available theoretical constructs found in the literature 

were used to guide and enhance the analysis: examples of such are Douady and Perrin-Glorian’s 

(1989) figure’s “imposing presence” and Konya’s (2015) 1D-2D view of perimeter.  

Characterization of strategies related to perimeter – The hexagon task 

The analyses of solving processes engaged in for the hexagonal task are illustrative of students’ ways 

of dealing with area and perimeter concepts in the study. Students made salient particular ways of 

handling the figures, which acted as key elements for solving the tasks given to them. The following 

subsections presents students’ strategies along three approaches, namely the localized, globalized and 

flexible-curve ones. (Expressions in “quotation marks” are taken from students’ actual wordings.) 

Localized strategies 

One of students’ frequent approach is to focus on or isolate a specific part of the figure (e.g. side, 

corner, measures, symmetry, height, etc.) – in contrast to considering the entire figure – and working 

on it to give meaning to the task through this isolated part. Most of the time successful, these strategies 

lead to a local and specific focus, somehow enabling a reformulation of the task’s challenge according 

to these local aspects. For example, students made use of localized approaches as they focus on one 

side of the hexagon to create a dent in it. On the far left of Figure 2, one student explained that the 

dent on one side creates added length to the perimeter while taking away some area. For other 

students, the same dent could be repeated numerous times to have even less area and more perimeter, 

as shown in the middle of Figure 2. Or, for every “angle you do a triangle” as one student explained 

for the hexagon on the right-side of Figure 2. 

   
Figure 2: Localized solutions 

In so doing, these localized strategies fixate on a specific aspect (e.g. side, corner) of the figure to 

anchor the solving of the task; straying away from considering the figure as a whole. Without setting 

it aside, the figure appears less important than what happens with its sides or corners, for example.  

Globalized strategies 

In contrast, other students engaged with the figure as a whole when handling the task, taking the total 

geometric shape into account. Also frequent in students’ ways of solving, these strategies attempt to 

manage simultaneously all or most elements in the figure (e.g. looking at all the figures’ sides at 

once). Students’ use of globalized strategies led to difficulties, caused by the simultaneous handling 

of too many elements about the figure and its shape. For example, some students attempted to move 

around each side of the hexagon so as to produce another hexagonal figure that would have less area 

and more perimeter. This was done, e.g., by aligning some sides in a straight line (first-left of Figure 

3, in red; blue arrows added to show the movement of sides) or by “pushing the low triangle part 

inside” (second-left of Figure 3, in purple; blue arrows added). Other students attempted to use the 



sides of the hexagon to create another shape. In the right-side of Figure 3, the student aimed “to 

transform it in a rhombus” while joining sides together and moving others. The same for the far right-

side of Figure 3, where the student aimed to “flatten all corners” to create a triangle.  

 

Figure 3: Globalized solutions 

In these strategies, the corners are used as some sort of joints linking each side, as students attempted 

to move these sides around along the joints while preserving their lengths. Somehow, in these 

strategies, the figure is “dictating” the possibilities, where the joints are maintained as well as the 

sides of the figures (e.g. length, number of). Difficulties were experienced in confirming the loss in 

area and gain in perimeter in the resulting figures. At most, these students could assert that the 

perimeter was kept constant, since it was the same sides that were moved around or combined, but 

they lost sight of area. These difficulties led students to propose additional adjustments for adding 

perimeter (e.g. moving the sides even more). This made them realize that doing so might however 

increase area instead, provoking some puzzlement concerning their success or not in solving the task. 

Flexible-curve strategies 

Of a different nature, but less frequent, were the flexible-curve strategies. The key difference in these 

strategies is that they deal with the perimeter as a flexible object, often spoken of in terms of a string, 

a tape, a rope, a bendable ruler, etc. This leads to the shape of the figure, or the figure itself, to be 

temporarily left aside in order to assess the perimeter, and to mold it into other shapes if need be. For 

example, the line creating a square might be changed into a circle, preserving the perimeter (i.e. 

isoperimetric figures). The figure’s sides then become a highly malleable soft-object, foldable and 

adaptable as one pleases. One example of this strategy happened when a student suggested producing 

an elongated shape with the hexagon to obtain a thin rectangle that had the same perimeter but much 

less area. Referring to a task from the previous day, where they had to produce numerous rectangles 

with a 60 cm perimeter, the student said: “we could lengthen it…the rectangle yesterday the thinner 

it was the less area it had” (Figure 4, on the right is the thinner rectangle aimed for). 

 
Figure 4: A flexible-curve solution 

Because the perimeter of the thin rectangle would be the same as the initial hexagon, he explained 

that “you simply add some little more” to the longer sides since lots of area would have been lost 

when slimmed down into the rectangle (see the dotted part on the right side of the 29x1 rectangle). 

In this flexible-curve strategy, the figure’s corners disappeared in the production of the rectangle. In 

short, the initial hexagon imposed no constraints in the production of the resulting thin rectangle. 



Discussion: figure’s detachment and fluent 1D-2D interplay 

The way students have dealt with the figures appear of utmost importance in whether or not they 

succeeded in solving this and other tasks. Two key elements are of particular significance in students’ 

engagements with these tasks. The first element relates to the role students’ give to the figure, and 

the needed detachment from it when considering perimeter. This first element leads to consider a 

second one, related to the fluent 1D-2D navigation when dealing with tasks about area and perimeter.  

In localized strategies, students, at least momentarily, do not stray away from the shape of the figure 

and focus on isolated parts of it (i.e. not considering the entire figure altogether). By pinpointing at 

some sides, by looking at and focusing on a specific part of the figure, these students succeeded 

almost every time in solving the task. For localized strategies, as the sides or corners were the focus 

of attention, the task became about dealing with these local attributes (e.g. making a dent on a side, 

modifying or comparing one side with another). In the globalized strategies, the omnipresence of the 

figure, taken as a whole, constrained students’ solving and usually blurred the meaning given to 

perimeter (and subsequently for area). For example, the consideration of the hexagon as a whole, as 

a more or less rigid 6-sided and 6-cornered polygon, disrupted the capacity of some students to satisfy 

the task’s requirement for diminishing area while augmenting perimeter. The shape made difficult 

the final assessment to be drawn. In contrast, in the flexible-curve strategies, the initial figures did 

not seem to play a role any longer. Some students were in a complete detachment from the hexagon 

to create another shape. Their detachment from the figure appears key to overcome the “imposing 

presence” of the figure, as Douady and Perrin-Glorian (1989) calls it. As such, the salient presence 

of the figure and its attributes constrained most globalized strategies: the conceived rigidity of the 

figure’s corners and sides refrained the globalized strategies from solving the task. And, this may also 

be how localized strategies differ: through paying attention to local aspects, such as one side, the 

whole figure’s attributes are set aside for a while. This detachment of the figure acted as a key element 

in students’ ways of overcoming possible entanglements between concepts of area and perimeter. 

Through working with the figure and its curve, both localized and flexible-curve strategies point also 

to Konya’s (2015) presentation of perimeter as a 1D object while being an attribute of a 2D figure. 

These strategies “happen” in 2D, that is, in the figure, while being as well about 1D. Flexible-curve 

strategies are concerned with the line and its flexible arrangement to make the figure fit. Something 

similar about this 1D-2D fluency can be seen in localized strategies, where students directly focus on 

parts of the figure, e.g. its sides, and thus are zooming in on 1D attributes in a 2D figure. In doing so, 

these localized strategies work on 1D segments that can first be bent, cut, dent, etc., which then 

afterwards are brought back at the level of the 2D figure. The localized strategies make fluent use of 

the 1D and 2D interplay, focusing on 1D aspects of a 2D object, distancing for a while from the 2D 

figure to come back to it afterwards. This illustrates some students’ constant oscillation from 1D to 

2D, making salient the needed fluency to go from one to the next when dealing with area and 

perimeter in the same figure. On the opposite, this can be seen as what most, if not all, globalized 

strategies fail in doing. These strategies reside constantly in the 2D world, undetached from the 2D 

figure (this also relates to what Duval, 2005, calls the needed dimensional deconstruction to overcome 

the priority of 2D over 1D for transitioning from one to the other). Hence, like the ease of detachment 

from the 2D figure, the fluent back-and-forth between 1D and 2D appears to act as another key 

component brought forth by students when simultaneously managing concepts of area and perimeter. 



Concluding remarks 

The mental mathematics context, through what Nunes et al. (1993) call “direct perceptual 

comparison” tasks, offered a way to investigate students’ strategies related to area and perimeter, 

while doing away with geometrical constructions and manipulations. Students’ strategies in this study 

made salient the significance of one’s detachment from the figure, as well as the fluent 1D-2D 

interplay, when considering issues of area and perimeter. These two elements, far from being ultimate 

keys that can unlock all students’ enduring challenges and difficulties with area and perimeter, offer 

however additional lenses to consider in further studies on students’ work with area and perimeter. 
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