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SMOOTHNESS OF THE DIFFUSION COEFFICIENTS FOR

PARTICLE SYSTEMS IN CONTINUOUS SPACE

ARIANNA GIUNTI, CHENLIN GU,
JEAN-CHRISTOPHE MOURRAT, MAXIMILIAN NITZSCHNER

Abstract. For a class of particle systems in continuous space with local interac-
tions, we show that the asymptotic diffusion matrix is an infinitely differentiable
function of the density of particles. Our method allows us to identify relatively
explicit descriptions of the derivatives of the diffusion matrix in terms of correctors.

MSC 2010: 82C22, 35B27, 60K35.
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1. Introduction

We study a class of interacting particle systems with local interactions in continuous
space. These are systems of interacting Brownian particles, where each particle evolves
in Rd according to a diffusion matrix that depends on the locations of the particles
nearby. The models we study are reversible with respect to the Poisson measures
with constant density, uniformly elliptic, and of non-gradient type. In the limit
of large scales, the evolution of the empirical distribution of particles is expected
to be captured by a nonlinear diffusion equation. Such a result is usually called
a hydrodynamic limit, and the matrix appearing in this diffusion equation is often
called the bulk diffusion matrix. The qualifier “bulk” underlines that this matrix is
meant to describe the collective evolution of the cloud of particles. We refer to the
monographs [26, 27, 40] for thorough expositions on the topic.

The purpose of this work is to show that the bulk diffusion matrix is an infinitely
differentiable function of the density of particles. That the bulk diffusion matrix is
sufficiently regular as a function of the density of particles is a necessary ingredient
in the proof of the hydrodynamic limit of the model, see for instance [20]. We hope
that, when combined with [23], the present work will allow for the establishment of a
quantitative version of the statement of hydrodynamic limit.

Similar results on the smoothness of the effective diffusion matrix have already been
derived for a number of other models of particle systems [12, 14, 29, 30, 36, 37, 38, 41].
Those works all rely on the approach introduced in [29] to show the regularity of
the self-diffusion matrix of a tagged particle in the symmetric simple exclusion
process on Zd. This approach relies on certain duality properties of the process under
consideration.

The approach we employ here seems different and more direct. In particular, we
end up with relatively explicit expressions for the derivatives of the bulk diffusion
matrix in terms of correctors, which are natural objects that already appear in the
description of the bulk diffusion matrix itself.

Our method takes inspiration from works on the homogenization of elliptic equations
with random coefficients [5, 6, 16, 34]; see also [1, 2, 3, 13, 28]. One can for instance
consider a setting in which the random coefficients of the equation are a local function
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of a Poisson point process with constant density, and ask whether the homogenized
matrix depends smoothly on the density of the point process. This question has
been answered positively in [15, Theorem 5.A.1], following the suggestion in [16,
Remark 2.7] to rely on precise quantitative estimates on the corrector and the Green
function (the results of [16] require the perturbative point process to have a uniformly
bounded number of points in a given bounded region of space, a property that does
not hold for Poisson point processes). These precise estimates are currently not
available in the context of interacting particle systems, and we show here that they
are not necessary for the proof of smoothness of the homogenized coefficients. Outside
of the present paper, we are unaware of results concerning interacting particle systems
for which the number of particles in a bounded region of space is not uniformly
bounded.

In a previous version of this paper, we stated: “We believe that the method used
here could be adapted to the case of elliptic equations and yield a simpler proof of
[15, Theorem 5.A.1] that does not rely on quantitative homogenization theory.” That
this is indeed the case has been rigorously established recently in [17].

It is asserted in [17] that the problem considered here is a particular case of the
corresponding problem for elliptic equations with random coefficients. This is however
not the case, and indeed, the two problems have a different mathematical structure.
In the context of particle systems, one cannot keep the set of all the other particles
frozen in place, as the relevant operator must encode the movement of the entire
cloud of particles at once. In other words, in the case of elliptic equations with
random coefficients, for each fixed realization of the randomness, we can write down
the relevant d-dimensional equations, which will feature random coefficients. Instead,
for interacting particle systems, the relevant equations must be deterministic and
Nd-dimensional, if the number of particles is fixed at N . In particular, the bulk
diffusion matrix is different from the asymptotic diffusivity matrix of the diffusion in
the random environment obtained by freezing the cloud of all the other particles.

One basic difficulty when studying homogenized coefficients is that they are defined
as infinite-volume quantities. As in all other works on the topic, we will therefore
start by studying a localized version of the homogenized coefficients. In the context of
elliptic equations with random coefficients, this is usually achieved by the introduction
of a zero-order term in the equation solved by the corrector. Through this procedure,
one obtains a localized corrector that is also stationary under the action of translations.

In the context of particle systems, the correctors are deterministic functions of
the cloud of particles. Stationarity thus boils down to invariance under translations,
and by the ergodic theorem, a function that is invariant under translations must be
constant. A different approach is therefore necessary. We will rely on the finite-volume
quantities introduced in [23], which are inspired by the analogous quantities introduced
in [11] for PDEs (see also the monograph [9], and [35] for a gentle introduction). As
will be explained below, there are two such quantities; in the PDE setting, one relates
to the imposition of a constant tangential gradient on the boundary, while the other
relates to the imposition of a constant normal flux on the boundary. In the context
of particle systems, we will rely on this second “flux” quantity for our proofs, and
thus first obtain the smoothness of the inverse of the homogenized matrix. Perhaps
surprisingly, significant additional technical difficulties seem to arise if one tries to
devise an argument that would rely instead on the “gradient” quantity; we refer to
Subsection 3.3 for more on this point.

Once our quantity is localized in finite volume, it becomes smooth and we can
compute its derivatives at arbitrarily high order using classical formulas such as (5.9)
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(this formula is called a chaos expansion in [32], and is called a cluster expansion
in [16]). The difficulty that remains is to find suitable estimates in order to pass
to the limit of infinite volume. The estimates we need have a similar form as those
appearing in [5, 6, 16] in the PDE setting; the authors of [16] also single out [4,
Proposition 3.4] as an important source of inspiration. However, several adaptations
are needed, due to the nature of our localization procedure as well as to the differences
inherent to particle systems mentioned above; see for instance the discussion below
the statement of Proposition 3.3.

Another setting in which an expansion for the homogenized coefficients is studied
are colloidal particle suspensions [18, 21, 22, 25, 39]. Under a suitable limit of many
small particles, the homogenized equation for the fluid is a Stokes system having an
effective viscosity. The latter admits an expansion in terms of the asymptotic volume
fraction occupied by the particles.

We finally mention that questions similar to the ones contained in this paper
were also investigated in the context of the ∇ϕ model (a Gibbs measure modeling a
fluctuating interface) [10], and non-linear elliptic equations with random coefficients
[7, 8, 19]. In these settings, the goal is to show that the homogenized coefficients
depend smoothly on the slope of the limit homogenized solution. This is not a
situation in which the varying parameter can be nicely encoded by random fields with
short-range correlations. As a consequence, a different, more quantitative approach
is then mandatory.

2. Precise statement of the main results

We start by introducing some notation. We view a cloud of particles in Rd as an
element of Mδ(Rd), the space of σ-finite measures that are sums of Dirac masses
on Rd. The dynamics of the particles is encoded by a mapping a○ ∶Mδ(Rd)→ Rd×d

sym

taking values in the space of symmetric d-by-d matrices. We assume that this mapping
satisfies the following properties.

● Uniform ellipticity : there exists Λ <∞ such that for every µ ∈Mδ(Rd),

Id ⩽ a○(µ) ⩽ ΛId.(2.1)

● Finite range of dependence: for every µ ∈Mδ(Rd), we have that

a○(µ) = a○(µ B1/2),(2.2)

where B1/2 denotes the Euclidean ball of unit diameter centered at the origin,
and is the restriction operator defined in (3.1).

In (2.1) and throughout the paper, whenever a and b are symmetric matrices, we
write a ⩽ b to mean that b − a is a positive semidefinite matrix.

Roughly speaking, we want a particle sitting at the origin and surrounded by a cloud
of particles µ to undergo an instantaneous diffusion driven by the matrix a○(µ). We
extend the mapping a○ by stationarity by setting, for every x ∈ Rd and µ ∈Mδ(Rd),

a(µ,x) ∶= a○(τ−xµ),

where τ−xµ is the measure µ translated by the vector −x; in other words, for every
Borel set U , we have τ−xµ(U) = µ(x + U). For every ρ0 ⩾ 0, we denote by Pρ0 the

law of a Poisson point process over Rd with constant intensity ρ0. We denote by
Eρ0 the associated expectation, and use µ for the canonical random variable on this
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probability space. The interacting particle system we aim to study is associated with
the formal Dirichlet form

f ↦ Eρ0 [∫Rd
∇f ⋅ a∇f dµ] .

We refer to (3.3) below for the definition of the gradient of a sufficiently smooth
function defined onMδ(Rd), and [24] for a rigorous construction of the stochastic
process.

We expect the evolution of this particle system to be described by a “homogenized”
or “hydrodynamic” equation over large scales. Indeed, this has been shown for
discrete models similar to the continuous one studied here, see in particular [20].
In order to justify this rigorously, it is very useful to know about the regularity of
the homogenized matrix, usually called the bulk diffusion matrix, that enters into
the equation. The aim of the present work is to show that this matrix is indeed an
infinitely differentiable function of the particle density.

For our purposes, it will be convenient to identify the bulk diffusion matrix as a
limit of finite-volume approximations. In finite volume, there are in fact two natural
approximations to the bulk diffusion matrix, which were introduced in [23] and are
inspired by [9, 11, 35]. They are based on the following subadditive quantities: for
every bounded domain U , p, q ∈ Rd, and ρ0 > 0, we define

ν(U, p, ρ0) ∶= inf
v∈H 1

0 (U)
Eρ0 [

1

ρ0∣U ∣ ∫U
1

2
(p +∇v) ⋅ a(p +∇v)dµ] ,

ν∗(U, q, ρ0) ∶= sup
u∈H 1(U)

Eρ0 [
1

ρ0∣U ∣ ∫U
(−1

2
∇u ⋅ a∇u + q ⋅ ∇u) dµ] ,

(2.3)

where ∣U ∣ denotes the Lebesgue measure of U . Recall that µ is a sum of Dirac
masses; for any function F , the integral ∫U F dµ = ∫U F (z)dµ(z) therefore stands for
the summation of F (z) over every point z in the intersection of U and the support
of µ. The precise definitions of the function spaces H 1(U) and H 1

0 (U) are given
in Section 3 below. Informally, the functions in H 1(U) are those whose squared
gradient have finite integral over U ; the functions in H 1

0 (U) must in addition respond
continuously to the exit from U or the entrance into U of a particle. One can check
(see [23, Proposition 4.1] or Subsection 3.3 below) that there exist symmetric d-by-d
matrices a(U,ρ0),a∗(U,ρ0) that satisfy the bound (2.1) and such that, for every
p, q ∈ Rd,

(2.4) ν(U, p, ρ0) =
1

2
p ⋅ a(U,ρ0)p and ν∗(U, q, ρ0) =

1

2
q ⋅ a−1∗ (U,ρ0)q.

For every m ∈ N, we denote by ◻m ∶= (−3m/2,3m/2)d the cube of side-length 3m

centered at the origin. We also have that the sequence (a(◻m, ρ0))m∈N is decreasing,
and the sequence (a∗(◻m, ρ0))m∈N is increasing. We define the bulk diffusion matrix
as the limit of the latter sequence:

a(ρ0) ∶= lim
m→∞

a∗(◻m, ρ0).(2.5)

It was shown in [23] that the sequence (a(◻m, ρ0))m∈N converges to the same limit,
and moreover, that there exists an exponent α > 0 and a constant C <∞ such that
for every m ⩾ 1,
(2.6) ∣a(◻m, ρ0) − a(ρ0)∣ + ∣a∗(◻m, ρ0) − a(ρ0)∣ ⩽ C3−αm.
The results of the present paper do not rely on this quantitative information. Indeed,
to show our main results, we only appeal to (2.5) as the definition of the limit diffusion
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matrix. This definition coincides with the more classical one based on full-space
stationary correctors, as explained in [23, Appendix B].

Throughout the paper, we fix q ∈ Rd, and denote by ψm ∈H 1(◻m) the optimizer
in the definition of ν∗(◻m, q, ρ0), see (2.3). The optimizer for ν∗(◻m, q, ρ0) is unique
provided that we impose the condition in (3.9) (the formulas derived throughout the
paper only involve gradients of ψm, and are therefore insensitive to the precise way
we “fix the constants”).

For reasons that will be clarified below, we prefer to work with ψm, which optimizes
some ν∗ quantity, rather than with the corresponding optimizer for ν. One conse-
quence of this choice is that we have easier access to information about the smoothness
of the mapping ρ ↦ a−1(ρ) than of the mapping ρ ↦ a(ρ). Of course, since these
matrices are uniformly elliptic in the sense of (2.1), discussing the smoothness of one
or the other is equivalent (and from a physical perspective, it is no less natural to
focus on “fixing the average flux at q” than to focus on “fixing the average gradient
at p”).

For clarity of exposition, we will first present a proof that the mapping ρ↦ a−1(ρ)
is C1,1. The precise statement is as follows.

Theorem 2.1 (C1,1 regularity). The following limit is well-defined and finite

(2.7) c1(ρ0) ∶= lim
m→∞∫Rd

Eρ0 [
1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (a − a{1})∇ψ{1}m dµ] dx1,

where we write a{1}(µ, z, x1) ∶= a (µ + δx1 , z) and ∇ψ
{1}
m (µ, z, x1) ∶= ∇ψm (µ + δx1 , z).

Moreover, as ρ ∈ R tends to zero, we have

(2.8) q ⋅ a−1(ρ0 + ρ)q = q ⋅ a−1(ρ0)q + ρc1(ρ0) +O(ρ2).
The term O(ρ2) hides a multiplicative constant that depends only on d, Λ and ∣q∣ (but
not on ρ0).

Remark 2.2. Theorem 2.1 yields that q ⋅ a−1(⋅)q is C1,1. Indeed, an immediate
consequence of expansion (2.8) is that c1(⋅) is the derivative of q ⋅ a−1(⋅)q. Moreover,
using (2.8) around ρ0 and ρ0 + ρ, we see that c1(ρ0 + ρ) = c1(ρ0) +O(ρ), i.e. that c1
is Lipschitz continuous.

A more explicit writing of the right side of (2.7) is:

∫
Rd

Eρ0 [
1

ρ0∣◻m∣ ∫◻m

∇ψm(µ, z) ⋅ (a(µ, z) − a (µ + δx1 , z))∇ψm(µ + δx1 , z)dµ(z)] dx1.

In general, we use superscripts to indicate changes in the “measure” argument of the
function under consideration: for instance, the quantity a{1} is obtained from a by
replacing the argument µ with µ + δx1 .

In order to describe higher-order derivatives, we need to generalize this notation
to arbitrary subsets of indices. For every finite subset E ⊆ N+ and f an arbitrary
function of the measure µ, we define

(2.9) fE ∶ (µ, (xi)i∈E)↦ f(µ +∑
i∈E

δxi).

For every i ∈ N+, we also write

(2.10) Dif ∶= f{i} − f.
Notice that for every i ≠ j ∈ N+, we have

DiDjf = (f{j} − f){i} − (f{i} − f) = f{i,j} − f{i} − f{j} + f.
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In particular, the operators Di and Dj commute. We can therefore define, for every
E = {i1, . . . , ip} ⊆ N+, the quantity

(2.11) DEf ∶=Di1⋯Dipf.

Finally, we need at times to apply these operators to more complex expressions such
as f + g, where f and g are two functions of the measure µ, with the understanding
that the operator applies only to f and not to g. We use the superscript # to indicate
the functions on which these operators are meant to be applied, keeping the others
“frozen”. That is, we write for instance

(f# + g)E = fE + g, (f#g)E = fEg,
and similarly with more complex expressions. We also have

DE(f# + g) = {
f + g, if E = ∅,
DEf, if E ≠ ∅, DE(f#g) = (DEf)g.

We use the notation [[1, k]] ∶= {1,2, . . . , k}. Here is our main result.

Theorem 2.3 (Smoothness). For each k ∈ N+, there exists a constant Ck(Λ, d) <∞
(not depending on ρ0) such that the limit

(2.12) ck(ρ0)

∶= lim
m→∞∫(Rd)k

Eρ0[
1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅D[[1,k]] ((a − a#)∇ψ#
m) dµ]dx1⋯dxk,

is well-defined and satisfies ∣ck(ρ0)∣ ⩽ Ck∣q∣2. Moreover, the mapping ρ0 ↦ q ⋅a−1(ρ0)q
is infinitely differentiable, and its k-th derivative is ck(ρ0).

Note that due to the local nature of the term (a − a#), see (2.2), the integrals
in (2.7) and (2.12) are in fact finite-volume quantities, as the outermost integrals
may be replaced by, for instance, ∫◻m+1 and ∫(◻m+1)k , respectively.

If one modifies the unit range of dependence assumption in (2.2), assuming instead
that there exists R ∈ (0,∞) such that for every µ ∈Mδ(Rd),
(2.13) a○(µ) = a○(µ BR/2),
then the fact that the mapping a depends smoothly on the density ρ0 can be obtained
by a change of scale. The particle density for the rescaled process is Rdρ0. Since the
constants in Theorem 2.3 do not depend on ρ0, we obtain that, under the assumption
of (2.13) and with the same definition (2.12) of ck(ρ0), we have

∣ck(ρ0)∣ ⩽ Ck∣q∣2Rkd.

Estimates of this type may be useful for controlling situations in which the range of
dependence is unbounded.

We now comment on the reason why we choose to work with quantities derived
from ν∗ rather than ν. Recall that the function ψm is the optimizer in the definition
(2.3) of ν∗(◻m, q, ρ0). This object may seem to depend upon the choice of the particle
density ρ0. However, it is in fact not the case. Indeed, the optimization problem for
ν∗ can be split into a sum of unrelated optimization problems, one for each fixed
number of particles in ◻m. The optimizer for ν∗ is thus a superposition of these
optimizers, irrespectively of the underlying density of the measure. We refer to
Section 3 below for a more detailed discussion of this property. The fact that we can
view the same object ψm as the optimizer of ν∗(◻m, q, ρ0) for arbitrary values of ρ0
would not be valid were we to work with the optimizers of ν(◻m, p, ρ0).
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The remainder of the paper is organized as follows. We discuss function spaces
more precisely in Section 3, and prove a technically useful lemma stating that
the quantity ν∗ does not change if the particles become distinguishable. We then
show Theorem 2.1 in Section 4. The more general Theorem 2.3 is then proved in
Section 5. Finally, in Section 6, we show that the mappings ρ0 ↦ a(◻m, ρ0) and
ρ0 ↦ a∗(◻m, ρ0) converge to ρ0 ↦ a(ρ0) locally uniformly, and that this is also the
case for the convergence in (2.12) towards the higher-order derivatives of a(ρ0).

3. Setting and functional framework

In this section, we rigorously introduce the notation and functional framework
that we use in this paper. In particular, we define the function spaces H 1(◻m) and
H 1

0 (◻m) that appear in the optimization problems ν and ν∗ in (2.3). This will also
allow us to justify why, as mentioned in the previous section, we will prove the main
results of this paper by mainly working with the quantity ν∗ instead of ν.

3.1. Configuration space. We denote by Rd the standard Euclidean space, by

Qs ∶= (−s/2, s/2)d the open hypercube of side length s > 0, and we write ◻m ∶= Q3m

for m ∈ N. We also use ◻ as a shorthand notation for the unit cube ◻0.

We recall thatMδ(Rd) is the space of σ-finite measures that are sums of Dirac
masses on Rd, which we think of as the configuration space of particles, and that Pρ0

corresponds to the probability measure for the Poisson point process having constant
density ρ0 > 0. We write Eρ0 for the expectation with respect to Pρ0 . For a Borel

set U ⊆ Rd, we denote by FU the σ-algebra generated by the mappings µ ↦ µ(V ),
for all Borel sets V ⊆ U , completed with all the Pρ0-null sets. We use the notation
F for FRd . With this construction, assumption (2.2) yields that the random matrix
a○ ∶Mδ(Rd)→ Rd×d

sym is an FB1/2-measurable mapping.

3.2. Function spaces. We now introduce several function spaces onMδ(Rd) that
will be used in this paper. In particular, we will give the rigorous definition of H 1(U)
and H 1

0 (U).
We start with basic considerations concerning F -measurable functions onMδ(Rd).

Given a Borel set U ⊆ Rd, it is often useful to decompose an F-measurable function
into a series of Borel-measurable functions on Euclidean spaces, conditioned on
the number of particles in U and the configuration outside U . More precisely, we
denote by BU the set of Borel subsets of U . For every µ ∈Mδ(Rd), we denote by
µ U ∈Mδ(Rd) the measure such that, for every Borel set V ⊆ Rd,

(3.1) (µ U)(V ) = µ(U ∩ V ).
Then for f ∶Mδ(Rd)→ R which is F-measurable, we define

(3.2) fn(⋅, µ U c) ∶ { Un → R
(x1, . . . , xn) ↦ f (∑n

i=1 δxi + µ U c) .

The function fn is B⊗nU ⊗FUc-measurable. Reciprocally, given a series of permutation-
invariant functions with such measurability properties, we can reconstruct an F-
measurable function f by specifying that, on the event µ U = ∑n

i=1 δxi , we have
f(µ) ∶= fn(x1, . . . , xn, µ U c). We call the mapping f ↦ (fn)n∈N the “canonical
projection”, and refer to [23, Lemmas 2.2 and A.1] for more details.

We now explain the notion of derivatives for functions defined onMδ(Rd). For
every sufficiently smooth function f ∶Mδ(Rd)→ R, µ ∈Mδ(Rd), and x ∈ suppµ, the
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gradient ∇f(µ,x) is such that, for every k ∈ {1, . . . , d},

(3.3) ek ⋅ ∇f(µ,x) = lim
h→0

f(µ − δx + δx+hek) − f(µ)
h

,

where (e1, . . . , ed) is the canonical basis of Rd. While we wish to emphasize that the
function ∇f(µ, ⋅) is naturally defined only on suppµ, we extend it for convenience as

(3.4) for every x ∉ suppµ, ∇f(µ,x) ∶= 0.

To clarify the notion of smooth functions appearing in the previous paragraph, we
can appeal to the canonical projections discussed above. For every bounded open set
U ⊆ Rd, we define the sets of smooth functions C∞(U) and C∞c (U) in the following
way. We have that f ∈ C∞(U) if and only if f is an F-measurable function, and for
every µ ∈Mδ(Rd) and n ∈ N, the function fn(⋅, µ U c) appearing in (3.2) is infinitely
differentiable on Un. The space C∞c (U) is the subspace of C∞(U) of functions that
are FK-measurable for some compact set K ⊆ U .

We define L 2 to be the space of F-measurable functions f such that Eρ0 [f2] is
finite. As usual, elements in this function space that coincide Pρ0-almost surely are
identified. We now define H 1(U) as the infinite-dimensional analogue of the classical
Sobolev space H1: for every f ∈ C∞(U), we introduce the norm

∥f∥H 1(U) = (Eρ0[f2(µ)] +Eρ0 [∫
U
∣∇f(µ,x)∣2 dµ(x)])

1
2

,(3.5)

and set

(3.6)
H 1(U) ∶= {f ∈ C∞(U) ∶ ∥f∥H 1(U) < +∞}

∥ ⋅ ∥H 1(U) ,

H 1
0 (U) ∶= {f ∈ C∞c (U) ∶ ∥f∥H 1(U) < +∞}

∥ ⋅ ∥H 1(U) ,

namely the completion, under ∥⋅∥H 1(U), of the sets of functions in C∞(U) or C∞c (U)
that have finite norm ∥⋅∥H 1(U). As for classical Sobolev spaces, for every f ∈H 1(U),
we can interpret ∇f(µ,x) when x ∈ U ∩ suppµ in a weak sense. This may be
understood via the canonical projection in (3.2).

The two spaces H 1(U) and H 1
0 (U) share many similarities as well as some

fundamental differences. The latter ones, in turn, derive from the differences between
C∞(U) and C∞c (U): On the one hand, functions in C∞(U) do depend on µ U c

and the number of particles µ(U) in a relatively arbitrary (measurable) way. On
the other hand, functions in the subset C∞c (U) are FU -measurable as they do not
depend on particles that cross the boundary ∂U .

When managing elements in H 1(U) or H 1
0 (U), it is at times useful to think

about them in terms of their canonical projection defined in (3.2): Let f ∈H 1(U)
and let (fn)n∈N be the associated canonical projection. Then for Pρ0-almost every
µ U c and every n ∈ N, we have that

● The function fn( ⋅ , µ U c) belongs to the (standard) Sobolev space H1(Un);
● The function fn( ⋅ , µ U c) is invariant under permutations: if Sn denotes the
set of permutations of [[1, n]] and we write (x1,⋯, xn) ∈ Un, then for every
σ ∈ Sn it holds

fn(x1,⋯, xn, µ U c) = fn(xσ(1),⋯xσ(n), µ U c) almost everywhere in Un.(3.7)

If f ∈H 1
0 (U), then the canonical partition needs to satisfy the following additional

“compatibility condition”: for every n ∈ N+ and on the set {(x1,⋯, xn) ∈ Un ∶ x1 ∈ ∂U},
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it holds

fn(x1,⋯, xn, µ U c) = fn−1(x2,⋯, xn, µ U c),(3.8)

where the identity is to be understood in the sense of traces. Note that, by the
invariance under permutations, the above property also holds if x1 is replaced by any
other coordinate xi, i = 2,⋯, n. Moreover, for every f ∈H 1

0 (U) and n ∈ N, we have
that fn(⋅, µ U c) in fact does not depend on µ U c.

We summarize the previous remarks in Table 3.1.

Function
space

H1-regularity for
particles in U

Compatibility
condition when

particles cross ∂U
FU -

measurable
For every

open set V ⊆ U
H 1(U) Yes No No H 1(U) ⊆H 1(V )
H 1

0 (U) Yes Yes Yes H 1
0 (V ) ⊆H 1

0 (U)

Table 3.1. Differences between H 1(U) and H 1
0 (U).

3.3. Elementary properties of optimizers. As seen in the previous subsection, the
spaces H 1 and H 1

0 differ in important ways, and this will translate into differences
for the optimizers of ν and ν∗. In fact, except in part of Section 6, we will only rely
on quantities derived from ν∗. In this subsection, we present some key properties
of optimizers of this quantity, and highlight those that would not be shared by the
optimizers of ν.

For U a Lipschitz domain and q ∈ Rd, we denote by ψU,q ∈H 1(U) the maximizer
in the definition of ν∗(U, q, ρ0). By [23, Proposition 4.1] (see also Lemma 3.1 below),
this optimizer exists, and is unique provided we also impose that

(3.9) E [ψU,q ∣ µ(U), µ U c] = 0.

This optimizer is FB1/2(U)-measurable, with B1/2(U) = {x ∈ Rd ∶ dist(x,U) < 1
2}.

Since q ↦ ψU,q is a linear mapping, there exists a matrix a∗(U,ρ0) such that

ν∗(U, q, ρ0) = Eρ0 [
1

ρ0∣U ∣ ∫U
(−1

2
∇ψU,q ⋅ a∇ψU,q + q ⋅ ∇ψU,q) dµ] =

1

2
q ⋅ a−1∗ (U,ρ0)q.

The uniform ellipticity assumption (2.1) readily implies that Id ⩽ a∗(U,ρ0) ⩽ ΛId. By
the first variation, we have for every u ∈H 1(U) that

(3.10) Eρ0 [∫
U
(−∇ψU,q ⋅ a∇u + q ⋅ ∇u) dµ] = 0.

Using this with u = ψU,q, we get that

q ⋅ a−1∗ (U,ρ0)q = Eρ0 [
1

ρ0∣U ∣ ∫U
∇ψU,q ⋅ a∇ψU,q dµ]

= Eρ0 [
1

ρ0∣U ∣ ∫U
q ⋅ ∇ψU,q dµ] .

(3.11)

In particular, using the uniform ellipticity assumption once more, we obtain the basic
Dirichlet energy estimate

(3.12) Eρ0 [
1

ρ0∣U ∣ ∫U
∣∇ψU,q ∣2 dµ] ⩽ ∣q∣2.
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Similar properties are also valid for optimizers of ν, and we refer to [23, Proposition 4.1]
for details. Optimizers of ν∗ differ however in one crucial aspect: denoting by
(ψU,q,n)n∈N the canonical projection of ψU,q, see (3.2), we can identify each ψU,q,n(⋅, µ
U c) as the solution to an elliptic equation. In particular, the function ψU,q, which
was defined as the optimizer in the definition of ν∗(U, q, ρ0), in fact does not depend
on ρ0. This property would not be valid for optimizers of ν.

In order to clarify this, we introduce the following notation: for each n ∈ N,
µ ∈Mδ(Rd), and u ∈H1(Un), we write

(3.13) Jn(u,U, q, µ U c)

∶= 1

ρ0∣U ∣ ⨏Un

n

∑
i=1
(−1

2
∇xiu ⋅ a(

n

∑
i=1
δxi + µ U c, xi)∇xiu + q ⋅ ∇xiu) dx1⋯dxn.

This quantity corresponds to the functional that is optimized in the definition of ν∗,
see (2.3), but where we have conditioned on µ(U) = n and µ U c; and where moreover,
we substituted an arbitrary u ∈ H1(Un) in place of the canonical projection un of
some function u ∈H 1(U). We thus have

ν∗(U, q, ρ0) = sup
u∈H 1(U)

Eρ0 [∑
n∈N

Pρ0 [µ(U) = n] Jn(un(⋅, µ U c), U, q, µ U c)]

⩽ Eρ0

⎡⎢⎢⎢⎢⎣
∑
n∈N

Pρ0 [µ(U) = n] sup
u∈H1(Un)

Jn(u,U, q, µ U c)
⎤⎥⎥⎥⎥⎦
.(3.14)

The next lemma implies that the inequality above is in fact an equality. Recall that we
denote by (ψU,q,n)n∈N the canonical projection of ψU,q, the optimizer of ν∗(U, q, ρ0).

Lemma 3.1. For every µ ∈Mδ(Rd) and n ∈ N, let uU,q,n(⋅, µ U c) ∈ H1(Un) be
the unique maximizer of the functional Jn(⋅, U, q, µ U c) subject to the constraint

⨏Un uU,q,n(⋅, µ U c) = 0. For Pρ0-almost every µ ∈Mδ(Rd) and every n ∈ N, we have

(3.15) uU,q,n(⋅, µ U c) = ψU,q,n(⋅, µ U c).

Remark 3.2. The quantities uU,q,n(⋅, µ U c) and ψU,q,n(⋅, µ U c) in fact only depend
on the restriction of µ U c to the set of points that are at distance at most 1/2
from U , by the finite-range dependence assumption (2.2). The statement that (3.15)
holds for Pρ0-almost every µ ∈Mδ(Rd) therefore does not depend on ρ0 > 0. We are
forced to state (3.15) only for Pρ0-almost every µ since a priori we only know that
ψU,q,n(⋅, µ U c) is well-defined for Pρ0-almost every µ; but the lemma itself provides

us with a straightforward way to extend the definition to every µ ∈Mδ(Rd). In the
proof below, we observe that there exists a function uU,q ∈H 1(U) whose canonical
projection is (uU,q,n)n∈N, and then show that uU,q = ψU,q.

Proof of Lemma 3.1. We first observe that, for each µ ∈ Mδ(Rd), the function
uU,q,n(⋅, µ U c) is invariant under permutation of its coordinates. This is imme-
diate from the facts that Jn(⋅, U, q, µ U c) admits a unique mean-zero maximizer,
and that this functional as well as the mean-zero constraint are invariant under
permutations.

We now define the function uU,q ∶Mδ(Rd) → R in such a way that, on the event
that µ U = ∑n

i=1 δxi , we have

uU,q(µ) ∶= uU,q,n(x1,⋯, xn, µ U c).
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This definition makes sense since we have verified that uU,q,n(⋅, µ U c) is invariant
under permutation of its coordinates. It is also clear that the canonical projection of
the function uU,q is the family of functions (uU,q,n)n∈N (so the notation is sound).

We now argue that uU,q ∈H 1(◻m), and by the uniqueness of the optimizer for ν∗
and (3.14), this will imply that uU,q = ψU,q, as desired. Let now µ U c be fixed.
By construction, each function uU,q,n(⋅, µ U c) satisfies, for every v ∈ H1(Un), the
variational identity

∫
Un

n

∑
i=1
(∇xiuU,q,n(⋅, µ U c) ⋅ a(

n

∑
i=1
δxi + µ U c, xi)∇xiv − q ⋅ ∇xiv) dx1⋯dxn = 0.

Choosing v = uU,q,n(⋅, µ U c) and using (2.1) and Young’s inequality, we infer that

1

n

n

∑
i=1
⨏
Un
∣∇xiuU,q,n(⋅, µ U c)∣2 ⩽ ∣q∣2.(3.16)

Moreover, since uU,q,n(⋅, µ U c) has zero-average on Un, we may apply Poincaré’s
inequality in the product domain Un (see for instance [33] or [23, Proposition 3.1])
and obtain that there exists a constant C(U) < +∞ such that

⨏
Un
∣uU,q,n(⋅, µ U c)∣2 ⩽ C

n

∑
i=1
⨏
Un
∣∇xiuU,q,n(⋅, µ U c)∣2

(3.16)
⩽ Cn∣q∣2.(3.17)

Estimates (3.16) and (3.17) and the definition of Eρ0 [ ⋅ ] immediately imply that
uu,q ∈H 1(U). This concludes the proof of Lemma 3.1. □

As announced, Lemma 3.1 demonstrates that the optimizer for ν∗(U, q, ρ0) in
fact does not depend on ρ0: regardless of the density, it is always the same ψU,q

whose canonical projections are described by this lemma. The only difference is that
optimizers for ν∗(U, q, ⋅) at different densities receive point processes with different
densities as their argument.

We also stress that another immediate consequence of Lemma 3.1, see also (3.16),
is that each maximizer ψU,q satisfies the following improved energy inequality:

Eρ0 [
1

ρ0∣U ∣ ∫U
∣∇ψU,q ∣2 dµ ∣µ(U), µ U c] ⩽ ∣q∣2µ(U)

ρ0∣U ∣
,(3.18)

for every µ U c and number of particles µ(U) ∈ N fixed. Note that this inequality
implies (3.12).

In most of the paper, we keep the parameter q fixed, and work with the domain
U = ◻m. We recall the notation ψm ∶= ψ◻m,q.

3.4. Coupling of point processes. When studying the regularity of the bulk
diffusion matrix, it is useful to introduce a coupling between different densities. Recall
that we keep ρ0 ∈ (0,∞) fixed, and let µ ∼ Poisson(ρ0) be the “reference” Poisson
point process, with constant density ρ0. For ρ ⩾ 0, we define another independent
Poisson point process µρ ∼ Poisson(ρ), which we think of as a small perturbation.
Then we denote by P = Pρ0 ⊗ Pρ the joint probability measure, with associated
expectation E, and we observe that µ + µρ ∼ Poisson(ρ0 + ρ), by the superposition
property for independent Poisson point processes.

Notice that the definition of the space H 1 actually depends on the density of
particles, although this was kept implicit in the notation. When we want to resolve
the ambiguity, we write H 1(U,µ) for the space as defined in (3.5), and we write
H 1(U,µ+µρ) for the same space but with density (ρ0 +ρ). In line with the notation
introduced in (2.9), we use a superscript ρ to indicate when the measure argument of
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a function is taken to be µ + µρ. For instance, when we write aρ in some expression,
we always understand that it is evaluated as a(µ+µρ, ⋅); the notation a is understood
to be evaluated at µ instead. The same convention applies as well to ψm and ψρ

m:
the former represents ψm(µ) and the latter ψm(µ+µρ). As discussed in the previous
subsection, the function ψρ

m can be interpreted as the optimizer of ν∗(◻m, q, ρ0 + ρ).
This notation allows us to write, for instance,

ν∗(◻m, q, ρ0 + ρ) = E [
1

(ρ0 + ρ)∣◻m∣ ∫◻m

(−1
2
∇ψρ

m ⋅ aρ∇ψρ
m + q ⋅ ∇ψρ

m) d(µ + µρ)] .

We can also define a quantity ν∗ perturbed by adding a finite number of particles
uniformly. We denote by E ⊆ N+ the index set, and write µE ∶= ∑i∈E δxi . Throughout
the paper we use the following compact notation for the integration with respect to
the particles in E:

∫
UE
(⋯) ∶= ∫

U ∣E∣
(⋯)∏

i∈E
dxi, ⨏

UE
(⋯) ∶= 1

∣U ∣∣E∣ ∫U ∣E∣
(⋯)∏

i∈E
dxi,(3.19)

with the understanding that, if E = ∅, then ⨏U∅(⋯) = (⋯).
We define the function space H 1(U,µ + µE) as the completion in H 1(U,µ + µE)

of the space of functions in C∞(U) such that the norm

∥f∥2H 1(U,µ+µE) ∶= ∫UE
(Eρ0 [f2(µ + µE)] +Eρ0 [∫

U
∣∇f(µ + µE , x)∣2 d(µ + µE)(x)]) ,

is finite. Similarly to the notation aρ discussed above, we use the shorthand notation
aE to denote the function a(µ + µE , ⋅). The dual problem νE∗ (◻m, q, ρ0) is defined as

(3.20) νE∗ (◻m, q, ρ0)

∶= sup
u∈H 1(◻m,µ+µE)

⨏
(◻m)E

Eρ0 [
1

ρ0∣◻m∣ ∫◻m

(−1
2
∇u ⋅ aE∇u + q ⋅ ∇u) d(µ + µE)] ,

and we denote its optimizer by ψE
m. Similarly to what was discussed for ψρ

m in the
previous subsection, we have that ψE

m coincides with the function ψm(µ + µE), and
we can always think of the superscript E as indicating the operation of adding µE to
the argument of the function, see (2.9).

We have built the configuration space in order to capture the notion of indistin-
guishable particles: if we exchange the positions of two particles, the measure does
not change. However, when perturbing the measure µ with the addition of µρ (or µE),
the setting naturally introduces some amount of distinguishability between particles,
as some come from the measure µ and some from the measure µρ (or µE). Lemma 3.1
has clarified in particular that “nothing is gained” in the optimization problem if we
allow the particles to be distinguishable. We now “project” this statement into a
form in which, roughly speaking, we can only distinguish from which measure (such
as µ, µρ or µE) a particle “comes”.

Proposition 3.3. For all finite sets E,F ⊆ N+, we have that

∫
(◻m+1)E∪F

E [∫◻m

(∇ψρ,F
m ⋅ aE∇ψE

m −∇ψρ,F
m ⋅ q)dµ] = 0,(3.21)

∫
(◻m+1)E∪F

E [∫◻m

(∇ψF
m ⋅ aρ,E∇ψρ,E

m −∇ψF
m ⋅ q)dµ] = 0.(3.22)

Before turning to the proof, we point out some possibly surprising features of
this result. First, as pointed out above, these relations differ from (3.10) in that
the test functions can distinguish between different types of particles: for instance,
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the function ψF
m depends only on µ + µF , and cannot be thought of as a function

of µ + µρ + µE , as one might hope at first. Second, the integration of the additional
particles indexed by E ∪ F is carried over the larger domain ◻m+1, instead of the
domain ◻m that one might expect. And finally, we integrate over µ only, while
one might at first expect (3.21) and (3.22) to be integrated against µ + µE and
µ + µρ + µE respectively. The proof below will need to address each of these aspects.
The particular form of (3.21) and (3.22) we have chosen here will turn out to be the
most convenient later on: for instance, we will often need to study linear combinations
of ψE

m’s for different sets E, and it is most convenient that the measure against which
we integrate does not depend on E. Similarly, when we study the effect of a change
in the density, some additional particles that fall in a layer around ◻m will need to
be taken into account, and it is more convenient that (3.21) and (3.22) take such
perturbations into account.

Proof of Proposition 3.3. We first show (3.21). The proof can be divided into 4 steps.

Step 1: Decomposition. For E,F ⊆ N fixed, we split E ∪F = E ⊔ (F ∖E) and write
µF = µF∩E + µF∖E . By Fubini’s theorem we reorganize

(3.23)

∫
(◻m+1)E∪F

E[∫◻m

(∇ψρ,F
m ⋅ aE∇ψE

m −∇ψρ,F
m ⋅ q)dµ]

= ∫
(◻m+1)F∖E

E [∑
n∈N

Pρ0[µ(◻m) = n]An(µρ, µ (◻m)c, µF∖E)] ,

where for every n ∈ N we defined

An(µρ, µ (◻m)c, µF∖E)

∶= ∫
(◻m+1)E

E [∫◻m

(∇ψρ,F
m ⋅ aE∇ψE

m −∇ψρ,F
m ⋅ q)dµ ∣µρ, µ (◻m)c, µ(◻m) = n] .

We note that only ψρ,F
m depends on the realization of µρ. Hence, the previous term

can be rewritten as

An(µρ, µ (◻m)c, µF∖E)

= ∫
(◻m+1)E

Eρ0 [∫◻m

(∇ψρ,F
m ⋅ aE∇ψE

m −∇ψρ,F
m ⋅ q)dµ ∣µ (◻m)c, µ(◻m) = n] ,

in which the measures µρ and µF∖E in ψρ,F
m are fixed.

We now apply a further decomposition of An. Let G ⊆ E be the set of particles in
◻m, then the integration becomes

∫
(◻m+1)E

= ∑
G⊆E
∫
(◻m+1∖◻m)E∖G

∫
(◻m)G

,

and we can write

(3.24) An(µρ, µ (◻m)c, µF∖E)

= ∑
G⊆E
∫
(◻m+1∖◻m)E∖G

Bn(µρ, µ (◻m)c, µF∖E , µE∖G),

where the quantity Bn(µρ, µ (◻m)c, µF∖E , µE∖G) is defined as

Bn(µρ, µ (◻m)c, µF∖E , µE∖G)

∶= ∫
(◻m)G

Eρ0 [∫◻m

(∇ψρ,F
m ⋅ aE∇ψE

m −∇ψρ,F
m ⋅ q)dµ ∣µ (◻m)c, µ(◻m) = n] .
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Step 2: Finding the associated variational problem. We now claim that, for each
G ⊆ E and every µE∖G,

(3.25) Bn(µρ, µ (◻m)c, µF∖E , µE∖G) = 0.

To prove this, we begin by specifying where the functions ψE
m and aE are evalu-

ated. Splitting µE = µE∩G + µE∖G and recalling the definition (3.2) of the canonical
projection for ψm, we note that the term ψE

m in the expectation corresponds to
ψm,n+∣G∣( ⋅ , µ (◻m)c + µE∖G). By Lemma 3.1, this function is a maximizer for the
functional Jn+∣G∣(⋅,◻m, q, µ (◻m)c + µE∖G). Moreover, we notice that the left-hand
side of (3.25) is quite similar to the variational formulation for the optimization

problem for Jn+∣G∣(⋅,◻m, q, µ (◻m)c+µE∖G) that is tested against the function ψρ,F
m ,

so we define

B̃n(µρ, µ (◻m)c, µF∖E , µE∖G)

∶= ∫
(◻m)G

Eρ0 [∫◻m

(∇ψρ,F
m ⋅ aE∇ψE

m −∇ψρ,F
m ⋅ q)d(µ + µG) ∣µ (◻m)c, µ(◻m) = n] .

In the following, we will

● verify that ψρ,F
m is an admissible test function for the optimization problem

for Jn+∣G∣(⋅,◻m, q, µ (◻m)c + µE∖G), showing that B̃n = 0;
● deduce from B̃n = 0 the claim (3.25).

Step 3: The test function is admissible. Conditioned on µ(◻m) = n, we write
µ ◻m and µF as

µ ◻m =
n

∑
i=1
δyi , µF =

∣F∩G∣
∑
i=1

δxαi
+
∣F∖G∣
∑
j=1

δxβj
.

Then conditioned on µ(◻m) = n, for P-almost every realization of µ (◻m)c, µρ, and
(Lebesgue-) almost every realization of µF∖E , the function

(y1,⋯, yn, xα1 ,⋯, xα∣F∩G∣)↦ ψm
⎛
⎝

n

∑
i=1
δyi +

∣F∩G∣
∑
i=1

δxαi
+ µF∖G + µ (◻m)c + µρ

⎞
⎠
,

belongs to H1((◻m)n+∣F∩G∣) thanks to (3.18). Thus it also belongs to H1((◻m)n+∣G∣)
with respect to the integration (µ + µG), and it is an admissible function for the
optimization problem for Jn+∣G∣(⋅,◻m, q, µ (◻m)c + µE∖G). This implies that for
P-almost every realization of µ (◻m)c, µρ, and Lebesgue-almost every realization of
µF∖E , we have

B̃n(µρ, µ (◻m)c, µF∖E , µE∖G) = 0.

Step 4: Passage from B̃n = 0 to Bn = 0. We stress that from the gradient of ψρ,F
m in

B̃n, out of the (n+ ∣G∣) particles in (µ+µG) only those in the support of (µ+µF∩G)
contribute. Thus we can rewrite B̃n as

B̃n(µρ, µ (◻m)c, µF∖E , µE∖G)

= ∫
(◻m)G

Eρ0 [∫◻m

(∇ψρ,F
m ⋅ aE∇ψE

m −∇ψρ,F
m ⋅ q)d(µ + µF∩G) ∣µ (◻m)c, µ(◻m) = n] .

Notice now that the integrals above give the same contribution for every particle in

(µ + µF∩G), because ψρ,F
m , ψE

m and aE are all invariant under permutations for these
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particles. As a consequence, we have

Bn(µρ, µ (◻m)c, µF∖E , µE∖G)

= ( n

n + ∣F ∩G∣) B̃n(µρ, µ (◻m)c, µF∖E , µE∖G)

= 0.

We thus established (3.25). Then we put it back to (3.23) and (3.24), which implies
that the left-hand side of (3.23) is zero and concludes the proof of (3.21).

We now turn to (3.22). The proof is similar and one can repeat the 4 steps above.
The only difference is that we also need to do the expansion according to the number
of particles µρ(◻m) and we skip the details. □

Remark 3.4. The proof in fact yields the following stronger result: for all finite sets
E,F ⊆ N+, and G ⊆ E, we have that

∫
(◻m+1)E∪F

E [∫◻m

(∇ψρ,F
m ⋅ aE∇ψE

m −∇ψρ,F
m ⋅ q)d(µ + µG)] = 0,

∫
(◻m+1)E∪F

E [∫◻m

(∇ψF
m ⋅ aρ,E∇ψρ,E

m −∇ψF
m ⋅ q)d(µ + µG)] = 0.

Remark 3.5. We point out that, choosing ρ = 0 in (3.21), we recover the same

identity with ψρ,F
m replaced by ψF

m. From this, we may also change the density of
the distribution of µ from ρ0 to ρ0 + ρ, and obtain the analogue of (3.22) with ψF

m

replaced by ψρ,F
m .

Finally, we note that, by linearity, (3.21) and (3.22) are also true if we use test

functions of the form DFψ
G∖F
m or DFψ

ρ,G∖F
m , F,G ⊆ N and we replace the outer

integrals by ∫(◻m+1)E∪F∪G .

4. First-order differentiability

In this section we prove Theorem 2.1. We explain at first its main ingredient,
and it also gives us the opportunity to exemplify the sort of arguments that will be
generalized later to obtain Theorem 2.3.

We recall that we have fixed a vector q ∈ Rd, and that ψm denotes the optimizer
in the definition (2.3) of the quantity ν∗(◻m, q, ρ0). We use the notation ≲ for ⩽ C×
with the constant C depending only d, Λ and the length of the vector q ∈ Rd.

The quantity that we will study is the difference between the diffusion coefficients
at different densities

∆ρ(ρ0) ∶= q ⋅ a−1(ρ0 + ρ)q − q ⋅ a−1(ρ0)q,(4.1)

as well as, for each m ∈ N, its finite-volume analogue

∆ρ
m(ρ0) ∶= q ⋅ a−1∗ (◻m, ρ0 + ρ)q − q ⋅ a−1∗ (◻m, ρ0)q.(4.2)

In order to prove Theorem 2.1, we first establish its finite-volume version for ∆ρ
m(ρ0),

with estimates that hold uniformly over m, and then pass to the limit. We recall that

the notation ψ
{1}
m ,a{1} is defined in (2.9).

Proposition 4.1. For any ρ, ρ0 > 0 fixed, it holds

∆ρ(ρ0) = lim
m→∞

∆ρ
m(ρ0).(4.3)
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Moreover, uniformly over m ∈ N, we have

∣∆ρ
m(ρ0) − c1,m(ρ0)ρ∣ ≲ ρ2,(4.4)

with

c1,m(ρ0) ∶= ∫
Rd

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (a − a{1})∇ψ{1}m dµ] dx1.(4.5)

The proof of Proposition 4.1 relies on two ingredients. The first is the following
representation formula for the difference term ∆ρ

m(ρ0).
Lemma 4.2. For every m ∈ N and ρ > 0, we have

∆ρ
m(ρ0) = E [

1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (a − aρ)∇ψρ
m dµ] .(4.6)

One may find that (4.6) and (4.5) look quite similar, which explains that c1,m(ρ0)
is indeed its first order approximation. To verify this approximation, we also need
some estimate, which is the second ingredient for the proof of Proposition 4.1. The
next lemma allows us to compare the behavior of the optimizers ψm, ψ

ρ
m when the

measures µ or µ+µρ are perturbed by one or two additional particles. Given E ⊆ N+,
we recall the definitions (2.10) and (2.11) for the finite difference DE , and the notation
for the integrals ∫UE in (3.19) .

Lemma 4.3. For every m ∈ N and E,F ⊆ N+ with ∣E∣ ⩽ 2 and ∣F ∣ ⩽ 1, we have

∫
(Rd)E

E [ 1

ρ0∣◻m∣ ∫◻m

∣∇DEψm∣2 dµ] ≲ 1,(4.7)

E [ 1

ρ0∣◻m∣ ∫◻m

∣∫
(Rd)F

∇DFψm ∣
2

dµ] ≲ 1.(4.8)

Remark 4.4. Applying Lemma 4.3 for an underlying particle density of ρ0 + ρ instead
of ρ, we see that the same estimates as in (4.7) and (4.8) hold if we replace ψm by
ψρ
m and µ by µ + µρ.

Proposition 4.1 and Lemma 4.3 will be generalized in Section 5 to prove Theorem 2.3,
where a higher-order approximation is needed. Estimate (4.7), indeed, corresponds
to Proposition 5.4 with ∣F ∣ ⩽ 2,G = ∅, while (4.8) corresponds to F = G with ∣F ∣ = 1.

We organize the remainder of this section as follows. We finish the introduction with
a lemma gathering some basic properties of Poisson point processes. In Subsection 4.1,
we prove Lemmas 4.2 and 4.3. Then we devote Subsection 4.2 to the proof of the key
result Proposition 4.1. Subsection 4.3 builds upon Proposition 4.1 to conclude for
the validity of Theorem 2.1.

Here are some basic estimates for Poisson point processes that we extensively use
in the arguments of this section.

Lemma 4.5. Let ρ ∈ (0,+∞). For every measurable F ∶Mδ(Rd) → R such that
Eρ [ ∣F ∣ ] < +∞, z ∈ Rd, and finite set E ⊆ N+, we have

(4.9)

Eρ [F (µρ)1{µρ(◻+z)=1}] = ρ∫◻+z Eρ [F {1}(µρ)1{µρ(◻+z)=0}] dx1,

∣Eρ [F (µρ) 1{µρ(◻+z)⩾∣E∣}] ∣ ⩽ ρ
∣E∣∫

(◻+z)E
Eρ[ ∣FE(µρ)∣ ].

For every measurable function H ∶Mδ(Rd) ×Rd → R satisfying the integrability
condition Eρ [∫U ∣H(µρ, x)∣dµρ(x)] < +∞, we have Mecke’s identity (c.f also [31,
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Eρ [
1

ρ ∣U ∣ ∫U H(µρ, x)dµρ(x)] = ⨏U Eρ [H(µρ + δx, x)] dx.(4.10)

Proof of Lemma 4.5. Without loss of generality, we may fix z = 0 in (4.9). The first
identity there follows immediately if we spell out the definition of the expectation Eρ

and use the independence of increments of the Poisson point process:

Eρ [F (µρ)1{µρ(◻)=1}] = Eρ[e−ρρ∫◻ F (δx1 + µρ (◻)c)dx1]

= ρ∫◻Eρ[1{µρ(◻)=0}F (δx1 + µρ)]dx1.

For the second estimate in (4.9), we write n ∶= ∣E∣ and observe that

Eρ [F (µρ)1µρ(◻)⩾∣E∣] = Eρ [e−ρ
∞
∑
k=n

ρk

k!
∫
(◻)k

F (
k

∑
i=1
δxi + µρ (◻)c)dx1⋯dxk] .

This allows us to bound

∣Eρ [F (µρ)1{µρ(◻)⩾∣E∣}] ∣ ⩽ ρ
n ×

∫◻n
Eρ

⎡⎢⎢⎢⎢⎣

∞
∑
k=n

e−ρ
ρk−n

(k − n)! ∫(◻)k−n ∣F (
n

∑
j=1

δyj +
k−n
∑
i=1

δxi + µρ ◻c)∣dx1⋯dxk−n

⎤⎥⎥⎥⎥⎦
dy1⋯dyn.

which is the second estimate in (4.9). Finally, (4.10) may be obtained from the
definition of Eρ and the invariance of H under permutations of the atoms in µ. □

4.1. Representation formula and corrector estimates. In this subsection we
prove Lemmas 4.2 and 4.3.

Proof of Lemma 4.2. We use the definition of ∆ρ
m(ρ0) and (3.11) to write

∆ρ
m(ρ0) = E [

1

(ρ0 + ρ)∣◻m∣ ∫◻m

q ⋅ ∇ψρ
m d(µ + µρ)] −E [

1

ρ0∣◻m∣ ∫◻m

q ⋅ ∇ψm dµ] .

Identity (4.10) of Lemma 4.5 applied to ∇ψρ
m, first with density ρ (with respect to to

µρ) and then ρ0 (with respect to µ), yields that

E [ 1

(ρ0 + ρ)∣◻m∣ ∫◻m

q ⋅ ∇ψρ
m dµρ] = E [

ρ

ρ0(ρ0 + ρ)∣◻m∣ ∫◻m

q ⋅ ∇ψρ
m dµ] ,

and, hence, also

∆ρ
m(ρ0) = E [

1

ρ0∣◻m∣ ∫◻m

q ⋅ (∇ψρ
m −∇ψm)dµ] .(4.11)

To establish representation (4.6) it now only remains to apply (3.22) in Proposition 3.3
and (3.21) with the choice E = F = ∅. □

Proof of Lemma 4.3. We start by noting that if E = F = ∅, then the inequalities of
Lemma 4.3 correspond to the basic energy estimate in (3.12). Hence, we only need to
focus on the cases E,F ≠ ∅. With no loss of generality, we prove (4.7) with E = {1}
or E = {1,2} and (4.8) with F = {1}. We also stress that, since by construction the
maximizer ψm is FQ3m+1-measurable, for every non-empty subset G ⊆ N we have that
DGψm vanishes whenever one of the particles {xj}j∈G does not belong to Q3m+1 (c.f.
Definitions (2.11) and (2.10)). This implies that in (4.7)-(4.8) we may replace the
integrals over Rd by integrals over any set U ⊇ Q3m+1. In line with the notation of
Section 3, throughout the proof we fix U = ◻m+1.
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We start with (4.7) when E = {1}. In view of the previous remarks and spelling
out the integrand, this may be rewritten as

(4.12) ∫◻m+1
E [ 1

ρ0∣◻m∣ ∫◻m

∣∇(ψ{1}m − ψm)∣2dµ]dx1 ≲ 1,

We consider identity (3.21) of Proposition 3.3 with ρ = 0, E = ∅ and E = {1} and
with test function D{1}ψm (c.f. Remark 3.5).

∫◻m+1
E [∫◻m

(∇D{1}ψm ⋅ a∇ψm −∇D{1}ψm ⋅ q)dµ] = 0,

∫◻m+1
E [∫◻m

(∇D{1}ψm ⋅ a{1}∇ψ{1}m −∇D{1}ψm ⋅ q)dµ] = 0.

Subtracting the resulting identities yields that

(4.13)
∫◻m+1

E[ 1

ρ0∣◻m∣ ∫◻m

∇D{1}ψm ⋅ a{1}∇D{1}ψm dµ]dx1

= −∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

∇D{1}ψm ⋅ (D{1}a)∇ψm dµ]dx1.

We now appeal to the uniform ellipticity assumption (2.1) and the Cauchy–Schwarz
inequality to infer from (4.13) that

∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

∣∇D{1}ψm∣2 dµ]dx1

≲∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

(D{1}a)2∣∇ψm∣2dµ]dx1.

We obtain the first inequality in (4.12) after noting that (2.2) and (2.1) for a imply
that also

∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

(D{1}a)2∣∇ψm∣2dµ]dx1

≲ E[ 1

ρ0∣◻m∣ ∫◻m
∫◻+z ∣∇ψm(µ, z)∣2 dx1 dµ(z)]

(3.12)

≲ 1.

This establishes (4.12).

The proof of (4.7) when E = {1,2} follows a similar argument. Observe that

D{1,2}ψm = ψ{1,2}m − ψ{1}m − ψ{2}m + ψm,

we may add and subtract suitable combinations of identity (3.21) in Proposition 3.3
with E ∈ {∅,{1},{2},{1,2}} and test function ∇D{1,2}ψm (c.f. Remark 3.5) to infer
that

(4.14)

∫
(◻m+1)2

E[ 1

ρ0∣◻m∣ ∫◻m

∇D{1,2}ψm ⋅ a{1,2}∇D{1,2}ψm dµ]dx1 dx2

=
2

∑
i=1
∫
(◻m+1)2

E[ 1

ρ0∣◻m∣ ∫◻m

∇D{1,2}ψm ⋅ (a{i} − a{1,2})∇D{i}ψmdµ]dx1 dx2

− ∫
(◻m+1)2

E[ 1

ρ0∣◻m∣ ∫◻m

∇D{1,2}ψm ⋅ (D{1,2}a)∇ψmdµ]dx1 dx2.

From this, we obtain (4.7) when E = {1,2} as was done in the case E = {1}.
This time, besides the Cauchy–Schwarz inequality and (2.1)-(2.2), we also rely on
inequality (4.12) for ∣E∣ = 1 that was proved above.
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To conclude the proof of this lemma, it remains to establish inequality (4.8). As
argued at the beginning of the proof of this lemma, this can be reduced to

(4.15) E [ 1

ρ0∣◻m∣ ∫◻m

∣∫
(◻m+1){1}

∇D{1}ψm ∣2dµ] ≲ 1.

We appeal again to Proposition 3.3: we subtract (3.21) with E = ∅ and test function
D{2}ψm (c.f. Remark 3.5) from the same identity with E = {1} and test function
D{2}ψm. This yields

∫
(◻m+1){1,2}

E[ 1

ρ0∣◻m∣ ∫◻m

∇D{2}ψm ⋅ a∇D{1}ψm dµ]

= −∫
(◻m+1){1,2}

E[ 1

ρ0∣◻m∣ ∫◻m

∇D{2}ψm ⋅ (D{1}a)∇ψ{1}m dµ].

Appealing to Fubini’s theorem and observing that, by a simple relabelling of the
integration variable, it holds that ∫(◻m+1){1}D{1}ψm = ∫(◻m+1){2}D{2}ψm, we infer

that

E[ 1

ρ0∣◻m∣ ∫◻m

∇(∫
(◻m+1){1}

D{1}ψm) ⋅ a∇(∫
(◻m+1){1}

D{1}ψm)dµ]

= −E[ 1

ρ0∣◻m∣ ∫◻m

∇(∫
(◻m+1){1}

D{1}ψm) ⋅ (∫
/◻m+1){1}

(D{1}a)∇ψ{1}m )dµ].

By (2.1) and the Cauchy–Schwarz inequality, this also implies that

E[ 1

ρ0∣◻m∣ ∫◻m

∣∫
(◻m+1){1}

∇D{1}ψm ∣2 dµ]

⩽ E[ 1

ρ0∣◻m∣ ∫◻m

∣∫
(◻m+1){1}

(D{1}a)∇ψ{1}m ∣2dµ].

We thus conclude the proof of (4.15) provided that the term on the right-hand side
above is ≲ 1: by the triangle inequality we have that

E[ 1

ρ0∣◻m∣ ∫◻m

∣∫
(◻m+1){1}

(D{1}a)∇ψ{1}m ∣2dµ]

⩽ E[ 1

ρ0∣◻m∣ ∫◻m

∣∫
(◻m+1){1}

(D{1}a)∇D{1}ψm ∣2dµ]

+E[ 1

ρ0∣◻m∣ ∫◻m

∣∫
(◻m+1){1}

(a − a{1}) ∣2∣∇ψm∣2dµ].

The second term on the right-hand side is immediately bounded by ≲ 1 due to
assumptions (2.1)-(2.2) on a and (3.12). The first term admits the same upper
bound thanks to the Cauchy–Schwarz inequality, (2.1)-(2.2), and (4.12). The proof
of Lemma 4.3 is complete. □

4.2. Proof of Proposition 4.1. In this section we use Lemmas 4.2 and 4.3 to show
Proposition 4.1.

Proof of Proposition 4.1. Limit (4.3) follows immediately from definitions (4.1), (4.2)
and (2.5). We thus turn to (4.4) and prove this inequality in three different steps.

Step 1. We claim that

(4.16)

∣∆ρ
m(ρ0) − ρc1,m(ρ0)∣ ≲ ρ2

+ ρ ∣∫◻m+1
E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (D{1}a)(∇ψρ,{1}
m −∇ψ{1}m )dµ] dx1∣ .
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We begin by using the representation formula for ∆ρ
m(ρ0) of Lemma 4.2, the

definition of the expectation E and assumption (2.2) for a to rewrite

(4.17)

∆ρ
m(ρ0) = E [

1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅Eρ [1µρ(◻+z)⩾1(a − a
ρ)∇ψρ

m]dµ(z)]

= E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅Eρ [1µρ(◻+z)=1(a − a
ρ)∇ψρ

m]dµ(z)]

+E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅Eρ [1µρ(◻+z)⩾2(a − a
ρ)∇ψρ

m]dµ(z)] .

We claim that the second term on the right-hand side above is bounded by a constant
multiple of ρ2: using the Cauchy–Schwarz inequality, the bound (3.12), and the
second inequality in (4.9) of Lemma 4.5 with E = {1,2}, we infer that

(4.18)

∣E[ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅Eρ [1µρ(◻+z)⩾2(a − a
ρ)∇ψρ

m]dµ]∣

≲ ρ2E [ 1

ρ0∣◻m∣ ∫◻m

(∫
(◻+z)2

∣∇ψρ,{1,2}
m ∣2 dx1 dx2)dµ(z)] ,

and the right-hand side is ≲ ρ2, as one can see by writing

ψρ,{1,2}
m =D{1,2}ψρ

m −D{1}ψρ
m −D{2}ψρ

m + ψρ
m,

and then applying the triangle inequality and Lemma 4.3. Inserting this into (4.17),
we have that

(4.19) ∣∆ρ
m(ρ0) −E [

1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅Eρ [1µρ(◻+z)=1(a − a
ρ)∇ψρ

m]dµ(z)]∣ ≲ ρ2.

We now apply the first inequality of (4.9) to the inner expectation in the term on
the left-hand side above. This, together with the locality (2.2) of a, yields that

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅Eρ [1µρ(◻+z)=1(a − a
ρ)∇ψρ

m]dµ(z)]

= ρE [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (∫◻+z Eρ [1µρ(◻+z)=0(a − a
{1})∇ψρ,1

m ] dx1)dµ(z)]

(4.5)= ρ cm,1 − ρE [
1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (∫◻+z(D{1}a)(∇ψ
ρ,{1}
m −∇ψ{1}m )dx1)dµ(z)]

+ ρE [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (∫◻+z Eρ [1µρ(◻+z)⩾1(D{1}a)∇ψ
ρ,{1}
m ] dx1)dµ(z)] .

To conclude from this and (4.19) that inequality (4.16) holds, it remains to prove
that the last term above is ≲ ρ2. This may be done using again the second inequality
in (4.9) and Lemma 4.3, as done for the term in (4.18).

Step 2. We now argue that the term appearing on the right-hand side of (4.16)
may be rewritten as follows:

(4.20)

∫◻m+1
E[ 1

ρ0∣◻m∣
∇ψm ⋅ (D{1}a)(∇ψρ,{1}

m −∇ψ{1}m )dµ]dx1

= ∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

∇D{1}ψm ⋅ (aρ,{1} − a{1})∇ψρ,{1}
m dµ]dx1.
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We appeal to Proposition 3.3: we subtract (3.21) with E = F = {1} from (3.21) with
E = ∅ and F = {1}. This, together with the symmetry of a, yields that

−∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (D{1}a)∇ψρ,{1}
m dµ]dx1

= ∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

∇ψρ,{1}
m ⋅ a{1}∇D{1}ψm dµ]dx1.

We now subtract this inequality from the same one with ρ = 0 (see also the discussion
in Remark 3.5) and conclude that

(4.21) ∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (D{1}a)(∇ψρ,{1}
m −∇ψ{1}m )dµ]dx1

= ∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

(∇ψ{1}m −∇ψρ,{1}
m ) ⋅ a{1}∇D{1}ψm dµ]dx1.

We now treat the term on the right-hand side above in an analogous way. We consider
(3.21) and (3.22) in Proposition 3.3 with E = {1} and test function D{1}ψm (this is
possible by Remark 3.5). This yields

(4.22) ∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

∇D{1}ψm ⋅ a{1}(∇ψ{1}m −∇ψρ,{1}
m )dµ]dx1

= ∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

∇D{1}ψm ⋅ (aρ,{1} − a{1})∇ψρ,{1}
m dµ]dx1.

We compare the two displays (4.21) and (4.22), which give (4.20) and thus conclude
the proof of Step 2.

Step 3. In this step, we give an estimate that

(4.23) ∣∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻+z
∇ψm ⋅ (D{1}a)(∇ψρ,{1}

m −∇ψ{1}m )dµ]dx1∣ ≲ ρ.

This, together with the result (4.16) of Step 1, will establish Proposition 4.1.

Appealing to Step 2, the proof of this step can be reduced to establishing that

(4.24) ∣∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

∇D{1}ψm ⋅ (aρ,{1} − a{1})∇ψρ,{1}
m dµ]dx1∣ ≲ ρ.

We use the triangle inequality to split

(4.25)

∣∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

∇D{1}ψm ⋅ (a{1} − aρ,{1})∇ψρ,{1}
m dµ]dx1∣

⩽ ∣∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

∇D{1}ψm ⋅ (a{1} − aρ,{1})∇D{1}ψρ
mdµ]dx1∣

+ ∣∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

∇D{1}ψm ⋅ (a{1} − aρ,{1})∇ψρ
mdµ]dx1∣,

and treat separately the two integrals above.
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We begin with the first one and argue similarly to (4.17) of Step 1: we use (2.2),
Lemma 4.9 and the Cauchy–Schwarz inequality to control

∣∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

∇D{1}ψm ⋅ (a{1} − aρ,{1})∇D{1}ψρ
mdµ]dx1∣

⩽ ρ(∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

∣∇D{1}ψm∣2dµ]dx1)
1
2

× (∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m
∫◻+z ∣∇D{1}ψ

ρ,2
m ∣2dx2dµ(z)]dx1)

1
2

Lemma 4.3
≲ ρ(∫◻m+1

E[ 1

ρ0∣◻m∣ ∫◻m
∫◻+z ∣∇D{1}ψ

ρ,2
m ∣2dx2dµ(z)]dx1)

1
2

.

Writing

D{1}ψ
ρ,2
m = ψρ,{1,2}

m − ψρ,{2}
m =D{1,2}ψρ

m −D{1}ψρ
m,

and appealing again to the triangle inequality and to the estimates of Lemma 4.3, we
infer that

∣∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

∇D{1}ψm ⋅ (a{1} − aρ,{1})∇D{1}ψρ
m dµ]dx1∣ ≲ ρ.(4.26)

The second integral in (4.25) may be treated in a similar way, if we split

∣∫◻m+1
E[ 1

ρ0∣◻m∣ ∫◻m

∇D{1}ψm ⋅ (a{1} − aρ,{1})∇ψρ
mdµ]dx1∣

⩽ ∣E[ 1

ρ0∣◻m∣ ∫◻m
∫◻m+1∖(◻+z)

∇D{1}ψm ⋅Eρ[(a{1} − aρ,{1})∇ψρ
m]dx1 dµ]∣

+ ∣E[ 1

ρ0∣◻m∣ ∫◻m
∫◻+z∇D{1}ψm ⋅Eρ[(a{1} − aρ,{1})∇ψρ

m]dx1 dµ]∣.

The second term may be bounded by ≲ ρ using again (2.2) and an argument analogous
to the one used for (4.26). On the other hand, since by (2.2), for every z ∈ ◻m and
x ∈ ◻m ∖ (◻+ z) we have that

a{1}(µ, z) − aρ,{1}(µ, z) = 1{µρ(◻+z)⩾1}(a(µ, z) − a
ρ(µ, z)),

the first term on the right-hand side above may be rewritten as

E[ 1

ρ0∣◻m∣ ∫◻m
∫◻m+1∖(◻+z)

∇D{1}ψm ⋅Eρ[(a{1} − aρ,{1})∇ψρ
m]dx1 dµ]

= E[ 1

ρ0∣◻m∣ ∫◻m

(∫◻m+1∖(◻+z)
∇D{1}ψmdx1) ⋅Eρ[1{µρ(◻+z)⩾1}(a − a

ρ)∇ψρ
m]dµ].

We may bound this term by ≲ ρ by appealing once again to the Cauchy–Schwarz
inequality and Lemmas 4.3 and 4.9. This yields that also the second integral in (4.25)
is bounded by ≲ ρ. This establishes (4.24) and concludes the proof of Step 3.
Proposition 4.1 is therefore proved. □

4.3. Proof of Theorem 2.1. Equipped with Proposition 4.1, we are now ready to
prove the main result of this section.
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Proof of Theorem 2.1. A first consequence of Proposition 4.1 is that {c1,m(ρ0)}m∈N
in (4.5) is uniformly bounded over m ∈ N. Indeed, by definition (4.5), assumptions
(2.1)-(2.2) on a and the Cauchy–Schwarz inequality, we have that

∣c1,m(ρ0)∣ = ∣E [
1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ ∫
(◻+z)

(a{1} − a)∇ψ{1}m dx1 dµ(z)]∣

⩽ E [ 1

ρ0∣◻m∣ ∫◻m

∣∇ψm∣2dµ]
1
2

E [ 1

ρ0∣◻m∣ ∫◻m
∫◻+z ∣∇ψ

{1}
m ∣2 dµ]

1
2

.

The first factor on the right-hand side above is bounded thanks to (3.12). The second
one can be controlled by the triangle inequality, Lemma 4.3 and again (3.12).

Let ρ0 > 0 be fixed. The uniform bound for {c1,m(ρ0)}m∈N implies that we may
find a subsequence (possibly depending on ρ0) and a number c∗1(ρ0) such that

lim
j→+∞

c1,mj(ρ0) ∶= c∗1(ρ0).

Passing to the limit along this subsequence in the inequality (4.4) of Proposition 4.1
and using (4.3), we infer that for every ρ > 0

∣∆ρ(ρ0) − c∗1(ρ0)ρ∣ ≲ ρ2.(4.27)

On the one hand, the arbitrariness of ρ > 0 in this inequality implies that the value
c∗1(ρ0) is the limit for the full sequence {cm,1(ρ0)}m∈N, which we denote by c1(ρ0).
On the other hand, definition (4.1) allows to immediately infer that for every ρ0 > 0
fixed and ρ ⩾ 0 tending to zero, we have

q ⋅ a−1(ρ0 + ρ)q = q ⋅ a−1(ρ0)q + c1(ρ0)ρ +O(ρ2).(4.28)

To conclude the proof of Theorem 2.1, it thus remains to extend (4.28) to negative
values of ρ that tend to zero. We do this by applying (4.28) with the pair (ρ0, ρ0 + ρ)
substituted with (ρ0 − ρ, ρ0) to get that, as ρ ⩾ 0 tends to zero,

q ⋅ a−1(ρ0 − ρ)q = q ⋅ a−1(ρ0)q − c1(ρ0 − ρ)ρ +O(ρ2).(4.29)

To conclude the desired expansion, it remains to show that we may replace c1(ρ0 − ρ)
by c1(ρ0) in this display. Defining f(⋅) ∶= q ⋅ a−1(⋅)q and appealing to identity (4.28),
we write

c1(ρ0 − ρ) =
f(ρ0) − f(ρ0 − ρ)

ρ
+O(ρ)

= f(ρ0) − f(ρ0 + ρ)
ρ

+ f(ρ0 + ρ) − f(ρ0 − ρ)
ρ

+O(ρ)

= −c1(ρ0) + 2c1(ρ0 − ρ) +O(ρ).

In the last line, we apply (4.28) at ρ0 for the first term, and (4.28) at (ρ0 − ρ) for the
second term wit step size 2ρ. The notation O(ρ) is valid as the hidden constant is
independent from the density. The equation above gives us

c1(ρ0 − ρ) = c1(ρ0) +O(ρ).

Inserting this into (4.29) yields that (4.28) holds also for negative perturbations ρ.
This completes the proof of Theorem 2.1. □
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5. Higher-order differentiability

The goal of this section is to generalize the results of the previous section, and
ultimately prove Theorem 2.3 stating that the mapping ρ0 ↦ a(ρ0) is infinitely
differentiable.

As a preparation, we recall that the notation fE and DE is introduced in (2.9),
(2.11) and state basic algebraic properties of these operators.

Proposition 5.1 (Algebraic properties). For every f, g ∶Mδ(Rd)→ R and every
finite set E ⊆ N+, the following identities hold.

● Inclusion-exclusion formula

DEf = ∑
F⊆E
(−1)∣E∖F ∣fF .(5.1)

● Telescoping formula

fE = ∑
F⊆E

DF f.(5.2)

● Leibniz formulas

DE(fg) = ∑
F⊆E
(DF f)(DE∖F g

F ),(5.3)

and

DE(fg) = ∑
F,G⊆E,F∪G=E

(DF f)(DGg).(5.4)

Proof. These elementary identities can be proved by induction. We show (5.3) for
illustration. Without loss of generality, we can assume that E = [[1, n]] for some
integer n ∈ N+. The case n = 1 is clear:

D1(fg) = f{1}g{1} − fg = (D1f)g{1} + f(D1g).(5.5)

Assuming that the formula is valid for E = [[1, n]], we can then write

D[[1,n+1]](fg) =Dn+1(D[[1,n]](fg))

=Dn+1
⎛
⎝ ∑
F⊆[[1,n]]

(DF f)(D[[1,n]]∖F gF )
⎞
⎠

= ∑
F⊆[[1,n]]

Dn+1 ((DF f)(D[[1,n]]∖F gF )) .

We then use (5.5) to assert that

Dn+1 ((DF f)(D[[1,n]]∖F gF ))
= (DF∪{n+1}f)(D[[1,n]]∖F gF∪{n+1}) + (DF f)(D[[1,n+1]]∖F gF )
= (DF∪{n+1}f)(D[[1,n+1]]∖(F∪{n+1})gF∪{n+1}) + (DF f)(D[[1,n+1]]∖F gF ).

Combining the two previous displays yields the claim. □

5.1. Main strategy. In this section, we present the structure of the proof of Theo-
rem 2.3. We will in fact mostly focus on the following finite-volume version of this
statement. Recall the definitions of ∆ρ and ∆ρ

m in (4.1) and (4.2), and we know from
(4.1) that ∆ρ = limm→∞∆ρ

m. In order to lighten the expressions appearing below, we
use the notation in (3.19) to simplify the integration with respect to several particles.
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Proposition 5.2 (Smoothness in finite volume). For every ρ0 > 0 and k,m ∈ N+, we
define

(5.6) ck,m(ρ0) ∶= ∫
(Rd)[[1,k]]

E[ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅D[[1,k]] ((a − a#)∇ψ#
m) dµ].

There exists a positive constant Ck(d,Λ) <∞ such that for every m ∈ N+ and ρ0 > 0,
(5.7) ∣ck,m(ρ0)∣ ⩽ Ck.

Moreover, the quantity ∆ρ
m(ρ0) defined in (4.2) satisfies that, for every k ∈ N+,

(5.8) ∆ρ
m(ρ0) =

k

∑
j=1

cj,m(ρ0)
ρj

j!
+Rk(m,ρ0, ρ),

where Rk(m,ρ0, ρ) is such that, as ρ > 0 tends to zero and uniformly over m and ρ0,

Rk(m,ρ0, ρ) = O(ρk+1).

In Subsection 5.6, we will obtain our main result Theorem 2.3 as a corollary of
Proposition 5.2. For now, we present the structure of the proof of this proposition.

The first step of the proof of Proposition 5.2 consists in identifying a convenient ex-
pansion for ∆ρ

m. As a starting point, one can check that if a function f ∶Mδ(Rd)→ R
is bounded and local, then we have

E[f(µ + µρ)] =
∞
∑
k=0

ρk

k!
(∫
(Rd)[[1,k]]

E[D[[1,k]]f]) .(5.9)

(See for instance [32, Theorem 19.2]; a self-contained argument is given below.)
Generalizing this observation, it is natural to expect that ∆ρ

m can be rewritten
from (4.6) as

∞
∑
k=1

ρk

k!
(∫
(Rd)[[1,k]]

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅D[[1,k]] ((a − a#)∇ψ#
m) dµ]) ,

where we dropped the summand indexed by k = 0, which vanishes. Notice that
in the formula above, we could replace ∫(Rd)[[1,k]] with ∫(◻m+1)[[1,k]] , because ψm is

FQ3m+1-measurable, a is also local and the perturbation by adding particles outside
◻m+1 will not contribute; this observation will be applied several times in the sequel.
The following lemma states that the expansion formula is indeed valid for ∆ρ

m; its
proof is provided in Subsection 5.2.

Lemma 5.3 (Expansion of ∆ρ
m). For each m ∈ N, the quantity ∆ρ

m is an analytic
function of ρ and satisfies

∆ρ
m =

∞
∑
k=1

ρk

k!
(∫
(Rd)[[1,k]]

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅D[[1,k]] ((a − a#)∇ψ#
m) dµ]) .(5.10)

The remainder of the proof of Proposition 5.2 consists in the analysis of the
summands in the expansion provided Lemma 5.3. Applying the Leibniz formula
(5.10) to these summands:

(5.11) D[[1,k]] ((a − a#)∇ψ#
m) = ∑

E∪F=[[1,k]]
DE(a − a#)(DF∇ψm),

we are led to the expansion

∆ρ
m =

∞
∑
k=1

ρk

k!
∑

E∪F=[[1,k]]
I(m,ρ0,E,F ),(5.12)
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where the quantity I(m,ρ0,E,F ) is defined for E,F finite subsets of N+,

(5.13) I(m,ρ0,E,F ) ∶= ∫
(Rd)[[1,k]]

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅DE(a − a#)DF (∇ψm)dµ] .

It suffices to give a uniform estimate for the quantity I(m,ρ0,E,F ) with respect
to m and ρ0. Heuristically, the k derivatives act either on the conductance or on
the corrector, and they compensate with the integration ∫(Rd)[[1,k]] . With some more

reduction, the estimation of these terms will be based on the following key result.

Proposition 5.4 (Key estimate). There exists a family of constants {C(i, j)}i⩾j⩾0
such that for every finite sets G ⊆ F ⊆ N+, m ∈ N+ and ρ0 > 0, we have

∫
(Rd)F∖G

E [ 1

ρ0∣◻m∣ ∫◻m

∣∫
(Rd)G

DF∇ψm∣
2

dµ] ⩽ C(∣F ∣, ∣G∣).(5.14)

The proof of this proposition is based on an induction argument. The base case,
for F = G = ∅, is the standard Dirichlet energy estimate (3.12) for ψm. Although
this is not necessary, for greater clarity we first present the easier proof of the special
case with G = ∅ and arbitrary F in Subsection 5.3. We then give a proof for the
general case in Subsection 5.4. This requires a more careful use of Fubini’s lemma
and some inclusion-exclusion argument. The proof of Proposition 5.2 is then carried
out in Subsection 5.5, by combining the results above according to the outline just
discussed.

5.2. Expansion in finite volume. We prove Lemma 5.3 in this part.

Proof of Lemma 5.3. We start by decomposing the expression for ∆ρ
m with respect

to µρ ◻m+1, as the particles outside ◻m+1 will not contribute to the perturbation

∆ρ
m

(4.6)= E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (a − aρ)∇ψρ
m dµ]

= e−ρ∣◻m+1∣
∞
∑
j=0

(ρ∣◻m+1∣)j
j!

(⨏
(◻m+1)[[1,j]]

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (a − a[[1,j]])∇ψ[[1,j]]m dµ]) .

We establish first that the series in the above expression converges absolutely. Indeed,
using the Cauchy–Schwarz inequality and applying the bound (3.12) on the Dirichlet
energy, we can write

∣⨏
(◻m+1)[[1,j]]

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (a − a[[1,j]])∇ψ[[1,j]]m dµ]∣

⩽ (⨏
(◻m+1)[[1,j]]

E [ 1

ρ0∣◻m∣ ∫◻m

∣(a − a[[1,j]])∇ψ[[1,j]]m ∣2 dµ])
1
2

× (⨏
(◻m+1)[[1,j]]

E [ 1

ρ0∣◻m∣ ∫◻m

∣∇ψm∣2 dµ])
1
2

⩽ (⨏
(◻m+1)[[1,j]]

E [ 1

ρ0∣◻m∣ ∫◻m

∣(a − a[[1,j]])∇ψ[[1,j]]m ∣2 dµ])
1
2

.

(5.15)

We introduce the notation

Aj ∶= ⨏
(◻m+1)[[1,j]]

E [ 1

ρ0∣◻m∣ ∫◻m

∣(a − a[[1,j]])∇ψ[[1,j]]m ∣2 dµ] .
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We can further split the integrals contributing to Aj according to the subset E ⊆ [[1, j]]
of particles outside of ◻m, leading to

Aj = ∑
E⊆[[1,j]]

(∣◻m+1 ∖◻m∣
∣◻m+1∣

)
∣E∣

( ∣◻m∣
∣◻m+1∣

)
j−∣E∣

Bj,E ,

Bj,E ∶= ⨏
(◻m+1∖◻m)E

⨏
(◻m)[[1,j]]∖E

E [ 1

ρ0∣◻m∣ ∫◻m

∣(a − a[[1,j]])∇ψ[[1,j]]m ∣2 dµ] .
(5.16)

Now for (Lebesgue) almost every (xi)i∈E ∈ (◻m+1 ∖◻m)E fixed, they can be treated
together with µ (◻m)c as the “outer environment”, and we apply the improved
energy inequality (3.18) for (µ(◻m) + j − ∣E∣) particles to obtain that

⨏
(◻m)[[1,j]]∖E

E [ 1

ρ0∣◻m∣ ∫◻m

∣∇ψ[[1,j]]m ∣2 dµ ∣µ(◻m), µ (◻m)c] ⩽
(µ(◻m) + j − ∣E∣)

ρ0∣◻m∣
.

From this expression and the uniform ellipticity assumption (2.1), one obtains that

Bj,E ⩽ C
ρ0∣◻m∣ + j − ∣E∣

ρ0∣◻m∣
,

and thus

Aj ⩽ C
j

∑
ℓ=0
(j
ℓ
)3−d(j−ℓ)(1 − 3−d)ℓ (1 + j − ℓ

ρ0∣◻m∣
) ⩽ C (1 + j

ρ0∣◻m∣
) .

We use this estimate with (5.15) to get that

∞
∑
j=0

(ρ∣◻m+1∣)j
j!

∣⨏
(◻m+1)[[1,j]]

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (a − a[[1,j]])∇ψ[[1,j]]m dµ]∣

⩽ C
∞
∑
j=0

(ρ∣◻m+1∣)j
j!

(1 + j

ρ0∣◻m∣
)

1
2

<∞,

which implies that the series is absolutely convergent. Since e−ρ∣◻m+1∣ is analytic with
respect to ρ, their product ∆ρ

m is also an analytic function of ρ. Then we expand
e−ρ∣◻m+1∣ into its Talyor series

∆ρ
m =

∞
∑
l=0

(−ρ∣◻m+1∣)l
l!

∞
∑
j=0

(ρ∣◻m+1∣)j
j!

× (⨏
(◻m+1)[[1,j]]

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (a − a[[1,j]])∇ψ[[1,j]]m dµ]) ,

and the absolute convergence allows us to reorganize the summations according to

∆ρ
m =

∞
∑
k=0

∞
∑

l,j∈N,
l+j=k

(−1)l(ρ∣◻m+1∣)k
l!j!

× (⨏
(◻m+1)[[1,j]]

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (a − a[[1,j]])∇ψ[[1,j]]m dµ]) .
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We also observe that the part ⨏(◻m+1)[[1,j]](⋯) means the adding of j particles in

◻m+1, but the indices do not play a specific role. Thus we have

⨏
(◻m+1)[[1,j]]

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (a − a[[1,j]])∇ψ[[1,j]]m dµ]

= (k
j
)
−1

∑
E⊆[[1,k]],∣E∣=j

⨏
(◻m+1)[[1,k]]

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (a − aE)∇ψE
m dµ] .

This leads to

∆ρ
m =

∞
∑
k=0

∞
∑

l,j∈N,
l+j=k

(−1)lρk
k!

∑
E⊆[[1,k]],∣E∣=j

(∫
(◻m+1)[[1,k]]

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (a − aE)∇ψE
m dµ])

=
∞
∑
k=0

∑
E⊆[[1,k]]

(−1)k−∣E∣ρk
k!

(∫
(◻m+1)[[1,k]]

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅ (a − aE)∇ψE
m dµ])

=
∞
∑
k=1

ρk

k!
(∫
(◻m+1)[[1,k]]

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅D[[1,k]]((a − a#)∇ψ#
m)dµ]) .

From the second to the third line, we use the inclusion-exclusion formula (5.1). The
term k = 0 can be dropped since it vanishes. Finally, we can extend ∫(◻m+1)[[1,k]] to

∫(Rd)[[1,k]] and this is the desired result (5.10). □

5.3. Key estimate for base case. In this part, for clarity of exposition, we prove
(5.14) in the simpler case G = ∅. That is, we show that for every finite F ⊆ N+,

∫
(Rd)F

E [ 1

ρ0∣◻m∣ ∫◻m

∣DF∇ψm∣2 dµ] ⩽ C(∣F ∣,0).(5.17)

We start by introducing some notation (that will mostly be useful in the more
general case treated in the next subsection). For x, z ∈ Rd, we write Υ(E, z) to denote
the indicator function

Υ(E, z)(x) ∶=∏
i∈E

1{xi∈z+◻}.(5.18)

We record a handful of elementary observations concerning Υ: for every finite sets
E,F ⊆ N+ and z ∈ Rd, we have

Υ(E, z)Υ(F, z) = Υ(E ∪ F, z),(5.19)

∫
(Rd)F

Υ(E, z) ⩽ ∫
(Rd)F∖E

Υ(E ∖ F, z),(5.20)

and

∣DEa(µ, z)∣ ⩽ 2∣E∣ΛΥ(E, z).(5.21)

Proof of (5.17). The case F = ∅ is the basic energy estimate in (3.12), so we now
assume that F ≠ ∅. By Proposition 3.3 for ρ = 0, we have for any finite E1,E2 ⊆ N+
that

(5.22) ⨏
(◻m+1)E1∪E2

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψE2
m ⋅ aE1∇ψE1

m dµ]

= ⨏
(◻m+1)E1∪E2

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψE2
m ⋅ q dµ] .
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We apply this with E1,E2 ⊆ F , thus we can extend as an average over particles in F
that

(5.23) ⨏
(◻m+1)F

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψE2
m ⋅ aE1∇ψE1

m dµ]

= ⨏
(◻m+1)F

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψE2
m ⋅ q dµ] .

We do the linear combination of (5.23) over all the E1 ⊆ F and apply the inclusion-
exclusion formula (5.1) to obtain

∫
(◻m+1)F

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψE2
m ⋅DF (a#∇ψ#

m) dµ] = 0.(5.24)

Here the sum on the right-hand side is zero thanks to the inclusion-exclusion formula
and F ≠ ∅. We extend the integration ∫(◻m+1)F to ∫(Rd)F and then apply the linear

combination of (5.24) over all the E2 ⊆ F to obtain

∫
(Rd)F

E [ 1

ρ0∣◻m∣ ∫◻m

DF (∇ψm) ⋅DF (a#∇ψ#
m) dµ] = 0.(5.25)

Now we use the Leibniz’s formula in (5.3) and obtain that

DF (a#∇ψ#
m) = ∑

G⊆F
DF∖G(aG)(DG∇ψm).

We put this back to (5.25), and keep the term (DF∇ψm) ⋅ aF (DF∇ψm) on the
left-hand side, while moving the other terms to the right-hand side

∫
(Rd)F

E [ 1

ρ0∣◻m∣ ∫◻m

(DF∇ψm) ⋅ aF (DF∇ψm)dµ]

= − ∑
G⊊F
(∫
(Rd)F

E [ 1

ρ0∣◻m∣ ∫◻m

(DF∇ψm) ⋅DF∖G(aG)(DG∇ψm)dµ]) .

Using the Cauchy–Schwarz inequality and the triangle inequality, we obtain that

(∫
(Rd)F

E [ 1

ρ0∣◻m∣ ∫◻m

∣DF∇ψm∣2 dµ])
1
2

⩽ ∑
G⊊F
(∫
(Rd)F

E [ 1

ρ0∣◻m∣ ∫◻m

∣DF∖G(aG)∣2 ∣DG∇ψm∣2 dµ])
1
2

.

Then we use Fubini’s lemma to pass ∫(Rd)F∖G

∫
(Rd)F

E [ 1

ρ0∣◻m∣ ∫◻m

∣DF∖G(aG)∣2 ∣DG∇ψm∣2 dµ]

= ∫
(Rd)G

E [ 1

ρ0∣◻m∣ ∫◻m

(∫
(Rd)F∖G

∣DF∖G(aG)∣2) ∣DG∇ψm∣2 dµ] .

The last line uses the fact that DG∇ψm does not involve the particle in F ∖G. A
varied version of (5.21) and (5.20) gives us that

∫
(Rd)F∖G

∣DF∖G(aG)∣2 ⩽ 4∣F∖G∣Λ2∫
(Rd)F∖G

Υ(F ∖G, ⋅) ⩽ 4∣F∖G∣Λ2.
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Therefore, we obtain an estimate that

(5.26) (∫
(Rd)F

E [ 1

ρ0∣◻m∣ ∫◻m

∣DF∇ψm∣2 dµ])
1
2

⩽ ∑
G⊊F
(4∣F∖G∣Λ2∫

(Rd)G
E [ 1

ρ0∣◻m∣ ∫◻m

∣DG∇ψm∣2 dµ])
1
2

.

This estimate allows us to justify the induction argument. Indeed, the case ∣F ∣ = 0 is
the Dirichlet energy estimate. Suppose (5.17) is valid for ∣F ∣ = n, then for ∣F ∣ = n + 1,
we apply (5.26). As the quantity on the right-hand side only relies on G ⊊ F , which
implies ∣G∣ ⩽ n, we can invoke (5.17) for lower order. This completes the proof
of (5.17). □

5.4. Key estimate for the general case. In this part, we now treat the general
case of (5.14).

Proof of Proposition 5.4. We decompose the proof into three steps and we suppose
F ≠ ∅.

Step 1: Expansion. We start once again from (5.23), and apply a “doubling
variables trick”. For G ⊆ F ⊆ N+, we add another set G′ ⊆ N+ ∖F such that ∣G′∣ = ∣G∣,
and consider (5.23) for some E1 ⊆ F and E′2 ⊆ (F ∖G)⊔G′. Then (E1∪E′2) ⊆ (F ⊔G′)
and (5.23) becomes

⨏
(◻m+1)F⊔G′

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψE′2
m ⋅ aE1∇ψE1

m dµ]

= ⨏
(◻m+1)F⊔G′

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψE′2
m ⋅ q dµ] .

Then we apply the inclusion-exclusion formula (5.1) over all E1 ⊆ F and obtain that

∫
(◻m+1)F⊔G′

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψE′2
m ⋅DF (a#∇ψ#

m) dµ] = 0.

From this line, we can extend ∫(◻m+1)F⊔G′ to ∫(Rd)F⊔G′ . We then apply the inclusion-

exclusion formula (5.1) over all E′2 ⊆ (F ∖G) ⊔G′ and obtain

∫
(Rd)F⊔G′

E [ 1

ρ0∣◻m∣ ∫◻m

(D(F∖G)⊔G′∇ψm) ⋅DF (a#∇ψ#
m) dµ] = 0.

Notice that the particles in G′ only act on the term (D(F∖G)⊔G′∇ψm), we can pass

∫(Rd)G′ to the interior and this equation becomes

∫
(Rd)F

E [ 1

ρ0∣◻m∣ ∫◻m

(∫
(Rd)G′

D(F∖G)⊔G′∇ψm) ⋅DF (a#∇ψ#
m) dµ] = 0.

Up to a relabelling of the particles, we can write

∫
(Rd)G′

D(F∖G)⊔G′∇ψm = ∫
(Rd)G

DF∇ψm,

and obtain a counter-part of (5.25) that

∫
(Rd)F

E [ 1

ρ0∣◻m∣ ∫◻m

(∫
(Rd)G

DF∇ψm) ⋅DF (a#∇ψ#
m) dµ] = 0.
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Like (5.25), we do an expansion for this identity for the term DF (a#∇ψ#
m), but

we need to treat it more carefully. We apply (5.4) on DF (a#∇ψ#
m) and obtain that

DF (a#∇ψ#
m) = ∑

F1∪F2=F
DF2(a)(DF1∇ψm).

We keep the term

{F1 ∪ F2 = F} ∩ {F2 ⊆ (F ∖G)} ∩ {F1 = F},
on the left-hand side, while putting the other terms

{F1 ∪ F2 = F} ∩ ({F2 ∩G ≠ ∅} ∪ {F1 ⊊ F}) ,
on the right-hand side. We also notice (5.2) that

∑
F2⊆(F∖G)

DF2(a) = aF∖G,

so we obtain that

(5.27) ∫
(Rd)F

E [ 1

ρ0∣◻m∣ ∫◻m

(∫
(Rd)G

DF∇ψm) ⋅ aF∖G(DF∇ψm)dµ]

= ∑
F1∪F2=F

F2∩G≠∅, or F1⊊F

−(∫
(Rd)F

E [ 1

ρ0∣◻m∣ ∫◻m

(∫
(Rd)G

DF∇ψm) ⋅DF2(a)(DF1∇ψm)dµ]) .

Because aF∖G, ∫(Rd)G DFψm and dµ do not depend on the particles indexed by G,

we can apply Fubini’s lemma to pass ∫(Rd)G to interior, thus the left-hand side of

(5.27) becomes

∫
(Rd)F

E [ 1

ρ0∣◻m∣ ∫◻m

(∫
(Rd)G

DF∇ψm) ⋅ aF∖G(DF∇ψm)dµ]

= ∫
(Rd)F∖G

E [ 1

ρ0∣◻m∣ ∫◻m

(∫
(Rd)G

DF∇ψm) ⋅ aF∖G (∫
(Rd)G

DF∇ψm) dµ]

⩾ ∫
(Rd)F∖G

E [ 1

ρ0∣◻m∣ ∫◻m

∣∫
(Rd)G

DF∇ψm∣
2

dµ] .

For the right-hand side, we argue similarly by the Cauchy–Schwarz inequality and
the triangle inequality to obtain that

(5.28) (∫
(Rd)F∖G

E [ 1

ρ0∣◻m∣ ∫◻m

∣∫
(Rd)G

DF∇ψm∣
2

dµ])
1
2

⩽ ∑
F1∪F2=F

F2∩G≠∅, or F1⊊F

(∫
(Rd)F∖G

E [ 1

ρ0∣◻m∣ ∫◻m

∣∫
(Rd)G

DF2(a)(DF1∇ψm)∣
2

dµ])
1
2

.

Step 2: Simplification and recurrence inequality. The final goal is to get a recurrence
like (5.26), but (5.28) still needs some further simplification. We focus on the term

∫
(Rd)G

DF2(a)(DF1∇ψm).

Since F1 ∪ F2 = F , we use the disjoint decomposition that

F = (F2 ∖ F1) ⊔ (F1 ∖ F2) ⊔ (F2 ∩ F1),
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which also induces the decomposition of G

G = ((G ∩ F2) ∖ F1) ⊔ ((G ∩ F1) ∖ F2) ⊔ (G ∩ F2 ∩ F1).
Thus, we can decompose

∫
(Rd)G

= ∫
(Rd)(G∩F2)∖F1

∫
(Rd)(G∩F1)∖F2

∫
(Rd)G∩F2∩F1

,

and pass them respectively to the proper term

∫
(Rd)G

DF2(a)(DF1∇ψm)

= ∫
(Rd)G∩F2∩F1

((∫
(Rd)(G∩F2)∖F1

DF2(a))(∫(Rd)(G∩F1)∖F2
DF1∇ψm)) .

Let z ∈ supp(µ) be the particle at which the gradient is computed, then we use the
notation (5.18) and the estimate (5.21) to give its bound

∣∫
(Rd)G

DF2(a)DF1∇ψm∣
2

(z)

⩽ ∣∫
(Rd)G∩F2∩F1

((∫
(Rd)(G∩F2)∖F1

∣DF2(a)∣) ∣∫(Rd)(G∩F1)∖F2
DF1∇ψm∣)∣

2

(z)

⩽ 4∣F2∣Λ2 ∣∫
(Rd)G∩F2∩F1

((∫
(Rd)(G∩F2)∖F1

Υ(F2, z)) ∣∫
(Rd)(G∩F1)∖F2

DF1∇ψm∣)∣
2

(z).

Next, we use the property that Υ(F2, z) requires all the particles in F2 to live in z+◻

∣∫
(Rd)G∩F2∩F1

((∫
(Rd)(G∩F2)∖F1

Υ(F2, z)) ∣∫
(Rd)(G∩F1)∖F2

DF1∇ψm∣)∣
2

(z)

= ∣∫
(z+◻)G∩F2∩F1

((∫
(Rd)(G∩F2)∖F1

Υ(F2, ⋅)) ∣∫
(Rd)(G∩F1)∖F2

DF1∇ψm∣)∣
2

(z)

⩽ ∫
(z+◻)G∩F2∩F1

((∫
(Rd)(G∩F2)∖F1

Υ(F2, ⋅))
2

∣∫
(Rd)(G∩F1)∖F2

DF1∇ψm∣
2

)(z)

= ∫
(Rd)G∩F2∩F1

((∫
(Rd)(G∩F2)∖F1

Υ(F2, ⋅))
2

∣∫
(Rd)(G∩F1)∖F2

DF1∇ψm∣
2

)(z).

From the second line to the third line, we use the Cauchy–Schwarz inequality, and
from the third line to the fourth line, we reapply the property of Υ(F2, z). So in this
step we gain a small factor for Cauchy–Schwarz inequality. Now, we use the property
(5.20)

∫
(Rd)(G∩F2)∖F1

Υ(F2, z) ⩽ Υ(F2 ∖ ((G ∩ F2) ∖ F1), z).

We put all these estimates back to the right-hand side of (5.28) to obtain that

∫
(Rd)F∖G

E [ 1

ρ0∣◻m∣ ∫◻m

∣∫
(Rd)G

DF2(a)(DF1∇ψm)∣
2

dµ]

⩽ 4∣F2∣Λ2∫
(Rd)F∖G

E [ 1

ρ0∣◻m∣ ∫◻m

∫
(Rd)G∩F2∩F1

(Υ(F2 ∖ ((G ∩ F2) ∖ F1), ⋅) ∣∫
(Rd)(G∩F1)∖F2

DF1∇ψm∣
2

) dµ] .

(5.29)

In this integral, we can continue some simplification with Υ(F2 ∖ ((G ∩ F2) ∖ F1), ⋅).
We have the following disjoint union

F ∖G = ((F2 ∩ F1) ∖G) ⊔ ((F2 ∖ F1) ∖G) ⊔ ((F1 ∖ F2) ∖G),
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which implies that

∫
(Rd)F∖G

= ∫
(Rd)(F2∩F1)∖G ∫(Rd)(F2∖F1)∖G ∫(Rd)(F1∖F2)∖G

.(5.30)

Because ∫(Rd)(G∩F1)∖F2 DF1∇ψm only involves a subset of particles in F1, which is dis-

joint from (F2∖F1)∖G, we use Fubini’s lemma to pass the integration of ∫(Rd)(F2∖F1)∖G

to the inside

∫
(Rd)(F2∖F1)∖G

E [ 1

ρ0∣◻m∣ ∫◻m
∫
(Rd)G∩F2∩F1

(Υ(F2 ∖ ((G ∩ F2) ∖ F1), ⋅) ∣∫
(Rd)(G∩F1)∖F2

DF1∇ψm∣
2

) dµ]

= E [ 1

ρ0∣◻m∣ ∫◻m
∫
(Rd)G∩F2∩F1

((∫
(Rd)(F2∖F1)∖G

Υ(F2 ∖ ((G ∩ F2) ∖ F1), ⋅)) ∣∫
(Rd)(G∩F1)∖F2

DF1∇ψm∣
2

) dµ]

= E [ 1

ρ0∣◻m∣ ∫◻m
∫
(Rd)G∩F2∩F1

(Υ(F2 ∩ F1, ⋅) ∣∫
(Rd)(G∩F1)∖F2

DF1∇ψm∣
2

) dµ]

= ∫
(Rd)G∩F2∩F1

E [ 1

ρ0∣◻m∣ ∫◻m

(Υ(F2 ∩ F1, ⋅) ∣∫
(Rd)(G∩F1)∖F2

DF1∇ψm∣
2

) dµ] .

From the second line to the third line, we used (5.20) and the decomposition

F2 ∖ ((G ∩ F2) ∖ F1) = (F2 ∩ F1) ⊔ ((F2 ∖ F1) ∖G).
See the Venn diagram in Figure 1 to help check this equation. From the third line to
the fourth line, we put the integral ∫(Rd)G∩F2∩F1 outside the expectation using Fubini’s

lemma. We combine this integral together with the rest of integrals in (5.30) and we
observe that

∫
(Rd)(F2∩F1)∖G ∫(Rd)(F1∖F2)∖G ∫(Rd)G∩F2∩F1

= ∫
(Rd)F1∖((G∩F1)∖F2)

.(5.31)

because of the identity (see Figure 1 to help check this equation)

((F2 ∩ F1) ∖G) ⊔ ((F1 ∖ F2) ∖G) ⊔ (G ∩ F2 ∩ F1) = F1 ∖ ((G ∩ F1) ∖ F2).

Therefore, one term in the right-hand side of (5.28) can be bounded

∫
(Rd)F∖G

E [ 1

ρ0∣◻m∣ ∫◻m

∣∫
(Rd)G

DF2(a)(DF1∇ψm)∣
2

dµ]

⩽ ∫
(Rd)F1∖((G∩F1)∖F2)

E [ 1

ρ0∣◻m∣ ∫◻m

(Υ(F2 ∩ F1, ⋅) ∣∫
(Rd)(G∩F1)∖F2

DF1∇ψm∣
2

) dµ] .

We can further drop out the indicator Υ(F2 ∩ F1, ⋅), and put it back to (5.28) to
obtain that

(5.32) (∫
(Rd)F∖G

E [ 1

ρ0∣◻m∣ ∫◻m

∣∫
(◻m)G

(DF∇ψm)∣
2

dµ])
1
2

⩽ ∑
F1∪F2=F

F2∩G≠∅, or F1⊊F

(4∣F2∣Λ2∫
(Rd)F1∖((G∩F1)∖F2)

E [ 1

ρ0∣◻m∣ ∫◻m

∣∫
(Rd)(G∩F1)∖F2

DF1∇ψm∣
2

dµ])
1
2

.
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Figure 1. A Venn diagram for illustration. The disk on the left
represents F1 and the disk on the right represents F2. The rectangle
is G. We use different colors for the partition of F = F1 ∪ F2, and it
has the following bijections.

F1 ∩ F2 = {yellow, purple},
G ∩ F1 ∩ F2 = {yellow},
(F1 ∩ F2) ∖G = {purple},
(F1 ∖ F2) ∖G = {red},
(F2 ∖ F1) ∖G = {blue},

F1 ∖ ((G ∩ F1) ∖ F2) = {red, yellow, purple},
F2 ∖ ((G ∩ F2) ∖ F1) = {blue, yellow, purple}.

Step 3: Induction argument. Equation (5.32) is the analogue of (5.26) for the
general case. In this step, we describe the induction argument, which consists in
obtaining a bound for the constant C(i, j) in (5.14) in terms of a linear combination
of the C(i′, j′) with i′ ⩽ i, j′ ⩽ j, and i′ + j′ < i + j. An illustration is in Figure 2.

We denote by Ĩ(m,ρ0, F,G) the left-hand side of (5.32). This equation can be
rewritten as

Ĩ(m,ρ0, F,G) ⩽ ∑
F1∪F2=F

F2∩G≠∅, or F1⊊F

2∣F2∣Λ Ĩ(m,ρ0, F1, (G ∩ F1) ∖ F2).(5.33)

For sets F1, F2 as in the summands above, we clearly have

∣F1∣ + ∣(G ∩ F1) ∖ F2∣ ⩽ ∣F ∣ + ∣G∣.
In fact, the inequality is always strict. Indeed, a possible case of equality would
require that F1 = F , since F1 ⊆ F and (G∩F1)∖F2 ⊆ G. But if F1 = F , then we must
have F2 ∩G ≠ ∅, and thus

∣(G ∩ F1) ∖ F2∣ = ∣G ∖ F2∣ ⩽ ∣G∣ − 1.
So all the summands on the right side of (5.33) are such that

∣F1∣ + ∣(G ∩ F1) ∖ F2∣ < ∣F ∣ + ∣G∣.
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The induction argument is then clear: the case when F = G = ∅ is the basic Dirichlet
energy estimate. Next, assuming the boundedness of Ĩ(m,ρ0, F,G) for ∣F ∣ + ∣G∣ ⩽ k,
we can obtain the result for ∣F ∣+ ∣G∣ = k+1 by an application of (5.33). This completes
the proof of Proposition 5.4. □

Figure 2. An illustration of the recurrence argument. The constant
C(i, j) can be bounded by a linear combination of the C(i′, j′) with
j′ ⩽ j, i′ ⩽ i, and i′ + j′ < i + j.

5.5. Smoothness in finite volume. We can now combine Lemma 5.3 and Proposi-
tion 5.4 to complete the proof of Proposition 5.2.

Proof of Proposition 5.2. We decompose the proof into three steps.

Step 1: Decomposition and expansion. As stated in Subsection 5.1, we first expand
∆ρ

m with respect to ρ as in (5.10) and use the Leibniz formula (5.4) to get that

∆ρ
m(ρ0) =

∞
∑
k=1

ρk

k!
ck,m(ρ0) =

∞
∑
k=1

ρk

k!
∑

E∪F=[[1,k]]
I(m,ρ0,E,F ),(5.34)

with ck,m defined in (5.6) and I(m,ρ0,E,F ) defined in (5.13). Lemma 5.3 ensures
that this series converges, and that ρ↦∆ρ

m is analytic. In the next step, we aim to
give a bound to I(m,ρ0,E,F ) which is uniform with respect to m and ρ0.

Step 2: Reduction of I(m,ρ0,E,F ). Recall the expression of I(m,ρ0,E,F ) in
(5.13), we use Fubini’s lemma and pass the integration [[1, k]]∖E inside. Notice that
we have [[1, k]] ∖E = F ∖E thanks to E ∪ F = [[1, k]]. Since the particles in the set
F ∖E do not appear in DE(a − a#), we have

I(m,ρ0,E,F ) = ∫
(Rd)E

E [ 1

ρ0∣◻m∣ ∫◻m

∇ψm ⋅DE(a − a#) (∫
(Rd)F∖E

DF∇ψm) dµ] .
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We apply the Cauchy–Schwarz inequality and obtain that

∣I(m,ρ0,E,F )∣ ⩽ (∫
(Rd)E

E [ 1

ρ0∣◻m∣ ∫◻m

∣DE(a − a#)∣∣∇ψm∣2 dµ])
1
2

× (∫
(Rd)E

E [ 1

ρ0∣◻m∣ ∫◻m

∣DE(a − a#)∣ ∣∫
(Rd)F∖E

DF∇ψm∣
2

dµ])
1
2

.

The first term is easy to treat since we can use Fubini’s lemma that

∫
(Rd)E

E [ 1

ρ0∣◻m∣ ∫◻m

∣DE(a − a#)∣∣∇ψm∣2 dµ]

= E [ 1

ρ0∣◻m∣ ∫◻m

(∫
(Rd)E

∣DE(a − a#)∣) ∣∇ψm∣2 dµ]

⩽ 2∣E∣Λ.

In the last step, we apply (5.21) and (5.20) that

∫
(Rd)E

∣DE(a − a#)∣ ⩽ 2∣E∣Λ∫
(Rd)E

Υ(E, ⋅) ⩽ 2∣E∣Λ.

For the second term, we use the decomposition

DE =DE∖F ○DE∩F , ∫
(Rd)E

= ∫
(Rd)E∖F

∫
(Rd)E∩F

,

and pass the integration ∫(Rd)E∖F inside

∫
(Rd)E

E [ 1

ρ0∣◻m∣ ∫◻m

∣DE(a − a#)∣ ∣∫
(Rd)F∖E

DF∇ψm∣
2

dµ]

= ∫
(Rd)E∩F

E [ 1

ρ0∣◻m∣ ∫◻m

(∫
(Rd)E∖F

∣DE(a − a#)∣) ∣∫
(Rd)F∖E

DF∇ψm∣
2

dµ] .

We apply once again the estimate (5.20) and (5.21) that

∫
(Rd)E∖F

∣DE(a − a#)∣ ⩽ 2∣E∣∫
(Rd)E∖F

Υ(E, ⋅) ⩽ 2∣E∣ΛΥ(E ∩ F, ⋅) ⩽ 2∣E∣Λ.

Therefore, we bound the second term by

∫
(Rd)E

E [ 1

ρ0∣◻m∣ ∫◻m

∣DE(a − a#)∣ ∣∫
(Rd)F∖E

DF∇ψm∣
2

dµ]

⩽ 2∣E∣Λ∫
(Rd)E∩F

E [ 1

ρ0∣◻m∣ ∫◻m

∣∫
(Rd)F∖E

DF∇ψm∣
2

dµ] .

Here we apply the key estimate Proposition 5.4 to conclude the proof a the uniform
bound of I(m,ρ0,E,F ) with respect to m and ρ0. This also implies the uniform
bound (5.7) for ck,m(ρ0).

Step 3: Control of the tail Rk. In this step, we need to control the tail in the
expansion of ∆ρ

m(ρ0). Even if one were to keep track of the dependence on k in
the upper bound ∣ck,m(ρ0)∣ ⩽ Ck obtained above, one cannot ensure the summability

of the series ∑j>k
Cj

j! ρ
j . On the other hand, we know the function ρ ↦ ∆ρ

m(ρ0) is
indeed analytic for any fixed ρ0 ∈ R+ (using a naive bound of ck,m depending on m,
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see Lemma 5.3 and its proof in Subsection 5.2), so for cj,m defined in Proposition 5.2
and ρ0 > 0, we have

cj,m(ρ0) = (
d

dρ
)
j

∣ρ=0
∆ρ

m(ρ0).

We also write ∂j∆ρ
m as a shorthand notation for the j-th derivative at ρ,

∂j∆ρ
m(ρ0) ∶= (

d

dρ
)
j

∆ρ
m(ρ0).

Then we apply Taylor’s expansion for the function ρ↦∆ρ
m(ρ0) until order k

∆ρ
m(ρ0) =

k

∑
j=0

∂j∆0
m(ρ0)
j!

ρj + ∫
ρ

0

∂k+1∆s
m(ρ0)
k!

sk ds.(5.35)

Recalling the definition of ∆ρ
m in (4.2), we have

∂k+1∆s
m(ρ0) = (

d

dρ
)
j

∣ρ=s
(q ⋅ a−1∗ (◻m, ρ0 + ρ)q − q ⋅ a−1∗ (◻m, ρ0)q)

= ( d

dρ
)
j

∣ρ=0
(q ⋅ a−1∗ (◻m, ρ0 + s + ρ)q − q ⋅ a−1∗ (◻m, ρ0 + s)q)

= ∂k+1∆0
m(ρ0 + s).

Since ∂k+1∆0
m(ρ0 + s) = ck+1,m(ρ0 + s), upon inserting this back into (5.35), it follows

that

∆ρ
m(ρ0) =

k

∑
j=0

cj,m(ρ0)
j!

ρj + ∫
ρ

0

ck+1,m(ρ0 + s)
k!

sk ds.(5.36)

This gives us an expression for the remainder of order k in (5.8), which is

Rk(m,ρ0, ρ) ∶= ∫
ρ

0

ck+1,m(ρ0 + s)
k!

sk ds.(5.37)

Using the uniform estimate (5.7) of ck+1,m(ρ0 + s) with respect to ρ0 + s and m, the

remainder is of order O(ρk+1) independent of ρ0 and m. This finishes our proof of
Proposition 5.2. □

5.6. Proof of the main theorem. In this final subsection, we conclude the proof
of the main Theorem 2.3, using Proposition 5.2.

Proof of Theorem 2.3. As a first step, we show the existence of the limit in (2.12). Let
k ⩾ 2 and assume by induction that the existence of cj(ρ0) is established for 1 ⩽ j ⩽ k−1
and ρ0 > 0 (recall that the existence of c1(ρ0) follows from Theorem 2.1). For ρ0 > 0,
the sequence {ck,m(ρ0)}m∈N defined in (5.6) is bounded by some positive constant
Ck(d,Λ) using Proposition 5.2. Thus, there exists a subsequence {ck,mℓ

(ρ0)}ℓ∈N
(possibly depending on ρ0) such that

c∗k(ρ0) ∶= lim
ℓ→+∞

ck,mℓ
(ρ0)

exists. By (5.8), one has for ρ > 0
RRRRRRRRRRR
∆ρ

mℓ
(ρ0) −

k−1
∑
j=1

cj,mℓ
(ρ0)ρj
j!

− ck,mℓ
(ρ0)
k!

ρk
RRRRRRRRRRR
⩽ ∣Rk(mℓ, ρ0, ρ)∣,
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and passing to the limit ℓ → ∞ yields (upon using Proposition 5.2, the induction
hypothesis and (4.3))

(5.38) sup
ρ0∈(0,∞)

RRRRRRRRRRR
∆ρ(ρ0) −

k−1
∑
j=1

cj(ρ0)ρj
j!

− c
∗
k(ρ0)
k!

ρk
RRRRRRRRRRR
⩽ O(ρk+1), for ρ > 0.

In particular, (5.38) implies that c∗k(ρ0) is the unique limit of the full sequence
{ck,m(ρ0)}m∈N, and we denote it by ck(ρ0). This proves (2.12). We note in passing
that

(5.39) c1,⋯, ck ∶ (0,∞)→ R are bounded functions,

which follows by (2.12) and ∣ck,m∣ ⩽ Ck(d,Λ), see Proposition 5.2. Thus, we can write

(5.40) ∆ρ(ρ0) =
k

∑
j=1

cj(ρ0)
j!

ρj +O(ρk+1), for ρ > 0,

with the error term independent of ρ0. To simplify notation, we again set f(⋅) ∶=
q ⋅ a−1(⋅)q. We claim that the expansion (5.40) implies that

(5.41) c1,⋯, ck ∶ (0,∞)→ R are Lipschitz-continuous,

and moreover

(5.42) f has k derivatives, and f (j)(ρ0) = cj(ρ0), 1 ⩽ j ⩽ k, ρ0 > 0.
We first define the forward difference of order ℓ of f at ρ0 > 0, ℓ ∈ N+, with step size
ρ ⩾ 0 as

(5.43) ∆ℓ,ρ[f](ρ0) =∆ℓ,ρ(ρ0) ∶=
ℓ

∑
i=0
(ℓ
i
)(−1)ℓ−if(ρ0 + iρ),

(note that with our fixed choice of f , ∆1,ρ(ρ0) = ∆ρ(ρ0)). We claim that these
quantities fulfill for 1 ⩽ ℓ ⩽ k, ρ0 > 0 and ρ ⩾ 0,
(5.44) ∆ℓ,ρ(ρ0) = cℓ(ρ0)ρℓ +O(ρℓ+1),
with the error term independent of ρ0, and for 1 ⩽ ℓ < k, ρ0 > 0 and ρ ⩾ 0,
(5.45) ∆ℓ,ρ(ρ0 + ρ) −∆ℓ,ρ(ρ0) =∆ℓ+1,ρ(ρ0).
We prove (5.44). To this end, we infer from (5.40) that

(5.46) f(ρ0 + iρ) =
k

∑
j=0

cj(ρ0)
j!
(iρ)j +O(ρk+1), for ρ > 0,1 ⩽ i ⩽ k,

where we defined for convenience c0(ρ0) ∶= f(ρ0). Equation (5.46) is now inserted
into (5.43), which yields for ρ0 > 0, ρ ⩾ 0 and 1 ⩽ ℓ ⩽ k that

∆ℓ,ρ(ρ0) =
ℓ

∑
i=0
(ℓ
i
)(−1)ℓ−i

⎧⎪⎪⎨⎪⎪⎩

ℓ

∑
j=0

cj(ρ0)
j!
(iρ)j +

k

∑
j=ℓ+1

cj(ρ0)
j!
(iρ)j +O(ρk+1)

⎫⎪⎪⎬⎪⎪⎭

=
ℓ

∑
j=0

cj(ρ0)
j!

ρj (
ℓ

∑
i=0
(ℓ
i
)(−1)ℓ−iij) +O(ρℓ+1)

= cℓ(ρ0)ρℓ +O(ρℓ+1).

Here, we combined the terms involving ρj with j ∈ {ℓ + 1,⋯, k} and O(ρk+1) into a
contribution O(ρℓ+1) and using (5.39) in going from the first to the second line. From
the second to the third line, we use the fact that for any polynomial P with real
coefficients A0,⋯,Ak, i.e., P (X) = AℓX

ℓ +⋯ +A0 of degree smaller or equal to ℓ, one
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has ∑ℓ
i=0 (ℓi)(−1)

ℓ−iP (i) = ℓ!Aℓ. Equation (5.45) also follows directly from elementary
properties of binomial coefficients. Indeed:

∆ℓ,ρ(ρ0 + ρ) −∆ℓ,ρ(ρ0) =
ℓ

∑
i=0
(−1)ℓ−i(ℓ

i
)f(ρ0 + (i + 1)ρ) −

ℓ

∑
i=0
(−1)ℓ−i(ℓ

i
)f(ρ0 + iρ)

=
ℓ+1
∑
i=1
(−1)ℓ−i+1( ℓ

i − 1)f(ρ0 + iρ) +
ℓ

∑
i=0
(−1)ℓ−i+1(ℓ

i
)f(ρ0 + iρ)

=
ℓ+1
∑
i=0
(−1)ℓ+1−i {( ℓ

i − 1) + (
ℓ

i
)} f(ρ0 + iρ)

=
ℓ+1
∑
i=0
(−1)ℓ+1−i(ℓ + 1

i
)f(ρ0 + iρ) =∆ℓ+1,ρ(ρ0).

Identity (5.44) is now used at ρ0 + ρ and ρ0 on the left-hand side of (5.45), and at
ρ0 on the right-hand side of the same equation (recall that the O(ρℓ) resp. O(ρℓ+1)
terms do not depend on ρ0):

1

ρℓ
(∆ℓ,ρ(ρ0 + ρ) −∆ℓ,ρ(ρ0)) =

1

ρℓ
∆ℓ+1,ρ(ρ0)

⇒ cℓ(ρ0 + ρ) − cℓ(ρ0) = cℓ+1(ρ0)ρ +O(ρ), for ρ > 0.
(5.47)

By the boundedness of cℓ+1 (5.39), this establishes the Lipschitz-continuity (5.41) of cℓ.

Now we prove the differentiability (5.42): By induction, suppose that we already

established that f (ℓ−1)(ρ0) = cℓ−1(ρ0) for all ρ0 ∈ (0,∞), and 1 ⩽ ℓ < k. Now, for ρ > 0,
one has

∆ℓ−1,ρ(ρ0) =
ℓ−1
∑
i=0
(ℓ − 1

i
)(−1)ℓ−1−i

⎧⎪⎪⎨⎪⎪⎩

ℓ−1
∑
j=0

cj(ρ0)
j!
(iρ)j + cℓ(ρ0)

ℓ!
(iρ)ℓ

⎫⎪⎪⎬⎪⎪⎭
+O(ρℓ+1)

= cℓ−1(ρ0)ρℓ−1 +
ℓ−1
∑
i=0
(ℓ − 1

i
)(−1)ℓ−1−i i

ℓ

ℓ!
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶C(ℓ)

cℓ(ρ0)ρℓ +O(ρℓ+1),
(5.48)

having used the same arguments as in the proof of (5.44), with C(ℓ) ∈ R some
numerical constant. The latter gives us that for ρ > 0,

1

ρℓ
∆ℓ,ρ(ρ0)

(5.45)= 1

ρ
{ 1

ρℓ−1
∆ℓ−1(ρ0 + ρ) −

1

ρℓ−1
∆ℓ−1(ρ0)}

= 1

ρ
(cℓ−1(ρ0 + ρ) − cℓ−1(ρ0))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 1
ρ
(f(ℓ−1)(ρ0+ρ)−f(ℓ−1)(ρ0))

+C(ℓ)(cℓ(ρ0 + ρ) − cℓ(ρ0)) +O(ρ).(5.49)

On the other hand, the left-hand side of the equation above is also equal to cℓ(ρ0) +
O(ρ). Letting ρ ↓ 0 then shows that the right-derivative of f (ℓ−1) at ρ0 exists and
equals cℓ(ρ0), upon using (5.41) for cℓ. Replacing ρ0 by ρ0 − ρ in (5.49) then gives

(5.50)
1

ρ
(f (ℓ−1)(ρ0) − f (ℓ−1)(ρ0 − ρ)) = cℓ(ρ0 − ρ) +O(ρ),

from which one can then infer the left-derivative of f (ℓ−1) as well (using once
more (5.41)). This finishes the proof of (5.42). Since k ∈ N+ was arbitrary, the
proof of Theorem 2.3 is complete. □
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6. Local uniform convergence

The aim of this section is to strengthen the pointwise convergence of the sequences
(a(◻m, ρ0))m⩾1 and (a∗(◻m, ρ0))m⩾1 towards a(ρ0) for each fixed ρ0 > 0 (see (2.5)
and below) to a locally uniform convergence, that is to show the following statement.

Proposition 6.1. The mappings a(◻m, ⋅) and a∗(◻m, ⋅) both converge to a(⋅) locally
uniformly over [0,∞) as m tends to infinity. Moreover, for every k ∈ N+, the sequence
of approximate derivatives ck,m converges locally uniformly to ck, as m tends to
infinity (recall (5.6) and (2.12) for the respective definitions).

The local uniform convergence of a(◻m, ⋅) and a∗(◻m, ⋅) could in fact be obtained
as a consequence of the quantitative estimate (2.6) and the observation that the
exponent α > 0 and the constant C < ∞ appearing there can be chosen locally
uniformly over ρ0 > 0. However, we think it useful to point out that Proposition 6.1
is actually a rather straightforward consequence of the qualitative statement that,
for each fixed ρ0 > 0,

(6.1) a(ρ0) = lim
m→∞

a(◻m, ρ0) = lim
m→∞

a∗(◻m, ρ0).

As will be seen, once (6.1) is granted, the fact that these sequences converge locally
uniformly as ρ0 varies is an application of Dini’s theorem.

Since we will need to show the continuity of a(◻m, ⋅), we first need to develop some
version of Lemma 3.1 geared towards ν(U, p, ρ0) instead of ν∗(U, q, ρ0). To state it,
we define for a bounded open U ⊆ Rd the function space D(U) to consist of sequences
of functions f = (fn)n⩾0, where fn ∶ Un → R satisfy

(1) f0 is a constant and for every n ∈ N+, fn ∈ C∞(Un);
(2) There exists a compact set K ⊆ U such that for any xi ∉K

fn(x1,⋯, xi−1, xi, xi+1,⋯, xn) = fn−1(x1,⋯, xi−1, xi+1,⋯, xn).

The canonical projection in (3.2) is an injection from C∞c (U) to D(U); in other
words, we can think of C∞c (U) as a subset of D(U).

We then define a version of the minimization problem in the first line of (2.3) with
D(U) replacing H 1

0 (U). Define for f ∈ D(U) the quantity

(6.2) K(f,U, p, ρ0) ∶=
e−ρ0∣U ∣

2ρ0∣U ∣
∞
∑
n=0

(ρ0∣U ∣)n
n!

∫
Mδ(Rd)

(⨏
Un

n

∑
i=1
(p +∇xifn) ⋅ a(

n

∑
k=1

δxk
+ µ U c, xi)(p +∇xifn)dx1⋯dxn) dPρ0(µ).

With this definition, one has the following result.

Lemma 6.2. For every bounded open set U , ν(U, p, ρ0) = inff∈D(U)K(f,U, p, ρ0).

Proof. For every f = (fn)n⩾0 ∈ D(U), we consider the symmetrization f̃ = (f̃n)n⩾0
by defining f̃n = 1

n! ∑σ∈Sn
f(xσ(1),⋯, xσ(n)). This function fulfills f̃ ∈ D(U): Indeed

f̃n ∈ C∞(Un) follows directly from the definition, and letting K ⊆ U be the compact
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set associated with f , one has e.g. for the case x1 ∉K

f̃n(x1, x2,⋯, xn) =
1

n!
∑
σ∈Sn

fn(xσ(1), xσ(2),⋯, xσ(n))

= 1

(n − 1)! ∑
σ∈Sn−1({2,⋯,n})

fn−1(xσ(2), xσ(3),⋯, xσ(n))

= f̃n−1(x2,⋯, xn).

Here, from the first line to the second line, we can remove x1 in the function, and
make use of the natural n-to-1 bijection from the group of permutations Sn to the
group of permutations Sn−1({2,⋯, n}). This establishes the second condition for

functions in D(U), so f̃ ∈ D(U).
By an application of Jensen’s inequality, it follows that

K(f̃ , U, p, ρ0)

⩽ e
−ρ0∣U ∣

2ρ0∣U ∣
∞
∑
n=0

(ρ0∣U ∣)n
n!

1

n!
∑
σ∈Sn

∫
Mδ(Rd)

(⨏
Un

n

∑
i=1
((p +∇xifn(xσ(1),⋯, xσ(n)))

⋅a(
n

∑
k=1

δxk
+ µ U c, xi)(p +∇xifn(xσ(1),⋯, xσ(n)))) dx1⋯dxn) dPρ0(µ),

which implies that K(f̃ , U, p, ρ0) ⩽ K(f,U, p, ρ0). This establishes that the value
inff∈D(U)K(f,U, p, ρ0) can be attained on the subspace with invariance by permuta-
tion, which can be identified as C∞c (U). □

Proof of Proposition 6.1. We need to verify that

(6.3) For fixed m ∈ N, a(◻m, ⋅) and a∗(◻m, ⋅) are continuous.

Once (6.3) is established, the uniform convergence follows from Dini’s theorem,
which states that if a decreasing or increasing sequence of continuous functions (fn)n⩾1
converges pointwisely to a continuous function f , then the convergence is a locally
uniform. Recall that (a(◻m, ⋅))m⩾1 is decreasing and (a∗(◻m, ⋅))m⩾1 is increasing
and the common limit (6.1) is ensured by [23, Theorem 1.1]. Moreover, note that a(⋅)
is continuous by Theorem 2.3 (in fact, to establish the continuity of a(⋅) it suffices
to establish its upper and lower semicontinuity, which follows from the monotone
convergence of a(◻m, ⋅) and a∗(◻m, ⋅), respectively). Therefore, it suffices to justify
the continuity condition (6.3).

Step 1: Continuity of a∗(◻m, ⋅). The continuity of a−1∗ (◻m, ⋅) follows immediately
from (4.4), and this implies the continuity of a∗(◻m, ⋅).

Step 2: Continuity of a(◻m, ⋅). We use the exact expression of the subadditive
quantity

ν(◻m, p, ρ0 + ρ) = p ⋅ a(◻m, ρ0 + ρ)p

= E [ 1

(ρ0 + ρ)∣◻m∣ ∫◻m

(p +∇ϕρm) ⋅ aρ(p +∇ϕρm)d(µ + µρ)] ,

for m ∈ N, p ∈ Rd and ϕρm denotes the minimizer in the definition of ν(◻m, p, ρ0 + ρ).
We now derive an upper bound on the above expression. Using Lemma 6.2, we know
that ϕm(µ) is a sub-minimizer for the problem ν(◻m, p, ρ0 + ρ) with density ρ + ρ0.
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Also with the help of Mecke’s identity (4.10), we obtain that

p ⋅ a(◻m, ρ0 + ρ)p

⩽ E [ 1

(ρ0 + ρ)∣◻m∣ ∫◻m

(p +∇ϕm(µ, ⋅)) ⋅ a(µ + µρ, ⋅)(p +∇ϕm(µ, ⋅))d(µ + µρ)]

⩽ E [ 1

(ρ0 + ρ)∣◻m∣ ∫◻m

(p +∇ϕm(µ, ⋅)) ⋅ a(µ + µρ, ⋅)(p +∇ϕm(µ, ⋅))dµ] +
ρΛ∣p∣2
ρ0 + ρ

= E [ 1

(ρ0 + ρ)∣◻m∣ ∫◻m

(p +∇ϕm,ξ(µ, ⋅)) ⋅ (a(µ + µρ, ⋅) − a(µ, ⋅))(p +∇ϕm(µ, ⋅))dµ]

+ ( ρ0
ρ0 + ρ

)p ⋅ a(◻m, ρ0)p + (
ρ

ρ0 + ρ
)Λ∣p∣2.

For the first term, we perform an expansion with respect to µρ, and note that
a(µ + µρ, ⋅) − a(µ) = 0 on the event {µρ = 0}. Therefore,

E [ 1

(ρ0 + ρ)∣◻m∣ ∫◻m

(p +∇ϕm(µ, ⋅)) ⋅ (a(µ + µρ, ⋅) − a(µ, ⋅))(p +∇ϕm(µ, ⋅))dµ]

= e−ρ∣◻m∣
∞
∑
k=1
((ρ∣◻m∣)k

k!

1

(ρ0 + ρ)∣◻m∣

×⨏
(◻m)k

Eρ0 [∫◻m

(p +∇ϕm(µ, ⋅)) ⋅ (a(µ +
k

∑
i=1
δxi , ⋅) − a(µ, ⋅)) (p +∇ϕm(µ, ⋅))dµ] dx1⋯dxk)

⩽ ρ∣◻m∣ (e−ρ∣◻m∣
∞
∑
k=1

(ρ∣◻m∣)(k−1)
(k − 1)! Λ2∣p∣2)

= ρ∣◻m∣Λ2∣p∣2.
This gives us

(6.4) p ⋅ a(◻m, ρ0 + ρ)p − p ⋅ a(◻m, ρ0)p

⩽ ρ∣◻m∣Λ2∣p∣2 + ( ρ

ρ0 + ρ
)Λ∣p∣2 − ( ρ

ρ0 + ρ
)p ⋅ a(◻m, ρ0)p.

Taking ρ↘ 0 we obtain that

lim
ρ↘0

a(◻m, ρ0 + ρ) ⩽ a(◻m, ρ0).(6.5)

We now establish that limρ↘0 a(◻m, ρ0 + ρ) = a(◻m, ρ0). To this end, we drop out
the part of integration against µρ and obtain

(6.6) p ⋅ a(◻m, ρ0 + ρ)p

⩾ ρ0
ρ0 + ρ

E [ 1

ρ0∣◻m∣ ∫◻m

(p +∇ϕρm) ⋅ a(µ + µρ, ⋅)(p +∇ϕρm)dµ] .

We compare this with the following minimization problem, in which we fixMδ(Rd),
p ∈ Rd and U ⊆ Rd a bounded domain,

ν(U, p;µρ) ∶= inf
v∈H 1

0 (U)
∫ (

1

ρ∣U ∣ ∫U
1

2
(p +∇v) ⋅ a(µ + µρ, ⋅)(p +∇v)dµ)dPρ0(µ).

(6.7)

This can always be seen as the problem like (2.3), but with a perturbation with a
fixed point process µρ. We denote by µ↦ ϕm(µ;µρ) ∈H 1

0 (U) its minimizer, and for
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every fixed µρ ∈Mδ(Rd), ϕρm(⋅ + µρ) is a sub-minimizer for (6.7). Therefore, (6.6)
gives that

p ⋅ a(◻m, ρ0 + ρ)p

⩾ ρ0
ρ0 + ρ

Eρ0 [
1

ρ0∣◻m∣ ∫◻m

(p +∇ϕm(µ;µρ)) ⋅ a(µ + µρ, ⋅)(p +∇ϕm(µ;µρ))dµ] .

We perform an expansion with respect to µρ and notice that, when µρ = 0 the problem
(6.7) is exactly the same as (2.3) and ϕm(µ; 0) = ϕm(µ), so we obtain that

p ⋅ a(◻m, ρ0 + ρ)p ⩾ (
ρ0e
−ρ∣◻m∣

ρ0 + ρ
)p ⋅ a(◻m, ρ0)p.(6.8)

This also concludes that

lim
ρ↘0

a(◻m, ρ0 + ρ) ⩾ a(◻m, ρ0).(6.9)

Combining (6.9) and (6.5) yields the right continuity of a(◻m, ⋅).
We also need to verify the left continuity. We define ρ1 ∶= ρ0 + ρ which is fixed,

then (6.4) becomes

p ⋅ a(◻m, ρ1)p − p ⋅ a(◻m, ρ0)p ⩽ ρ∣◻m∣Λ2∣p∣2 + ( ρ
ρ1
)Λ∣p∣2 − ( ρ

ρ1
) ∣p∣2.

We let ρ1 ↗ ρ0 and obtain that

a(◻m, ρ1) ⩽ lim
ρ0↗ρ1

a(◻m, ρ0).

Similarly, we put fixed ρ1 = ρ0 + ρ into (6.8) and get

p ⋅ a(◻m, ρ1)p − p ⋅ a(◻m, ρ0)p ⩾ (
ρ0e
−ρ∣◻m∣

ρ1
− 1)Λ∣p∣2,

which means that

a(◻m, ρ1) ⩾ lim
ρ0↗ρ1

a(◻m, ρ0).

These prove the left continuity of a(◻m, ⋅), establishing that a(◻m, ⋅) is continuous.
Step 3: Locally uniform convergence of ck,m. We now turn to the proof of the

locally uniform convergence of {ck,m}m∈N. Let K > 0 and ρ > 0. For the case k = 1,
by (5.8) and (5.40), we find that

sup
ρ0∈[0,K]

∣c1,m(ρ0) − c1(ρ0)∣ ⩽
1

ρ
sup

ρ0∈[0,K]
∣R1(m,ρ0, ρ)∣ +O(ρ)

+ 1

ρ
sup

ρ0∈[0,K]
∣q ⋅ (a−1(ρ0 + ρ) − a−1∗ (◻m, ρ0 + ρ))q∣

+ 1

ρ
sup

ρ0∈[0,K]
∣q ⋅ (a−1(ρ0) − a−1∗ (◻m, ρ0))q∣.

Using the statement of Proposition 5.2, the first line on the right-hand side of the
previous display is uniformly bounded by a constant O(ρ) independent of m and ρ0,
and the locally uniform convergence of (a∗(◻m, ⋅))m⩾1 towards a makes the second
line and third line vanish when m tends to infinity. Thus, we obtain

lim sup
m→∞

sup
ρ0∈[0,K]

∣c1,m(ρ0) − c1(ρ0)∣ ⩽ O(ρ).



44 A. GIUNTI, C. GU, J.-C. MOURRAT, M. NITZSCHNER

Since the left hand side of the display above does not depend on ρ, we can let ρ be
arbitrarily small, which proves the locally uniform convergence of {c1,m}m∈N. For the
case k ⩾ 2, the claim about {ck,m}m∈N follows in the same manner by induction. □
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