
HAL Id: hal-04419064
https://hal.science/hal-04419064v1

Submitted on 26 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

TrustSoC: Light and Efficient Heterogeneous SoC
Architecture, Secure-by-design

Raphaële Milan, Lilian Bossuet, Loïc Lagadec, Carlos Andres Lara-Nino,
Brice Colombier

To cite this version:
Raphaële Milan, Lilian Bossuet, Loïc Lagadec, Carlos Andres Lara-Nino, Brice Colombier. TrustSoC:
Light and Efficient Heterogeneous SoC Architecture, Secure-by-design. 2023 Asian Hardware Oriented
Security and Trust Symposium (AsianHOST), Dec 2023, Tianjin, China. pp.1-6, �10.1109/Asian-
HOST59942.2023.10409311�. �hal-04419064�

https://hal.science/hal-04419064v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


TrustSoC: Light and Efficient Heterogeneous SoC

Architecture, Secure-by-design
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1 Université Jean Monnet Saint-Étienne, CNRS, Institut d’Optique Graduate School,

Laboratoire Hubert Curien UMR 5516, F-42023,

SAINT-ETIENNE, France.
2 Lab-STICC, ENSTA Bretagne, Brest, France

raphaele.milan@univ-st-etienne.fr

Abstract

In recent years, heterogeneous SoCs, embedding multiple processor
cores and programmable logic, have progressed in terms of complexity
and performance. They embed more and more components of different
natures. From a security point of view, this leads to an increase of the
attack surface exploitable by an attacker. The goals of these attacks are
to take control of the system and/or have access to sensitive data. To
address this issue, in this article, we propose a novel heterogeneous SoC
architecture called TrustSoC, which is secure-by-design. Our proposition
presents an innovative way of partitioning the system into worlds to pro-
vide the designer with different levels of exclusion for the provision of
security. Tiny and distributed hardware security wrappers apply policies
and actively monitor the SoC communication bus to enforce these levels of
security and prevent any unwanted behavior. TrustSoC is a novel propo-
sition that considers both software and hardware approaches to secure
the device. We demonstrate our approach by prototyping the security
wrappers as well as their operating rules and show that TrustSoC re-
quires minimal changes while significantly improving the state of the art
on secure-by-design architectures.
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1 Introduction

Heterogeneous System-on-a-Chip (SoC) platforms can be found in multiple do-
mains of application due to their flexibility. They are used from general-purpose
applications to critical military applications: high-frequency trading, cloud ser-
vices, telecommunications, etc. To adapt to a wider range of applications, the
number and diversity of components in a SoC are increased. Among the more
complex heterogeneous SoCs are the SoC-FPGA, such as the FPGA·SoC Intel
Agilex, and the AMD-Xilinx Zynq UltraScale+ MPSoC. This paper focuses on
these heterogeneous devices, nonetheless, our work can also be applied to other
kinds of SoCs.

With the increase of SoC complexity comes a bigger attack surface for a
malicious entity. The SoC communication system is a particularly important
point of weakness in the security of the system. The works in [Nas+21] and
[Bah+21] demonstrate different approaches for securing the system through the
SoC communication bus. Unfortunately, these solutions use a RISC-V processor
which is not native to commercial SoC-FPGAs. Indeed, most of these platforms
feature an array of ARM processors. This is consistent with current trends, as
ARM is the leader in the smartphone market [Fit]. The solutions available in
the literature also fail to consider the SoC-FPGA whole and do not provide
security protections for all the SoC-FPGA components. This paper addresses
these issues by presenting a novel lightweight solution for securing heteroge-
neous SoC-FPGA based on small, efficient security wrappers. We also propose
an innovative way of segregating the SoC-FPGA resources into different worlds
using an extension of the ARM TrustZone technology [ARM; AF04]. The pro-
posed solution can be fully integrated into current SoC-FPGAs which feature
ARM cores. To estimate the cost of the proposed approach we prototype a SoC
architecture called TrustSoC. We use an AMD-Xilinx Zynq-7000 SoC-FPGA as
prototyping platform to provide experimental implementation and performance
results. Our findings show that TrustSoC has a minimal resources overhead,
with only a 6% increase in LUT utilization.

The rest of the paper is organized as follows: Section 2 presents the related
work. Section 3 describes the threat model. Section 4 presents TrustSoC: the
novel lightweight heterogeneous SoC-FPGA architecture secure-by-design and
the costs of the estimated approach with the relevant implementation results.
Section 5 presents a discussion and comparison of our approach against related
works from the literature. Finally Section 6 concludes the paper.

2 Background

SoC-FPGAs are generally divided into two main components: a processing sys-
tem (PS) which encapsulates the CPU cores, memory elements, and peripher-
als, and a programmable logic (PL), i.e. the reconfigurable fabric or FPGA.
Such systems also integrate other components such as large memories, power
management units, communication interfaces, application-specific processors,
analog components, etc. The programmable logic allows the user to embed
their own hardware accelerators in the form of IPs, post-delivery and poten-
tially at runtime. Communications within a SoC pass through system buses
like the Advanced Microcontroller Bus Architecture (AMBA). This technology
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is available for ARM cores, and both AMD-Xilinx and Intel SoC-FPGAs em-
ploy ARM cores. The Advanced eXtensible Interface bus (AXI) [ARM03] is
the main communication channel between the processing system and the pro-
grammable logic in the case of AMD-Xilinx SoC-FPGAs. In these platforms,
a proprietary IP (the AXI interconnect) acts as a translator between the ARM
AXI and AMD-Xilinx’ own specification: the AXI4 bus.

Given how SoCs may be employed to handle sensitive data, they have become
prime targets for malicious entities. The main purposes of attacks on SoCs
range from stealing sensitive data to mount a denial of service. These attacks
are mainly software-based and target the PS. They are possible, in part, because
some SoC resources are shared between applications. As an example, in some
recent multi-processor SoC architectures the last level of cache is shared between
the different cores. A malware can leverage this characteristic to determine,
according to the cache memory access time, whether the target application has
accessed the data [OST05]. This provides an adversary with helpful information
regarding the target application. This attack is also viable on SoC-FPGAs
[BB21].

To secure the execution of critical software applications in modern SoCs,
it is common to use built-in solutions such as the ARM TrustZone technology
which is available for SoCs with ARM processors [ARM]. This strategy splits
the resources of a processor into two different worlds: the secure world and the
non-secure world. For SoC-FPGAs, AMD-Xilinx has developed a TrustZone
Extension which also protects some of the operations in the programmable logic
[AMD14]. Fig. 1 illustrates a didactic example of this technology applied to a
SoC-FPGA: the red blocks represent the non-secure world and the green blocks
the secure one. To determine in which world it is currently operating, the sys-
tem relies on the value of the non-secure bit (NS). This protection strategy is
applied to the processing system (each CPU core can execute software appli-
cations in one of the two worlds), to the memory resources, and also to the
programmable logic (each IP embedded in the programmable logic is linked to
one of the two worlds). The NS bit is sent through an AXI4 bus to allow the pro-
grammable logic to be aware about the world (secure/non-secure) in which the
software application is running at any time. This prevents non-secure resources
(in the processing system, programmable logic and memories) from accessing
secure ones. The code and data within the secure world are supposed to be
protected from intruders. It was originally conceived as an efficient, holistic
security approach.

Unfortunately, recent works have shown that despite of the protections
brought by this security solution, many vulnerabilities can be exploited to per-
form effective attacks and corrupt the security partitioning. In [BBA19], the
authors target the communication system of the SoC. They show that a hard-
ware Trojan can modify the AXI communication signals and force an arbitrary
value for the NS bit. This modification can jeopardize the rest of the system,
leading to privilege escalation or denial-of-service attacks. In addition to this
attack, the work proposed in [BB18] uses the power management of the SoC-
FPGA to perform covert transmission of data between secure and non-secure
worlds despite the policies of the TrustZone isolation. In [Gro+20], the authors
used a hardware Trojan to corrupt the secure boot and break the memory iso-
lation. The modification of the secure boot can allow an attacker to be able to
change permissions to critical information, data or instructions, and can lead to
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Figure 1: An example of heterogeneous SoC architecture with ARM-TrustZone
technology. The red blocks represent the non-secure world and the green blocks
belong to the secure world.

privilege escalation.
All these attacks show that it is not sufficient to consider the security of the

SoC from just the software or hardware point of view separately. Instead, the
design of protections and countermeasures requires an integral approach. Secu-
rity solutions must be carefully thought out and consider both factors: software
(processing system, operating system, boot, etc.) and hardware (programmable
logic, bus, hardware IP, etc.).

3 Threat model

In this paper, we contemplate several threats from remote software and hardware
attacks. TrustSoC considers malicious hardware IPs or software applications
introduced at design time. TrustSoC also considers illegitimate accesses and
modifications of the memory contents.

Time-to-market tends to become narrower, designers do not have the time
to develop every software or hardware component, thus they utilize third-party
blocks. These components can contain malicious routines or circuits which can
be used to perform an attack. For example, they could try to access sensitive in-
formation from other applications or IPs. These threats we envisage are relevant
and correspond to the process of SoC-FPGA design. TrustSoC mitigates these
menaces by introducing minimal additional components for every hardware IPs
enforcing policies to prevent illegal accesses.

We assume that the software compiler and the synthesis tool are trusted and
cannot be used to perform illegal modifications of the design. The synthesis tool
is responsible for the additional components addition of every hardware IPs.
We also assume that the SoC and the founder are trusted. No modification was
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Figure 2: Example of the proposed TrustSoC architecture
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made such as adding a hardware Trojan.
TrustSoC prevents the attacks cited in the background Section 2. TrustSoC

prevents side-channel attacks [BB21] against the cache memory with several
security solutions. TrustSoC uses identifiers to restrict the cache access and
creates different cache partitions for each running application. It also stipulates
operating rules such as flushing the cache on each context switch preventing
reuse of data. Additionally, TrustSoC prevents attacks performed with illegal
accesses [Gro+20]. TrustSoC uses additional components that can distinguish
between legitimate and illegal accesses with a set of rules and identifiers. With
this solution TrustSoC prevents [BBA19].

4 TrustSoC

This section describes an instance of the trusted heterogeneous SoC architec-
ture secure-by-design called TrustSoC. This design exhibits multiple security
features:

• software and hardware components can be assigned to multiple worlds
with different privilege levels, in contrast to the basic secure/non-secure
approach of TrustZone;

• the cache memory is protected against attacks that leverage the shared
cache access;

• a set of distributed communication controllers enforce policies to imple-
ment trusted communications inside the SoC.

TrustSoC is a flexible and scalable architecture which can be adjusted to
the application requirements. For the purposes of this paper we present the
concrete prototype shown in Fig.2. The processing system includes two cores,
but it could be extended with more cores and support different architectures.
TrustSoC also embeds a programmable logic region, a communication bus, sev-
eral peripherals and shared memories. Each core has a non-secure world, shown
in dark red, and two secure worlds, shown in green colors, which are presented
in the next subsections. Finally, TrustSoC embeds tiny distributed communi-
cation controllers called “s wrapper”. We also present these controllers in the
following subsections.

4.1 TrustSoC security features

SF.1: Operating rules: TrustSoC comes with a set of operating rules which
must be enforced as policies to prevent any unwanted behavior and provide
more security.

SF.2: Extended secure multi-worlds: TrustSoC introduces multi-secure
domains to allow the designer more flexibility for their design. Contrary to ARM
TrustZone technology, TrustSoC allows the designer to choose the number of se-
cure worlds in their design and have a proper isolation between the applications
and IPs.

SF.3: Programmable logic in the security resources : TrustSoC fully
integrates the programmable logic in the security resources by using a unique
identifier for each hardware IP.
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SF.4: Trusted communications inside the SoC: TrustSoC establishes
secure communications between hardware IPs and software applications inside
the heterogeneous SoC. With this security functionality, TrustSoC does not
rely on third party’s security features and ensures that the IPs introduced are
operating as intended.

SF.5: Side-channel attack resilience: TrustSoC embeds protections
against software side-channel attacks by restricting the cache access with iden-
tifiers and creating different and isolated cache partitions for each running ap-
plication. The operating rules of TrustSoC also stipulated the flush of the cache
on each context switch or end of utilization of the cache by an application.
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Figure 3: Architecture of the operation of TrustSoC
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4.2 TrustSoC architecture

TrustSoC embeds ARM Cortex processors. This choice is motivated by the fact
that ARM has a strong presence in the SoC and SoC-FPGA markets. ARM
processors can be found in the main SoC-FPGAs of AMD-Xilinx and Intel.
Nevertheless, it would be possible to employ any other kind of processors in
TrustSoC such as RISC-V.

TrustSoC uses small distributed security wrappers to create trusted commu-
nications between the hardware accelerators, peripherals and applications. The
security wrappers aim to distinguish between illegal and legitimate transactions.
To establish this secure communication, TrustSoC assigns an IP identifier and a
world identifier to each hardware resource in the SoC. These identifiers are dif-
ferent, unique and hardware-coded. They are assigned pre-synthesis and cannot
be changed. Each security wrapper comes with a set of permissions that specifies
the access rights for every hardware resource to the underlying component.

These identifiers are transported through the communication bus, which is
an AXI instance for the prototype presented in this work. AXI is a slave/master
protocol. It has five separate channels: write address (AWADDR), write data
(WDATA), write response (BRESP), read address (ARADDR), read data (RDATA)
and the optional read response (RRESP). The AXI protocol operates on hand-
shake mechanisms with ready and valid signals for each channel. The response
channels (BRESP and RRESP) indicates the state of the transaction to the
master: OKAY when the transaction was successfull, SLVERR or DECERR
when an error had occurred.

In addition, the AXI protocol allows to use user signals to transport added
information up to 1024 bits without overhead. We leverage this feature in
TrustSoC: each request on the SoC communication bus has the IP identifier
and the world identifier added through the AXI user signals. The width of
the identifiers depends on the number of components and worlds in the SoC.
Similarly, for the identifier of the worlds we use ⌈log2(max(worlds))⌉ bits. The
world identifier is used to extended the NS bit of the ARM TrustZone. Since
it is hardware-coded and we assume that the AMD-Xilinx tool chain is trusted
the world ID cannot be changed preventing attacks like [BBA19]. Additionally,
the distributed controller prevents unauthorized modifications. When a security
wrapper receives a request, it compares the IP and world identifiers with its list
of access policies (read/write). The access rights are hardware-coded but may
be changed at boot time through a software secure configuration. After the boot
configuration, the policies are set and can no longer be changed. If a request
conveys a correct address and world, plus it respects the security policies, it
is forwarded to the underlying component. In the case where an anomaly is
detected, the wrapper discards the data, sends a null response, and raises an
error on the AXI bus through the response XRESP signals. These hardware-
coded identifiers and access rights verify the SF.4 security feature in subsection
4.1. Furthermore, the secure boot configuration that can change the access
rights will provide more flexibility to the designer.

The distributed security wrappers also embed simple security policies to
oversee the operation of the IP. For example, we specify the reset after every
use of the component to prevent the reuse of data. These security policies
correspond to the SF.1 and SF.3 security features.
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4.3 Multiple security worlds

We use an ARM processor in TrustSoC due to its large availability. Our pro-
posal is an extension of the ARM TrustZone technology. We aim to give the
designer more flexibility, but especially more isolation on their design since the
designer can isolate or group hardware IPs or software applications by worlds.
With our trusted communication system and operating rules we address the
vulnerabilities of the basic ARM TrustZone technology. We provide isolation
between the worlds making it impossible for a malicious entity to get information
on a victim that would reside in one of the secure worlds. A potential attacker
also could not modify the identifiers to perform an illegal access to a world
where it does not belong. Dedicated security wrappers control the accesses to
the memories making it also impossible for a malicious entity to perform illegal
memory accesses. With TrustSoC, the designer chooses the number of worlds
they wish in their system. The encoding of the identifier of the worlds is given
by ⌈log2(max(components))⌉ bits. This enforces the SF.2 security feature.

The Fig.3 illustrates an example of TrustSoC applied to a design. The
secure worlds are identified with different levels of green and the normal world
is identified with dark red. This figure shows an example of the encoding in
a system where there are three worlds. Fig.3a illustrates the isolation between
entities from different worlds: resources of the secure worlds, encoded with
world ID = “01”, are inaccessible to the normal world in Fig.3b. The hardware
and software components in the system cannot communicate directly with each
other without authorization. Also, the components cannot access or modify a
memory partition without authorization. This applies to all operations of the
different worlds. The authorizations are enforced by the distributed security
wrappers and their policies.

The non-secure world components cannot access resources from the secure
worlds, however this restriction is not applied to the secure worlds. For example,
an application running in a secure world could delegate some computation to a
non-secure hardware accelerator. In this case, after the end of processing the
IP would be automatically reset by its security wrapper to prevent the miss-
use of sensitive data. This rule is also applied for cache partitions which are
flushed when switching from one world to another. This reduces the overall
performance but provides a better level of security and contributes to the SF.5
security feature.

4.4 Memory protection

One feature of TrustSoC is to protect memory resources from illegitimate ac-
cesses and isolate the partitions of the different worlds between themselves.
This is enforced by a security wrapper connected to the AXI4 communication
bus and then to the memory. Each request coming from the bus is verified by
the security wrapper. It verifies that every request complies with the security
policies. It compares the identifiers of the transaction, which component is the
sender, and in which world the system is currently operating, using the access
rights table belonging to the underlying component. It accepts and forwards
the transaction when the rights are verified, otherwise it discards the data and
raises an error on the bus through the SLVERR signal.
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Table 1: Implementation costs for multiple protected and unprotected hard-
ware accelerators from an AMD-Xilinx Zynq-7000 SoC-FPGA (XC7Z010-
1CLG400C).

IP Strategy LUT FF
Fmax
(MHz)

Sobel filter
Unprotected 2,783 4,355 219
Protected 2,795 4,359 212

Overhead % +0.4 +0.1 -3.2

ASCON-Masked
Unprotected 2,747 2,545 209
Protected 2,756 2,547 212

Overhead % +0.33 +0.1 +1.4

AES-128
Unprotected 3,048 2,031 128
Protected 3,057 2,034 126

Overhead % +0.3 +0.2 -1.6

Karatsuba-128
Unprotected 2,921 3,061 239
Protected 2,934 3,063 240

Overhead % +0.5 +0.1 +0.5

Montgomery-128
Unprotected 4,903 1,625 102
Protected 4,915 1,627 101

Overhead % +0.2 +0.12 -1.0

4.5 Prototyping and testing

In this subsection, we provide implementation results from an AMD-Xilinx
Zynq-7000 SoC-FPGA (XC7Z010-1CLG400C). We used the Xilinx Vivado 2020.2
toolchain to implement the TrustSoC prototype. The distributed security wrap-
pers presented in subsection 4.2 were described in VHDL. We used these dis-
tributed wrappers to protect five different IPs from cryptographic and signal
processing applications. The implementation results are shown in Table 1. The
size of these IPs ranges from 2,747 to 4,903 LUTs. All the hardware IPs we used
are found in online repositories. We evaluated our hardware implementations
with and without the security wrapper, using as metric the hardware utilization
in LUTs, FFs, and the maximum frequency attainable by the design.

As shown in Table 1, the resources overhead induced by the security wrapper
in number of LUTs is 0.34% at most and in number of registers, 0.13% at
most compared to the baseline implementation costs of the IPs. This resource
overhead can be explained by the fact that we add logic to each IP in order to
implement our distributed security wrappers. In our experimentation we were
limited by the size of the fabric in the AMD-Xilinx Zynq-7000. For example
the largest multiplier instances we could fit in this board used operands of
128-bits. However, for cryptography applications it is expected to use up to
512-bits operands. Such larger instances would evidently dwarf the hardware
costs of the security wrapper in comparison. The overhead in terms of maximum
frequencies of operation is not significant. Indeed, the security wrapper does
not affect the critical path of the hardware accelerators and thus it does not
affect the maximum attainable frequencies. We suspect that the fluctuations
that appear in Table 1 are due to the non-deterministic nature of the synthesis
process. In conclusion, the security wrapper has a negligible resources and

10



7 1
1 2
0 2
9 5
3

9 1
5 2
8 5
0

1
5
3

2
3 2
9 7

7

1
5
2

2
9
1

5
3 8
9 1

5
7

2
9
1

1
1
1
3

9
2 1

6
0

2
9
6

1
1
1
2

1
6
1
6

2 worlds 4 worlds 8 worlds 16 worlds 32 worlds

Number of worlds in the system

0

200

400

600

800

1000

1200

1400

1600

1800
L
U

T
s

  2 components

  4 components

16 components

32 components

64 components

Figure 4: Results of implementation of the security wrapper attached to a
BRAM

performance overhead with a significant security improvement.
We then implemented a security wrapper with a BRAM in order to demon-

strate the operation of our system and the costs of the world partitioning on
a memory block. We implemented this BRAM security wrapper and tested it
with a varying number of worlds (2,4,8,16,32) as well as a varying number of
IPs which requested access to the memory (2,4,16,63). Fig. 4 shows the results
of our implementations. This prototype allowed us to explore the costs and
scalability of our proposal.

The overhead in resources is attributed to the size of the access-rights table.
This explains the higher overhead for the larger number of worlds with the
most IDs. Currently our implementation employs LUTRAMS, but it is also
possible to use BRAMS which would reduce drastically the overhead in the
number of LUTs. The results of the timing criteria are not displayed since the
variation is negligible. From the results in Fig.4 we can conclude that the costs
of the security wrapper and world partitioning impose a small overhead on the
protected system, which is very much acceptable with the degree of protection
provided by the proposed solution.

5 Discussion and Benchmark

In this section, we review the state of the art on secure-by-design architectures
for heterogeneous SoCs. We focus on the works which are the most relevant
to our proposal. A qualitative comparison between these references is shown in
Table 2.
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The most prominent strategy for protecting SoC-FPGAs is ARM’s Trust-
Zone [ARM]. This is a security solution available in AMD-Xilinx lines of SoC-
FPGAs. Arm TrustZone divides the resources of the processing system in two
different worlds: secure and non secure. This partitioning is then extended to
the rest of the SoC: peripherals and memories. And in the case of AMD-Xilinx
SoC-FPGAs also to the reconfigurable fabric. TrustZone enforces the policies in
the system with an identifier called “NS bit” and some controllers. The security
identifier is directly implemented in the AMBA buses. Despite its popularity,
TrustZone has shown many vulnerabilities that can be exploited to perform
attacks and corrupt the security partitioning [BBA19; BB18; Gro+20]. More-
over, TrustZone being a proprietary solution, is not open source which makes it
difficult to improve its implementation.

In [Bah+21], Bahmani et al. presented an architecture where there are three
different types of software enclaves at different levels in the SoC (user-space,
kernel-space and sub-space). They modified a RISC-V processor to support
an enclave identifier. The rest of the system was also modified to support
the enclave identifier. This identifier was then used in the rest of the system
and filtering blocks were put in place to determine legitimate accesses. A hy-
pervisor (secure monitor) was used to configure the permissions. Cure also
embedded protections against cache side-channel attacks. Policies were set in
place to supervise the cache partitioning, allocation and cache eviction. The
proposition was a software security solution for the most part, as there were no
programmable resources embedded in the SoC. Thus, we consider their solution
as not suitable for SoC-FPGAs since a secure architecture must consider the
whole SoC and have both software and hardware countermeasures.

Nasahl et al. presented in [Nas+21] a secure architecture called Hector-V.
The security of their proposal is based on the distinction of the processors. They
use a dedicated processor for the normal applications and a processor dedicated
for the secure ones. To differentiate between illegitimate and legitimate com-
munications, Hector-V uses identifiers (core ID, process ID and peripheral ID)
and filtering blocks called “wrappers”. The processors are modified to embed
directly the identifiers. Hector-V uses AXI4 as communication protocol so the
identifiers are propagated using the AXI4 user signals. There is also distinc-
tion in the SoC communication buses. The design includes two communication
systems: one for the data and one for the configuration. In Hector-V, the pe-
ripherals are bound to an entity and can only accept request from it. The
configuration channel is used to define this entity for each peripheral. A se-
cure monitor is responsible for the configuration and to oversee the operation
of the communication between all peripherals and the processors. The authors
argue that the duplication of the resources in Hector-V can mitigate cache and
micro-architectural side-channel attacks. However, this solution would not be
entirely viable on a real use-case where the constraints on resource utilization
are high. Also, their proposal does not allow to embed programmable resources
which is an essential part of SoC-FPGAs. Furthermore, Hector-V only provides
a dedicated processor for secure applications, it does not provide segregation in
multiple secure domains.

Hagan et al. [HSS18] propose a hardware-based pro-active policing and
policy architecture. They deploy hardware-based modules called “security pol-
icy engines” at the system communication level. These modules are acting as
hardware-coded firewalls with a list of permissions that actively monitor the
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AXI4 SoC communication bus. For every incoming request, the security policy
engine uses the read and write address channels to determine the legitimacy of
the transaction. They can either grant or deny access to the device according
to the policies stored in a table. The policies are configured via SELinux and
can be updated over time. The system also allows to integrate programmable
logic (FPGA). Furthermore, it uses ARM TrustZone to provide the designer
with the possibility of having a secure domain in their architecture. However,
the architecture does not embed security solutions for the cache memory and
the user is restricted to two worlds with a single secure one.

6 Conclusion

This paper’s main contribution has been to present a novel way of segregating
SoC-FPGA into different secure domains based on the ARM TrustZone tech-
nology. The security is then enforced with operating policies that prevent any
unwanted behavior. To enforce the policies, each hardware resource is given an
hardware-coded identifier that cannot be changed. The hardware resources are
also given a table of permissions that specify the hardware resources that have
the privileges to access the resource. The permissions list is hardware-coded and
configured at boot by a software secure configuration. After the initial config-
uration the permissions cannot be changed. Small distributed communication
controllers are then used to monitor the SoC communication bus and determine,
according to the resource’s policies, the legitimacy of every transaction.

The proposed architecture has been prototyped on an AMD-Xilinx Zynq-
7000 SoC. Our experimentation demonstrated that the hardware overhead of
the communication monitoring are small in relation to the sized of the pur-
ported application domains. The operational frequency of the system would
not be affected, and only a small latency overhead is incurred. In regards to
memory protections, we have shown that there is a lineal relationship between
the hardware overhead and the number of secure worlds and components con-
sidered in the system. This can be mitigated with the use of dedicated memories
available in most modern platforms.

This paper has laid the foundation for a trusted heterogeneous SoC archi-
tecture secure-by-design called TrustSoC. We have demonstrated that security
cannot be an add-on functionality and must be carefully thought out from the
moment of conception of the architecture. This also must be a dual security
model: hardware and software. As our experimental evaluation of the hardware
overhead has shown, with a hardware prototype of TrustSoC, this work con-
duces to the proposition of an efficient and light secure-by-design architecture.
It is also a scalable architecture defined at the design stage by the designer.
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