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CENTRALISERS AND THE VIRTUALLY CYCLIC
DIMENSION OF OutpFN q

YASSINE GUERCH, SAM HUGHES, AND LUIS JORGE SÁNCHEZ SALDAÑA

Abstract. We prove that the virtually cyclic (geometric) dimension
of the finite index congruence subgroup IAN p3q of OutpFN q is 2N ´ 2.
From this we deduce the virtually cyclic dimension of OutpFN q is finite.
Along the way we prove Lück’s property (C) holds for OutpFN q, we
prove that the commensurator of a cyclic subgroup of IAN p3q equals
its centraliser, we give an IAN p3q analogue of various exact sequences
arising from reduction systems for mapping class groups, and give a near
complete description of centralisers of infinite order elements in IA3p3q.

1. Introduction

Let FN denote the free group on N generators and let OutpFN q denote its
outer automorphism group. The study of OutpFN q has been ubiquitous in
geometric group theory and low dimensional topology; finding connections
with arithmetic groups, mapping class groups, moduli spaces of graphs, and
many others. Despite this, the topology of OutpFN q has been notoriously
hard to pin down.

It is known that the virtual cohomological dimension of OutpFN q is 2N´3
[CV86] and that OutpFN q is a virtual duality group [BF00]. Much work
has gone into computing various Euler characteristics of OutpFN q [SV87b,
SV87a, BV20] and in low dimensions the rational cohomology has been com-
puted [HV98, Oha08, Bar16]. Moreover, some homological stability phenom-
ena has been observed [Hat95, HV04, HVW06]. In this article we will be
concerned with a topological property of a different flavour.

Virtually cyclic dimension. Given a group G, a collection of subgroups G
is called a family if it is closed under conjugation and under taking subgroups.
We say that a G-CW-complex X is a model for the classifying space EGG
if, given any G-CW-complex Y with isotropy in G, there is up to homotopy
a unique G-map Y Ñ X. Such a model always exists and it is unique up to
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G-homotopy equivalence. The geometric dimension of G with respect to the
family G, denoted gdGpGq, is the minimum dimension n such that G admits
an n-dimensional model for EGG.

The most studied families are: T R the family that contains only the
trivial subgroup, FIN the family of finite subgroups, and VC the family
of virtually cyclic subgroups. For the first, one recovers EG and all of the
classical group cohomology to go with it. The latter two are relevant to
the isomorphism conjectures in K-theory, EFING, denoted EG, is relevant
to the Baum–Connes Conjecture, and EVCG, the topic of this article and
which we will henceforth denote by, EG, is relevant to the Farrell–Jones
Conjecture.

The Farrell–Jones Conjecture, one of the most prominent conjectures in
modern topology, predicts that a certain ‘assembly map’

HG
n pprq : HG

n pEG;KRq Ñ KnpRGq

is an isomorphism. Whilst we will not explain all of the ramifications and
developments of the Farrell–Jones Conjecture and instead refer the reader
to the book project of Lück [Lüc]. We do point out that the Farrell–Jones
Conjecture is still open for OutpFN q but is known for mapping class groups of
finite type surfaces [BB19]. Clearly, the left hand side is explicitly concerned
with the classifying space for virtually cyclic actions and so understanding
the minimal possible dimension for a model of EG is of great importance.

In the present article we study the geometric VC-dimension, which from
now on we denote by gdpGq for a group G. Computations for gd are known
for (relatively) hyperbolic groups [JPL06, LO07], elementary amenable groups
[DP14], discrete linear groups [DKP15], CATp0q groups [Lüc09, DP15], virtu-
ally polycyclic groups [LW12, CFH], mapping class groups of finite type sur-
faces [JPTN16, NP18], mapping class groups of punctured spheres [AJPTN18],
systolic groups [OPa18], braid groups [FGM20], and orientable 3-manifold
groups [JLSSn21].

Our goal is to establish that gdpOutpFN qq is finite. For our purposes we
are interested also in the finite index congruence subgroup

IAN p3q :“ kerpOutpFN q Ñ AutpH1pFN ;F3qq.

Our main result is the following:

Theorem A. Let N ě 1. Then, gdpIAN p3qq “ 2N ´ 2.

For a group G we denote by gdpGq the minimal dimension of a model for
EG. A problem of Lück [Lüc, Problem 10.51] asks for which groups G do
the inequalities gdpGq ´1 ď gdpGq ď gdpGq `1 hold. The previous theorem
answers this in the affirmative for all finite index subgroups of IAN p3q. From
here we establish our desired result:

Corollary B. Let N ě 1. Then, gdpOutpFN qq is finite.

In a sense, our proof is similar to the analogous results for mapping class
groups of finite type surfaces established by Juan-Pineda–Trujillo-Negrete
[JPTN16] and Nucinkis–Petrosyan [NP18]. The proofs in the mapping class
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group case heavily rely on reduction systems and the Nielsen–Thurston clas-
sification of mapping classes. Two tools that are not readily available in the
OutpFN q setting.

One of the key steps in both proofs for mapping class groups is to the use
Lück–Weiermann push-out construction [LW12]. This requires a description
of the commensurators of infinite cyclic subgroups by means of short exact
sequences coming from the reduction systems of various elements. This pro-
cess allows for an inductive argument. To this end Juan-Pineda and Trujillo-
Negrete prove that the commensurator of any infinite cyclic subgroup C of
MCGpSq can be realized as the normaliser of a finite index subgroup of
C. We obtain analogous results for OutpFN q that we now describe in great
detail.

Centralisers and commensurators. Towards proving the result of Juan-
Pineda and Trujillo-Negrete for OutpFN q we establish Lück’s Property (C)
(see Section 3 for a definition). We then use this and results in [Gue] to
deduce the following theorem.

Theorem 3.5. Let ϕ P IAN p3q. The commensurator of the cyclic group xϕy

in IAN p3q is equal to its centraliser.

Centralisers of elements of OutpFN q have been widely studied in the lit-
erature (see for instance [BFH97, KL11, AKP17, RW15, AM, Mut22, Gue]).
The centralisers of large families of elements of OutpFN q are now com-
pletely understood, for example, fully irreducible outer automorphisms by
Bestvina–Feighn–Handel [BFH97], atoroidal elements by the work of Feighn–
Handel [FH09] or linearly growing elements by Rodenhausen–Wade [RW15]
and Andrew–Martino [AM]. All these families are, in some sense, analogues
of either pseudo-Anosov homeomorphisms or Dehn twists homeomorphisms
and their centralisers have a similar structure. In all these cases, the proofs
also imply that the centralisers have a finite index subgroup with a finite
classifying space.

However, one major difficulty in understanding the centraliser of an arbi-
trary element of OutpFN q is the lack of a complete analogue of the reduction
system as in the case of the mapping class groups. This often prevents us
from understanding the centraliser of an automorphism using its action on
free groups of smaller ranks in analogy with understanding a mapping class
by its action on subsurfaces.

The theory of reduction systems for OutpFN q has a long history as its
use in the understanding of mapping class groups is central. However, con-
trary to the case of surface homeomorphisms, the study of OutpFN q of-
ten requires distinct constructions of reduction systems according to the
context. The first incarnation dates back to the work of Bestvina–Handel
on the existence of train tracks for automorphisms of free groups ([BH92],
see also [BFH00, FH11]) in order to understand dynamical properties of
an individual automorphism. Reduction systems for subgroups of OutpFN q

first appear in the work of Bestvina–Feighn–Handel on the Tits alternative
for OutpFN q [BFH00, BFH04, BFH05]. The construction of invariant free
factors of subgroups of OutpFN q plays a key role in the work of Handel–
Mosher [HM20a], which led to the study of the bounded cohomology of
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OutpFN q [HM15, HM17]. Finally, a notion of a dynamical reduction system
for subgroups of OutpFN q was also constructed by Guirardel–Horbez in order
to prove a measure equivalence rigidity result for OutpFN q [GH21].

In the present paper, we need to understand classifying spaces of centralis-
ers of arbitrary elements of OutpFN q in order to apply Lück–Weiermann
push-out construction. Therefore, one of the main steps in the proof of The-
orem A is to give a another analogue of the reduction systems for mapping
class groups which is well-adapted to the study of centralisers of elements of
IAN p3q. This is the content of the following theorem. We refer to Section 2
for definitions and notations.

Theorem 4.7. Let N ě 2 and let ϕ P IAN p3q. The centraliser Cpϕq of ϕ in
IAN p3q satisfies one of the followings.

(1) The outer automorphism ϕ is a Dehn twist. There exist a JSJ tree
T preserved by Cpϕq and a short exact sequence

1 Ñ K Ñ Cpϕq Ñ
ź

vPV pFN zT q

IAvp3q Ñ 1,

where K is a free abelian group whose dimension is equal to |EpFNzT q|

and, for every v P V pFNzT q, the group IAvp3q is a finite index sub-
group of the group OutpGv, Incvq. Moreover, ϕ is contained in K.

(2) There exist A1, A2 Ď FN with FN “ A1 ˚A2, rkpA1q, rkpA2q ď N ´1
and a homomorphism

Cpϕq Ñ IApA1, 3q ˆ IApA2, 3q

whose kernel is a finite index subgroup of a direct product of two
finitely generated free (maybe trivial or cyclic) groups.

(3) There exist A1, . . . , Ak, B Ď FN nontrivial with FN “ A1 ˚ . . . Ak ˚B
and a homomorphism

Cpϕq Ñ Z ˆ

k
ź

i“1

IApAi, 3q

whose kernel is abelian and ϕ projects onto the Z factor.
(4) There exist a JSJ tree T preserved by Cpϕq, a partition V T “ V1

š

V2
and a homomorphism

Cpϕq Ñ Z ˆ
ź

vPV2

OutpGvq

whose kernel is abelian and ϕ projects onto the Z factor.

We note that the case of a Dehn twist was proved by Rodenhausen–
Wade [RW15] (see also the work of Cohen–Lustig [CL99]). Theorem 4.7
allows us to understand the centraliser of an element of IAN p3q through its
action on free groups of smaller ranks. Note that the main limitation when
compared to reduction theory of mapping class groups is that the homomor-
phisms given in Theorem 4.7 are not necessarily surjective. In particular,
we do not always have control on the image. We expect that Theorem 4.7
is a significant step towards a complete understanding of centralisers of all
elements of OutpFN q and will be of independent interest. We remark that
the reduction systems for OutpFN q described above are all distinct from ours
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but, to our knowledge, the aforementioned ones could not be directly used
to compute the geometric dimension of centralisers and Weyl groups.

Using Theorem 4.7 we are able to prove an inductive structural description
of the Weyl group of an infinite order element in IAN p3q (see Corollary 4.8).
Our other major result on centralisers is a near comprehensive structure
description of centralisers of infinite order elements in IA3p3q. This result is
in a sense a specialisation of Theorem 4.7 but requires a careful and explicit
analysis of stabilisers of free factor systems of F3.

Theorem 5.1. Let ϕ P IA3p3q. The centraliser Cpϕq of ϕ in IA3p3q is of type
VF. Moreover, one of the following holds.

(1) The centraliser of ϕ is abelian.
(2) The centraliser of ϕ is isomorphic to F ˆ Z where F is a finitely

generated free group.
(3) The centraliser of ϕ is isomorphic to a direct product HˆZ where H

is a finite index subgroup of a direct product of two finitely generated
free groups.

(4) The outer automorphism ϕ is a Dehn twist. There exist a JSJ tree
T preserved by Cpϕq and a short exact sequence

1 Ñ K Ñ Cpϕq Ñ
ź

vPV pF3zT q

IAvp3q Ñ 1,

where K is a free abelian group whose dimension is equal to |EpF3zT q|

and, for every v P V pF3zT q, the group IAvp3q is a finite index sub-
group of the group OutpGv, Incvq. Moreover, ϕ is contained in K.

We note that in Theorem 5.1, the conclusion that the centralisers are of
type VF improves a result of Francaviglia–Martino–Syrigos [FMS21, Theo-
rem 8.2.1]; where they prove that centralisers of infinite order elements of
OutpF3q are finitely generated (type F1). This finiteness result crucially de-
pends on work of Rodenhausen–Wade [RW15] where they prove centralisers
of Dehn twists are of type VF.

Corollary 5.2. Let ϕ P IA3p3q. The centraliser COutpF3qpϕq is of type VF.

Structure of the paper. In Section 2 we recall the necessary background
on free factor systems, IAN p3q, and relative free factor graphs.

In Section 3 we establish Lück’s property (C) for OutpFN q. We then use
property (C) and results of [Gue] to prove Theorem 3.5.

In Section 4 we prove Theorem 4.7. The proof of this theorem is sepa-
rated into two distinct subsections, according to the fixed subgroups of the
considered outer automorphism. If the fixed subgroups fill the group FN ,
then one can apply the theory of JSJ decompositions of groups. This is done
in Section 4.A. Otherwise, the main input is work of Horbez–Wade [HW20]
and Guirardel–Horbez (where they attribute some work to Guirardel and
Levitt) [GH22] as well as a very careful study of the free factor systems that
arise. This is done in Section 4.B. From here we deduce Corollary 4.8 which
gives an inductive description of the Weyl groups of elements in IAN p3q. The
work here is a key step towards being able to inductively apply the Lück–
Weiermann construction. But, we suspect the results established here will
be of independent interest.
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In Section 5 we begin to specialise Theorem 4.7 to IA3p3q which will
form the base case of our induction later. The main result of this section is
Theorem 5.1. A thorough analysis of elements of IA3p3q allows us to refine
Theorem 4.7.

In Section 6 we study the proper geometric dimension gdpW pϕqq, where
W pϕq is the Weyl group of a Dehn twist ϕ in IAN p3q, proving it is at most
2N ´ 4. Here gd denotes the minimal dimension of a model for EG. The
need for this apparent diversion is that upper bounds on the proper geometric
dimension feed into our inductive argument. The remaining cases of possible
centralisers and their Weyl groups are dealt with later but the argument for
Dehn twists turns out to be somewhat more technical.

Finally, in Section 7 we combine our analysis of the centralisers, com-
mensurators, and Weyl groups of IAN p3q to prove Theorem A and deduce
Corollary B. The build up to the use of Lück–Weiermann turns out to be
involved. The key steps being Proposition 7.3 and Proposition 7.4 where
we study gdpW pHqq for the Weyl group of H an infinite cyclic subgroup of
IA3p3q, or a maximal infinite cyclic subgroup of IAN p3q respectively. At this
point the main theorem is at hand.

Acknowledgements. The first author was supported by the LABEX MI-
LYON of Université de Lyon. The second author received funding from
the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (Grant agreement No. 850930).
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Leary, Armando Martino, and Ric Wade for helpful comments and correc-
tions on an earlier draft of this manuscript.

2. Preliminaries

2.A. Free factor systems. Let N ě 2 and let FN be a nonabelian free
group of rankN . A free factor system of FN is a finite set F “ trA1s, . . . , rAksu

of conjugacy classes of subgroups of FN such that there exists a subgroup B
of FN with FN “ A1 ˚ . . . ˚Ak ˚B.

A free factor system F of FN is sporadic if either F “ trAsu and FN “ A˚Z
or F “ trAs, rBsu and FN “ A˚B. Otherwise, we say that F is nonsporadic.

The group OutpFN q has a natural action on the set of free factor systems
and we denote by OutpFN ,Fq the stabiliser of a free factor system F . Let
ϕ P OutpFN q and let F be a free factor system of FN . Suppose that ϕ fixes
every element of F . Then, for every rAs P F , by malnormality of A, the
element ϕ induces an element ϕ|A P OutpAq.

The collection of free factor systems is equiped with a natural partial
order, where F1 ď F2 if for every rAs P F1, there exists rBs P F2 such that
A Ď B.

2.B. Properties of the subgroup IAN p3q. Let N ě 2 and let

IAN p3q “ kerpOutpFN q Ñ AutpH1pFN ;F3qq.
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In this section, we recall some properties of IAN p3q. Most of them show some
aperiodic properties of the group IAN p3q which will be of great interest in
the rest of the paper.

Proposition 2.1. [BT67] The group IAN p3q is torsion free.

Theorem 2.2. [HM20a, Theorem II.3.1] Let H be a subgroup of IAN p3q.

p1q Suppose F is an H-periodic free factor system. Then F is fixed by H
and every element rAs P F is fixed by H.

p2q If rgs is an H-periodic conjugacy class of some element g P FN , then rgs

is fixed by H.

Theorem 2.3. [HM20b, Theorem 1.1] Let H be a virtually abelian subgroup
of IAN p3q. Then H is abelian and finitely generated.

Lemma 2.4. [Gue, Lemma 2.9] A subgroup H of IAN p3q is abelian if and
only if it does not contain a nonabelian free group.

Theorem 2.5. [Gue, Theorem 1.1] For all ϕ, ψ P IAN p3q, if there exists
m P Z˚ such that ϕm “ ψm, then ϕ “ ψ.

Proposition 2.6. [Gue, Corollary 4.2] For all ϕ, ψ P IAN p3q, if there exist
m,n P Z˚ such that ϕm and ψn commute, then ϕ and ψ commute.

2.C. The relative free factor graph. In this section, we introduce a Gro-
mov hyperbolic space on which OutpFN q acts by isometries. This space
will play a key role in the study of centralisers of elements of OutpFN q as
centralisers will fix points of its Gromov boundary.

Let F be a free factor system of FN . An pFN ,Fq-free factor system is a
proper free factor system F 1 of FN with F ă F 1. An pFN ,Fq-free factor is
a subgroup A of FN such that there exists an pFN ,Fq-free factor system F 1

of FN with rAs P F 1.
The free factor graph of FN relative to F , denoted by FpFN ,Fq, is the

graph whose vertices are the conjugacy classes of pFN ,Fq-free factors of FN ,
two such conjugacy classes rAs, rBs being adjacent if either A Ĺ B or B Ĺ A.

By a result of Handel–Mosher [HM], the graph FpFN ,Fq is Gromov-
hyperbolic (see also the work of Bestvina–Feighn [BF14] for the case F “ ∅
and the work of Guirardel–Horbez [GH22, Proposition 2.11] for general free
products of groups).

The group OutpFN ,Fq acts naturally on FpFN ,Fq by isometries. An
outer automorphism ϕ P OutpFN ,Fq is fully irreducible relative to F if there
does not exist a proper free factor system F ă F 1 fixed by a power of ϕ.
These elements are the loxodromic elements of FpFN ,Fq.

Theorem 2.7. [Gup18, Theorem A] Let F be a nonsporadic free factor sys-
tem of FN . An element ϕ P OutpFN ,Fq is a loxodromic element of FpFN ,Fq

if and only if ϕ is fully irreducible relative to F .

The following theorem was proved by Handel and Mosher [HM20a] when
the subgroup is finitely generated case and by Guirardel and Horbez [GH22]
in the general case.
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Theorem 2.8. [GH22, Theorem 7.1][HM20a, Theorem A] Let H be a sub-
group of IAN p3q and let F be a maximal proper H-invariant free factor sys-
tem. Suppose that F is nonsporadic. Then H contains a fully irreducible
outer automorphism relative to F .

We record the following fact, which is a consequence of the description of
the Gromov boundary of FpFN ,Fq. It is due to Hamenstädt [Ham] for the
case F “ ∅, and Guirardel and Horbez [GH22] for the general case. We
refer to [GH22, Section 3] for the definition of an pFN ,Fq-arational tree.

Proposition 2.9. [GH22, Theorem 3.4] Let F be a nonsporadic free factor
system of FN and let H be a subgroup of OutpFN ,Fq. If H has a finite orbit
in B8FpFN ,Fq, then H has a finite index subgroup which fixes the homothety
class of an pFN ,Fq-arational tree.

For the rest of the article, we only need to know some properties of the
stabiliser in OutpFN ,Fq of the homothety class rT s of an pFN ,Fq-arational
tree T . We have a natural homomorphism

SF: StabprT sq Ñ Rˆ
`

given by the stretching factor, whose kernel is denoted by StabIsompT q. The
homomorphism SF has the following properties.

Lemma 2.10. [GH22, Lemma 6.2, Proposition 6.3, Corollary 6.12] The
following hold:

(1) The image of SF is cyclic.
(2) For every ϕ P StabprT sq, we have SFpϕq ‰ 1 if and only if ϕ is fully

irreducible relative to F .

2.D. JSJ decompositions of free groups. This section follows the work
of Guirardel–Levitt [GL17].

An FN -tree is a simplicial tree equipped with an action of FN by isome-
tries. Let A be a finite set of conjugacy classes of finitely generated subgroups
of FN . We say that FN is one-ended relative to A if there does not exist an
FN -tree T with trivial edge stabilisers such that, for every rAs P A, the group
A fixes a point in T . Otherwise, the group FN is infinitely-ended relative to
A.

If FN is one-ended relative to A, by [GL17, Theorem 9.14], there exists
an FN -tree TA with infinite cyclic edge stabilisers called the JSJ tree relative
to A. We record some of its properties in the rest of the section.

The group AutpFN q acts on the set of FN -equivariant isometry classes
of FN -trees by precomposition of the action, and this action passes to the
quotient to give an action of OutpFN q on the set of FN -equivariant isometry
classes of FN -trees. We now prove a lemma which describes the action of an
element ϕ of IAN p3q on a JSJ tree whose FN -equivariant isometry class is
preserved by ϕ.

Lemma 2.11. Let T be the FN -isometry class of a JSJ tree T and let ϕ P

StabpT q X IAN p3q. The graph automorphism of Γ “ FNzT induced by ϕ is
the identity.

Proof. We follow [GH21, Proposition 2.15]. First note that, following the
terminology of Guirardel-Levitt [GL11], the tree T is a collapsed tree of
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cylinders for commensurability (see [GL17, Theorem 9.14]). In particular,
if v, w P V T are two distinct vertices with cyclic stabilisers, then Gv and
Gw are not commensurable. Moreover, two distinct edge stabilisers are com-
mensurable if and only if they have a common endpoint whose stabiliser is
infinite cyclic.

Suppose first that Γ is a tree. Let v, w P V Γ be distinct leaves. If Gv

is cyclic, then by the above paragraph, Gw is not commensurable with Gv.
By Theorem 2.2 p2q, the vertex v is fixed by ϕ.

So we may suppose that Gv and Gw are not infinite cyclic. Let Q be the
quotient of H1pFN ;F3q by the group generated by the edge stabilisers of T .
As edge stabilisers in T are infinite cyclic, the image Qv and Qw of Gv and
Gw in Q is not trivial and Qv ‰ Qw. As ϕ acts as the identity on Q, it fixes
both Qv and Qw. Hence ϕ fixes v and w. Thus, ϕ fixes every leaf of Γ. This
shows that ϕ fixes pointwise the graph Γ. This concludes the proof when Γ
is a tree.

Suppose that Γ is not a tree and let Γ0 Ď Γ be the subgraph consisting of
all the embedded loops in Γ. We first show that ϕ fixes pointwise Γ0. Note
that ϕ also acts as the identity on H1pΓ;F3q. Thus, if Γ0 is not a circle, then
ϕ fixes pointwise the graph Γ0.

Thus, it remains to treat the case when Γ0 is a circle. Note that ϕ acts
as an orientation preserving homeomorphism of Γ0 as it acts trivially on
H1pΓ;F3q. Hence ϕ acts as a rotation on Γ0. Thus, it suffices to show that
ϕ fixes a point of Γ0 in order to show that ϕ fixes pointwise Γ0.

Suppose that there exists v P V Γ0 with infinite cyclic stabiliser. By the
first paragraph, the stabiliser of any vertex of Γ0 distinct from v is not
commensurable with Gv. Thus, by Theorem 2.2 p2q, the stabiliser Gv is
fixed elementwise by a representative of ϕ and the vertex v is fixed by ϕ.

Suppose that no vertex of Γ0 has infinite cyclic vertex stabiliser. By
the first paragraph, two distinct edges in Γ0 have non commensurable edge
stabilisers. As ϕ fixes the conjugacy class of any edge stabiliser by Theo-
rem 2.2 p2q, it follows that ϕ must fix every edge of Γ0.

In all cases, we see that ϕ fixes pointwise Γ0. As ϕ fixes elementwise the
set of leaves of Γ, this implies that ϕ fixes pointwise Γ. □

We denote by OutpFN ,Aq the group of outer automorphisms of FN pre-
serving A and by OutpFN ,Aptqq the subgroup of OutpFN ,Aq such that, for
every rAs P A, an element ϕ P OutpFN ,Aptqq has a representative fixing
A elementwise. We also denote by IApA, 3q (resp. IApAptq, 3q) the group
OutpFN ,Aq X IAN p3q (resp. OutpFN ,Aptqq X IAN p3q).

Theorem 2.12. [GL17, Theorem 9.14] Let A be a finite set of conjugacy
classes of finitely generated subgroups of FN such that FN is one-ended rel-
ative to A. The tree TA satisfies the following properties.

(1) Edge stabilisers are infinite cyclic.
(2) For every rAs P A, the group A fixes a point in TA.
(3) The group OutpFN ,Aq preserves the FN -equivariant isometry class

of T .
(4) We have a partition V TA “ V1

š

V2 of the vertices of TA such that:
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(a) for every v P V1, the group Gv is isomorphic to the fundamental
group of a compact hyperbolic surface Σv with infinite mapping
class group such that for every e P ET adjacent to v, the group
Ge is contained in a boundary subgroup;

(b) for every rAs P A and every v P Gv1 the intersection A X Gv is
contained in a boundary subgroup:

(c) for every v P V1, the image of the homomorphism IApA, 3q Ñ

OutpGvq is contained in MCGpΣvq;
(d) for every v P V2, the image IApAptq, 3q Ñ OutpGvq is trivial. In

that case, we say that v is rigid.

2.E. Dehn twist outer automorphisms. In this section, we describe
some special types of outer automorphisms called Dehn twist outer auto-
morphisms. Dehn twist outer automorphisms were intensively studied (see
for instance [CL95, CL99, Lev05, RW15]).

Let N ě 2. If a P FN , we denote by AutpFN , aq the subgroup of AutpFN q

fixing a and by AutpFN , rasq the subgroup of AutpFN q preserving the con-
jugacy class ras of a. Let OutpFN , rasq be the image of AutpFN , rasq in
OutpFN q. These groups are generally called McCool groups in the litera-
ture [GL16, BFH20].

In order to define a Dehn twist outer automorphism, we use the JSJ
decomposition described in the previous section.

Let ϕ P IAN p3q and let A “ trFixpΦqsuΦPϕ. Note that A also contains
conjugacy classes of fixed subgroups of automorphisms in the outer class ϕ
which are cyclic. The set A is a finite set of conjugacy classes of finitely
generated subgroups of FN by [BH92, GJLL98]. Note that A is stabilised
by the centraliser Cpϕq of ϕ in IAN p3q.

The outer automorphism ϕ is a Dehn twist outer automorphism if FN

is one ended relative to A and, for every vertex v P V TA of the JSJ tree
associated with A, the vertex v is rigid. Using Theorem 2.12 pdq, we see in
particular that, the homomorphism xϕy Ñ

ś

vPV pFN zTAq OutpGvq is trivial.
Thus, for every v P V TA, there exists rAs P A such that Gv Ď A. If v P

V pFNzTAq, we denote by OutpGv, Incvq the group of outer automorphisms
of Gv preserving the conjugacy classes of the incident edge stabilisers.

Our definition of Dehn twists outer automorphisms is not standard but is
equivalent to the usual one for elements of IAN p3q (this is a consequence of
for instance [FH19, Lemma 5.33]).

Rodenhausen and Wade [RW15] described the centraliser of a Dehn twist
ϕ P IAN p3q in terms of its action on TA.

Theorem 2.13. Let ϕ P IAN p3q be a Dehn twist. Its centraliser Cpϕq in
IAN p3q fits in a short exact sequence

1 Ñ K Ñ Cpϕq Ñ
ź

vPV pFN zTAq

IAvp3q Ñ 1,

where K is a free abelian group whose dimension is equal to |EpFNzTAq|

and, for every v P V pFNzTAq, the group IAvp3q is a finite index subgroup of
the group OutpGv, Incvq. Moreover, ϕ is contained in K.
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We will also use a specific construction of Dehn twists which follows the
work of Levitt [Lev05].

Let T be an FN -equivariant isometry class of an FN -tree T . The sta-
biliser StabpT q of T in IAN p3q has a natural homomorphism StabpT q Ñ
ś

vPV pFN zT q OutpGvq. By [Lev05, Propositions 2.2, 2.3] (see also [GH21,
Proposition 2.7]), if every edge stabiliser is finitely generated, the kernel of
this homomorphism consists of Dehn twists. Following the terminology of
Levitt [Lev05], every bitwist is a Dehn twist. Note that, by Theorem 2.13,
for every Dehn twist ϕ P IAN p3q, the kernel of the natural homomorphism
Cpϕq Ñ

ś

vPV pFN zTAq IAvp3q consists of Dehn twists. We have in fact the
following result.

Lemma 2.14. [Lev05, Proposition 3.1] Let T be the FN -equivariant isometry
class of an FN -tree T with nontrivial finitely generated edge stabilisers. The
kernel of StabpT q Ñ

ś

vPV pFN zT q OutpGvq is abelian and consists of Dehn
twists.

3. Property pCq for OutpFN q and consequences

Let N ě 2. Following Lück [Lüc09, Condition 3.1], we say that a group
G has Property pCq if, for every infinite order element h P G and all g P G
and k, ℓ P Z, we have

ghkg´1 “ hℓ ñ |k| “ |ℓ|.

In this section, we prove the following.

Proposition 3.1. Let N ě 2. The group OutpFN q satisfies Property pCq.

Proof. Let ϕ P OutpFN q be an element of infinite order, and let ψ P OutpFN q

and k, ℓ P Z, be such that ψϕkψ´1 “ ϕℓ. We prove that |k| “ |ℓ|.
Suppose first that ϕ P IAN p3q. Since IAN p3q is a normal subgroup of

OutpFN q, we also have ψϕψ´1 P IAN p3q. Since ψϕkψ´1 “ ϕℓ, a power
of ψϕψ´1 commutes with a power of ϕ. By Proposition 2.6, the group
xψϕψ´1, ϕy is abelian. Since IAN p3q is torsion free, the group xψϕψ´1, ϕy

is cyclic. Thus, there exists m P Z such that either ψϕψ´1 “ ϕm or ϕ “

ψϕmψ´1.
We treat the case ψϕψ´1 “ ϕm, the other one being similar. The group

xψ, ϕy is then a quotient of a metabelian Baumslag-Solitar group BSp1,mq.
In particular, it does not contain a nonabelian free group. By the Tits
alternative for OutpFN q [BFH00], the group xψ, ϕy is virtually abelian.

Let n ě 1 be such that ψn P IAN p3q. By Theorem 2.3, the group xψn, ϕy

is abelian. Recall that ψϕψ´1 “ ϕm. Thus, we have

ϕ “ ψnϕψ´n “ ϕm
n
,

and so mn “ 1 and |m| “ 1. As ψϕψ´1 “ ϕm, this also implies that |k| “ |ℓ|.
Suppose now that ϕ R IAN p3q and let m ě 1 be such that ϕm P IAN p3q.

Then we also have
ψϕmkψ´1 “ ϕmℓ.

By the previous case, we have |k| “ |ℓ| and this concludes the proof. □
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We now outline some consequences of Proposition 3.1. Similar statements
in the case of the mapping class group were proved by Juan-Pineda and
Trujillo-Negrete [JPTN16].

Lemma 3.2. Let ϕ P IAN p3q. For every n ě 1, we have COutpFN qpϕq “

COutpFN qpϕ
nq and NOutpFN qpxϕyq “ NOutpFN qpxϕnyq.

Proof. We prove the result for the centraliser, the proof for the normaliser
being similar. Let n ě 1. Since COutpFN qpϕq Ď COutpFN qpϕ

nq, it suffices to
prove the converse inequality. Let ψ P COutpFN qpϕ

nq. Then pψϕψ´1qn “ ϕn.
Since ϕ, ψϕψ´1 P IAN p3q, by Theorem 2.5, we have ψϕψ´1 “ ϕ. □

Note that Lemma 3.2 is not true if we replace ϕ P IAN p3q by ϕ P OutpFN q.
Indeed, as OutpFN q is centerless, any finite order element ϕ P OutpFN q

cannot satisfy COutpFN qpϕq “ COutpFN qpϕ
nq for every n P N (see also [AM]

for an example with infinite order).

Lemma 3.3. [Lüc09, Lemma 4.2] Let G be a group satisfying Property pCq

and let C be an infinite virtually cyclic subgroup of G. For every k P N,
let k!C be the subgroup of C given by thk! | h P Cu. There exists a nested
sequence

NGpCq Ď NGp2!Cq Ď . . . Ď NGpk!Cq Ď . . .

such that
NGrCs “

ď

kě1

NGpk!Cq.

Recall that, for a group G and a subgroup C Ď G, the group NGrCs is
the commensurator of C in G.

Proposition 3.4. Let N ě 2, let g P OutpFN q be an infinite order element
and let n ě 1 be such that gn P IAN p3q. Then

NOutpFN qrxgys “ NOutpFN qpxgnyq.

Proof. See [JPTN16, Proposition 4.8] for the mapping class group case. By
Lemma 3.3, we have

NOutpFN qpxgyq Ď NOutpFN qpxg2!yq Ď . . . Ď NOutpFN qpxgk!yq Ď . . .

and
NOutpFN qrxgys “

ď

kě1

NOutpFN qpxgk!yq.

Since gn P IAN p3q, by Lemma 3.2, for any k ě 1, we have

NOutpFN qpxgyq Ď . . . Ď NOutpFN qpxgn!yq “ NOutpFN qpxgpn`kq!yq.

By Lemma 3.2 again, we have NOutpFN qpxgn!yq “ NOutpFN qpxgnyq. Therefore,
we see that

NOutpFN qrxgys “ NOutpFN qpxgnyq,

which concludes the proof. □

Combining Proposition 3.4 and [Gue, Corollary 4.2], we obtain the follow-
ing.

Theorem 3.5. Let ϕ P IAN p3q. The commensurator of the cyclic group xϕy

in IAN p3q is equal to its centraliser. □
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4. Centralisers of elements in OutpFN q

Let N ě 2. In this section, we study the centraliser of elements in IAN p3q.
Centralisers of elements of IAN p3q play a key role in the construction of a
model for E IAN p3q by the Lück–Weiermann push-out construction (see The-
orem 7.1 below). This is why we need a precise description of the centraliser
of an arbitrary element of IAN p3q.

Let ϕ P IAN p3q be of infinite order and let A “ trFixpΦqsuΦPϕ. Recall
that A is a finite set of conjugacy classes of finitely generated subgroups of
FN and that A is stabilised by the centraliser Cpϕq of ϕ in IAN p3q.

The study of the centraliser of FN will be divided into two parts, depending
on whether FN is one-ended relative to A or not.

4.A. The one-ended case. In this section, suppose that FN is one-ended
relative to A “ trFixpΦqsuΦPϕ. We will study the action of Cpϕq, the cen-
traliser of ϕ in IAN p3q on the JSJ tree TA associated with A. The main
result is the following.

Theorem 4.1. Let ϕ P IAN p3q. Suppose that FN is one-ended relative to
A. Suppose also that ϕ is not a Dehn twist. Let Cpϕq be the centraliser of ϕ
in IAN p3q. Recall the partition V TA “ V1

š

V2.
(1) The group Cpϕq fits into an exact sequence

1 Ñ K 1 Ñ Cpϕq Ñ Z ˆ
ź

vPV2

OutpGvq

where K 1 is abelian.
(2) The image of the projection on the first coordinate

Cpϕq Ñ Z

is generated by a root of ϕ. The kernel K satisfies one of the follow-
ings.
(a) The group K is isomorphic to a subgroup of

OutpAq ˆ OutpBq,

where A,B Ď FN are such that rkpAq ` rkpBq “ N ` 1 and
rkpAq, rkpBq ď N ´ 1.

(b) The group K is isomorphic to a subgroup of

OutpA ˚ xtst´1y, rss, rtst´1sq,

where s, t P FN A Ď FN , rkpAq “ N ´ 1, s P A and t is a basis
element of FN .

Proof. Consider the action of Cpϕq on TA. This action gives an exact se-
quence

1 Ñ K 1 Ñ Cpϕq Ñ
ź

vPV FN zTA

OutpGvq.

By Lemma 2.14, since every edge of TA has infinite cyclic edge stabiliser, the
kernel K 1 is abelian.

Recall the partition V TA “ V1
š

V2 given by Theorem 2.12. Note that
ϕ P OutpFN ,Aptqq.
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Suppose towards a contradiction that V TA “ V2. By Theorem 2.12 p3qpdq,
since ϕ P OutpFN ,Aptqq, for every v P V2, the image of ϕ in OutpGvq is
trivial. Hence ϕ is contained in the kernel of the homomorphism Cpϕq Ñ
ś

vPV T OutpGvq. But the kernel of this homomorphism consists of Dehn
twists by Lemma 2.14. This contradicts the assumption made on ϕ. Thus,
the set V1 is nontrivial.

Let v P V1 and let Σv be the associated compact hyperbolic surface given
by Theorem 2.12 p3qpaq. By Theorem 2.12 p3qpbq, for every rAs P A, the
intersection of A with Gv is contained in a boundary component of ϕ. Re-
call that every ϕ-periodic conjugacy class of FN is in fact fixed by Theo-
rem 2.2 p2q. Thus, by definition of A, the mapping class of Σv induced by ϕ
does not virtually preserve the homotopy class of any curve nonhomotopic to
a boundary component. Therefore, the image of ϕ in MCGpΣvq is a pseudo-
Anosov homeomorphism. This implies that its centraliser in MCGpΣvq is
virtually cyclic.

Note that, since Cpϕq Ď IAN p3q, by Theorem 2.2 p2q, the image of Cpϕq

in OutpGvq is torsion free. Combining this remark and the above paragraph,
we see that the image of Cpϕq in OutpGvq is infinite cyclic, generated by a
root of ϕ. Hence, for every v P V1, the image Cpϕq Ñ OutpGvq is infinite
cyclic, generated by a root of ϕ. Thus, we have the following exact sequence

1 Ñ K 1 Ñ Cpϕq Ñ Z ˆ
ź

wPV2

OutpGwq

where K 1 is abelian. This proves Assertion p1q.
We now prove Assertion p2q. Let v P V1 and let K “ kerpCpϕq Ñ

OutpGvqq.
Note that Σv is not homeomorphic to a pair of pants as MCGpΣvq is

infinite (see Theorem 2.12 p3qpaq). Thus, there exists a closed geodesic curve
γ in Σv which is not homotopic to a boundary component. This curve
induces a splitting Sv of Σv. Since edge groups are all contained in boundary
components of Σv, one can blow up Sv at v to obtain a splitting T 1 of FN

such that T is obtained from T 1 by collapsing the orbit of an edge e. Note
that the stabiliser of e is infinite cyclic and its conjugacy class corresponds
to the conjugacy class associated with γ. Moreover, T 1 is preserved by K
since K acts as the identity on π1pΣvq.

Let U be the splitting obtained from T 1 by collapsing every orbit of edges
except the one of e. Then, U is preserved by K. Thus, we have a ho-
momorphism K Ñ

ś

wPFN zU OutpGwq whose kernel is infinite cyclic and
generated by a twist D about e. Since Ge is contained in the conjugacy
class of γ, the twist D does not have a representative which acts as the iden-
tity on π1pΣvq. As K acts as the identity on π1pΣvq, the homomorphism
K Ñ

ś

vPFN zU OutpGwq is injective.
Since U has one orbit of edges, U induces one of the following splittings of

FN : either FN “ A ˚Z B where rkpAq ` rkpBq “ N ` 1 and rkpAq, rkpBq ď

N´1, which yields case (2)(a), or FN “ pA˚xxyq˚Z where rkpAq “ N´1 and
x P FN . Moreover, in the second case, there exist s P A and a basis element
t of FN such that x “ tst´1 and the vertex stabiliser of U is conjugate
to A ˚ xtst´1y. Since K preserves U , the image of K in OutpA ˚ xtst´1yq

preserves s and tst´1 which yields case (2)(b). This concludes the proof. □
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4.B. The infinitely-ended-case. Let ϕ P IAN p3q. Suppose now that FN

is not one-ended relative to A “ trFixpΦqsuΦPϕ. Let FA be the minimal free
factor system of FN such that for every rAs P A, there exists rBs P FA such
that A Ď B. By minimality of FA, we have Cpϕq Ď OutpFN ,FAq. We will
consider Cpϕq-invariant free factor systems F of FN such that FA ď F in
order to obtain a description of Cpϕq.

Theorem 4.2. Let ϕ P IAN p3q. Let Cpϕq be the centraliser of ϕ in IAN p3q.
Let FA ď F be a maximal proper Cpϕq-invariant free factor system.

(1) If F is nonsporadic, there exists a surjective homomorphism

Cpϕq Ñ Z

whose image is generated by a root of ϕ and such that the kernel K of
this homomorphism is isomorphic to a subgroup of AutpAqˆAutpBq,
where A,B Ď FN are nontrivial subgroups such that FN “ A ˚B.

(2) If F is sporadic, then F “ trA1s, rA2su and there exists a homomor-
phism

Cpϕq Ñ IApA1, 3q ˆ IApA2, 3q

whose kernel is a finite index subgroup of a direct product of two
finitely generated free (maybe trivial or cyclic) groups.

Remark 4.3. A key point in the proof of Theorem 4.2 is the fact that every
free factor system which has a finite orbit under iteration of an element of
IAN p3q is in fact fixed (see Theorem 2.2). Therefore, it is not clear how to
deduce an exact sequence similar to the one of Theorem 4.2 for centralisers
in OutpFN q instead of in IAN p3q.

Remark 4.4. In Theorem 4.2, the number of elements in the free factor
system F depends on whether Case 1 or Case 2 holds. In Case 2 the group
A1 is never trivial but A2 might be trivial. We also have a control on the
ranks of the free factors appearing in F . Indeed, in Case 2, for every rAs P F ,
the rank of A is bounded by N ´ 1. Moreover,

ÿ

rAsPF
rankpAq ď N.

In order to prove Theorem 4.2, we need some results regarding the sta-
biliser of a relative arational tree in the Gromov boundary of a relative
free factor graph. The first one is a combination of a result extracted
from [HW20], where it is attributed to Guirardel and Levitt and a result
of Guirardel and Horbez [GH22].

Proposition 4.5. [GH22, HW20] Let H be a subgroup of IAN p3q. Let F be
a maximal H-invariant free factor system. Suppose that F is nonsporadic
and that H has a finite index subgroup which fixes the homothety class of an
pFN ,Fq-arational tree T .

(1) We have a homomorphism H Ñ Z ˆ
ś

rAsPF IApA, 3q whose kernel
is abelian and consists of Dehn twists.

(2) The image of the projection p : H Ñ Z is surjective and generated
by a root of any fully irreducible outer automorphism relative to F
contained in H.
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(3) The kernel K of p is isomorphic to a subgroup of AutpAq ˆ AutpBq,
where A,B Ď FN are nontrivial subgroups such that FN “ A ˚B.

(4) There exists a nonperipheral subgroup C Ď FN such that, for ev-
ery k P K, the outer automorphism k has a representative fixing C
elementwise.

Proof. By maximality of F and Theorem 2.8, the group H contains a fully
irreducible outer automorphism relative to F . Let H0 be a finite index
subgroup of H which fixes the homothety class of T . By Lemma 2.10, the
group H0 splits as a semi-direct product H 1 ¸ Z, where H 1 is contained in
the isometric stabiliser of T . Moreover, the Z factor is generated by a root
of any fully irreducible outer automorphism relative to F contained in H0.

By [HW20, Lemmas 5.3, 5.6, Theorem 5.4], the commensurator of H 1 in
OutpFN ,FqXIAN p3q, denoted byNIAN pF ,3qrH

1s, preserves the FN -equivariant
isometry class of an FN -tree S.

The tree S satisfies the following properties. Edge stabilisers in FN are
infinite. The quotient graph FNzS is a tree with one central vertex, v0,
adjacent to every other vertex. The stabiliser of v0 in FN is finitely generated.
Moreover, if v P V pFNzSq ´ tv0u, then the conjugacy class of the stabiliser
Gv of v in FN is contained in F .

By Theorem 2.2, the group NIAN pF ,3qrH
1s preserves the conjugacy class

of every Gv with v P V pFNzSq ´ tv0u. Thus, the group NIAN pF ,3qrH
1s acts

trivially on the quotient graph FNzS. Therefore we have a homomorphism

NIAN pF ,3qrH
1s Ñ OutpGvq ˆ

ź

rAsPF
OutpAq

induced by the action on the vertex stabilisers. Since NIAN pF ,3qrH
1s Ď

IAN p3q and since we are considering the restriction homomorphism on vertex
stabilisers, the restriction of the image of H in

ś

rAsPF OutpAq is contained
in

ś

rAsPF IApA, 3q.
By [HW20, Theorem 5.4], the image of H 1 in OutpGvq is trivial and the

image of H0 “ H 1 ¸ Z is infinite cyclic.
Thus, the group NIAN pF ,3qrH

1s fits into an exact sequence

1 Ñ K 1 Ñ NIAN pF ,3qrH
1s Ñ OutpGvq ˆ

ź

rAsPF
IApA, 3q,

where Gv is a nonabelian free subgroup of FN such that the image of H0 in
OutpGvq is isomorphic to Z.

Since H 1 is a normal subgroup of a finite index subgroup of H, the group
H is contained in NIAN pF ,3qrH

1s. Therefore, we have an exact sequence

1 Ñ K0 Ñ H Ñ OutpGvq ˆ
ź

rAsPF
IApA, 3q.

The kernel K0 is the subgroup of H acting trivially on the vertex groups of
T . Since T has nontrivial edge stabilisers, by Lemma 2.14, the group K0

consists of Dehn twists and is abelian.
Thus, in order to prove Assertion p1q, it suffices to prove that the image of

H in OutpGvq is infinite cyclic. Since the image of H0 in OutpGvq is infinite
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cyclic and since H0 is a finite index subgroup of H, we see that the image of
H in OutpGvq is virtually infinite cyclic.

Thus, it suffices to prove that the image of H in OutpGvq is torsion free.
Let ψ P H whose image in OutpGvq is finite. Thus, ψ has a power which
preserves the conjugacy class of every element of Gv. By Theorem 2.2, the
outer automorphism ψ preserves the conjugacy class of every element of Gv.
In particular, the image of ψ in OutpGvq is trivial. This implies that the
image of H in OutpGvq is virtually infinite cyclic and torsion free, hence is
infinite cyclic. This proves Assertion p1q.

As explained above, the image of H in OutpGvq is generated by a root
of any fully irreducible outer automorphism relative to F whose power is
contained in H0. Thus, it is generated by a root of any fully irreducible outer
automorphism relative to F contained in H. This proves Assertion p2q.

We now prove that the kernel K of p : H Ñ OutpGvq satisfies Asser-
tions p3q, p4q. Note that every element of K has a representative which fixes
elementwise Gv, which is a nonperipheral subgroup. Assertion p4q follows.

It remains to prove Assertion p3q. It suffices to prove that K is isomor-
phic to a subgroup of AutpAq ˆ AutpBq, where A,B Ď FN are nontrivial
subgroups such that FN “ A ˚B. By [HW20, Lemma 5.6], the edges groups
of S induce a nonsporadic free factor system of Gv. Thus, there exist non-
trivial subgroups C,D Ď Gv such that Gv “ C ˚ D and, for every e P ES,
a conjugate of the group Ge is contained in either C or D. Since K acts
trivially on Gv, it also preserves this decomposition.

Let S1 be the splitting obtained from S by blowing up at v the splitting
Sv induced by Gv “ C ˚D and attaching the edges groups accordingly. Then
S1 is preserved by K since K preserves both S and Sv. Moreover, S1 has a
unique orbit of an edge e with trivial stabiliser. Since v meets every orbit of
edges in S, the image of e in FNzS1 is a separating edge.

Let U be the splitting obtained from S1 by collapsing every orbit of edges
except the one of e. Then U is preserved by K since K Ď IAN p3q. Moreover,
the decomposition of FN induced by U is FN “ A ˚B, where A,B Ď FN are
nontrivial subgroups such that FN “ A˚B. The stabiliser of this splitting is
isomorphic to AutpAqˆAutpBq by a result of Levitt [Lev05]. This concludes
the proof. □

Lemma 4.6. Let N ě 2 and let ϕ P IAN p3q. Let FA ď F be a maximal
Cpϕq-invariant free factor system. Suppose that F is nonsporadic. The ele-
ment ϕ is fully irreducible relative to F . Moreover, the group Cpϕq virtually
fixes a point in B8FpFN ,Fq.

Proof. By Theorem 2.8, the group Cpϕq contains a fully irreducible element
ψ relative to F .

We claim that ϕ is also a fully irreducible element relative to F . Indeed,
by Theorem 2.7, the element ψ is a loxodromic element of FpFN ,Fq. Thus,
ψ fixes exactly two points T`, T´ in B8FpFN ,Fq. Since ϕ commutes with ψ,
the element ϕ preserves tT`, T´u.

By Proposition 2.9, the element ϕ virtually fixes the homothety class of
an arational pFN ,Fq-tree. Thus, we can apply Proposition 4.5 to see that
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xϕy fits in an exact sequence

1 Ñ K Ñ xϕy Ñ Z

whose kernel K fixes elementwise a nonperipheral group.
Since FA ď F , we see that ϕ does not fix elementwise a nonperipheral

subgroup. In particular, the group K is trivial. Since the image of xϕy Ñ

Z is generated by any fully irreducible outer automorphism relative to F
by Proposition 4.5 p2q, we see that ϕ itself is fully irreducible relative to F .

The moreover part follows from the fact that Cpϕq must preserve the
attracting and repelling fixed points of ϕ in B8FpFN ,Fq. □

Proof of Theorem 4.2. Let F ě FA be a maximal Cpϕq-invariant free factor
system.

Case 1. Suppose that F is sporadic.
Thus, we have F “ trAs, rBsu where A and B might be equal. By for

instance [Lev05, Proposition 4.2], the stabiliser of F in IAN p3q is isomorphic
to a finite index subgroup of either AutpAq ˆ AutpBq if rAs ‰ rBs or of
A ¸ AutpAq otherwise. In both cases, we have a homomorphism Cpϕq Ñ
ś

rCsPF OutpCq whose kernel is a finite index subgroup of a direct product of
two free (maybe cyclic or trivial) groups. Since Cpϕq Ď IAN p3q, the image of
Cpϕq Ñ

ś

rCsPF OutpCq is contained in
ś

rCsPF IApC, 3q. Thus, it remains
to show that both such free groups in the kernel are finitely generated. We
treat both cases separately.

Suppose that StabpFq is isomorphic to a finite index subgroup of AutpAqˆ

AutpBq. Let Φ P ϕ be the unique automorphism in the outer class ϕ such
that ΦpAq “ A and ΦpBq “ B. Then the kernel of the homomorphism
Cpϕq Ñ OutpAq ˆ OutpBq is isomorphic to the intersection of IAN p3q with
a subgroup isomorphic to FixpΦ|Aq ˆ FixpΦ|Bq. In particular, both direct
factors are finitely generated by [BH92].

Suppose now that StabpFq is isomorphic to A¸AutpAq. In that case, we
have FN “ A ˚ xgy for some g P FN . Let Φ P ϕ be the unique representative
of ϕ sending A to A and g to ga with a P A. Then the kernel of the
homomorphism Cpϕq Ñ OutpAq is isomorphic to the intersection of IAN p3q

with a subgroup isomorphic to FixpΦ|Aq ˆ Fixpada´1 ˝ Φ|Aq, so that both
direct factors are finitely generated. This concludes the proof when F is
sporadic.

Case 2. Suppose that F is nonsporadic.
By Lemma 4.6, the set of fixed points of Cpϕq in B8FpFN ,Fq is nonempty.

By Proposition 2.9, the group Cpϕq virtually fixes the homothety class of an
pFN ,Fq-arational tree. Thus, we can apply Proposition 4.5 in order to obtain
the desired homomorphism Cpϕq Ñ Z. Since ϕ is fully irreducible relative
to F by Lemma 4.6, a root of ϕ generates the image of the homomorphism.
This concludes the proof. □

Combining Proposition 4.5, Theorems 4.1 and 4.2, we obtain the following
properties of centralisers of elements of IAN p3q.

Theorem 4.7. Let N ě 2 and let ϕ P IAN p3q. The centraliser Cpϕq of ϕ in
IAN p3q satisfies one of the followings.
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(1) The outer automorphism ϕ is a Dehn twist. There exist a JSJ tree
T preserved by Cpϕq and a short exact sequence

1 Ñ K Ñ Cpϕq Ñ
ź

vPV pFN zT q

IAvp3q Ñ 1,

where K is a free abelian group whose dimension is equal to |EpFNzT q|

and, for every v P V pFNzT q, the group IAvp3q is a finite index sub-
group of the group OutpGv, Incvq. Moreover, ϕ is contained in K.

(2) There exist A1, A2 Ď FN with FN “ A1˚A2, rkpA1q, rkpA2q ď N´1,
and a homomorphism

Cpϕq Ñ IApA1, 3q ˆ IApA2, 3q

whose kernel is a finite index subgroup of a direct product of two
finitely generated free (maybe trivial or cyclic) groups.

(3) There exist A1, . . . , Ak, B Ď FN nontrivial with FN “ A1 ˚ . . . Ak ˚B,
and a homomorphism

Cpϕq Ñ Z ˆ

k
ź

i“1

IApAi, 3q

whose kernel is abelian and ϕ projects onto the Z factor.
(4) There exist a JSJ tree T preserved by Cpϕq, a partition V T “ V1

š

V2,
and a homomorphism

Cpϕq Ñ Z ˆ
ź

vPV2

OutpGvq

whose kernel is abelian and ϕ projects onto the Z factor.

Proof. To make this explicit suppose first that ϕ is a Dehn twist. Then we
are in case p1q and the short exact sequence follows from Theorem 2.13.

Suppose now that ϕ is not a Dehn twist. Let A “ trFixpΦqsuΦPϕ. Suppose
that FN is one-ended relative to A. Then we can apply Theorem 4.1 to obtain
case p4q.

Suppose that FN is not one-ended relative to A and let F ě FA be a
maximal Cpϕq-invariant free factor system. If F is sporadic, we can apply
Theorem 4.2 p2q to get case p2q.

Suppose that F is nonsporadic. By Lemma 4.6, the group Cpϕq virtu-
ally fixes a point in B8FpFN ,Fq and ϕ is fully irreducible relative to F .
By Proposition 2.9, the group Cpϕq virtually fixes the homothety class of an
pFN ,Fq-arational tree. Thus, we can apply Proposition 4.5 p1q to get the
homomorphism of case p3q. Note that a root of ϕ projects onto the Z factor
by Proposition 4.5 p2q since ϕ is fully irreducible relative to F . □

4.C. Weyl groups. We now adapt Theorems 4.1 and 4.2 to the Weyl group
W pϕq “ Cpϕq{xϕy in IAN p3q of an infinite order element ϕ P IAN p3q. Let F
be a free factor system as in Theorem 4.2. For every rAs P F , since IAN p3q is
torsion free, the image ϕ|A of ϕ in IApA, 3q is either trivial or infinite. Let F8

be the subset of F consisting of all rAs P F such that ϕ|A is infinite and let
FT “ F ´ F8. Let HT “

ś

rAsPFT
IApA, 3q and let H8 “

ś

rAsPF8
Cpϕ|Aq.

We denote by ρ8 : Cpϕq Ñ H8 and ρT : Cpϕq Ñ HT the homomorphisms
given by Theorem 4.2 p2q.
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Corollary 4.8. Let N ě 2, let ϕ P IAN p3q be a root-closed element of infinite
order and let A “ trFixpΦqsuΦPϕ. Let F ě FA be a (possibly trivial) maximal
Cpϕq-invariant free factor system. The Weyl group W pϕq “ Cpϕq{xϕy of ϕ
in IAN p3q satisfies one of the following.

(1) The element ϕ is a Dehn twist.
(2) The group FN is one-ended relative to A. The group W pϕq is iso-

morphic to a subgroup of OutpAq ˆ OutpBq, where A,B Ď FN are
such that rkpAq ` rkpBq “ N ` 1 and rkpAq, rkpBq ď N ´ 1.

(3) The group FN is one-ended relative to A. The group W pϕq is iso-
morphic to a subgroup OutpA ˚ xtst´1y, rss, rtst´1sq, where A Ď FN ,
rkpAq “ N ´ 1, s P A and t is a basis element of FN .

(4) The free factor system F is nonsporadic. The group W pϕq is iso-
morphic to a subgroup of AutpAq ˆ AutpBq, where A,B Ď FN are
nontrivial subgroups such that FN “ A ˚B.

(5) The free factor system F is sporadic and ρ8pϕq is infinite. Then
W pϕq fits into an exact sequence

1 Ñ K Ñ W pϕq Ñ H8{ρ8pxϕyq ˆHT ,

where K is a finite index subgroup of a direct product of two finitely
generated free groups.

(6) The free factor system F is sporadic and ρ8pϕq is trivial. Then W pϕq

fits into an exact sequence

1 Ñ K Ñ W pϕq Ñ
ź

rAsPF
IApA, 3q,

where K is a direct product of a finitely generated free (maybe cyclic
or trivial) group and a finite group.

Proof. We will frequently use the fact that, if Cpϕq maps onto Z with image
generated by ϕ, then Cpϕq splits as Cpϕq “ K ˆ xϕy, where K is the kernel
of this homomorphism.

Suppose that ϕ is not a Dehn twist. We begin with the case that FN

is one-ended relative to A. By Theorem 4.1 (2), we have a homomorphism
Cpϕq Ñ Z whose image is generated by a root of ϕ. Since ϕ is root-closed,
the image is generated by ϕ. Thus, the Weyl group W pϕq is isomorphic
to the kernel K of this homomorphism. By Theorem 4.1 (2)(a) or (b), the
group W pϕq satisfies either Case p2q or p3q respectively.

We now deal with the case that FN is not one-ended relative to A. Con-
sider the maximal Cpϕq-invariant free factor system F ě FA.

Suppose first that F is nonsporadic. Theorem 4.2 p1q gives a homomor-
phism whose image is generated by a root of ϕ. As in the proof of Cases p2q

and p3q, the group W pϕq is isomorphic to the kernel of this homomorphism,
which leads Case p4q.

Suppose now that F is sporadic. Theorem 4.2 p2q gives a homomorphism

Cpϕq
pρ8,ρT q
ÝÝÝÝÝÑ H8 ˆHT . It induces a quotient map

Cpϕq Ñ pH8 ˆHT q{pρ8,ρT qpxϕyq.

Since ρT pϕq is trivial, this gives a map

Cpϕq Ñ H8{ρ8pxϕyq ˆHT
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which induces a quotient map

W pϕq
ρW
ÝÝÑ H8{ρ8pxϕyq ˆHT .

When ρ8pϕq is infinite, the kernel of ρW is exactly the same as the homo-
morphism pρ8, ρT q, so Case p5q follows.

Suppose that ρ8pϕq is trivial. Then ϕ is contained in the kernel of pρ8, ρT q

and the kernel of ρW is kerppρ8, ρT qq{xϕy. Moreover, H8 is the trivial group.
By Theorem 4.2 p2q, the kernel kerppρ8, ρT qq is isomorphic to a direct

product of two finitely generated free groups. Note that that the centraliser
of an infinite element in a direct product of two finitely generated free groups
is contained in a group isomorphic to F ˆZ, where F is a finitely generated
free group. Thus, the quotient kerppρ8, ρT qq{xϕy is isomorphic to a direct
product of a finitely generated free group and a finite group. This shows
Case p6q. □

5. Centralisers of elements in OutpF3q

In this section, we focus on the study of outer automorphisms of F3. We
prove the following.

Theorem 5.1. Let ϕ P IA3p3q. The centraliser Cpϕq of ϕ in IA3p3q is of
type VF. Moreover, one of the following holds.

(1) The centraliser of ϕ is abelian.
(2) The centraliser of ϕ is isomorphic to F ˆ Z where F is a finitely

generated free group.
(3) The centraliser of ϕ is isomorphic to a direct product HˆZ where H

is a finite index subgroup of a direct product of two finitely generated
free groups.

(4) The outer automorphism ϕ is a Dehn twist. There exist a JSJ tree
T preserved by Cpϕq and a short exact sequence

1 Ñ K Ñ Cpϕq Ñ
ź

vPV pF3zT q

IAvp3q Ñ 1,

where K is a free abelian group whose dimension is equal to |EpF3zT q|

and, for every v P V pF3zT q, the group IAvp3q is a finite index sub-
group of the group OutpGv, Incvq. Moreover, ϕ is contained in K.

We highlight the following immediate corollary.

Corollary 5.2. Let ϕ P IA3p3q. The centraliser COutpF3qpϕq is of type VF.

The proof of Theorem 5.1 is decomposed into several propositions. The
idea is to consider a maximal Cpϕq-invariant free factor system F and to
treat separately the cases when F is sporadic or not. Observe that, since we
are considering a nonabelian free group of rank 3, the free factor system F
is sporadic if and only if it contains the conjugacy class of a nonabelian free
factor.

Lemma 5.3. Let ϕ P IA3p3q. Let F be a maximal Cpϕq-invariant free factor
system. Suppose that F is nonsporadic. If ϕ is not a Dehn twist then Cpϕq

is abelian.
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Proof. We claim that ϕ is fully irreducible relative to F . Indeed, by maxi-
mality of F and Theorem 2.7, the group Cpϕq contains a loxodromic element
ψ of FpFN ,Fq. As ψ commutes with ϕ, the element ϕ must fix the attract-
ing point of ψ in B8FpFN ,Fq. By Proposition 2.9, ϕ must virtually fix the
homothety class of an pFN ,Fq-arational tree. By Proposition 4.5 p1q, the
group ϕ fits in an exact sequence

1 Ñ K 1 Ñ xϕy Ñ Z ˆ
ź

rAsPF
OutpAq,

where K 1 consists of Dehn twists and the projection on the Z factor is non-
trivial if and only if ϕ is fully irreducible relative to F .

For every rAs P F , as A is cyclic, the group OutpAq is finite. Thus, since
ϕ is not a Dehn twist and has infinite order, the image of ϕ in the Z factor
is nontrivial and ϕ is fully irreducible relative to F .

Thus, by Theorem 2.7, ϕ is a loxodromic element of FpFN ,Fq. Therefore,
Cpϕq fixes the attracting point of ϕ in B8FpFN ,Fq.

As above, by Proposition 4.5, since F is nonsporadic, the group Cpϕq fits
into an exact sequence

1 Ñ K Ñ Cpϕq Ñ Z ˆ
ź

rAsPF
OutpAq

whose kernel K is an abelian group. Since F is nonsporadic, for every
rAs P F , the group A is cyclic. Thus, for every rAs P F , the group OutpAq is
isomorphic to Z{2Z. In particular, the image of the above homomorphism is
virtually abelian. Thus, the group Cpϕq does not contain a nonabelian free
group. By Lemma 2.4, the group Cpϕq is abelian. □

Lemma 5.4. Let H be a subgroup of IA3p3q preserving a free factor A of F3

of rank 2. The image of H in OutpAq is a free group.

Proof. Since A is a free factor of F3, the image of H in OutpAq is contained
in IA2p3q. Since A has rank 2, the group OutpAq is isomorphic to GL2pZq

and is virtually free. Since IA2p3q is torsion free by Proposition 2.1, the
group IA2p3q is free and so is the image of H. □

Lemma 5.5. Let ϕ P IA3p3q. Let F be a maximal Cpϕq-invariant free factor
system. Suppose that F “ trAs, rBsu with F3 “ A ˚B and A is a nonabelian
free group of rank 2. Let Φ P ϕ be the unique representative of ϕ such that
ΦpAq “ A and ΦpBq “ B. One of the following holds.

(1) The group Cpϕq is isomorphic to pF X IA3p3qq ˆZ, where F is a free
subgroup of rank at most 2.

(2) The element ϕ is a Dehn twist.

Proof. By for instance [Lev05], for every ψ P Cpϕq, there exists a unique
representative Ψ P ψ such that ΨpAq “ A and ΨpBq “ B. In particular, if
ψ P Cpϕq, then Ψ commutes with Φ.

Note that, since the rank of A is equal to 2, the rank of B is equal to
1. By Theorem 2.2 p2q, for every ψ P Cpϕq, the automorphism Ψ fixes B
elementwise. Thus, the homomorphism which sends ψ P Cpϕq to Ψ|A P

AutpAq is injective.
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Suppose first that Φ|A is inner: there exists g P A such that Φ|A “ adg.
Then, ϕ is a Dehn twist.

Suppose now that Φ|A is not inner. By Lemma 5.4, the image of Cpϕq in
OutpAq is free and contained in the centraliser of the image of ϕ. Thus, the
image of Cpϕq in OutpAq is infinite cyclic, generated by the outer class of
a root

a

Φ|A of Φ|A. By Proposition 2.6, every element of Cpϕq commutes
with

a

Φ|A.
Hence Cpϕq is isomorphic to K ˆ x

a

Φ|Ay, where K is contained in
the subgroup of inner automorphisms of A. An inner automorphism ad|g
commutes with Φ|A if and only if Φ|Apgq “ g. Thus, K is contained in
KΦ “ tadg P AutpAq | g P FixpΦ|Aqu. Conversely, any element of KΦ

extends to an automorphism of F3 commuting with Φ. Thus, Cpϕq is iso-
morphic to pKϕ X IA3p3qq ˆ x

a

Φ|Ay. Moreover, the free group Kϕ has rank
at most 2 by the work of Bestvina and Handel [BH92]. □

Lemma 5.6. Let ϕ P IA3p3q. Let F be a maximal Cpϕq-invariant free factor
system. Suppose that F “ trAsu with F3 “ A ˚ Z and let t be a generator of
the second factor. One of the following holds.

(1) The group Cpϕq is isomorphic to ppFℓ ˆFrq X IA3p3qq ˆ Z, where Fℓ

and Fr are two finitely generated free groups of rank at most 2.
(2) The element ϕ is a Dehn twist.

Proof. Recall that, by [Lev05], the kernel K of Cpϕq Ñ OutpAq is isomorphic
to the intersection of IA3p3q with a direct product FℓˆFr of two free (maybe
cyclic or trivial) normal subgroups of Cpϕq. Every element of Fℓ ˆ Fr is a
Dehn twist. Moreover, as explained in the last paragraph of the proof of
Case 1 in the proof of Theorem 4.2, each factor of Fℓ ˆ Fr corresponds to
the fixed subgroup of an automorphism in the outer class ϕ. The bound
on the rank of the free groups then follows from the work of Bestvina and
Handel [BH92].

We may suppose that ϕ is not a Dehn twist, so that the image of ϕ in
OutpAq is not trivial. By Lemma 5.4, as in the proof of Lemma 5.5, the
image of Cpϕq in OutpAq is infinite cyclic, generated by a root of ϕ which
commutes with every element of Cpϕq.

Combining the above two paragraphs, we see that Cpϕq is isomorphic to
ppFℓ ˆ Frq X IA3p3qq ˆ Z, where Fℓ and Fr are two finitely generated free
groups of rank at most 2. □

Proof of Theorem 5.1. Let ϕ P IA3p3q and let Cpϕq be the centraliser of ϕ
in IA3p3q. If ϕ is a Dehn twist, its centraliser in OutpF3q is of type VF
by the work of Rodenhausen–Wade [RW15] (see also the work of Andrew–
Martino [AM]). Moreover, the short exact sequence given in case p4q follows
from Theorem 2.13.

So suppose that ϕ is not a Dehn twist. Let F be a maximal Cpϕq-invariant
free factor system. If F is nonsporadic, by Lemma 5.3, the group Cpϕq is
abelian. By Theorem 2.3, it is finitely generated. If F is sporadic, by
Lemmas 5.5 and 5.6, the centraliser of ϕ satisfies one of Assertions p2q, p3q

of Theorem 5.1. This concludes the proof. □
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6. Proper geometric dimension of Weyl groups of Dehn twists

In this section, we specify our study to the case of Dehn twists outer
automorphisms. We will prove the following proposition.

Proposition 6.1. Let N ě 2 and let ϕ P IAN p3q be a Dehn twist. The
geometric dimension gdpW pϕqq of the Weyl group of ϕ is bounded by 2N ´4.

Recall that for a group G, the proper geometric dimension, gdpGq, is
defined to be the minimal n P NY t8u such that G admits an n-dimensional
model for EG “ EFING.

In order to prove Proposition 6.1, we take advantage of the short exact
sequence given by Theorem 2.13. We need to understand more precisely the
groups OutpGv, Incvq as defined in this theorem. We first recall a result, due
to Meucci (see also the work of Day–Sale–Wade [DSW21]).

Theorem 6.2. [Meu11] Let F be a free factor system of FN , let FZ be the
subset of F consisting of the conjugacy classes of cyclic subgroups and let
Fě2 “ F ´ FZ. Then

gdpOutpFN ,F ptqqq “ 2N ´ 2
ÿ

rAsPFě2

prkpAq ´ 1q ´ 2 ´ |FZ|.

The proof of the following proposition is implicit in [Lüc00, Proof of the-
orem 3.1], see also [MPSSn20, Theorem 2.3].

Proposition 6.3. Let G be a group. Let f : G Ñ Q be a group homomor-
phism. Let Y be a model for EQ. Then

gdpGq ď maxtgdpGσq ` dimpσq| σ is a cell of Y u,

where the stabilisers are taken with respect to the G-action on Y induced by
the projection.

In particular if Q torsion free and K is the kernel of f , then gdpGq ď

gdpQq ` gdpKq.

For a subgroup H Ď OutpFN q, we say that H satisfies Property pCF q

if, for every ψ P H, every ψ-periodic conjugacy class of elements of FN is
fixed. By Theorem 2.2 p2q, any subgroup of IAN p3q satisfies Property pCF q.
Groups with Property pCF q satisfies the following result.

Lemma 6.4. Let H Ď OutpFN q be a subgroup satisfying Property pCF q

and let A Ď FN be a malnormal subgroup preserved by H. The image of
p : H Ñ OutpAq is torsion free and satisfies Property pCF q.

Proof. Let ψ P H and let k P N˚ be such that ppψqk “ id. Then every
conjugacy class of elements of A is fixed by ψ by Property pCF q. Thus, ψ
has a representative which acts as the identity on A and ψ “ id. The fact
that ppHq satisfies Property pCF q is immediate. □

Let C “ trx1s, . . . , rxksu be a finite set of conjugacy classes of elements of
FN . We will denote by FC the minimal free factor system of FN such that,
for every i P t1, . . . , ku, there exists rAs P FC with xi P A.
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Corollary 6.5. Let C be a finite set of conjugacy classes of elements of
FN . Let H be a subgroup of OutpFN , Cq which satisfies Property pCF q. The
geometric dimension of H is bounded by

gdpHq ď 2N ´ 2 ´ |FC |.

Proof. Since H satisfies Property pCF q, it fixes C elementwise. Hence H
fixes FC elementwise. Thus, we have a natural homomorphism

1 Ñ K Ñ H Ñ
ź

rAsPFě2
C

OutpAq

whose kernel K is a subgroup of OutpFN ,F ptq
C q. By Lemma 6.4, the image

of H is torsion free. By Proposition 6.3, the geometric dimension of H is
bounded by

gdpHq ď gdpOutpFN ,F ptq
C qq `

ÿ

rAsPFě2
C

gdpOutpAqq.

By [CV86], for every rAs P Fě2
C , we have gdpOutpAqq “ 2rkpAq ´ 3. Com-

bining this with Theorem 6.2, we obtain

gdpHq ď 2N `
ÿ

rAsPFě2

p2 ¨ rkpAq ´ 2 ¨ rkpAq ` 2 ´ 3q ´ 2 ´ |FZ
C |.

Therefore, we have

gdpHq ď 2N ´ 2 ´ |Fě2
C | ´ |FZ

C |

“ 2N ´ 2 ´ |FC |. □

We need another theorem due to Shenitzer [She55] and Swarup [Swa86]
(see also the work of Stallings [Sta91] and Bestvina-Feighn [BF94, Lemma 4.1])
in order to understand the proper geometric dimension of the Weyl group of
a Dehn twist.

Lemma 6.6. [She55, Swa86] Let T be an FN -tree whose edge stabilisers are
infinite cyclic. There exists an oriented edge e` P E`pFNzT q with origin
v P V pFNzT q which satisfies:

(1) the group Gv splits as Gv “ A ˚ Ge`
for some nontrivial subgroup

A Ď Gv;
(2) for every oriented edge e1

` P E`pFNzT q with origin v and distinct
from e`, some conjugate of Ge1

`
is contained in A.

We can now prove the key lemma in order to bound the geometric dimen-
sion of the Weyl group of a Dehn twist. Recall the definition of TA for a
Dehn twist ϕ P IAN p3q. If v P V pFNzTAq, Recall the definition of IAvp3q in
Theorem 2.13.

Lemma 6.7. Let N ě 2 and let ϕ P IAN p3q be a Dehn twist. Let TA be the
associated JSJ tree. Then

ÿ

vPV pFN zTAq

gdpIAvp3qq ď 2N ´ 3 ´ |EpFNzTAq|.
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Proof. In order to simplify the notations, let E “ EpFNzTAq and let V “

V pFNzTAq. For every v P V , let Fv “ FIncv |Gv and let F “
š

vPV Fv. Note
that for every v P V , the free factor system Fv is a free factor system of Gv

and not of FN .
We claim that |F | ě |E| ` 1. The proof is by induction on |E| ě 1.
Suppose that |E| “ 1 and let e be the (unoriented) edge of FNzTA. If e has

two distinct endpoints v and w, then, since the stabiliser of e is nontrivial,
we have |Fv|, |Fw| “ 1 and |F | ě 2.

Suppose now that e is a loop based at v. By Lemma 6.6, one of the
orientation of e, say e`, is such that the group Gv splits as Gv “ A ˚ Ge`

where A is a nontrivial subgroup of Gv. Since e is a loop, we have Incv “

trGe`
s, rGe´

su “ trGe`
s, rtGe`

t´1su, where t P FN ´ Gv and tGet
´1 Ď A.

Since Gv “ A ˚ Ge`
, we have F “ Fv “ trA1s, rGe`

su, where A1 is the
smallest free factor of A containing tGet

´1. Thus, we have |F | ě 2. This
proves the base case.

Suppose that |E| ě 2, let e P E, let v P V be adjacent to e. We also
assume that, once chosen the orientation e` of e such that v is the origin
of e`, the oriented edge e` is the one given by Lemma 6.6. Let w be
the other endpoint of e` (which is possibly equal to v). Let T 1 be the tree
obtained from TA by collapsing the orbit of the edge e`. Let E1 “ EpFNzT 1q

and let V 1 “ V pFNzT 1q. For every x P V 1, let F 1
x “ FIncx |Gx and let

F 1 “
š

xPV 1 Fx. For simplicity, if v “ w, we set Incw “ ∅. By induction, we
have |F 1| ě |E1| ` 1 “ |E|.

For every x P V , let x be the image of x in FNzT 1. Note that, for every
x P V ´ tv, wu, we have F 1

x “ Fx.
Let A Ď Gv be such that Gv “ A˚Ge`

. By Lemma 6.6, for every oriented
edge e1

` P E` with origin v and distinct from e`, a conjugate of Ge1
`

is
contained in A. Thus, we have Incv Ď pIncv ´ trGe`

suq Y Incw. Hence we
see that

|Fv| ď |FIncv´trGe`
su|Gv | ` |Fw|.

Since FIncv´trGe`
su|Gv ď trAsu by Lemma 6.6, we also have

Fv “ FIncv´trGe`
su|Gv

ž

trGe`
su,

so that |Fv| “ |FIncv´trGe`
su|Gv | ` 1.

Combining all the above remarks, we see that

|F | ě
ÿ

xPV ´tv,wu

|F 1
x| ` |Fv| ` |Fw|

ě
ÿ

xPV ´tv,wu

|F 1
x| ` |Fw| ` |FIncv´trGe`

su|Gv | ` 1

ě |F 1| ` 1 ě |E| ` 1.

This proves the claim.
By for instance [CL99, Fact 7.3], we have

N ´ 1 “
ÿ

vPV

prkpGvq ´ 1q.
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Note that Cpϕq satisfies Property pCF q by Theorem 2.2. By Lemma 6.4,
for every v P V , the group IAvp3q also satisfies Property pCF q. By Corol-
lary 6.5, for every v P V , we have

gdpIAvp3qq ď 2rkpGvq ´ 2 ´ |Fv|.

Thus, we see that
ÿ

vPV pFN zTAq

gdpIAvp3qq ď
ÿ

vPV pFN zTAq

p2 ¨ rkpGvq ´ 2 ´ |Fv|q

“ 2

¨

˝

ÿ

vPV pFN zTAq

prkpGvq ´ 1q

˛

‚´ |F |

“ 2pN ´ 1q ´ |F |

ď 2N ´ 3 ´ |E|;

where the last inequality follows from the above claim. □

Proof of Proposition 6.1. Let ϕ P IAN p3q be a Dehn twist. Let TA be the
JSJ tree associated with ϕ. By Theorem 2.13, the group Cpϕq fits in a short
exact sequence

1 Ñ K 1 Ñ Cpϕq Ñ
ź

vPV pFN zTAq

IAvp3q Ñ 1,

where K 1 is a free abelian group of rank |EpFNzTAq| and, for every v P

V pFNzTAq, the group IAvp3q is a finite index subgroup of OutpGv, Incvq.
Moreover, the outer automorphism ϕ is in the kernel of this homomor-

phism. Thus, the Weyl group W pϕq of ϕ fits in a short exact sequence

1 Ñ K Ñ W pϕq Ñ
ź

vPV pFN zTAq

IAvp3q Ñ 1,

where K is an abelian group of rank |EpFNzTAq| ´ 1. By Theorem 2.2 p2q

and Lemma 6.4, the group IAvp3q is torsion free. Thus, by Proposition 6.3
and Lemma 6.7, we have

gdpW pϕqq ď gdpKq `
ÿ

vPV pFN zTAq

gdpIAvp3qq

ď 2N ´ 3 ´ |EpFNzTAq| ` |EpFNzTAq| ´ 1

ď 2N ´ 4,

which concludes the proof. □

7. The virtually cyclic dimension of IAN p3q

In this section we prove Theorem A. Before proceeding to the proof we
need some preliminary results.

Let G be a group. Denote by VC8 the collection of infinite virtually cyclic
subgroups of G. Consider rVC8s the set of commensuration classes of VC8.
Let I be a set of representatives of conjugacy classes in rVC8s.
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Theorem 7.1. Let G be a group. Let I be defined as above, and assume that
for each H P I we have NGrHs “ NGpHq. For each H P I, choose models
for ENGpHq and EWGpHq, where WGpHq “ NGpHq{H. Now consider the
homotopy G-pushout:

š

HPI GˆNGpHq ENGpHq EG

š

HPI GˆNGpHq EWGpHq X

i

š

HPI IdGˆNGpHqfH

where EWGpHq is viewed as an NGpHq-CW-complex by restricting with the
projection NGpHq Ñ WGpHq, the maps starting from the left upper corner
are cellular and one of them is an inclusion of G-CW-complexes. Then X is
a model for EG.

Proof. Let H P I. Consider the quotient projection p : NGpHq Ñ WGpHq.
Let Fin˚ be the family of subgroups of NGpHq that have finite image in
WGpHq. Let FrHs be the family of all finite subgroups of NGrHs and all
virtually cyclic subgroups of NGrHs that are commensurable with H. Note
that Fin˚ “ FrHs, and as a consequence every model for EWGpHq is a
model for EFrHsNGpHq. Now the statement follows from [LW12, Theorem
2.3]. □

An immediate corollary of Proposition 6.3 is the following.

Corollary 7.2. Under the hypothesis of Theorem 7.1, we have the following

gdpGq ď maxtgdpGq ` 1, gdpWGpHqq|H P Iu.

Proposition 7.3. Let H be an infinite cyclic subgroup of IA3p3q, then
gdpW pHqq “ gdpIA3p3qq ´ 1 “ 2.

Proof. Denote G “ IA3p3q, and recall that G is torsion free. Then by Theo-
rem 5.1 we have four possibilities for CpHq (and so does for W pHq), let us
work out each of them using the same numeration as in the theorem.

Case 1. The centraliser CpHq is Zr with r ď 3. Thus W pCq is an abelian
group of rank at most 2. Hence Rr´1 is a model for EW pHq, in particular
this model has dimension at most 2. ˛

Case 2. The centraliser CpHq is isomorphic to F ˆ Z where F is a finitely
generated free group and H lies inside the Z under the isomorphism. The
Weyl group W pHq has the form F ˆC where C is a finite cyclic group. Since
proper classifying space models respect direct products we have EW pHq “

EF ˆ EC “ EF and the latter can be taken to be a tree. ˛

Case 3. The centraliser CpHq is isomorphic to a direct product KˆZ where
K is a finite index subgroup of a direct product of two finitely generated free
groups and H lies in the Z factor under the isomorphism. In this case
CpHq ď F1 ˆF2 ˆZ, hence the Weyl group W pHq embeds into F1 ˆF2 ˆC
with C a finite cyclic group. Thus it is enough to find a model for EpF1 ˆ

F2 ˆ Cq since by restriction it will be also a model for EW pHq. As in the
previous item such a model can be taken to be of the form T1 ˆ T2 with T1
and T2 are trees. Thus we have a model for EW pHq of dimension 2. ˛
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Case 4. The group H is generated by a Dehn twist. By Proposition 6.1, we
have a model for EW pHq of dimension 2. ˛

We have exhausted all possible cases for W pHq, completing the proof. □

Proposition 7.4. Let N ě 3. Consider a maximal infinite cyclic subgroup
H of G “ IAN p3q. Then gdpWGpHqq ď gdpGq ´ 1 “ 2N ´ 4.

Proof. Let ϕ generate H. We proceed by induction. Our base case N “ 3
was already proved in Proposition 7.3.

Assume now that for every N 1 ă N the statement is true. Let F “

trA1s, . . . , rAℓsu be the free factor system given by Corollary 4.8. For every
i P t1, . . . , ℓu, identify IApA, 3q with IAnip3q where rkpAq “ ni. Note that,
for every i P t1, . . . , ℓu, we have gdpIAnip3qq “ 2ni ´ 3 if ni ě 2 and 0
otherwise. Now, we will prove the statement for N , by exhausting all cases
for W pHq described in Corollary 4.8. We use the notation from that theorem
without further explanation.

Case 1. ϕ is a Dehn twist. This is already proven in Proposition 6.1. ˛

Case 2. The group W pϕq is isomorphic to a subgroup of OutpAq ˆOutpBq,
where A,B Ď FN are such that rkpAq ` rkpBq “ N ` 1 and rkpAq, rkpBq ď

N ´ 1.
We have gdpOutpAqq “ 2 ¨ rkpAq ´3 and gdpOutpBqq “ 2 ¨ rkpBq ´3 (both

A and B are non-abelian). So

gdpW pϕqq ď 2prkpAq ` rkpBqq ´ 6

“ 2pN ` 1q ´ 6

“ 2N ´ 4

as required. ˛

Case 3. The groupW pϕq is isomorphic to a subgroup of OutpA˚xsty, rss, rstsq,
where A Ď FN , rkpAq “ N ´ 1, s P A and t is a basis element of FN . Let
C “ trss, rstsu and note that |FC | “ 2 since s P A (see the notations in
Corollary 6.5). By Corollary 6.5, a model for EOutpA ˚ xsty, rss, rstsq has
dimension

2rkpA ˚ xstyq ´ 2 ´ |FC | “ 2N ´ 4.

A model for EW pϕq is given by EOutpA ˚ xsty, rss, rstsq. Thus,

gdpW pϕqq ď 2N ´ 4

as required. ˛

Case 4. The group W pϕq is isomorphic to a subgroup of AutpAq ˆAutpBq,
where A,B Ď FN are nontrivial subgroups such that FN “ A ˚B.

If rkpAq “ 1, then AutpAq is finite and so gdpAutpAqq “ 0. Otherwise, a
modelX for EAutpAq is given by an AutpAq-fibrationX Ñ EOutpAq. Here,
the stabilisers of the AutpAq-action on EOutpAq are virtually free, being
extensions of A by finite subgroups of OutpAq. It follows from Proposition 6.3
that gdpAutpAqq “ 2rkpAq ´ 2. An identical argument gives gdpAutpBqq ď

2rkpBq ´ 2. Now, a model for for EW pϕq is given by EAutpAq ˆEAutpBq.
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So,

gdpW pϕqq ď 2prkpAq ` rkpBqq ´ 4

“ 2N ´ 4

as required. ˛

Case 5. The Weyl group W pϕq fits into an exact sequence

1 Ñ K Ñ W pϕq Ñ H8{ρ8pxϕyq ˆHT ,

where K is a finite index subgroup of a direct product of two finitely gener-
ated free groups.

In this case F “ tA1, A2u, A1 is never trivial, and A2 might be trivial or
not, see Remark 4.4. We subdivide into two subcases depending on whether
A2 is trivial or not.

Assume A2 is trivial. Then F “ F8, FT is empty, and n1 ď N´1. Hence,
we have the following exact sequence

1 Ñ K Ñ W pϕq Ñ Cpxϕ|A1yq{ρ8pxϕyq “ WIApA1,3qpρ8pxϕyqq.

Now, by hypothesis ϕ is not a proper power. This implies thatWIApA1,3qpρ8pxϕyqq

is torsion free. Now by Proposition 6.3 and the induction hypothesis we get

gdpW pϕqq ď 2 ` gdpWIApA1,3qpρ8pxϕyqqq

ď 2 ` 2n1 ´ 4

ď 2 ` 2pN ´ 1q ´ 4 “ 2N ´ 4.

Now, assume A2 is not trivial. We distinguish two cases depending on
F8. If F8 “ tA1u, then we have the exact sequence

1 Ñ K Ñ W pϕq Ñ WIApA1,3qpρ8pxϕyqq ˆ IApA2, 3q.

By Proposition 6.3 and the induction hypothesis we get

gdpW pϕqq ď 2 ` gdpWIApA1,3qpρ8pxϕyqqq ` gdpIApA2, 3qq

ď 2 ` 2n1 ´ 4 ` 2n2 ´ 3

ď 2pn1 ` n2q ´ 5 ď 2N ´ 4,

where the last inequality follows from the fact that
ř

ni ď N , see Re-
mark 4.4. Finally, if F8 “ tA1, A2u, then we have the exact sequence

1 Ñ K Ñ W pϕq Ñ pCpϕ|A1q ˆ Cpϕ|A2qq{ρ8pxϕyq “: Q.

On the other hand, taking the quotient of Cpϕ|A1qˆCpϕ|A2q by xϕ|A1 , ϕ|A2y –

Z2 , we conclude Q fits in the following exact sequence

1 Ñ Z Ñ Q Ñ W pϕ|A1q ˆW pϕ|A2q.

Hence, we get

gdpQq ď 1 ` gdpW pϕ|A1qq ` gdpW pϕ|A2qq

ď 1 ` 2n1 ´ 4 ` n2 ´ 4

ď 2N ´ 7

and therefore
gdpW pϕq ď 2 ` 2N ´ 7 “ 2N ´ 5

as required.
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Case 6. The Weyl group W pϕq fits into an exact sequence

1 Ñ K Ñ W pϕq Ñ
ź

rAsPF
IApA, 3q

where K is the direct product of a finitely generated free (maybe cyclic
or trivial) group and a finite group. Moreover, we have |F | ď 2 by Theo-
rem 4.1 (2). Write K “ K 1 ˆT where K 1 is a (possibly trivial) free group and
T is the finite group. Thus, we may rewrite the quotient as IAn1p3qˆIAn2p3q

such that each ni ď N ´ 1 and n1 `n2 ď N (see Remark 4.4). We may now
build a model X for EW pϕq as a G-fibration

EK 1 Ñ X Ñ E IAn1p3q ˆ E IAn2p3q.

Since K 1 is free we have gdpK 1q “ 1 and on the other end of the fibration
we have gdpIAnip3qq “ 2ni ´ 3 if ni ě 2 and 0 otherwise. If both n1, n2 ě 2,
then

gdpW pϕqq ď 1 `

2
ÿ

i“1

p2ni ´ 3q ď 1 ` 2N ´ 6 ď 2N ´ 4.

If say n2 ď 1, then 2 ď n1 ď N ´ 1 and

gdpW pϕqq ď 1 ` 2pN ´ 1q ´ 3q ď 1 ` 2N ´ 5 ď 2N ´ 4

as required. ˛

We have exhausted all possible cases for W pϕq completing the proof. □

Theorem A. Let N ě 1. Then, gdpIAN p3qqq “ 2N ´ 2.

Proof. The statement is clear forN “ 1. ForN “ 2 follows from the fact that
IA2pNq is nonabelian free. Let N ě 3. By [CV86] OutpFN q admits a model
for EOutpFN q of dimension 2N ´ 3, thus gdpIAN p3qq ď gdpOutpFN qq ď

2N ´ 3. From the latter inequality, Corollary 7.2 and Proposition 7.4 we
conclude gdpIAN p3qq ď 2N ´ 2. On the other hand, by [CV86] there is
a copy of Z2N´3 inside IAN p3q. By [CFH] we have gdpZ2N´3q “ 2N ´ 2.
Therefore 2N ´ 2 ď gdpIAN p3qq. This concludes the proof. □

Corollary B. Let N ě 1. Then, gdpOutpFN qq is finite.

Proof. This is trivial for N “ 1. Suppose now N ě 2. By [Lüc00, Theo-
rem 2.4] there exists a model for EOutpFN q which has dimension at most
|OutpFnq : IAN p3q| ¨ gdpIAN p3qq which is finite. □

Note that this gives the upper bound

gdpOutpFN qq ď |GLN p3q| ¨gdpIAN p3qq “ 3
1
2
NpN´1q ¨ p2N´2q ¨

N´1
ź

i“1

p3N´i´1q.

Question 7.5. Is gdpOutpFN qq “ 2N ´ 2?
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