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ABSTRACT
Overlapped speech is notoriously problematic for speaker diarization
systems. Consequently, the use of speech separation has recently
been proposed to improve their performance. Although promising,
speech separation models struggle with realistic data because they
are trained on simulated mixtures with a fixed number of speakers. In
this work, we introduce a new speech separation-guided diarization
scheme suitable for the online speaker diarization of long meeting
recordings with a variable number of speakers, as present in the AMI
corpus. We envisage ConvTasNet and DPRNN as alternatives for the
separation networks, with two or three output sources. To obtain the
speaker diarization result, voice activity detection is applied on each
estimated source. The final model is fine-tuned end-to-end, after first
adapting the separation to real data using AMI. The system operates
on short segments, and inference is performed by stitching the local
predictions using speaker embeddings and incremental clustering.
The results show that our system improves the state-of-the-art on
the AMI headset mix, using no oracle information and under full
evaluation (no collar and including overlapped speech). Finally, we
show the strength of our system particularly on overlapped speech
sections.

Index Terms— online speaker diarization, source separation,
overlapped speech, AMI, speaker embedding

1. INTRODUCTION

Speaker diarization (SD) aims at answering the question “who spoke
when?” by segmenting a recording into speaker-homogeneous re-
gions [1].

Speaker diarization has traditionally been framed as a cluster-
ing problem, with systems consisting of a cascade of several steps
[2, 3], each individually optimized. As diarization systems become
more effective, the inability of clustering-based systems to model
overlapped speech directly becomes a non-negligible limiting fac-
tor. Indeed, up to 20% of total conversational speech time can be
categorized as overlapping speech [4], which naturally calls for a
change of paradigm. End-to-end neural diarization (EEND) models
[5, 6] reframe the diarization task as a multi-label classification prob-
lem. By doing this, the EEND framework inherently considers the
issue of overlapping speech. Other examples of non-clustering based
systems are target-speaker VAD (TS-VAD) [7] and region proposal
networks (RPNs) [8]. Although EEND-based systems have shown
state-of-the-art performance over the clustering paradigm, the best
models rely on the self-attention mechanism [9] and tend to require
a lot of data to be trained properly. In this context, speech sepa-
ration models (SSep) show potential for better handling overlapped
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speech, while being computationally more efficient [10]. Currently,
the novel speech separation guided diarization (SSGD) paradigm
[11, 12] is still limited because of the inability of SSep models to
behave well on realistic data: the better performance on overlapped
speech sections is counteracted with worse performance on the re-
mainder of the audio. Additionally, no work has been done yet to
deal with multiple speakers (i.e., more than 2 speakers), making the
SSGD paradigm not ready yet for general settings, even less for on-
line speaker diarization.

Online SD systems make predictions at each time step with in-
formation available only up until that point (or slightly in the future).
Only a few models are online by nature [13], but offline systems may
sometimes be adapted to operate online. The work from Kinoshita
et al. [14, 15] introduces an adaptation of the EEND model to han-
dle long recordings. Coria et al. [16] used the same technique to
adapt the EEND framework to real-time processing. In their pro-
posal, predictions are made locally on short overlapping windows,
and incremental clustering is used to solve the permutation problem.

With this work, we introduce a novel speaker diarization sys-
tem architecture that expands the SSGD paradigm to accommodate
meeting recordings (with more than 2 speakers), and we study its
performance in the online diarization setting, focusing on single-
microphone scenarios. To the best of our knowledge, this is the first
work using SSep for diarization outside the conversational telephone
speech (CTS) domain where only 2 speakers are present in the en-
tire recording. As will be discussed in section 5, separation models
struggle when the number of speakers active during the testing phase
differs from that considered during the training of the separation net-
work. Nevertheless, our solution is suitable for an arbitrary number
of speakers. Notably, we are able to improve the state-of-the-art per-
formance on AMI headset mix in the online setting using no oracle
information. Our system can also estimate sources for each speaker
in addition to the diarization result. Finally, we also show the superi-
ority of our method on the overlapped speech sections in particular.
The code to reproduce the results of this work is freely available1.

2. RELATED WORK

Fang et al. [11] introduced the speech separation guided diarization
(SSGD) approach, refining the work from [12]. Their system em-
ploys dynamic selection between conventional clustering-based di-
arization which is effective for single-speaker segments and SSGD
which excels in handling overlapped speech. However, they note
occasional SSGD instability and SSep model failures, resulting in
speaker confusion and false alarms due to channel leakage and arti-
facts in the estimated sources. In the context of SSep models, leak-
age is defined as the presence of one or more other speakers in an
estimated source. In [17], a leakage removal algorithm is proposed,
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Fig. 1. Diagram of the inference process for local predictions on 5-s
windows. The dataset used for the end-to-end finetuning is symbol-
ized with chains.

based on the SI-SDR metric [18]. Recent advancements [19] show
that fine-tuning the model is an effective approach to mitigate the
source leakage problem. Notably, adapting the VAD to the estimated
sources reduces false alarms, but the best results arise from jointly
fine-tuning the separation model and VAD in an end-to-end manner.

The previous work on SSGD research focuses on the conversa-
tional telephone speech (CTS) domain, involving at most two speak-
ers. This limitation simplifies the SSGD problem enabling a single-
pass inference to be performed. Alternatively, for longer record-
ings or SSep models with a restricted receptive field, the system can
operate on short overlapping windows whose predictions are then
stitched together using the correlation between overlapping sections
of consecutive windows. This approach is known as Continuous
Speech Separation (CSS) [20]. When working with meeting conver-
sations, where more than two speakers are present, the CSS approach
is no longer feasible, as it implies that each local prediction must
have as many outputs as the total number of speakers. In fact, as dis-
cussed in Section 5, SSep models like ConvTasNet [21] or DPRNN
[22] see a drastic degradation in performance when increasing the
number of output sources they consider. As an alternative approach,
we use the speaker embedding-based stitching method proposed by
[16]. Speaker embeddings can be used to solve the permutation
problem between different local predictions, but also to distinguish
between new and already seen speakers.

3. PROPOSED SYSTEM

The system proposed in this work is composed of 3 components:
speech separation (SSep), voice activity detection (VAD) and a
speaker embedding-based stitching mechanism.

Speech separation is performed on sliding 5-s windows to ob-
tain “local” predictions. The overlap between subsequent windows
is 90%, meaning the step is 500 ms. For each window, the active
speakers for the incremental clustering are searched only in the last
500 ms, while the rest of the window is used as context to better
estimate the speaker embeddings.

Separation and VAD. The 5-s input segments x ∈ R1×T are first
fed to the SSep model, which estimates the sources ŝi ∈ R1×T for
each output of the model, where T is the number of samples in the
segments. VAD is then applied independently to each ŝi to esti-
mate the speech activities âi ∈ [0, 1]1×F , where F is the number
of frames. The SSep model takes a single-channel audio as input
and outputs a fixed number of estimated sources. In this work, we
test models with 2 or 3 output sources. To bridge the domain shift
between real data and estimated sources, the VAD needs to be fine-
tuned. Similarly to [19], we consider two types of finetuning. The
first variant is to adapt only the VAD on the estimates of the SSep

Fig. 2. Diagram of a single step of the stitching of local predictions.

model. The second finetuning strategy consists of jointly adapting
both the SSep and the VAD in an end-to-end fashion.
Speaker embedding-based stitching. To combine local predictions
across time, a permutation problem needs to be solved between con-
secutive windows. Additionally, new speakers can appear as well.
In this work, we rely on the use of speaker embeddings for the sake
of stitching together the predictions on the 5-s sliding windows, fol-
lowing the approach from [16].

Figure 2 summarizes the logic of the stitching process. At each
step: 1) start from the current window (top, outline red), 2a/2b)
speaker embeddings are estimated, 3) the predictions of the active
speakers are aggregated with a delay (bottom) if the latency is above
the minimum of 500ms, 4) the activities are binarized using τactive
to get speaker segments, 5) incremental clustering is performed on
the speaker embeddings to find the best match between the speaker
segments and the existing centroids. All windows in the figure are
shown with the estimated activities already computed. To improve
the statistic pooling layer, the estimated activities are used to inform
the weights of the frames when computing the embeddings, as de-
tailed in [16].

The clustering is governed by other two hyperparameters: δnew

and ρupdate. The first parameter, δnew, defines the threshold dis-
tance between a new embedding and the closest centroid to define
a new speaker. The distance metric used is the cosine similarity, as
the speaker embedding is an implementation of the X-vector archi-
tecture [23, 24] trained with additive angular margin loss [25]. The
latter parameter, ρupdate, prevents embeddings estimated from short
speech segments from updating the centroids of their cluster. The
rationale is to prevent noisy embeddings from damaging the speaker
representation of the centroids.

4. EXPERIMENTAL SETUP

Dataset. As this work focuses on meeting conversations, we evalu-
ate our models on the AMI dataset [26]. Specifically, the evaluation
of all our proposed models is performed on the headset mix, our fo-
cus being on single-microphone settings. The other datasets used in
the training and finetuning stage of the SSep models are LibriMix
type “mix both” [27] and the individual (speaker-focused) headset
recordings from AMI. In order to compare our results to previous
works, we have used the AMI evaluation protocol proposed in [28].
Architecture configuration and training details. We consider two
different separation architectures: ConvTasNet [21] and DPRNN
[22], with a view to gaining insight on the behaviour of our system,
especially its robustness, when considering different SSep architec-
tures. Both separation models are first trained on fully overlapped



mixtures from LibriMix type “mix both”[27], using 3-second seg-
ments. For both models, we have used the same configuration as
in the Asteroid toolkit [29]. However, for DPRNN, to reduce the
computational burden, the kernel size and the stride have been set,
respectively, to 32 and 16. The chunk size has been increased to 300
to reduce the length of the inter-RNN processing. The hop size was
increased to 150 to maintain it at 50% of the chunk size.

After the training on LibriMix, the SSep models are finetuned on
real data using the AMI train set, lowering the learning rate by a fac-
tor of 10 to 0.0001. Given that the isolated sources are not available,
we have resorted to using the individual headset microphones of the
active speakers as the ground truth. Note that these recordings may
not be optimal as sources because they include other speakers in the
vicinity. Finally, as a last finetuning step, we have joined the VAD to
each output source of the SSep model. In our experiments, we have
used the pretrained VAD from Pyannote [30] 2. We have tried two
combinations: freezing the SSep model to finetune only the VAD,
and finetuning the entire system end-to-end. While both approaches
showed remarkable improvements over the use of a pre-trained VAD,
the end-to-end approach has shown the best performance, as shown
in Table 1 and discussed in Section 5

5. RESULTS

All results presented rely on the AMI protocol presented in [28]. The
inference is carried out under full evaluation, meaning with no collar
and evaluating also overlapped speech.

Model DER FA MS SC
SSep AMI + VAD E2E 27.2 1.8 18.4 7.0
SSep LibriMix + VAD E2E 28.4 2.0 18.3 8.1
SSep LibriMix + VAD finetuned 34.4 1.9 22.6 9.9
SSep LibriMix + VAD 42.8 3.7 19.3 19.8
Coria et al.3 [16] 28.5 4.4 12.0 12.1
Kwon et al. [31] 22.9 n.a. 14.5 8.3
Yue et al. [32] 19.0 - - -
Kynych et al. [33] 21.2 - - -

Table 1. Comparison of our proposed online diarization system with
the literature. The top section of the table presents an ablation study
of the training methodology. The SSep used is ConvTasNet with 2
outputs. The bottom section of the table report results which rely at
least in part on oracle information.

Model performance and ablations. Table 1 presents the results of
our new speaker diarization system based on SSep and VAD fine-
tuned end-to-end, along with a few ablations allowing one to clarify
the impact of each component of the system. The results show that
our proposed system is competitive with the previous work [16], and
that it improves the performance as measured by the overall DER.

Comparing the works from the bottom part of Table 1 with our
methods is not straightforward as they use oracle information. The
only comparison that we can make is against VBx [28] (on which
[32] is based), but in an offline setting. To this end, we use the
speaker diarization pipeline from [34], which can be considered as
an offline variant of [16]. In this case, our best model achieves a
DER of 23.5% without any hyperparameter tuning, while VBx with
Pyannote VAD (instead of oracle VAD) achieves 24.1% [30].

2available at hf.co/pyannote/embedding/. Note that this is not the same
model as the one used in [16], which exploits an improved version instead.

3Reproduced results
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Fig. 3. All proposed online systems compared to Coria et al.’s, tested
at minimum (0.5s, left bar) and maximum latency (5s, right bar).
The DER is broken down into its constituents: Missed Speech (MS),
False Alarm (FA) and Speaker Confusion (SC).

Further, the ablation experiments (upper part of Table 1) show
that all the components of our system play a role in improving per-
formance. Removing the AMI finetuning of the SSep model lowers
performance even if the model is still finetuned end-to-end. In line
with [19], switching from end-to-end finetuning to VAD-only adap-
tation degrades the performance. Finally, a pre-trained SSep model
with a non-finetuned VAD leads to the worst performance overall.
Choice and parametrisation of the SSep model. To test the de-
pendence of the results on the quality of the SSep system used, we
repeat the online inference on AMI with two different SSep models,
with 2 or 3 output sources, for a total of four model combinations as
presented in Table 2. The results show that all the models consid-
ered are competitive with [16]. For both ConvTasNet and DPRNN,
the 2-output models achieve a better score than the 3-output counter-
part. On the other hand, the 2-output models obtain the worst missed
speech result, which is expected as the distribution of 5-s segments
with more than 2 speakers in AMI is non negligible.

The benchmark of the different SSep models is further explored
in Figure 3. Relative to Coria et al [16], our system improves the
performance in low algorithmic latency settings. For all SSep mod-
els considered, increasing the latency leads to a reduction of false
alarms and speaker confusion, but also to an increase in missed de-
tection. This is in contrast with [16], for which missed speech seems
not to be affected by the change in latency.

Model DER FA MS SC
ConvTasNet2 27.2 1.8 18.4 7.0
ConvTasNet3 28.1 2.1 16.0 10.0
DPRNN2 28.0 2.2 18.0 7.8
DPRNN3 28.4 2.1 15.8 10.4

Table 2. Online diarization results for SSep AMI + VAD E2E using
different SSep models with 2 or 3 output sources.

Local inference and overlapped speech performance. To disen-
tangle the contributions of the local prediction from those of the
stitching mechanism, we have evaluated the SSep models on individ-
ual segments of 5 seconds, as detailed in Table 3. The only hyperpa-
rameter here is the threshold value to convert the continuous predic-
tion into binarized outputs, equivalent to τactive. For each model, we
also report the performance when scoring only overlapped speech
sections. The baseline for comparison is the segmentation model
from [16], an LSTM-based EEND model with 4 outputs trained on
multiple datasets including AMI.

The results show that all our proposed models improve on the
baseline, both regarding overall test DER and considering only over-
lapped speech. Interestingly, in contrast with the results in Table 2,
here we find DPRNN to perform better that ConvTasNet. Also, 3-

https://huggingface.co/pyannote/embedding


Model Test DER by number of speakers Test DER
1 spk 2 spks 3 spks 4 spks

ConvTasNet2 6.0 ± 0.3 14.8 ± 0.4 25.3 ± 0.5 34.6 ± 0.8 15.8 ± 0.3
OVL-only scoring n.a. 16.7 ± 0.4 26.7 ± 0.4 33.0 ± 0.5 24.3 ± 0.3

ConvTasNet3 5.9 ± 0.4 16.4 ± 3.8 23.9 ± 0.6 30.3 ± 0.1 15.4 ± 0.3
OVL-only scoring n.a. 21.1 ± 0.4 24.2 ± 0.5 28.7 ± 0.8 24.0 ± 0.3

DPRNN2 6.8 ± 0.3 15.7 ± 0.5 25.3 ± 0.5 35.3 ± 0.9 16.4 ± 0.3
OVL-only scoring n.a. 17.7 ± 0.4 27.6 ± 0.5 33.9 ± 0.6 25.2 ± 0.3

DPRNN3 5.4 ± 0.3 15.0 ± 0.5 24.7 ± 0.4 33.1 ± 0.8 15.2 ± 0.3
OVL-only scoring n.a. 18.8 ± 0.4 25.6 ± 0.4 32.1 ± 0.7 24.5 ± 0.3

Coria et al. [16] 5.9 ± 0.3 17.0 ± 0.5 26.9 ± 0.6 33.5 ± 0.9 16.7 ± 0.2
OVL-only scoring n.a. 24.1 ± 0.6 29.6 ± 0.5 32.7 ± 0.6 28.2 ± 0.3

Table 3. Performance on individual segments of 5 seconds. The error on segments with no speakers is not reported because it is null for all
the models. The performance scoring only the overlapped portion of the speech is noted as OVL-only scoring. For all models τactive = 0.5.
The results are reported with a 95% confidence interval.

output models perform better than the 2-output ones. It is important
to note that all systems are competitive also on segments with only
one speaker, which can be mishandled by SSep models, as discussed
in [11, 12]. Additionally, SSep models with 2 and 3 outputs have
similar performance on segments with 1 and 2 speakers, which is
not to be expected if one considers the results from Section 5. We
attribute this generalization to the end-to-end finetuning, as models
are trained also on segments with fewer speakers, contrary to train-
ing with SI-SDR loss. With these results, we claim that the SSGD
framework can be robust enough to be used as a stand-alone ap-
proach, without being integrated with other methods like in [11, 12].
Behaviour of SSep models after adaptation on real data. The
SSGD framework is appealing also because it performs separation
for free. For each step of the training pipeline detailed in Section
4, we show some examples of how the SSep models behave4. It is
not possible to objectively evaluate the separation on AMI because
ground-truth sources are not available. Here we limit ourselves to a
few observations on the behaviour of the models.

The SSep models are first pretrained on fully overlapped mix-
tures from LibriMix, with as many speakers as the number of outputs
of the model. For a SSep model trained on fully overlapped mix-
tures, all recordings with less speakers than the number of outputs
are out-of-domain examples. After finetuning the SSep models on
real data from AMI, the estimated sources were found to be less af-
fected by phenomena that lead to speaker confusion, such as splitting
one speaker into multiple outputs. Nevertheless, because the SSep
models are finetuned on individual microphones which contain also
speech from nearby speakers, the estimated sources present more
leakage than the models just trained on LibriMix. The leaked speak-
ers are always at lower energy than the main speaker, so a finetuned
VAD is usually able to distinguish them and avoid false alarms. With
the end-to-end finetuning, the SSep models learn to make a few little
adjustments to improve the diarization score, but the leakage is still
present. As such, finetuning end-to-end alone does not lead to better
separation automatically, as the goal is only diarization performance.
Our interpretation is that the finetuning end-to-end pushes the model
to reduce the leakage at least when it can lead to false alarm, while
it is otherwise kept.
Relationship between SSep performance and number of outputs.
We have found that increasing the number of outputs of the speech
separation model always leads to a loss in performance. Figure 4
shows how the performance of ConvTasNet5 changes when testing
it on mixtures with 5 or fewer speakers, as shown on the x-axis.

4egruttadauria98/SSpaVAlDo
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Fig. 4. Performance of ConvTasNet5 trained on Libri5Mix on mix-
tures with 5, 4, 3 and 2 speakers. The red crosses show the perfor-
mance of the SSep model with as many outputs as the speakers in
the mixtures.

As there is no straightforward way to evaluate a SSep model with
a mismatch between the estimated outputs and the actual number of
sources, we use both a harsh metric and a forgiving metric. The harsh
metric, all outputs, used as a reference for the additional sources
an all zero-signal 5. The forgiving metric, PIsEval, uses the oracle
number of speakers in the mixture, Nspks, to score only the esti-
mated sources that best resemble the references. For ConvTasNet5,
PIsEval improves initially when Nspks is reduced first to 4 and then
to 3, because the mixtures are easier to separate. Once the Nspks

reaches 2, the performance worsens, possibly because the out-of-
domain factor outweighs the easier separation. Lastly, we also plot
with red crosses the performance of ConvTasNet-Nspks on mixtures
with Nspks speakers. At each value of the x-axis, the difference be-
tween the red cross and the blue line shows the minimum loss in
performance by using a SSep with 5 outputs instead of a SSep with
as many outputs as the speakers in the mixtures.

6. CONCLUSIONS

We have presented a novel SSGD system for online speaker diariza-
tion that achives state-of-the-art performance on AMI headset mix.
Our results show that the limitations of SSep on real data can be
overcome, leading to a diarization model that can better handle over-
lapped speech and estimates sources for each speaker.

5A small constant is added to avoid numerical errors in the computation
of the SI-SDR metric
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