
HAL Id: hal-04419034
https://hal.science/hal-04419034

Submitted on 26 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Emulating Covert Data Transmission on Heterogeneous
SoCs

Lilian Bossuet, Carlos Andres Lara-Nino

To cite this version:
Lilian Bossuet, Carlos Andres Lara-Nino. Emulating Covert Data Transmission on Heterogeneous
SoCs. 2023 Asian Hardware Oriented Security and Trust Symposium (AsianHOST), Dec 2023, Tian-
jin, China. pp.1-6, �10.1109/AsianHOST59942.2023.10409377�. �hal-04419034�

https://hal.science/hal-04419034
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Emulating Covert Data Transmission on

Heterogeneous SoCs

Lilian BOSSUET and Carlos Andres LARA-NINO

Université Jean Monnet Saint-Étienne, CNRS, Institut d’Optique Graduate School,

Laboratoire Hubert Curien UMR 5516, F-42023,

SAINT-ETIENNE, France.

carlos.lara@univ-st-etienne.fr

Abstract

Recent works have highlighted the vulnerability of System-on-a-Chip
(SoC) platforms against frequency-based covert channels. An attacker
might be able to leverage vulnerabilities in the SoC’s firmware, the oper-
ating system, or the design tools to gain access to the underlying hardware
and perform frequency modulation. Given the diversity of threats and the
constant evolution of SoC platforms, it is not practical to study this attack
model using physical devices. To address this issue, we propose to employ
advanced simulation techniques. Our work targets heterogeneous SoCs
which feature a processor system based on the ARM architecture plus an
FPGA. We employ the full system simulation of gem5, which allows us
to create a complete virtual-system and study the interaction between its
components. We present the emulation of three frequency-based covert
channels in gem5 v22 by showing that it is possible to replicate the covert
transmission of data between different elements of the SoC. To ensure
the repeatability of our experiments all the sources are released as Open-
Source.

Keywords: Covert channels, Frequency modulation, gem5, SoC-FPGAs,
Zynq UltraScale+

Please cite as:

@InProceedings{BL23,
title = {{Emulating Covert Data Transmission on Heterogeneous SoCs}},
author = {Bossuet, Lilian and Lara-Nino, Carlos Andres},
booktitle = {Proceedings of the 2023 Asian Hardware Oriented Security and Trust Symposium
(AsianHOST)},
pages = {1--6},
year = {2023},
publisher = {IEEE},
location = {Tianjin, China},
doi = {10.1109/AsianHOST59942.2023.10409377},
isbn = {979-8-3503-4099-0}}

1



1 Introduction

A System-on-a-Chip is a heterogeneous platform, constituted by the integration
of general processors and hardware accelerators in the same die. Their main
components include a processor system with some memory elements, a shared
memory block, acceleration engines (ASICs, FPGAs, or ASIPs like DSPs and
GPUs), and some interconnect logic. These architectures have gained popular-
ity given the need to improve the performance of processors through hardware
acceleration. The desire for new computing architecture has been pushed in part
by the loss of Dennard’s scaling and the deceleration of Moore’s Law [JN16].
But also, by the interesting features found in hardware accelerators [KFS18].
Along with these factors, the monetary cost per logic-cell of FPGA fabric has
dramatically decreased, which makes them an attractive choice for bulk accel-
eration [Kha+18].

Understandably, the trends in the design of these platforms have been driven
by the interest of obtaining greater performance figures and improving the
benchmarks for emerging applications [Cla18]. However, recent studies have
shed light on the vulnerabilities of these systems [Cha18]. A platform with a
greater diversity of hardware components will experience grater security chal-
lenges as each part of the system can be targeted by attackers.

Covert data transmission is one of the attacks proposed against heteroge-
neous SoCs [BL23]. Under this threat model an adversary may leverage the
shared resources between the different components of the platform in order to
establish incidental channels. These can then be used to allow different appli-
cations or circuits within the SoC to exchange information. Evidently, these
covert communications would be able to bypass security policies designed to
isolate the components of the platform. Detecting and preventing these attacks
is an active area of research.

In this paper, we detail the process to emulate frequency-based covert chan-
nels in gem5 v22. Our contributions are as follows:

1. We present three approaches for transferring data between applications
on the processing system, and from the processing system to the pro-
grammable logic.

2. We demonstrate the feasibility of these attacks by implementing the covert
channels in a physical device.

3. We show how to emulate these attacks in gem5 with a full-system ARM
simulation and outline the challenges that we have overcome in the process.

4. We identify a key characteristic of the gem5 simulator, which despite being
able to emulate any version of the Linux kernel, can only run a complete
simulation when these kernels include certain gem5 code. To be clear, we
document that the clk and cpufreq drivers of the Linux kernel used in
gem5 must be patched with some simulation-specific code.

The rest of the paper is outlined as follows. In Section 2 we study the
State of the Art on covert channels and the use of gem5 for their emulation.
Section 3 details the implementation of frequency covert-channels in a physical
SoC-FPGA. Subsequently, Section 4 describes the process to carry a successful
DVFS-enabled simulation in gem5 v22, and the emulation of the covert-channel

2



attacks. In Section 5 we review the results and discuss our findings. Lastly,
Section 6 presents our conclusions.

2 Related works

2.1 Covert channels

The literature describes several methods for the creation of covert channels.
Most of them rely on shared hardware resources such as memory elements.
In [Lip+16], Lipp et al. used a common library (shared memory) and cache
memory attacks to exchange sensitive data between two unprivileged processes.
In [Mas+15], Masti et al. evaluated the feasibility of thermal covert channels.
They used the thermal sensor included in a processor core to communicate
two processes running on two different cores of the same processor. A related
approach was used by Tian and Szefer [TS19] to mount temporal-thermal covert
channels on Cloud-based FPGAs. In their work, the authors showed that heat
generated by one user of the FPGA could be observed by another user of the
same FPGA in a subsequent session.

In [Pro+19], it was demonstrated that it is possible to exploit the cross-talk
phenomenon of long wires [GER19] in the Arria 10 SoCs. A related approach
was used by [Ram+18] to mount an attack on an AES core on a Cyclone IV
FPGA. A potential countermeasure for these attacks was later presented by
[SMS20], who proposed routing strategies to mitigate the risks of cross-talk
attacks by isolating sensitive nets from other components. Most recently, [BL23]
studied the characteristics of frequency-based covert channels in modern SoC-
FPGA platforms.

2.2 Exploiting the frequency or voltage modulation

Works like [ZBT10] have used the Power Distribution Network (PDN) of FPGAs
to transfer covert data to a receiver outside the board. The technique described
in that paper employs a power pattern generator inside the core as a transmitter.
The receiver can be anything capable of monitoring the power trace of the
board; in their case an oscilloscope was used. The work in [Gna+19] proposed
to use the PDN to mount actual covert channels in the FPGA. The authors
used non-combinatorial ring oscillator as transmitters and TDC-based sensors as
receivers.This class of attacksunderscores the significant challenges for isolation-
based protection approaches since the PDN is a common resource throughout
most SoCs.

The isolation challenges persist even when the logic is implemented in dif-
ferent dies, so long as they share a common PDN. This was demonstrated by
[GRS19] using FPGAs with 2.5D integration of multiple dies, in concrete the
Virtex Ultrascale+ series. In their work, the authors managed to create covert
channels across the different dies of the FPGA just by exploiting the perturba-
tions induced on the PDN. Furthermore, in [Sch+18] the authors demonstrated
that an FPGA could be used to analyze the power traces of a different FPGA
within the same board.

The potential of using frequency modulation to mount covert channel at-
tacks on multi core platforms was first studied by Alagappan et al. [Ala+17],

3



who demonstrated the feasibility of a covert channel using frequency modula-
tion. Their work employed dynamic frequency adjustment to transfer sensitive
data between the spy process and the receiving process. Independently, [TSS17]
presented the CLKSCREW attack which exploited vulnerabilities in the DVFS
mechanisms to bypass the protections of the system. That work showed that
a malicious driver could extract secret cryptographic keys from TrustZone, and
escalate its privileges by loading self-signed code into application space. In
[BB18], the authors demonstrated for the first time a malicious use of the fre-
quency modulation against a TrustZone-enabled SoC. The work described four
proofs of concept to transfer sensitive data from a secure entity in the SoC to a
non-secure one.

2.3 DVFS in the gem5 simulator

gem5 is a modular platform for computer-system architecture research, encom-
passing the system-level architecture as well as processor micro-architectures
[Bin+11]. This Open-Source simulator was created after merging the M5 and
GEMS simulators, preserving the processing-emulation capabilities of the for-
mer and the memory-emulation components of the latter. It allows to run cycle-
accurate simulations of multiple processor architectures, among them ARM. By
creating a conglomerate of objects (SimObjects), gem5 allows to emulate the in-
teraction between the different components of the processing system and study
their synergy, rather than simply trying to predict the outcome of some com-
putation.

The use of gem5 to emulate the DVFS-management was first introduced
in [Spi+13] where the authors extended the simulator to support full-system
DVFS modeling. Their goal was to enable energy-efficiency experiments to be
performed in gem5 and to showcase such studies. That work provided, for
the first time, clock and voltage domain declaration, online power-estimation,
a DVFS controller, and kernel drivers for full-DVFS support. Their proposal
would become the basis for the DVFS handler included in the official gem5
releases. Subsequently, works like [Yas+20] have proposed high-level improve-
ments to enhance the performance of the DVFS handler in gem5.

In [For+21], the authors introduced an ongoing study aiming at analyzing
the attacks relying on the hardware vulnerabilities of the micro-architectures of
CPUs and SoCs using gem5. The main objectives of their work are to create
a virtual and open platform that emulates the behavior of micro-architectural
features and their interactions with the peripherals, like accelerators and memo-
ries in emerging technologies. The authors describe diverse attacks which can be
mounted on the gem5 simulator, among them the possibility of creating DVFS
covert-channels as described in [BB18].

3 Experiments on the physical device

3.1 The Zynq Ultrascale+ heterogeneous SoCs

The AMD-Xilinx Zynq Ultrascale+ is an interesting case study for modern het-
erogeneous SoCs. We illustrate this architecture in Fig. 1. These chips feature
an application processing unit (APU), powered by an array of ARM Cortex-

4



APU
A530 A531

RPU
R50 R51

DDR4
DDRC

L2 CacheSCU

I/D Cache

Low Power Switch

On-Chip Memory

I/D Cache

MMU

Central Switch

FPGA

RO

TDC DMA

PLL MMCM

PWC
Peripherals

GE

SPI CAN

I2C UART

USB

Low Power Domain Full Power Domain PL Power Domain

PSS_REF_CLK

RPLL

IOPLL

APLL

VPLL

DPLL

DIV DIV DIV DIV DIV DIV DIV DIV DIV DIV

33.33 MHz

DIVDIVDIVDIV

Figure 1: The architecture of the AMD-Xilinx xczu2cg.

A53 cores (A530 and A531 in Fig. 1), and a real-time processing unit (RPU),
which includes an array of ARM Cortex-R5F cores (R50 and R51 in Fig. 1).
Each one of these processing units has independent instruction and data caches,
and up to L2 cache in the case of the APU. The main memory of the SoC is
an external DDR unit, driven by an on-chip memory controller. There is also
a smaller on-chip memory which can be shared by the different cores, and a
memory management unit which performs the necessary assignments. These
boards also feature a nucleus of programmable logic: an array of reconfigurable
elements and silicon accelerators. The interconnection between processors and
accelerators follows the AMBA-AXI specification through two main switches.
The reconfigurable fabric of the SoC-FPGA offers the possibility of implement-
ing a wide range of customized accelerators.

In Fig. 1, in blue, we illustrate part of the clock tree in the Zynq Ultrascale+
SoCs. A main reference clock (PSS REF CLK) is used to source the five main
PLLs of the architecture (RPLL, IOPLL, APLL, VPLL, DPLL). To generate
the PLL output, the reference clocks are multiplied by a constant. The resulting
oscillators are then divided by one or two six-bit constants to produce specific
clock domains for the different parts of the architecture.

From Fig. 1 it can also be seen how there are three main power domains
in these Ultrascale+ SoCs. The Low Power Domain will source the RPU, the
peripherals, the on-chip memory, and one of the interconnect switches. The Full
Power Domain will supply the APU, the memory management unit, the memory
controller, and the central interconnect switch. The PL Power Domain will
supply the reconfigurable fabric. The goal for this separation of power domains
is to improve the energy efficiency of the system by allowing the system to shut
down complete areas of the SoC when these are not used. For the low and full
power domains, the five main PLLs can be used to generate clocks. For the

5



FPGA, only three of the PLLs (RPLL, IOPLL, DPLL) can be used to generate
the four clocks available to the fabric (from the processing system, since it is
also possible to use external clocks.)

Ultrascale+ SoCs allow the use of the RPU and the APU independently.
The cores in the RPU would normally run a real-time operating system, for
example RTOS or simply run standalone applications. The cores in the APU,
on the other hand, are more complex and their full potential can best be drawn
by a kernel, like Linux. In this work, we presume that both clusters can be
operated independently. We implement bare metal applications in the RPU
and linux-based applications in the APU. These chips also feature a power
management unit (PMU) which oversees the monitoring and configuration of
the PDN. The PMU features anti-tampering characteristics which increase the
difficulty of modulating the power supply of the chip.

3.2 Frequency modulation in the Zynq Ultrascale+

The frequency of the different clocks can be modified by editing their multiplier
or divider values. The multiplier register will affect the PLL output, and in
turn modify the frequency of all the SoC components which rely on that given
oscillator. In contrast, the divider registers are specific for a given clock and
modifying them will only modify the frequency of a particular clock signal.
There are clocks which use one divider and there are clocks which use two. All
the dividers are stored as a six-bit section of a 32-bit register. To modify the
frequency of an oscillator it is then necessary to edit the contents of these control
registers.

At low level, like in bare-metal applications, the control registers of the
SoC can be edited through direct access operations. For example, using the
xil io library. However, to edit one of these control registers it is necessary to
edit multiple security and configuration registers so that the frequency change
is enacted. Furthermore, the application performing the operation must have
access rights.

In the presence of a kernel, the modulation of frequency can be simplified
with the help of drivers which allow to request the modification of specific clocks.
For example, the processor clocks (by using the cpufreq driver of Linux) or
the FPGA clocks (by using the fclk drivers of Xilinx). This scenario is more
favorable for attackers since the complexity of the kernel may allow them to
hide malicious applications more easily.

3.3 Frequency detection

Our work employs ring oscillator-based sensors due to their simplicity [ZS18;
Gra+20]. In these architectures, the ring oscillator provides a consistent oscil-
latory wave whose period fluctuates according to the nominal operation of the
circuit. This signal is then used to source a Johnson ring-counter, which is sub-
sequently sampled by an external clock to produce a measurement. The number
of counts retrieved in a sampling period is thus correlated to the frequency of
the ring oscillator, and in turn to the operation of the circuit. However, we are
more interested in the sampling clock of the sensor. By modifying this signal, we
can obtain an offset in the measurements due to the periodicity of the Johnson
ring-counter.

6



The frequency fluctuation can be detected from the FPGA by observing the
output of the sensor. Or from the processors, by reading the value of the divider
registers. In this work we focus on the interaction between the processors and
the programmable logic, so we prefer the latter method to monitor the frequency
variation in the SoC. For this, we created a simulation model of the sensor which
can produce a digital output as response of the frequency change.

3.4 Characterization of the system

To understand the limits of the proposed covert channels we first studied the
behavior of a PLL in the target platform. For all the proposed cases we used the
IOPLL which can be used to source clocks in all the power domains of the SoC.
Using a digital oscilloscope we sampled the time-response of these components
when requesting a change in the output frequency. As reference, we generated
a digital trigger through the processor’s GPIOs. We then measured the width
of these pulses. Our findings suggest that the minimum response time for a
frequency change is approximately 600ns. That is the time elapsed from the
moment one of the RPU cores modifies the register until the output of the sensor
is updated. Therefore, assuming that we could transfer one bit per transition,
the maximum bandwidth for the proposed channels would be 1.6 MBps. Note
that this is the theoretical limit, without considering the necessary delay to
achieve a consistent transmission (low-error rate).

3.5 Covert channels within the APU

The first covert channels we investigated are those that can be implemented
within the APU of the platform. That is, we assume that a malicious application
or driver being executed in one of the cores can transfer some information to a
receiver in a different part of the APU. This kind of attack might be interesting
for applications which delegate one or more of the cores to perform trusted
computations.

A regular Linux kernel, if configured properly, will feature the cpufreq driver
which allows to modify the frequency of the underlying system. This can be
leveraged to implement a covert channel between different cores controlled by
the same operating system. We used this driver, available in Xilinx’ Linux, to
modify the processor clock of the APU. This oscillator is used by all the cores
plus other components in this system. Therefore, through frequency modulation
it is possible to transfer information between different parts of the APU. To
demonstrate the feasibility of this attack, we created a sender program and a
receiver program. They were cross-compiled and loaded in the file system using
Petalinux. Subsequently each application was executed in different cores of the
APU. We transmitted the 16-byte message “This is a covert secret message!”
encoded with a straightforward modulation strategy.

In Fig. 2 we illustrate some of the samples captured by the receiver applica-
tion. In this case, the transmitting and receiving delays should be similar since
both applications are running in Linux and both perform the task of opening
and writing/reading a file, which is slow. So, to increase the number of samples
being retrieved and thus reduce the error rate we added a delay of 350 µS after
the transmission of each symbol.

7



0

100

200

300

400

500

600

F
re

q
u
e
n
c
y
 (

M
H

z
)

10 20 30 40 50 60 70 80 90 100

Samples

0 1 0 0 0 1 1 

Figure 2: The transmission of a stream of bits over a covert channel from a core
in the APU to a different core in the APU.

3.6 Covert channels between the APU and the FPGA

The second type of covert channels under evaluation were those that originate
from an application executed in the APU and target the reconfigurable fabric.
Our intended receiver was the delay sensor based on ring oscillators. To trans-
mit the data, we targeted one of the oscillators sourcing the FPGA from the
processing system. This signal was used as the sampling clock for the delay
sensor.

In the case of the Xilinx’ distribution of Linux, the kernel also features a
set of APIs (/sys/devices) which allow to modify the frequency of the FPGA
clocks. These drivers use configuration files which can be managed from the
application space. Thus, performing the modification of an FPGA oscillator is
a matter of locating the adequate file, opening it, modifying its contents, and
closing it again (the file must be closed for the change to be detected).

We applied a straightforward modulation strategy with a C-language ap-
plication in Linux. The receiver was also a ring-oscillator based delay sensor
implemented in the FPGA. We could read its output through an AXI link. In
this case, the sampling frequency of the FPGA was greater than the sending
rate, so we removed the additional delay after the transmission of the symbols
used in the previous scenario. On the other hand, we used a 10 µS delay in the
acquisition of samples. In Fig. 3 we illustrate the results for this experiment.

From this experiment we could appreciate how the output of the delay-sensor
fluctuated in function of the operation of the SoC, but also of the sampling rate.
For a sampling frequency of 100 MHz we observed a mean output value of 450
counts, for 150 MHz a mean output of 540 counts, and for 300 MHz a mean
output value of 770 counts. Whereas the “noise” produced by the sensor showed
a variation of ± 10 counts. We didn’t implement anything besides the sensor
in the FPGA, thus we assume there were no data-dependent components in
the experiment. Nonetheless, there ought to have been some influence from the
activity of the processor system but it was deemed negligible.

8



0

200

400

600

800
S
e
n
s
o
r 

o
u
tp

u
t

0 50 100 150 200 250 300

Samples

0 1 0 0 

Figure 3: The transmission of a stream of bits over a covert channel from the
Linux kernel to the FPGA.

0

200

400

600

800

S
e
n
s
o
r 

o
u
tp

u
t

0 20 40 60 80 100 120

Samples

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
T h i s

Figure 4: The transmission of a stream of bits over a covert channel from the
Linux kernel to the FPGA. In this case the clocks were modified by editing the
register values from the kernel space.

We could also observe how, for this experiment, the transmission delay was
far greater than the sampling rate, which was reduced with an additional sam-
pling delay. The limiting factor being the requirement for the sender to perform
frequency modulation through the fclk API.

As discussed before, the FPGA clocks can also be modified by overwriting
the value of their dividers in a register. This can be achieved in Linux by map-
ping the control registers of the SoC through the mmap utility. We used this
approach to create a new sender application which would obtain access to the
CTRL APB registers, and in particular to the PLX REF CTRL registers which con-

9



tain the dividers for the FPGA clocks. We used the same modulation strategy
as in previous experiments, added a small transmission delay, and removed the
sampling delay from the previous experiment. The results are illustrated in Fig.
4.

4 Emulation

4.1 DVFS in gem5

The gem5 simulator offers support for dynamically scaling the frequency of the
system and its voltage levels. This is achieved by modeling an energy controller
which performs frequency modulation. The registers of the EnergyCtrl SimOb-
ject can be read from a bare-metal application or through drivers in the Linux
kernel. While this energy controller also performs voltage scaling, the simulator
does not provide a regulator SimObject to monitor this value.

The hardware components (PLLs, voltage regulators) of the system are mod-
eled using software scripts (SimObjects): EnergyCtrl, DVFSHandler, ClockDomain.
The ClockDomain SimObject allows to define a clock domain with a frequency
number and connect it to a component of the design. The EnergyCtrl and
DVFSHandler SimObjects allow to apply a clock domain frequency (the clock
source) according to the performance level chosen by the driver, if the platform
is simulating a Linux environment, or according to the register contents if the
system is bare-metal.

To use the DVFS system in the gem5 simulator, the user must integrate the
three SimObjects described, enable the use of the DVFSHandler, compile the
Linux kernel with the CPUfreq driver and define the clock sources in the device
tree. Then, the simulation script must also specify the operating performance
points for the platform. Recall that these are pre-defined frequency/voltage
pairs. These parameters can be either defined in the simulation script or pro-
vided as arguments. The latter approach allows for greater flexibility and is
hence favored.

4.2 The cpufreq driver and gem5

Emulating Linux-based operating systems like Ubuntu is a well understood pro-
cess in gem5. The community has compiled a large set of binaries which can
be used to run most simulations. The sources for the kernel and other binaries
can also be obtained from online repositories. However, the simulator offers
the potential to use just any generic kernels and binaries for any purpose that
the users might be interested in. For example, if we want to emulate an Zynq
Ultrascale+ platform we would seek to use the Xilinx binaries, including their
distribution of Linux.

It is trivial to compile a generic Linux and load it into a gem5 simula-
tion. However, when it comes to DVFS, there are two critical components
missing on regular kernels which are required by gem5. One is an exten-
sion of the cpufreq driver to include the gem5 energy control and the gem5
multi-core utilities. The other is an extension of the clk driver to include the
gem5 energy control clock. To emulate the proposed attacks, it was first neces-
sary to “patch” the kernel with the missing drivers. After editing the kernel’s

10



source, it is necessary to ensure that the CONFIG ARCH GEM5 ENERGY CTRL and
CONFIG ARM GEM5 MULTI CLUSTER CPUFREQ are set in the configuration file. We
verified that applying this strategy to the official Linux kernel as well as the
Xilinx Linux kernel allows to generate kernel binaries which can be used to
emulate DVFS in gem5. The kernels were patched with source codes from the
repositories available in gem5.googlesource.com.

4.3 The emulated platform

The APU of the Zynq Ultrascale+ Soc-FPGAs is an array of Cortex-A53 cores
clocked at a top frequency of 1.3 GHz. Each one of these cores has independent
instruction and data caches and shares a common L2 cache and DDR memory.

The first step to construct the simulation was to compile the gem5 simu-
lator targeting the ARM architecture in optimized mode. We then created a
full-system simulation script based on a multi-core architecture. We instantiate
a variable number of cores with fixed instruction and data caches, as well as
a shared L2 cache. To emulate the Cortex-A53 we opted for the CpuCluster

SimObject with the MinorCPU model. The caches were emulated using the
L1 ICache, L1 DCache, and L2Cache SimObjects. The voltage and frequency
domains were provided through command line arguments, using the values avail-
able for the Zynq Ultrascale+ SoCs. To enable the emulation of the trusted
firmware we used the VExpress GEM5 Foundation machine type. We relied on
the automatic generation of gem5 to source the device-tree blob.

As binaries, we used one of the boot-loaders shipped with the gem5 simu-
lator. The kernel was our custom Linux binary. We used an Ubuntu image found
in www.gem5.org/documentation/general_docs/fullsystem/guest_binaries
and edited it in Linux to manually cross-compile and package the applications.

We created a custom SimObject and added it to gem5 to emulate the be-
havior of the delay sensor in the FPGA. This module would read the control
registers of the EnergyCtrl SimObject and produce an output through a debug
flag. The output was modeled using our observations from Fig. 3 as a base
offset according to the frequency plus a ±10 random component. At this point
we didn’t expand on the data-dependent component of the sensor output, but
it would be interesting to implement more complex models as function of the
state of different SimObjects in the simulation, for example the contents of the
caches.

4.4 APU-to-APU covert channels

The first covert channel to be emulated was straightforward. We cross-compiled
the sender and receiver applications and loaded them into the file system. Then
we launched the simulation and started the applications. The results are shown
in Fig. 5. The main challenge to emulate the results from Subsection 3.5 was
determining the transmission delay of the sender. We observed that while the
physical cores can maintain a constant delay due to the availability of a real-time
clock, the delays in gem5 depend on the operating frequency of the processor.

11

gem5.googlesource.com
www.gem5.org/documentation/general_docs/fullsystem/guest_binaries


0

100

200

300

400

500

600
F
re

q
u
e
n
c
y
 (

M
H

z
)

20 30 40 50 60 70 80 90 100 110

Samples

0 1 0 0 0 1 1 

Figure 5: Emulating a covert channel from a core in the APU to a different core
in the APU. These results are related to Fig. 2.

4.5 APU-to-FPGA covert channels

Next, we emulated the covert channels between a Cortex-A53 core and the delay
sensor SimObject. For this scenario we modified the sender to also transfer some
customization parameters to the receiver, for example the frequency symbols
that would be used and the transmission delay. The results are shown in Fig. 6.
In this case, the main challenge was to identify the target registers since gem5
does not include FPGA clocks. Instead, the EnergyCtrl SimObject allows to
create multiple clock domains and assign a frequency to each domain through
a couple of control registers. The delay-sensor SimObject was simply pointed
to these registers. Thanks to the parameterization of our system, it was easier
to achieve the desired results. We could adjust the transmission delay from the
live simulation until the number of samples per bit was equivalent to the results
observed in Subsection 3.6.

0

200

400

600

800

S
e
n
s
o
r 

o
u
tp

u
t

0 50 100 150 200 250 300

Samples

0 1 0 0 

Figure 6: Emulating a covert channel from the Linux kernel to the FPGA. These
results are related to Fig. 3.

12



Finally, this dynamic modulation strategy was used to replicate the attacks
where the kernel application has direct access to the registers. These results
are illustrated in Fig. 7. In this case we show more data and demonstrate the
decoding of the message. As it can be noted, the difference in the transmission
delay can accumulate over many samples causing the transmission rates between
the real experiments and the emulation to diverge.

0

200

400

600

800

S
e
n
s
o
r 

o
u
tp

u
t

0 20 40 60 80 100 120

Samples

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
T h i s

Figure 7: Emulating a covert channel from the Linux kernel to the FPGA. These
results are related to Fig. 4.

5 Discussion

The proposed methodology allows to study the implementation of frequency-
based covert channels in ARM systems. However, given the flexibility of gem5 it
is relatively simple to modify the parameters of the system to emulate a different
platform. In this case we only need to adjust the response time of the PLL to
account for technology variations. The simulator allows to emulate any kernel
which is to be run in the physical device (given enough processing resources)
hence the interaction of the same drivers can be replicated. Furthermore, the
simulator offers support for different processor architectures such as RISC-V so
it would be also possible to emulate non-ARM SoCs and study the proposed
attacks in these platforms.

The simulations scripts used in this paper are provided under an open-source
license so that future researchers can further explore the extent of frequency-
based covert channels and design countermeasures. For example, architectural
protections which seek to limit the interaction between the kernel space and
the hardware can be implemented simply by changing the simulation binaries.
Other protections such as those based on circuit modifications would require
editing the gem5 sources, but since the software is open source that is not
really an issue. The files used in this paper can be retrieved from https:

//github.com/CarlosAndresLARA/dvfs-gem5.

13

https://github.com/CarlosAndresLARA/dvfs-gem5
https://github.com/CarlosAndresLARA/dvfs-gem5


6 Conclusions

In this paper, we have presented our results regarding the use of gem5 to emulate
the covert transmission of data on heterogeneous SoCs. Our results illustrate
that despite the differences between the real and the emulated platform, the em-
ulation is flexible enough to allow for parameterization of different components
and values. This can bring the results closer to the expected observations.

The main contributions of our work have been to identify key limitations of
the gem5 simulator for the emulation of DVFS in generic kernels. We have also
demonstrated that it is possible to approach the emulation of heterogeneous
SoCs (that is, those with a reconfigurable core) through creation of custom
SimObjects and how these can be used to derive accurate results. This is the
main advantage of gem5 over alternatives such as qemu which can only emulate
the logical behavior of the platform.

Our work builds on publicly available resources which are accessible to any-
body who is interested in this field of research. We employ the Open-Source
gem5 simulator as well as freely available kernel files which can be used without
any cost. To facilitate the reproducibility of our results we also intend to make
all the source code required under an Open-Source license in a public repository.

Data availability

The multiple sets of statistics used in our experiments as well as the scripts
created for processing the data can be accessed freely on https://github.

com/CarlosAndresLARA/dvfs-gem5.

Acknowledgements

The authors acknowledge the support of the French Agence Nationale de la
Recherche (ANR), under grant ANR-19-CE39-0008 (project ARCHI-SEC).

References

[Ala+17] Murugappan Alagappan, Jeyavijayan Rajendran, Miloš Doroslovački
and Guru Venkataramani. “DFS covert channels on multi-core plat-
forms”. In: VLSI-SoC’17. Dec. 2017. doi: 10.1109/VLSI- SoC.
2017.8203469.

[BB18] El Mehdi Benhani and Lilian Bossuet. “DVFS as a Security Fail-
ure of TrustZone-enabled Heterogeneous SoC”. In: ICECS’18. Dec.
2018. doi: 10.1109/ICECS.2018.8618038.

[Bin+11] Nathan Binkert et al. “The Gem5 Simulator”. In: SIGARCH Com-
put. Archit. New 39.2 (Aug. 2011), pp. 1–7. issn: 0163-5964. doi:
10.1145/2024716.2024718. url: https://doi.org/10.1145/
2024716.2024718.

[BL23] Lilian Bossuet and Carlos Andres Lara-Nino. “Advanced Covert-
Channels in Modern SoCs”. In: HOST’23. May 2023. doi: 10.1109/
HOST55118.2023.10133626.

14

https://github.com/CarlosAndresLARA/dvfs-gem5
https://github.com/CarlosAndresLARA/dvfs-gem5
https://doi.org/10.1109/VLSI-SoC.2017.8203469
https://doi.org/10.1109/VLSI-SoC.2017.8203469
https://doi.org/10.1109/ICECS.2018.8618038
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/HOST55118.2023.10133626
https://doi.org/10.1109/HOST55118.2023.10133626


[Cha18] Sumanta Chaudhuri. “A Security Vulnerability Analysis of SoCF-
PGA Architectures”. In: DAC’18. Sept. 2018. doi: 10.1109/DAC.
2018.8465932.

[Cla18] Alvin Clark. Xilinx Machine Learning Strategies For Edge. Pre-
sented in Xilinx Machine Learning Live Presentations. 2018. url:
https://web.archive.org/web/20220407054353/https://

www.xilinx.com/publications/events/machine- learning-

live/san-diego/xilinx_machine_learning_strategies_for_

edge.pdf.

[For+21] Quentin Forcioli et al. “Virtual Platform to Analyze the Security
of a System on Chip at Microarchitectural Level”. In: EuroS&PW.
Sept. 2021. doi: 10.1109/EuroSPW54576.2021.00017.

[GER19] Ilias Giechaskiel, Ken Eguro and Kasper B. Rasmussen. “Leakier
Wires: Exploiting FPGA Long Wires for Covert- and Side-Channel
Attacks”. In: ACM Trans. Reconfigurable Technol. Syst. 12.3 (Aug.
2019). issn: 1936-7406. doi: 10.1145/3322483.

[Gna+19] Dennis R. E. Gnad, Cong Dang Khoa Nguyen, Syed Hashim Gillani
and Mehdi B. Tahoori. Voltage-based Covert Channels using FP-
GAs. Cryptology ePrint Archive, Report 2019/1394. Dec. 2019.

[Gra+20] Joseph Gravellier, Jean-Max Dutertre, Yannick Teglia, Philippe
Loubet Moundi and Francis Olivier. “Remote Side-Channel At-
tacks on Heterogeneous SoC”. In: CARDIS’20. Mar. 2020. isbn:
978-3-030-42068-0. doi: 10.1007/978-3-030-42068-0_7.

[GRS19] Ilias Giechaskiel, Kasper Rasmussen and Jakub Szefer. “Reading
Between the Dies: Cross-SLR Covert Channels on Multi-Tenant
Cloud FPGAs”. In: ICCD’19. Nov. 2019. doi: 10.1109/ICCD46524.
2019.00010.

[JN16] Lennart Johnsson and Gilbert Netzer. “The impact of Moore’s Law
and loss of Dennard scaling: Are DSP SoCs an energy efficient al-
ternative to x86 SoCs?” In: Journal of Physics 762 (Oct. 2016),
p. 012022. doi: 10.1088/1742-6596/762/1/012022.

[KFS18] Christoforos Kachris, Babak Falsafi and D. Soudris. Hardware Ac-
celerators in Data Centers. 1st. Cham: Springer, Aug. 2018. isbn:
978-3-319-92791-6. doi: 10.1007/978-3-319-92792-3.

[Kha+18] Ahmed Khawaja et al. “Sharing, Protection, and Compatibility
for Reconfigurable Fabric with AmorphOS”. In: USENIX’18. Oct.
2018. isbn: 978-1-939133-08-3. url: https://www.usenix.org/
conference/osdi18/presentation/khawaja.

[Lip+16] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Mau-
rice and Stefan Mangard. “ARMageddon: Cache Attacks on Mo-
bile Devices”. In: USENIX’16. Aug. 2016. isbn: 978-1-931971-32-4.
url: https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/lipp.

[Mas+15] Ramya Jayaram Masti et al. “Thermal Covert Channels on Multi-
core Platforms”. In: USENIX’15. Aug. 2015. isbn: 978-1-939133-11-
3. url: https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/masti.

15

https://doi.org/10.1109/DAC.2018.8465932
https://doi.org/10.1109/DAC.2018.8465932
https://web.archive.org/web/20220407054353/https://www.xilinx.com/publications/events/machine-learning-live/san-diego/xilinx_machine_learning_strategies_for_edge.pdf
https://web.archive.org/web/20220407054353/https://www.xilinx.com/publications/events/machine-learning-live/san-diego/xilinx_machine_learning_strategies_for_edge.pdf
https://web.archive.org/web/20220407054353/https://www.xilinx.com/publications/events/machine-learning-live/san-diego/xilinx_machine_learning_strategies_for_edge.pdf
https://web.archive.org/web/20220407054353/https://www.xilinx.com/publications/events/machine-learning-live/san-diego/xilinx_machine_learning_strategies_for_edge.pdf
https://doi.org/10.1109/EuroSPW54576.2021.00017
https://doi.org/10.1145/3322483
https://doi.org/10.1007/978-3-030-42068-0_7
https://doi.org/10.1109/ICCD46524.2019.00010
https://doi.org/10.1109/ICCD46524.2019.00010
https://doi.org/10.1088/1742-6596/762/1/012022
https://doi.org/10.1007/978-3-319-92792-3
https://www.usenix.org/conference/osdi18/presentation/khawaja
https://www.usenix.org/conference/osdi18/presentation/khawaja
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti


[Pro+19] George Provelengios et al. “Characterization of Long Wire Data
Leakage in Deep Submicron FPGAs”. In: FPGA’19. Seaside, CA,
USA, Feb. 2019. isbn: 978-1-450-36137-8. doi: 10.1145/3289602.
3293923.

[Ram+18] Chethan Ramesh et al. “FPGA Side Channel Attacks without Phys-
ical Access”. In: FCCM’18. Sept. 2018. doi: 10.1109/FCCM.2018.
00016.

[Sch+18] Falk Schellenberg, Dennis R.E. Gnad, Amir Moradi and Mehdi
B. Tahoori. “Remote Inter-Chip Power Analysis Side-Channel At-
tacks at Board-Level”. In: ICCAD’18. Nov. 2018. doi: 10.1145/
3240765.3240841.

[SMS20] Zeinab Seifoori, Seyedeh Sharareh Mirzargar and Mirjana Stojilović.
“Closing Leaks: Routing Against Crosstalk Side-Channel Attacks”.
In: FPGA’20. Seaside, CA, USA, Feb. 2020. isbn: 978-1-450-37099-
8. doi: 10.1145/3373087.3375319.

[Spi+13] Vasileios Spiliopoulos, Akash Bagdia, Andreas Hansson, Peter Ald-
worth and Stefanos Kaxiras. “Introducing DVFS-Management in
a Full-System Simulator”. In: MASCOTS’13. Aug. 2013. doi: 10.
1109/MASCOTS.2013.75.

[TS19] Shanquan Tian and Jakub Szefer. “Temporal Thermal Covert Chan-
nels in Cloud FPGAs”. In: FPGA’19. Seaside, CA, USA, Feb. 2019.
isbn: 9781450361378. doi: 10.1145/3289602.3293920.

[TSS17] Adrian Tang, Simha Sethumadhavan and Salvatore Stolfo. “CLKSCREW:
Exposing the Perils of Security-Oblivious Energy Management”.
In: USENIX’17. Aug. 2017. url: https : / / www . usenix . org /
conference/usenixsecurity17/technical-sessions/presentation/

tang.

[Yas+20] Yahya H. Yassin, Magnus Jahre, Per Gunnar Kjeldsberg, Snorre
Aunet and Francky Catthoor. “Fast and Accurate Edge Comput-
ing Energy Modeling and DVFS Implementation in GEM5 Using
System Call Emulation Mode”. In: Journal of Signal Processing
Systems 2021.93 (May 2020), pp. 33–48. doi: 10.1007/s11265-
020-01544-z.

[ZBT10] Daniel Ziener, Florian Baueregger and Jürgen Teich. “Using the
Power Side Channel of FPGAs for Communication”. In: FCCM’10.
June 2010. doi: 10.1109/FCCM.2010.43.

[ZS18] Mark Zhao and G. Edward Suh. “FPGA-Based Remote Power Side-
Channel Attacks”. In: S&P’18. May 2018. doi: 10.1109/SP.2018.
00049.

16

https://doi.org/10.1145/3289602.3293923
https://doi.org/10.1145/3289602.3293923
https://doi.org/10.1109/FCCM.2018.00016
https://doi.org/10.1109/FCCM.2018.00016
https://doi.org/10.1145/3240765.3240841
https://doi.org/10.1145/3240765.3240841
https://doi.org/10.1145/3373087.3375319
https://doi.org/10.1109/MASCOTS.2013.75
https://doi.org/10.1109/MASCOTS.2013.75
https://doi.org/10.1145/3289602.3293920
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://doi.org/10.1007/s11265-020-01544-z
https://doi.org/10.1007/s11265-020-01544-z
https://doi.org/10.1109/FCCM.2010.43
https://doi.org/10.1109/SP.2018.00049
https://doi.org/10.1109/SP.2018.00049

	Introduction
	Related works
	Covert channels
	Exploiting the frequency or voltage modulation
	DVFS in the gem5 simulator

	Experiments on the physical device
	The Zynq Ultrascale+ heterogeneous SoCs
	Frequency modulation in the Zynq Ultrascale+
	Frequency detection
	Characterization of the system
	Covert channels within the APU
	Covert channels between the APU and the FPGA

	Emulation
	DVFS in gem5
	The cpufreq driver and gem5
	The emulated platform
	APU-to-APU covert channels
	APU-to-FPGA covert channels

	Discussion
	Conclusions
	References

