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Abstract 
The ideal 2-state model is exclusively used for describing the liquid phase in 3rd generation CALPHAD 
work. However, not all types of  liquids can be described using an ideal 2-state model and for liquids 
qualified as fragile, a regular 2-state model appears to be a more promising modelling solution. The 
formalism and phase diagram of  the regular model are presented with particular emphasis on the pressure 
variable. The main characteristics of  the regular 2-state model are illustrated through a parametric study 
and the two test cases of  tellurium and water taken from literature studies. The present article suggests 
that, compared to its ideal counterpart, the regular 2-state model may represent a valuable complementary 
modeling tool that considerably broadens the spectrum of  phenomena that can be described. This model 
should only be used if  it significantly improves the description compared to the ideal model, and its 
applicability in a multicomponent system should also be verified. 
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Introduction 
The ideal 2-state model, extensively described in [1] [2] and [3] is now of  common use to describe the 
liquid phase in the development of  CALPHAD 3rd generation databases. Up to now, this ideal model has 
been applied to an increasing number of  elements, e.g. Al [4] [5], Au [6], B [7], C [5] [8], Co [9], Fe [7] 
[10] [11], In [12], Mn [13], Nb [14], Pb [15], Sn [16] [17], W [18], Zn [4], some binaries e.g. Al-C [5], Al-
Zn [4], B-Fe [7], Pb-Sn [19], C-W [20] and at least one ternary, B-Fe-Nb [14]. The above, yet not 
exhaustive, list shows that most of  ongoing developments are focused on metallic elements and metal 
based systems. Some attempts have recently been made to extend the model to unary oxides such as B2O3 
[21], CaO [22], SiO2 [23] and GeO2 [24]. 

To judge the applicability of  a thermodynamic model, glass forming liquids offer more discriminating 
tests than easily crystallizing liquids, as heat capacity of  the former can be measured not only above the 
melting point, but also over a wide interval in the supercooling range. In addition, data on the heat 
capacity of  glass is also available down to low temperatures. 

The fragility index allows glass forming liquids to be classified between the so-called “strong” and “fragile” 
extremes. For a definition of  the fragility, the reader is referred to the work of  Angell [25] [26] and the 
fragility index values for an extensive list of  liquids can be found in [27]. In this classification, the least 
fragile liquids are called strong. The viscosity of  a strong liquid has an Arrhenian dependence on 
temperature, which means that the activation energy of  the viscous flow remains constant from high 
temperatures down to the glass transition temperature 𝑇𝑇𝑔𝑔. In contrast, when cooling fragile liquids from 
high temperatures, the increase in viscosity is initially small and then starts to increase very steeply in the 
vicinity of  𝑇𝑇𝑔𝑔, reflecting a strong increase in the activation energy of  viscous flow in the glass transition 
range. This deviation from the Arrhenian behavior is sometimes called “super-Arrhenian”. It is also 
known that this kinetic fragility is closely related to configurational entropy, and thus to thermodynamics. 
Since the seminal paper of  Adam & Gibbs [28], this connection has been extensively investigated by 
numerous authors such as Martinez & Angell [29], Speedy [30], Johari [31] and Sastry [32]. One difficulty 
in the clarification of  the correlation between the kinetic and thermodynamic aspects of  the glass 
transition lies in the fact that the configurational entropy cannot be measured directly, but only estimated 
indirectly and imperfectly [33] by calculating the excess entropy of  the liquid over the crystal entropy or 
alternatively the glass entropy, or calculated with a thermodynamic model. 

With these considerations in mind, it should be noted that all the elements mentioned at the beginning 
of  the introduction do not form glasses easily and that, in addition, a large fraction of  them are high 
melting point elements on which it remains very difficult to measure the heat capacity over a wide 
temperature range. On the other hand, B2O3, GeO2 and SiO2 do form glasses but they all belong to the 
category of  strong-liquids [34] and therefore do not represent by themselves all the phenomenology that 
can be found in liquids. 

The purpose of  this paper is to identify which type of  2-state model might be most appropriate for a 
given type of  liquid. Indeed, not all types of  liquids can be described using an ideal 2-state model and for 
liquids qualified as fragile, a regular 2-state model appears to be a more promising modelling solution. In 
the CALPHAD literature, the interest in using a non-ideal, sub-regular, two-state model had already been 
perceived by Golczewski et al. [35]. The present work represents an attempt to convince the reader of  
the interest of  using a regular 2-state model in specific cases. The structure of  the article will be as follows. 

The first section will be devoted to the analysis of  the ideal 2-state model. Even if  excellent 
comprehensive presentations and analyses of  this model are already available [1] [2] [3], it seems relevant 
to us to propose here a new analysis, complementary to the one carried out in our previous study [21] 
and to those in the literature. We insist in this analysis, on the role of  each of  the parameters which 
intervene in the difference of  Gibbs free energy between the 2-states on the behavior of  the model. 
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The second section will be focused on the parametrization of  the ideal model. We propose here a kind 
of  "meta-analysis" based on a comparison of  optimized parameter sets extracted from different studies 
published in the literature. For new users of  the model, these first two sections of  the article may have 
the additional interest of  clarifying certain modeling choices and helping to identify some 
recommendations or good practices when optimizing the parameters. 

On the basis of  a concise review of  glass research literature, in the third section we list the main 
limitations of  the ideal 2-state model and identify the regular 2-state model as a more appropriate 
modeling choice in certain situations. 

The basic equations and the temperature composition phase diagram of  the regular 2-state model will be 
presented in the fourth section and the most useful thermodynamic functions under atmospheric 
pressure are calculated in the fifth section. 

The description of  the behavior of  liquids under high pressure is one of  the main reasons for using the 
regular two-state model. The introduction of  the pressure variable into the model is therefore the subject 
of  the sixth section in which the pressure-temperature phase diagram is also presented. 

Two examples, tellurium and water, are selected from the literature are presented in the seventh section 
to illustrate in a more concrete way the interest of  the model. 

A general discussion is presented in the eighth section before a final concise conclusion. 

1 Analysis of  the ideal 2-state model 
The basic ideas behind the model are i) that the liquid is composed of  two types of  entities or structural 
units, A and B, and ii) that they form an ideal solution. 

First, for the sake of  completeness, we recall the equations of  the model derived many times (e.g. [1], 
[21]). 

The Gibbs energy of  the ideal A-B liquid solution reads: 

𝐺𝐺𝐿𝐿 = 𝜉𝜉𝐴𝐴𝐺𝐺𝐴𝐴° + 𝜉𝜉𝐵𝐵𝐺𝐺𝐵𝐵° + 𝑅𝑅𝑇𝑇(𝜉𝜉𝐴𝐴𝑙𝑙𝑙𝑙𝜉𝜉𝐴𝐴 + 𝜉𝜉𝐵𝐵𝑙𝑙𝑙𝑙𝜉𝜉𝐵𝐵) (1) 

The mole fraction of  B units, denoted 𝜉𝜉𝐵𝐵(= 𝜉𝜉) , is selected to play the role of  an internal non-
conservative thermodynamic variable that defines the state of  the liquid under given external temperature 
and pressure conditions. The notation 𝜉𝜉 is adopted to emphasise the difference in nature between this 
variable and the usual mole fraction 𝑥𝑥𝐵𝐵 (= 𝑥𝑥) in a classical binary solution, which is an external and 
conservative thermodynamic variable, whose value is controlled by the experimenter. 

By keeping a single ξ𝐵𝐵 = 1 − 𝜉𝜉𝐴𝐴 = 𝜉𝜉 internal compositional variable, the Gibbs energy is rewritten: 

𝐺𝐺𝐿𝐿 = (1 − 𝜉𝜉)𝐺𝐺𝐴𝐴° + 𝜉𝜉𝐺𝐺𝐵𝐵° + 𝑅𝑅𝑇𝑇((1 − 𝜉𝜉)ln(1 − 𝜉𝜉) + 𝜉𝜉ln𝜉𝜉) (2) 

We introduce the Gibbs energy difference 𝛥𝛥𝐺𝐺𝑑𝑑 between the two states and express it as the sum of  its 
enthalpic and entropic contributions: 

Δ𝐺𝐺𝑑𝑑 = 𝐺𝐺𝐵𝐵° − 𝐺𝐺𝐴𝐴° = Δ𝐻𝐻𝑑𝑑 − 𝑇𝑇Δ𝑆𝑆𝑑𝑑 (3) 

The configurational Gibbs energy of  the liquid now reads: 

∆𝐺𝐺𝐿𝐿 = 𝐺𝐺𝐿𝐿 − 𝐺𝐺𝐴𝐴° = 𝜉𝜉Δ𝐺𝐺𝑑𝑑 + 𝑅𝑅𝑇𝑇((1− 𝜉𝜉)ln(1 − 𝜉𝜉) + 𝜉𝜉ln𝜉𝜉) (4) 

The internal equilibrium condition: 

�
𝜕𝜕∆𝐺𝐺𝐿𝐿
𝜕𝜕𝜉𝜉

�
𝜉𝜉=𝜉𝜉𝑒𝑒

= 0 (5) 
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Yields the following equation: 

𝛥𝛥𝐺𝐺𝑑𝑑 = −𝑅𝑅𝑇𝑇𝑙𝑙𝑙𝑙
𝜉𝜉𝑒𝑒

(1 − 𝜉𝜉𝑒𝑒 )
 (6) 

In which the “e” subscript of  𝜉𝜉𝑒𝑒 means that the mole fraction of  B is taken at equilibrium value. 

This equation represents a law of  mass action for the pseudo-chemical reaction: 

𝐴𝐴  ⇌ 𝐵𝐵 (7) 

Equation (6) can be inverted to give the following explicit expression of  𝜉𝜉𝑒𝑒: 

𝜉𝜉𝑒𝑒 =
𝑒𝑒𝑥𝑥𝑒𝑒 �−𝛥𝛥𝐺𝐺𝑑𝑑𝑅𝑅𝑇𝑇  �

1 +  𝑒𝑒𝑥𝑥𝑒𝑒 �−𝛥𝛥𝐺𝐺𝑑𝑑𝑅𝑅𝑇𝑇  �
 (8) 

An alternative form of  equation (8) that is more meaningful for analyzing the asymptotic behavior of  𝜉𝜉𝑒𝑒  
reads: 

𝜉𝜉𝑒𝑒 =
1

1 +  𝑒𝑒𝑥𝑥𝑒𝑒 �𝛥𝛥𝐺𝐺𝑑𝑑𝑅𝑅𝑇𝑇  �
 (9) 

The curve  𝜉𝜉𝑒𝑒(𝑇𝑇) given by equations (8) or (9) is called the “excitation profile” by Angell [36] and has a 
sigmoid shape which goes from 0 at 0 K to an asymptotic value in the high temperature limit which 
depends on the analytical expression of  𝛥𝛥𝐺𝐺𝑑𝑑 as will be shown in the following. 

All thermodynamic functions can then be calculated, starting with the entropy: 

∆𝑆𝑆𝐿𝐿 = 𝑆𝑆𝐿𝐿 − 𝑆𝑆𝐴𝐴° = −�
𝜕𝜕∆𝐺𝐺
𝜕𝜕𝑇𝑇

�
𝑝𝑝

= 𝜉𝜉Δ𝑆𝑆𝑑𝑑 − 𝑅𝑅((1− 𝜉𝜉)ln(1 − 𝜉𝜉) + 𝜉𝜉ln𝜉𝜉) (10) 

Then the configurational enthalpy: 
∆𝐻𝐻𝐿𝐿 = 𝐻𝐻𝐿𝐿 − 𝐻𝐻𝐴𝐴° = ∆𝐺𝐺𝐿𝐿 + 𝑇𝑇∆𝑆𝑆𝐿𝐿 = 𝜉𝜉Δ𝐻𝐻𝑑𝑑 (11) 

And the configurational heat capacity (see e.g. eq. (8) of  [3]): 

∆𝐶𝐶𝑝𝑝𝐿𝐿 = �
𝜕𝜕Δ𝐻𝐻𝑑𝑑
𝜕𝜕𝑇𝑇

�
𝑝𝑝
𝜉𝜉𝑒𝑒 + Δ𝐻𝐻𝑑𝑑 �

𝜕𝜕𝜉𝜉𝑒𝑒
𝜕𝜕𝑇𝑇

�
𝑝𝑝
 (12) 

Differentiating eq. (9) with respect to temperature gives: 

�
𝜕𝜕𝜉𝜉𝑒𝑒
𝜕𝜕𝑇𝑇

�
𝑝𝑝

=
Δ𝐻𝐻𝑑𝑑
𝑅𝑅𝑇𝑇2

𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒) (13) 

Which allows to calculate the second term on the right side of  eq. (12). 

Differentiating eq. (13) with respect to temperature and applying the condition: 

�
𝜕𝜕2𝜉𝜉𝑒𝑒
𝜕𝜕𝑇𝑇2

�
𝑝𝑝

= 0 (14) 

Yields a relation between the value of  the fraction of  excited units at the inflexion point (𝜉𝜉𝑒𝑒,𝑖𝑖𝑖𝑖𝑖𝑖) of  the 
excitation profile and the corresponding temperature (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖) which remains to be evaluated: 

𝜉𝜉𝑒𝑒,𝑖𝑖𝑖𝑖𝑖𝑖 =
1
2
−
𝑅𝑅𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖
Δ𝐻𝐻𝑑𝑑

+
1
2
�
𝑅𝑅𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖
Δ𝐻𝐻𝑑𝑑

�
2 1
𝑅𝑅
�
𝜕𝜕Δ𝐻𝐻𝑑𝑑
𝜕𝜕𝑇𝑇

�
𝑝𝑝
 (15) 
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To determine the temperature and value of  the heat capacity maximum, it is necessary to calculate the 
partial derivative of  the heat capacity: 

�
𝜕𝜕∆𝐶𝐶𝑝𝑝𝐿𝐿
𝜕𝜕𝑇𝑇

�
𝑝𝑝

= �
𝜕𝜕2Δ𝐻𝐻𝑑𝑑
𝜕𝜕𝑇𝑇2

�
𝑝𝑝
𝜉𝜉𝑒𝑒 + 2 �

𝜕𝜕Δ𝐻𝐻𝑑𝑑
𝜕𝜕𝑇𝑇

�
𝑝𝑝
�
𝜕𝜕ξe
𝜕𝜕𝑇𝑇

�
𝑝𝑝

+ Δ𝐻𝐻𝑑𝑑 �
𝜕𝜕2𝜉𝜉𝑒𝑒
𝜕𝜕𝑇𝑇2

�
𝑝𝑝
 (16) 

urther analysis of  the model requires to specify the analytical expression of  the Gibbs energy difference 
between the 2 states. As it is classically done in CALPHAD modelling, ∆𝐺𝐺𝑑𝑑 is expanded under the form: 

∆𝐺𝐺𝑑𝑑 = ∆𝐻𝐻𝑑𝑑 − 𝑇𝑇∆𝑆𝑆𝑑𝑑 = 𝐴𝐴 + 𝐵𝐵𝑇𝑇 + 𝐶𝐶𝑇𝑇𝑙𝑙𝑙𝑙 𝑇𝑇 + 𝑑𝑑𝑇𝑇2 … (17) 

The review of  the literature presented in the next section shows that, in practice, the expansion is never 
continued beyond the third term and in many cases is limited to the first 2 terms. Hence, we have in the 
most complex case: 

∆𝐺𝐺𝑑𝑑 = ∆𝐻𝐻𝑑𝑑 − 𝑇𝑇∆𝑆𝑆𝑑𝑑 = 𝐴𝐴 + 𝐵𝐵𝑇𝑇 + 𝐶𝐶𝑇𝑇𝑙𝑙𝑙𝑙 𝑇𝑇 (18) 

∆𝑆𝑆𝑑𝑑 = −𝐵𝐵 − 𝐶𝐶(1 + 𝑙𝑙𝑙𝑙 𝑇𝑇) (19) 

∆𝐻𝐻𝑑𝑑 = 𝐴𝐴 − 𝐶𝐶𝑇𝑇 (20) 

∆𝐶𝐶𝑝𝑝𝑑𝑑 = −𝐶𝐶 (21) 

We will now study in more depth 3 cases of  increasing complexity. 

Case 1 

The first and simplest case corresponds to  𝐵𝐵 = 𝐶𝐶 = 0  then: 

∆𝐺𝐺𝑑𝑑 = ∆𝐻𝐻𝑑𝑑 = 𝐴𝐴 > 0 and ∆𝑆𝑆𝑑𝑑 = 0 (22) 

Note that this case is in practice of  little interest for the description of  a real liquid; however it helps to 
understand the behavior of  the model. The enthalpy of  the excited state B is by definition higher than 
that of  the ground state A and hence only positive values of  the 𝐴𝐴 parameter are allowed. 

The fraction of  excited units given by equation (9) is restricted to evolve between 𝜉𝜉e = 0 at 0 K and 
𝜉𝜉e = 0.5 in the high 𝑇𝑇 → ∞ temperature limit, where the ground and excited energy levels are equally 
populated because it is a configuration that maximizes the entropy of  mixing. 

As Δ𝐻𝐻𝑑𝑑 does not depend on temperature, the heat capacity difference reduces to: 

∆𝐶𝐶𝑝𝑝𝐿𝐿 = Δ𝐻𝐻𝑑𝑑 �
𝜕𝜕𝜉𝜉𝑒𝑒
𝜕𝜕𝑇𝑇

�
𝑝𝑝
 (23) 

Injecting (13) in (23), the well-known analytical expression (e.g. eq.(3) of  [37] or eq. (6) of  [38]) of  the 
“Schottky anomaly” heat capacity hump (black solid curve in Figure 1) is obtained: 

∆𝐶𝐶𝑝𝑝𝐿𝐿 = 𝑅𝑅 �
Δ𝐻𝐻𝑑𝑑
𝑅𝑅𝑇𝑇

�
2

𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒) (24) 

The temperature 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 of  the maximum of  the configurational heat-capacity hump can be calculated by 
applying the condition: 

�
𝜕𝜕∆𝐶𝐶𝑝𝑝𝐿𝐿 

𝜕𝜕𝑇𝑇
�
𝑝𝑝

= 0 (25) 
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Using eq. (23): 

�
𝜕𝜕∆𝐶𝐶𝑝𝑝𝐿𝐿
𝜕𝜕𝑇𝑇

�
𝑝𝑝

= 𝛥𝛥𝐻𝐻𝑑𝑑 �
𝜕𝜕2𝜉𝜉𝑒𝑒
𝜕𝜕𝑇𝑇2

�
𝑝𝑝

= 0 (26) 

After some calculations, it is found that (see Prigogine & Defay [39] page 298): 

∆𝐻𝐻𝑑𝑑
2𝑅𝑅𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

tanh
∆𝐻𝐻𝑑𝑑

2𝑅𝑅𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
= 1 (27) 

This equation can be solved numerically, the positive root is: 

∆𝐻𝐻𝑑𝑑
2𝑅𝑅𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

≈ 1.19968 … or 
𝑅𝑅𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
∆𝐻𝐻𝑑𝑑

≈
1

2 × 1.19968
≈ 0.41677 … (28) 

Injecting eq. (27) in (24) and after some simplifications, the heat capacity maximum reads: 

∆𝐶𝐶𝑝𝑝𝐿𝐿,𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑅𝑅
4
��

∆𝐻𝐻𝑑𝑑
𝑅𝑅𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

�
2

− 4� ≈ 0.44 𝑅𝑅 (29) 

This equation can also been found in the book of  Gasser & Richards [40] (page 87). 

It is also interesting to note that, due to equation (26), the maximum value of  the heat capacity coincides 
with the inflection point of  the excitation profile hence we have: 

𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (30) 
This coincidence is highlighted by the vertical black dotted line in Figure 1. 

As Δ𝐻𝐻𝑑𝑑 does not depend on temperature, equation (15) reduces to: 

𝜉𝜉𝑒𝑒,𝑖𝑖𝑖𝑖𝑖𝑖 =
1
2
−
𝑅𝑅𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖
Δ𝐻𝐻𝑑𝑑

 (31) 

By directly injecting (31) in (24), we can re-demonstrate more easily equation (29). 

  

a) for 0 < 𝑅𝑅𝑇𝑇/∆𝐻𝐻𝑑𝑑 < 2 b) enlarged view in the temperature region of  the heat 
capacity maximum and inflexion of  the excitation profile 

Figure 1. Reduced heat capacity hump (∆𝐶𝐶𝑝𝑝𝐿𝐿/𝑅𝑅, solid lines) and excitation profile (𝜉𝜉𝑒𝑒, dashed lines) of  the ideal 2-
state model as a function of  dimensionless temperature 𝑅𝑅𝑇𝑇/∆𝐻𝐻𝑑𝑑 for ∆𝐺𝐺𝑑𝑑 = 𝐴𝐴 (black curves), ∆𝐺𝐺𝑑𝑑 = 𝐴𝐴 − 𝑅𝑅𝑇𝑇 (red 

curves) and ∆𝐺𝐺𝑑𝑑 = 𝐴𝐴 − 𝑅𝑅𝑇𝑇 + 𝐶𝐶𝑇𝑇𝑙𝑙𝑙𝑙𝑇𝑇 (blue curves), with 𝐴𝐴 =  10000 𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1 and 𝐶𝐶 =
 −1 𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1 𝐾𝐾−1. The vertical dotted lines highlight the coincidence of  the maximum heat capacity and the inflection 
point of  the excitation profile, which both occur at the same temperature for the black and red curves, whereas these two 

points do not coincide for the blue curve. 
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Increasing the positive value of  the enthalpy parameter 𝐴𝐴 shifts the peak of  the heat capacity (and the 
rise of  the excitation profile) towards higher temperatures and also enlarges the peak width (Figure 2). 

 
Figure 2. Reduced heat capacity hump (∆𝐶𝐶𝑝𝑝𝐿𝐿/𝑅𝑅) of  the ideal 2-state model for various values of  ∆𝐺𝐺𝑑𝑑 = 𝐴𝐴 = ∆𝐻𝐻𝑑𝑑 

as a function of  temperature. These curves all collapse into a single master-curve shown in Figure 1 when plotted in 
dimensionless temperature. 

This analysis shows that the use of  a single enthalpy parameter 𝐴𝐴 does not offer much flexibility in fitting 
the heat capacity data as only the position and shape of  the heat capacity peak can be changed, although 
not independently, but the height of  the peak is fixed, as is the high temperature limit (𝜉𝜉e = 0.5) of  the 
excitation profile. For the same reason, and because of  eq. (11), the enthalpy change is restricted to obey 
the inequality ∆𝐻𝐻𝐿𝐿 < 0.5Δ𝐻𝐻𝑑𝑑. It is concluded that, for practical use of  the ideal 2-state model, more 
terms are needed in the expansion of  eq. (17). 

Case 2 

Greater flexibility is indeed obtained when a non-zero entropy parameter 𝐵𝐵 is used in eq. (17). We then 
have: 

∆𝐺𝐺𝑑𝑑 = 𝐴𝐴 + 𝐵𝐵𝑇𝑇,   ∆𝐻𝐻𝑑𝑑 = 𝐴𝐴 > 0  and ∆𝑆𝑆𝑑𝑑 = −𝐵𝐵 > 0 (32) 

Like the enthalpy, the entropy of  the excited state B is also assumed to be higher than that of  the ground 
state A. This physical constraint requires the 𝐵𝐵 parameter to be negative.  

The high temperature limit of  𝜉𝜉e becomes: 

𝑙𝑙𝑙𝑙𝑚𝑚
𝑇𝑇→∞

𝜉𝜉𝑒𝑒 =
1

1 +  𝑒𝑒𝑥𝑥𝑒𝑒 �𝐵𝐵𝑅𝑅 �
 (33) 

Then if, for example, 𝐵𝐵 = −𝑅𝑅, lim
T→∞

𝜉𝜉e ≈ 0.731 and if  𝐵𝐵 = −2𝑅𝑅, lim
T→∞

𝜉𝜉e ≈ 0.881. The conclusion is 
that the 𝐵𝐵 parameter allows to increase the high temperature limit of  𝜉𝜉e. 

Applying again condition (25) to find the temperature of  the heat capacity maximum, the following 
equation is obtained: 

∆𝐻𝐻𝑑𝑑
2𝑅𝑅𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒𝑥𝑥𝑒𝑒 ∆𝐻𝐻𝑑𝑑
𝑅𝑅𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

−𝑒𝑒𝑥𝑥𝑒𝑒 Δ𝑆𝑆𝑑𝑑𝑅𝑅

𝑒𝑒𝑥𝑥𝑒𝑒 ∆𝐻𝐻𝑑𝑑
𝑅𝑅𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

+𝑒𝑒𝑥𝑥𝑒𝑒 Δ𝑆𝑆𝑑𝑑𝑅𝑅  
= 2 (34) 
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If  ∆𝑆𝑆𝑑𝑑 = 𝑅𝑅, the “communal entropy” value frequently used to parametrize the model (see Table 1), eq. 
(34) becomes: 

∆𝐻𝐻𝑑𝑑
2𝑅𝑅𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

𝑒𝑒𝑥𝑥𝑒𝑒 ∆𝐻𝐻𝑑𝑑
𝑅𝑅𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

−𝑒𝑒

𝑒𝑒𝑥𝑥𝑒𝑒 ∆𝐻𝐻𝑑𝑑
𝑅𝑅𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

+𝑒𝑒 
= 2 (35) 

In which 𝑒𝑒 is the Euler number. This equation can be solved numerically, the positive root is: 

∆𝐻𝐻𝑑𝑑
𝑅𝑅𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

≈ 2.79597 … or 
𝑅𝑅𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
∆𝐻𝐻𝑑𝑑

≈ 0.35766 … (36) 

Again, as Δ𝐻𝐻𝑑𝑑  does not depend on temperature, eq. (23), (26) and (30) hold and the heat capacity 
maximum coincides with the inflexion point of  the excitation profile. By substituting the root value given 
by eq. (36) in eq. (29) the heat capacity maximum is: 

∆𝐶𝐶𝑝𝑝𝐿𝐿,𝑚𝑚𝑚𝑚𝑚𝑚 ≈ 0.95 𝑅𝑅 (37) 
Comparatively to case 1, Figure 1b shows that, for case 2, the heat capacity maximum is increased (e.g. 
from ≈ 0.44𝑅𝑅 up to ≈ 0.95𝑅𝑅  if  𝐵𝐵 = −𝑅𝑅) and the excitation profile has a steeper slope, hence its 
inflexion point is shifted to lower temperatures. 

Case 3 

We now consider the full 3-term expression given by eq. (18). This modeling solution is quite often 
selected by users of  the model as can be checked in Table 1. Both positive and negative values of  the 𝐶𝐶 
heat capacity parameter are adopted. 

First, it is important to check the asymptotic behavior of  the 2-state model when the 𝐶𝐶 parameter has a 
non-zero value. 

The high temperature limit of  𝜉𝜉e becomes: 

𝑙𝑙𝑙𝑙𝑚𝑚
𝑇𝑇→∞

𝜉𝜉𝑒𝑒 = 𝑙𝑙𝑙𝑙𝑚𝑚
𝑇𝑇→∞

1

1 +  𝑇𝑇�
𝐶𝐶
𝑅𝑅�

 (38) 

The above expression shows that if  𝐶𝐶 < 0 , the fraction of  excited units tends towards 1 at high 
temperature but if  𝐶𝐶 > 0, this fraction tends to zero. Hence, this last choice does not seem to be 
physically reasonable, considering that the excited state is expected to be the most populated at high 
temperature. 

Figure 1 shows that, compared to case 2, for case 3, the heat capacity maximum is again increased and 
the excitation profile has a steeper slope and its inflexion point is shifted to lower temperatures however, 
the maximum heat capacity and the inflexion point of  the excitation profile no longer coincide (see Figure 
1b). This is because the second term on the right side of  equation (16) has a non-zero value. The order 
of  magnitude of  the offset remains small in the numerical application shown in Figure 1. 

In the high 𝑇𝑇 → ∞ temperature limit the excitation profile 𝜉𝜉𝑒𝑒 → 1, the second term on the right side of  
eq. (12) vanishes and the heat capacity ∆𝐶𝐶𝑝𝑝𝐿𝐿 → −𝐶𝐶. 

As a final conclusion to this section, we would like to point out that in all three cases studied, the shape 
of  the excitation profile remains sigmoidal with a moderate slope, the main change being the limiting 
value of  𝜉𝜉𝑒𝑒 at high temperature. 
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2 Parametrization of  the ideal 2-state model 
To implement the model, the first task consists in assessing the Gibbs energy, denoted 𝐺𝐺𝐴𝐴° , of  the 100%A 
liquid, considered as the ground state, and the second tasks in assessing the Gibbs energy difference, 
denoted ∆𝐺𝐺𝑑𝑑, between the ground-A and excited-B states: 

∆𝐺𝐺𝑑𝑑 = 𝐺𝐺𝐵𝐵° − 𝐺𝐺𝐴𝐴°  (39) 

Few words about the first task. The 𝐺𝐺𝐴𝐴°  function represents a “base line” or “background” contribution 
to the Gibbs energy function of  the liquid. The choice of  this function has profound effect on the 
subsequent choice of  the ∆𝐺𝐺𝑑𝑑 parameters. Three modelling methodologies have been identified from 
reading of  the literature. 

The first one is what could be called a “Lattice Stability” approach. 𝐺𝐺𝐴𝐴°  is in this case defined by a 
difference from the Gibbs energy of  the crystalline phase, acting as a reference state on which 
experimental and calculated thermodynamic data are available. In this approach, e.g. [3] [6], the harmonic, 
Einstein-like (𝐺𝐺𝐺𝐺𝑙𝑙𝑙𝑙𝐺𝐺𝐺𝐺𝑒𝑒𝑙𝑙𝑙𝑙), contributions to the thermodynamic functions of  the 100% A liquid and that 
of  the crystal are the same: 

𝐺𝐺100%𝐴𝐴 = 𝐺𝐺𝐺𝐺𝑙𝑙𝑙𝑙𝐺𝐺𝐺𝐺𝑒𝑒𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑎𝑎 + 𝑏𝑏𝑇𝑇 + 𝑑𝑑𝑇𝑇2 + ⋯ (40) 

Ågren et al. [7] [14], rather selected the following expression: 

𝐺𝐺100%𝐴𝐴 = 𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑎𝑎 + 𝑏𝑏𝑇𝑇 + 𝑐𝑐𝑇𝑇𝑙𝑙𝑙𝑙𝑇𝑇 + 𝑑𝑑𝑇𝑇2 with 𝑏𝑏 = −𝑅𝑅 (41) 

In the second one, the 100% A liquid has its own, estimated, harmonic contribution different from that 
of  the crystal e.g. [5]. A single Einstein function is used in this approach because of  the lack of  
experimental data to fit the parameters of  any additional Einstein function. The Gibbs energy is written 
as: 

𝐺𝐺100%𝐴𝐴 = 𝐺𝐺𝐺𝐺𝑙𝑙𝑙𝑙𝐺𝐺𝐺𝐺𝑒𝑒𝑙𝑙𝑙𝑙100%𝐴𝐴 + 𝑎𝑎 + 𝑏𝑏𝑇𝑇 + 𝑑𝑑𝑇𝑇2 + ⋯ (42) 

In the third one, well adapted for glass forming substances such as SiO2 [23], GeO2 [24] or B2O3 [21], 
experimental data of  the glass are used to define the functions of  the 100% A liquid: 

𝐺𝐺100%𝐴𝐴 = 𝐺𝐺𝐺𝐺𝑙𝑙𝑙𝑙𝐺𝐺𝐺𝐺𝑒𝑒𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑚𝑚𝑐𝑐𝑐𝑐 + 𝑎𝑎 + 𝑏𝑏𝑇𝑇 + 𝑑𝑑𝑇𝑇2 + ⋯ (43) 

Despite the pragmatic nature of  CALPHAD modelling, there are theoretical arguments for the adoption 
of  specific parametrization guidelines. Obviously, if  the modeling extends down to 0 K, 𝑐𝑐  in eq. (41) 
should have a zero value because the heat capacity must vanish at zero temperature. Less obviously, 𝑏𝑏  
should also have a zero value because the residual entropy of  a metastable liquid in internal equilibrium 
at 0 K should be zero. Complementary information on this topic can be found in our previous work [21]. 
The effect of  adopting this second guideline on the calculated heat capacity and entropy evolutions is 
particularly well illustrated by figure 2 of  reference [20]. 

Our analysis is then focused on the second parametrization task which consists in fitting the ∆𝐺𝐺𝑑𝑑 
contribution. We present in Table 1, a list of  chemical elements that have been described using the ideal 
2-state model and the corresponding values of  the parameters 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶 in the Δ𝐺𝐺𝑑𝑑 expansion. These 
parameters are tuned to reproduce the melting temperature and melting enthalpy, and, when available, 
heat capacity and heat increment data of  the liquid phase. This element list, perhaps not exhaustive, is at 
least representative of  the work that has been done in this area over the last 20 years. Al, Au and Sn have 
been described twice and C and Fe three times. The excitation profiles of  all these descriptions are 
compared graphically in Figure 3. 

  



10 

The 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶 parameter values in this table remain difficult to rationalize without a detailed analysis in 
each case. It is worth adding that these values are not independent from the modeling options adopted 
to describe the “100%A liquid background contribution” to the Gibbs energy of  the liquid phase as 
explained above. Some global trends can nevertheless be highlighted. 

The key parameters are 𝐴𝐴 and 𝐵𝐵, as explained in previous section, and in 10 descriptions, only these two 
parameters are indeed used. A third parameter 𝐶𝐶 is added in the remaining 11 descriptions. 

Figure 3 shows that when small values of 𝐴𝐴 are used, the excitation profile resembles a step rather than 
a sigmoid. 

 
Figure 3. Excitation profiles for the 21 descriptions listed in Table 1. For each curve, the coefficient 𝐴𝐴 used in the ∆𝐺𝐺𝑑𝑑 
expansion is used as the curve label and the corresponding values of  the parameters 𝐵𝐵 and 𝐶𝐶 can be found in Table 1. 

Three descriptions are considered “atypical” and they are labelled with a star in Table 1 and Figure 4. 
Carbon has been described three times by Selleby and coworkers. In the initial description [8], the A 
parameter is very close to zero but was amended to more usual values in later works [5] [20] by the same 
group. However, the C heat capacity parameter is positive in the three successive carbon descriptions. 
Because of  eq. (38), this choice is questionable. However, this criticism remains rhetorical, as the decrease 
in 𝜉𝜉𝑒𝑒 with increasing temperature, predicted on the basis of  eq. (38), occurs in these descriptions only at 
extremely high temperatures, well above the temperature range relevant to CALPHAD modeling. 

In the study of  Dinsdale et al. [4], large and positive values of  the entropic B parameter were chosen for 
Al and Zn. Note that a similar choice was also made in the modeling of  CaO by Deffrenes et al. [22]. 
This modeling choice implies that the entropy of  the excited state is lower than that of  the ground state 
and appears somewhat contradictory to the common interpretation of  the ground state being “solid-like” 
and excited state being “liquid-like” or “gas-like” and to the communal entropy concept. It is worth 
noting that large negative C values are systematically adopted to counterbalance the effect of  large 
positive B values. 
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Table 1. Parametrization of  the Gibbs energy difference of  the ideal 2-state model for a list of  chemical elements. Numerical 
values of  the A, B and C parameters are taken from the original articles, melting temperature and enthalpy of  the elements 
are from SGTE [41]. 

Ref. Element 𝑇𝑇𝑚𝑚 ∆𝑚𝑚𝐻𝐻 ∆𝑚𝑚𝑆𝑆 𝐴𝐴 𝐵𝐵 𝐶𝐶 
𝐴𝐴

∆𝑚𝑚𝐻𝐻
 −

𝐵𝐵
∆𝑚𝑚𝑆𝑆

 

  𝐾𝐾 𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1 𝐽𝐽 (𝑚𝑚𝑚𝑚𝑙𝑙 𝐾𝐾)−1 𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1 𝐽𝐽 (𝑚𝑚𝑚𝑚𝑙𝑙 𝐾𝐾)−1 𝐽𝐽 (𝑚𝑚𝑚𝑚𝑙𝑙 𝐾𝐾)−1   

[4]() 
Al 933.47 10711.04 11.474 

2475.62 37.10227 -6.81347 0.23 -3.23 
[5] 13398 -8.314 -0.16597 1.25 0.72 
[3] 

Au 1337.33 12552 9.386 
14280.62 -8.314 0 1.14 0.89 

[6] 19700 -14.917 0 1.57 1.59 
[7] B 2348 50200 21.380 50200 -8.314 0 1 0.39 

[8]() 
C 4765.3 117369 24.630 

115.458819 -34.9955761 0.141746933 0.001 1.42 
[5] 59417 -49.61 2.9806 0.51 2.01 

[20] 34523 -24.6 1.93765 0.29 1.00 
[9] Co 1768 16200 9.163 45280.761 -8.314 -0.417144850 2.80 0.91 
[7] 

Fe 1811 13806 7.623 
13806 -8.314 0 1 1.09 

[10] 42754.9478 -7.624 -1.08230446 3.10 1.00 
[11] 41854 -7.626 -1.150476 3.03 1.00 
[3] Ga 302.91 5589.82 18.454 3651 -19.7942 0 0.65 1.07 

[12] In 429.75 3283 7.639 6040.19612 -8.48211292 0 1.84 1.11 
[13] Mn 1519 12908.94 8.498 50493.6966 -8.314 0 3.91 0.98 
[14] Nb 2750 30000 10.909 38902.3 -8.314 0 1.30 0.76 
[15] Pb 600.612 4773.94 7.948 7000 -4.518 -1 1.47 0.57 
[16] 

Sn 505.078 7029.12 13.917 
7317.41566 -18.3219791 0 1.04 1.32 

[17] 5654.227 -7.4269650 0 0.80 0.53 
[18] W 3695 52313.69 14.158 98814 -13.653 -1.178678 1.89 0.96 

[4]() Zn 692.68 7322 10.571 3442.37 41.34521 -7.35647 0.47 -3.91 
() Description is considered atypical (see text for explanation). 

Excluding the three atypical descriptions, the value of  parameter 𝐴𝐴 globally increases as the melting point 
rises (Figure 4) however, the trend is obscured by the considerable dispersion affecting the values above 
1500 K because for high-melting elements, for which heat capacity is very difficult to measure, data is 
very scarce or largely missing and optimization is only weakly constrained. Such an increase of  parameter 
𝐴𝐴 is needed if  one considers that i) the parameter 𝐴𝐴 governs the position of  the heat capacity hump (see 
Figure 2) and ii) this hump must be located within a certain temperature range below the melting 
temperature and must therefore be moved to higher temperatures when higher melting elements are 
considered. It is also interesting to note that the increasing trend is quite clear for the low melting elements 
and even appears linear (cf. dashed line Figure 4). For these elements, experimental values of  the heat 
capacity of  the liquid phase are available, sometimes both below and above the melting point, and well 
constrain the optimization. 

The −𝐵𝐵/∆𝑚𝑚𝑆𝑆 average value calculated from all studies listed in Table 1 is 1 with a standard deviation of  
0.4 meaning that the entropic parameter is rather close to the melting entropy. In some cases 𝐵𝐵 = −𝑅𝑅, 
the so-called communal entropy value is selected but in most of  these cases the melting entropy is itself  
not far from 𝑅𝑅. This is because the Richard’s rule is quite well obeyed for many elements as can be 
checked from figure 12.2 page 194 of  Grimvall’s book [42]. 

As a further comment, for glass forming substances, the configurational entropy of  the liquid at the 
melting temperature can be quite reliably estimated from the thermodynamic data of  the glass and the 
equilibrium liquid. It was shown in [21] that there is a constraint between the 𝐴𝐴 and 𝐵𝐵 parameters and 
that they cannot be considered as two independent parameters; only one of  them can be freely optimized. 
The optimization process was found to be somewhat over-constrained in the B2O3 test-case studied in 
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[21]. 

 
Figure 4. "𝐴𝐴-parameter” values as a function of  the melting temperature 𝑇𝑇𝑚𝑚 for a list of  14 chemical elements. Data 

extracted from 21 literature descriptions (see Table 1 for details). The dashed line is a linear fit based on the low melting 
points (𝑇𝑇 <  1500 𝐾𝐾) element data, the regression line is (𝐴𝐴/ 𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1)  ≈ 14(𝑇𝑇/𝐾𝐾). Star symbols () 

correspond to atypical parametrizations that cannot be analyzed with the same rationale as other works () (see text for 
explanation). 

It is tempting to add a third 𝐶𝐶 parameter in the ∆𝐺𝐺𝑑𝑑 expansion eq. (17). It was shown in former section 
that positive 𝐶𝐶 values are difficult to justify. A personal view, not necessarily shared by all users of  the 2-
state model in the CALPHAD literature, is to keep the value of  the third 𝐶𝐶 heat-capacity parameter at 
zero. The justification as explained in [21] being that, when the 2-state model is coupled to a relaxation 
kinetic model to simulate the glass transition, adopting a zero value for 𝐶𝐶 guarantees that the heat capacity 
of  the liquid reduces to the heat capacity of  the 100%A phase at temperatures lower than the glass 
transition temperature, where the configurational contributions to the thermodynamic functions are 
frozen in. However, we recognize that describing the kinetics of  the glass transition by coupling a 
thermodynamic model with a relaxation law is not the objective of  most CALPHAD work. 

The conclusions of  this empirical analysis of  the ideal 2-state model are i) more parameters maybe needed 
in some cases to increase the fitting ability of  the model, ii) adding parameters in the expansion of  the 
Gibbs energy difference between the 2 states might not be the best choice. More fundamental reasons to 
enrich the ideal 2-state model can been found in glass research literature and are developed in the next 
section. 

3 Limits of  the ideal 2-state model 
We can classify the criticisms in two categories namely i) the limited ability of  the ideal model to fit 
experimental heat capacity curves and ii) the very simple phenomenology of  the ideal 2-state model 
which basically only describes a sigmoid increase of  the fraction of  excited units with temperature (see 
Figure 5, 𝑤𝑤 = 0 curve), not allowing any other behavior. 

In the first category, Nemilov (page 34 of  [43]) mentions that the configurational heat capacity curve 
calculated by the Schottky function “does not render the shape of  the ∆𝐶𝐶𝑝𝑝 experimental curves over a 
wide temperature range correctly”. Another physical interpretation of  the two levels of  the model in 
covalent network-forming liquids is that the ground level represents an intact bond while the excited level 
represents a broken bond [44]. In the ideal version of  the model, the energy needed for breaking of  a 
bond is hence totally independent of  the potential adjacency of  broken bonds so there is no cooperative 
character. Angell & Rao [44] and Goldstein [45] early recognized that introducing a degree of  
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cooperativity could in some cases improve the ability of  the model to fit the experimental data. Moreover, 
Angell (page 6470 of  [46]) noticed for selenium a “disagreement of  the experimental heat capacity with 
that of  the simple (paradox free) excitation model”. 

In the second category, it is now quite firmly established [47] [48] [49] [50] [51] [52] that, when the 𝑒𝑒 − 𝑇𝑇  
plane is explored, Liquid-Liquid (LL) phase separation (liquid polymorphism) can occur in various types 
of  pure substances and that this kind of  phase transition might explain “amorphous polymorphism” 
(also called “poly-amorphism”, meaning the existence of  two glasses having the same composition but 
differing densities and entropies), pressure induced amorphization [53] and the Fragile To Strong (FTS) 
transition observed in a growing number of  glasses, as recently reviewed by Lucas [54], including metallic 
glasses [55]. By its very construction, the ideal 2-state model is unable to describe any phase separation 
phenomenon. 

By analogy with the behavior of  binary solutions, the simplest increase in complexity one can imagine to 
depict a LL phase separation is to move from an ideal solution model to a regular solution model. This 
type of  2-state model has been only superficially reviewed in [21]. Among the numerous works published 
in the field since the 1960s, it is particularly worth recalling the “2-species model” of  Rapoport1 [56] [57], 
the “pseudo-regular binary solution model” of  Ponyatovsky et al. [53] [58] [59] [60], the “2-species non-
ideal model” of  Moynihan [61] and “the cooperative bond-lattice model” of  Angell, Moynihan et al. [37] 
[62] or the “2-state model with cooperativity” of  Tanaka [63]. All these models refer in fact to the same 
binary regular solution formalism and have much in common with the earlier and more complex model 
of  Strässler & Kittel [64], in which the degeneracies of  the two energy levels are taken into account. 

In their attempts to model the thermodynamic properties of  supercooled water, Bertrand & Anisimov 
[65] and Holten & Anisimov [66] initially used a 2-state “athermal solution model” having a zero enthalpy 
of  mixing but a non-ideal entropy of  mixing. Later studies [67] [68] of  the same group emphasized the 
use of  a new and more sophisticated 2-state model, having a mixed character, in which both athermal 
and regular solution contributions are combined through a weighed sum. However, it was concluded in 
both articles that the behavior of  supercooled water could be successfully described by keeping only the 
regular contribution. 

For the sake of  completeness, it is worth mentioning an alternative and final way of  enriching the ideal 
two-state model that has been implemented by Moynihan & Angell [69]. They introduce into the model 
a third adjustable parameter, denoted 𝑙𝑙, representing the "number of  moles of  excitable states or degrees 
of  freedom per molecule or formula units". In the list of  17 liquids studied in their paper, this parameter 
has integer values ranging from 1 for selenium to 7 for glycerol and appears as a multiplicative factor in 
the expressions for entropy and heat capacity. This concept of  a "bead" which is the excitable subunit of  
the molecule, 𝑙𝑙 being the number of  beads, has its origins in the polymer literature, particularly in the 
work of  Wunderlich [70]. However, this number is not always univocally defined and, for a given 
substance, may have different values depending on the author (e.g. Table I of  [71]). In a more recent 
publication, Klein & Angell [72] page 118 recognize that the definition of  the bead is “very uncertain 
and leaves much room for subjective adjustment”. This concept is not explored further in the present 
work. 

This concise review of  the literature shows that adding a regular solution interaction term to the ideal 
two-state model is a very simple development, as only one parameter is added to the model, which allows 
many characteristics of  glass-forming unary liquids to be described. 

To be more convincing, we now propose a deeper analysis of  the regular 2-state model. 

  

 
1 Rapoport wanted to explain the melting curve maxima at high pressures in substances such as liquid Cs and Te and did not 

specifically address the case of  LL phase separation. 
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4 Formalism and phase diagram of  the regular 2-state model 
The Gibbs energy of  the regular A-B liquid solution reads: 

𝐺𝐺𝐿𝐿 = 𝜉𝜉𝐴𝐴𝐺𝐺𝐴𝐴° + 𝜉𝜉𝐵𝐵𝐺𝐺𝐵𝐵° + 𝑅𝑅𝑇𝑇(𝜉𝜉𝐴𝐴𝑙𝑙𝑙𝑙𝜉𝜉𝐴𝐴 + 𝜉𝜉𝐵𝐵𝑙𝑙𝑙𝑙𝜉𝜉𝐵𝐵) + 𝑤𝑤𝜉𝜉𝐴𝐴𝜉𝜉𝐵𝐵 (44) 

By keeping a single ξ𝐵𝐵 = 1 − 𝜉𝜉𝐴𝐴 = 𝜉𝜉 internal compositional variable, the Gibbs energy is rewritten: 

𝐺𝐺𝐿𝐿 = (1 − 𝜉𝜉)𝐺𝐺𝐴𝐴° + 𝜉𝜉𝐺𝐺𝐵𝐵° + 𝑅𝑅𝑇𝑇((1 − 𝜉𝜉)ln(1− 𝜉𝜉) + 𝜉𝜉ln𝜉𝜉) + 𝑤𝑤𝜉𝜉(1 − 𝜉𝜉) (45) 

The internal equilibrium condition is obtained by taking: 

�
𝜕𝜕𝐺𝐺𝐿𝐿
𝜕𝜕𝜉𝜉

�
𝜉𝜉=𝜉𝜉𝑒𝑒

= 0 (46) 

Using (45), we get: 

(𝐺𝐺𝐵𝐵° − 𝐺𝐺𝐴𝐴° ) + 𝑅𝑅𝑇𝑇(ln𝜉𝜉𝑒𝑒 − ln(1 − 𝜉𝜉𝑒𝑒)) + 𝑤𝑤(1 − 2𝜉𝜉𝑒𝑒) = 0 (47) 

We introduce the Gibbs energy difference 𝛥𝛥𝐺𝐺𝑑𝑑 between the two states and express it as the sum of  its 
enthalpic and entropic contributions: 

Δ𝐺𝐺𝑑𝑑 = 𝐺𝐺𝐵𝐵° − 𝐺𝐺𝐴𝐴° = Δ𝐻𝐻𝑑𝑑 − 𝑇𝑇Δ𝑆𝑆𝑑𝑑 (48) 

The configurational Gibbs energy of  the solution (44) now reads: 

∆𝐺𝐺𝐿𝐿 = 𝐺𝐺𝐿𝐿 − 𝐺𝐺𝐴𝐴° = 𝜉𝜉Δ𝐺𝐺𝑑𝑑 + 𝑅𝑅𝑇𝑇((1 − 𝜉𝜉)ln(1− 𝜉𝜉) + 𝜉𝜉ln𝜉𝜉) + 𝑤𝑤𝜉𝜉(1 − 𝜉𝜉) (49) 

And the internal equilibrium condition (47) then becomes: 

Δ𝐺𝐺𝑑𝑑 + 𝑅𝑅𝑇𝑇ln
𝜉𝜉𝑒𝑒

1 − 𝜉𝜉𝑒𝑒
+ 𝑤𝑤(1 − 2𝜉𝜉𝑒𝑒) = 0 (50) 

We are now interested in finding the equilibrium state. 

In contrast to the case of  the ideal 2-state model, a simple 𝜉𝜉(𝑇𝑇) expression such as eq.(6) cannot be 
obtained from eq. (50) and this last equation, possibly having more than one solution, has to be solved 
numerically. 

However, an analytical solution of  eq. (50) can be obtained if  the inverse problem is considered. We then 
define 𝜉𝜉 as the independent variable and an expression 𝑇𝑇(𝜉𝜉) is sought. Injecting eq. (48) in eq. (50) and 
rearranging terms, we get: 

𝑇𝑇 =
Δ𝐻𝐻𝑑𝑑 + 𝑤𝑤(1 − 2𝜉𝜉𝑒𝑒)

Δ𝑆𝑆𝑑𝑑 − 𝑅𝑅ln 𝜉𝜉𝑒𝑒
1 − 𝜉𝜉𝑒𝑒

 
(51) 

Eq. (51) is plotted for fixed values of  ∆𝐻𝐻𝑑𝑑 and ∆𝑆𝑆𝑑𝑑 and several values of  the interaction parameter 𝑤𝑤 in 
Figure 5, selecting 𝑇𝑇 as the abscissa and 𝜉𝜉𝑒𝑒 as the ordinate. 

From eq. (51), it is seen that: 

𝑇𝑇(𝜉𝜉𝑒𝑒 = 1/2) = Δ𝐻𝐻𝑑𝑑/Δ𝑆𝑆𝑑𝑑 (52) 

Hence, whatever the value of  𝑤𝑤, all curves will intersect at the point (Δ𝐻𝐻𝑑𝑑/Δ𝑆𝑆𝑑𝑑;  1/2). 
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Figure 5. Molar fraction of  excited-B structural units vs. temperature under internal equilibrium conditions for ∆𝐻𝐻𝑑𝑑 =

5000 𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1, ∆𝑆𝑆𝑑𝑑 = 𝑅𝑅 and various values of  𝑤𝑤 / 𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1. All curves intersect at (𝑇𝑇 = 5000/𝑅𝑅 ≈
601.4 𝐾𝐾; 𝜉𝜉 = 0.5). The critical value of  the interaction parameter is: 𝑤𝑤𝑐𝑐 = 10000 𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1 corresponds to the 

red curve with a vertical tangent at the critical point (black dot). 

The case 𝑤𝑤 = 0  corresponds to the ideal 2-state model. As 𝑤𝑤  is increased from −3000  to 
+10500 𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1, the shape of  𝜉𝜉(𝑇𝑇) gradually changes from a sigmoid of  increasing steepness to an S-
shaped curve when the interaction parameter 𝑤𝑤 becomes greater than its critical value 𝑤𝑤𝑐𝑐 . It is well 
known (e.g. [73] page 82) that, for a binary regular solution, the critical point corresponds to 𝜉𝜉𝑒𝑒 =  1/2 
and a critical temperature 𝑇𝑇𝑐𝑐 which only depends on the value of  the interaction parameter: 

𝑇𝑇𝑐𝑐 =
𝑤𝑤

2𝑅𝑅
 (53) 

Combining equations (52) and (53), the critical value of  the interaction parameter for fixed values of  
∆𝐻𝐻𝑑𝑑 and ∆𝑆𝑆𝑑𝑑 is obtained: 

𝑤𝑤𝑐𝑐 = 2𝑅𝑅
Δ𝐻𝐻𝑑𝑑
Δ𝑆𝑆𝑑𝑑

 (54) 

For 𝑤𝑤 >  𝑤𝑤𝑐𝑐 (e.g. for 𝑤𝑤 =  10500 𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1 in Figure 5, 𝜉𝜉𝑒𝑒(𝑇𝑇) is no longer a function, the S-shape is 
the signature of  the development of  instability. The behavior becomes similar to the famous van der 
Waals EOS of  gases and liquids. Because of  the repulsive interaction between dissimilar units, the liquid 
will then unmix into an A-rich liquid and a B-rich liquid. 

Let us now establish the phase diagram of  the model. As temperature is changed and depending on the 
values of  the Δ𝐻𝐻𝑑𝑑, Δ𝑆𝑆𝑑𝑑 and 𝑤𝑤 parameters of  the model, the shape of  the ∆𝐺𝐺𝐿𝐿(𝜉𝜉) curve evolves and eq. 
(50) might have more than one solution. The equilibrium value of  𝜉𝜉 will be obtained by searching for the 
deepest minimum of  the Gibbs energy function of  the solution. 

As an example, the ∆𝐺𝐺𝐿𝐿(𝜉𝜉) is plotted at different temperatures in Figure 6. At each temperature, the 
equilibrium state corresponds to the deepest minimum of  the Gibbs energy curve. At low temperatures, 
the deepest minimum is on the A-rich side (𝜉𝜉𝑒𝑒 < 0.5), while, at high temperatures, it is on the B-rich side 
(𝜉𝜉𝑒𝑒 > 0.5). The condition of  coexistence of  the two liquids corresponds to the situation where ∆𝐺𝐺𝐿𝐿(𝜉𝜉) 
has two minima of  equal depth. For given values of  Δ𝐻𝐻𝑑𝑑  and Δ𝑆𝑆𝑑𝑑 , this condition is fulfilled at the 
temperature 𝑇𝑇𝐿𝐿𝐿𝐿 for which: 

Δ𝐺𝐺𝑑𝑑(𝑇𝑇𝐿𝐿𝐿𝐿) = 0 (55) 

implying that 𝑇𝑇𝐿𝐿𝐿𝐿 = ∆𝐻𝐻d/∆𝑆𝑆d. 
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Figure 6. Gibbs energy of  the liquid ∆𝐺𝐺𝐿𝐿 vs. 𝜉𝜉 at various temperatures for ∆𝐻𝐻𝑑𝑑 = 5000 𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1, ∆𝑆𝑆𝑑𝑑 = 𝑅𝑅 and 
𝑤𝑤 = 11000  𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1. The dots corresponds to equilibrium compositions which are minima of  the Gibbs energy 
curves. At (𝑇𝑇𝐿𝐿𝐿𝐿 = ∆𝐻𝐻𝑑𝑑/∆𝑆𝑆𝑑𝑑 ≈ 601.36 𝐾𝐾), the Gibbs energy curve has two minima of  equal depth. These two 

minima give the composition of  the 2 liquids in equilibrium. At lower T, the liquid is A-rich and at higher T the liquid 
is B-rich. 

By taking Δ𝐺𝐺𝑑𝑑 = 0 in the internal equilibrium condition (50) and after rearranging terms, the equation 
of  the binodal or miscibility gap curve reads: 

𝑇𝑇 =
𝑤𝑤(2𝜉𝜉𝑒𝑒 − 1)

𝑅𝑅ln � 𝜉𝜉𝑒𝑒
1 − 𝜉𝜉𝑒𝑒

�
 

(56) 

The spinodal curve is defined using the stability limit condition: 

�
𝜕𝜕2𝐺𝐺𝐿𝐿
𝜕𝜕𝜉𝜉2

� = 0 (57) 

Hence, the equation of  the spinodal curve is simply obtained by taking the derivative of  eq. (50) with 
respect to 𝜉𝜉, yielding: 

𝑇𝑇 =
2𝑤𝑤
𝑅𝑅
𝜉𝜉(1 − 𝜉𝜉) (58) 

Let-us define the dimensionless temperature: 

𝑇𝑇∗ = 𝑇𝑇/𝑇𝑇𝑐𝑐 (59) 

The dimensionless form of  eq. (56) reads: 

𝑇𝑇∗ =
2(2𝜉𝜉𝑒𝑒 − 1)

ln � 𝜉𝜉𝑒𝑒
1 − 𝜉𝜉𝑒𝑒

�
 

(60) 

And the dimensionless form of  eq. (58) reads: 

𝑇𝑇∗ = 4𝜉𝜉(1 − 𝜉𝜉) (61) 

Equation (61) shows that all spinodal curves merge, regardless of  the value of  the interaction parameter, 
when plotted against the dimensionless temperature. Hence, in dimensionless variables, it is seen that the 
regular 2-state model obeys a sort of  “law of  corresponding states” and has a universal temperature-
composition phase diagram plotted in Figure 7. 
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The internal equilibrium condition (51) is similarly put under dimensionless form: 

𝑇𝑇* = 2
Δ𝐻𝐻𝑑𝑑 𝑤𝑤⁄ + (1 − 2𝜉𝜉𝑒𝑒)

Δ𝑆𝑆𝑑𝑑 𝑅𝑅⁄ − ln 𝜉𝜉𝑒𝑒
1 − 𝜉𝜉𝑒𝑒

 (62) 

 
Figure 7. Universal temperature-composition phase diagram of  the regular 2-state model. The dashed line is the 
miscibility gap and the dotted line is the spinodal curve. The equilibrium fractions of  excited-B units calculated with eq. 
(62) for ∆𝐻𝐻𝑑𝑑 = 5000 𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1, ∆𝑆𝑆𝑑𝑑 = 𝑅𝑅 and various values of  𝑤𝑤  are superimposed on the diagram. The red 
curve, which corresponds to the critical value of  𝑤𝑤, is tangent to the miscibility gap at the critical point (black dot). 

If  the spinodal curve is to be plotted as a function of  temperature, the following quadratic equation must 
be solved: 

4𝜉𝜉2 − 4𝜉𝜉 + 𝑇𝑇* = 0 (63) 

Of  which the two solutions for 𝑇𝑇∗ ≤ 1 are the upper and lower branches of  the spinodal curve: 

𝜉𝜉 up
low

=
1 ± √1 − 𝑇𝑇*

2
 (64) 

5 Thermodynamic functions of  the regular 2-state model 
The analytical expressions of  the configurational thermodynamic functions of  the liquid at ambient 
pressure are now established. 

By derivation of  the Gibbs energy (eq. (49)) with respect to temperature, and using the internal 
equilibrium condition (50), the entropy difference of  the liquid reads: 

∆𝑆𝑆𝐿𝐿 = 𝑆𝑆𝐿𝐿 − 𝑆𝑆𝐴𝐴° = −�
𝜕𝜕∆𝐺𝐺𝐿𝐿
𝜕𝜕𝑇𝑇

�
𝑝𝑝

= 𝜉𝜉𝑒𝑒Δ𝑆𝑆𝑑𝑑 − 𝑅𝑅((1 − 𝜉𝜉𝑒𝑒)ln(1 − 𝜉𝜉𝑒𝑒) + 𝜉𝜉𝑒𝑒ln𝜉𝜉𝑒𝑒) − �
𝜕𝜕𝑤𝑤
𝜕𝜕𝑇𝑇

�
𝑝𝑝
𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒) 

(65) 

If  𝑤𝑤 does not depend on temperature, the last term is cancelled and the entropy of  the ideal solution is 
recovered: 

∆𝑆𝑆𝐿𝐿 = 𝜉𝜉𝑒𝑒Δ𝑆𝑆𝑑𝑑 − 𝑅𝑅((1 − 𝜉𝜉𝑒𝑒)ln(1 − 𝜉𝜉𝑒𝑒) + 𝜉𝜉𝑒𝑒ln𝜉𝜉𝑒𝑒) (66) 
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The liquid enthalpy is easily calculated using the classical relation: 

∆𝐻𝐻𝐿𝐿 = ∆𝐺𝐺𝐿𝐿 + 𝑇𝑇∆𝑆𝑆𝐿𝐿 (67) 
With eqs. (49) and (65) : 

∆𝐻𝐻𝐿𝐿 = 𝐻𝐻𝐿𝐿 − 𝐻𝐻𝐴𝐴° = 𝜉𝜉𝑒𝑒Δ𝐻𝐻𝑑𝑑 + �𝑤𝑤 − 𝑇𝑇 �
𝜕𝜕𝑤𝑤
𝜕𝜕𝑇𝑇

�
𝑝𝑝
� 𝜉𝜉𝑒𝑒(1− 𝜉𝜉𝑒𝑒) (68) 

Again, if  𝑤𝑤 does not depend on temperature, the last term is cancelled: 

∆𝐻𝐻𝐿𝐿 = 𝜉𝜉𝑒𝑒Δ𝐻𝐻𝑑𝑑 + 𝑤𝑤𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒) (69) 
By derivation of  the internal equilibrium (50) condition with respect to temperature, the expression for 
the derivative of  the internal variable with respect to temperature is deduced: 

�
𝜕𝜕𝜉𝜉𝑒𝑒
𝜕𝜕𝑇𝑇

�
𝑝𝑝

=
Δ𝑆𝑆𝑑𝑑 − 𝑅𝑅ln 𝜉𝜉𝑒𝑒

1 − 𝜉𝜉𝑒𝑒
− �𝜕𝜕𝑤𝑤𝜕𝜕𝑇𝑇�𝑝𝑝

(1 − 2𝜉𝜉𝑒𝑒)

� 𝑅𝑅𝑇𝑇
𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒) − 2𝑤𝑤�

 (70) 

The configurational heat capacity can now be calculated by differentiating the enthalpy (eq. (68)) with 
respect to temperature and substituting eq. (70) to simplify the expression. It reads: 

∆𝐶𝐶𝑝𝑝𝐿𝐿 = 𝐶𝐶𝑝𝑝𝐿𝐿 − 𝐶𝐶𝑝𝑝𝐴𝐴° = �
∂∆𝐻𝐻L
∂𝑇𝑇

�
𝑝𝑝

= 𝜉𝜉𝑒𝑒 �
𝜕𝜕Δ𝐻𝐻𝑑𝑑
𝜕𝜕𝑇𝑇

�
𝑝𝑝
− 𝑇𝑇 �

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑇𝑇2

�
𝑝𝑝
𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒) +

Δ𝑆𝑆𝑑𝑑 − 𝑅𝑅ln 𝜉𝜉𝑒𝑒
1 − 𝜉𝜉𝑒𝑒

− �𝜕𝜕𝑤𝑤𝜕𝜕𝑇𝑇�𝑝𝑝
(1 − 2𝜉𝜉𝑒𝑒)

� 𝑅𝑅𝑇𝑇
𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒) − 2𝑤𝑤�

(Δ𝐻𝐻𝑑𝑑 + 𝑤𝑤(1 − 2𝜉𝜉𝑒𝑒) − 𝑇𝑇 �
𝜕𝜕𝑤𝑤
𝜕𝜕𝑇𝑇

�
𝑝𝑝

(1 − 2𝜉𝜉𝑒𝑒))
 (71) 

If  𝑤𝑤 is independent of  temperature, eq. (71) simplifies to: 

∆𝐶𝐶𝑝𝑝𝐿𝐿 = 𝜉𝜉𝑒𝑒 �
𝜕𝜕Δ𝐻𝐻𝑑𝑑
𝜕𝜕𝑇𝑇

�
𝑝𝑝

+
Δ𝑆𝑆𝑑𝑑 − 𝑅𝑅ln 𝜉𝜉𝑒𝑒

1 − 𝜉𝜉𝑒𝑒
� 𝑅𝑅𝑇𝑇
𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒) − 2𝑤𝑤�

(Δ𝐻𝐻𝑑𝑑 + 𝑤𝑤(1 − 2𝜉𝜉𝑒𝑒)) (72) 

If  𝛥𝛥𝐻𝐻𝑑𝑑 is also independent of  temperature, equation (72) further simplifies to: 

∆𝐶𝐶𝑝𝑝𝐿𝐿 =
Δ𝑆𝑆𝑑𝑑 − 𝑅𝑅ln 𝜉𝜉𝑒𝑒

1 − 𝜉𝜉𝑒𝑒
� 𝑅𝑅𝑇𝑇
𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒) − 2𝑤𝑤�

(Δ𝐻𝐻𝑑𝑑 + 𝑤𝑤(1 − 2𝜉𝜉𝑒𝑒)) (73) 

This equation is identical to eq. (17) of  Moynihan [61] for 𝑒𝑒 = 𝑒𝑒°. 

An alternative and useful expression of  the configurational heat capacity, in which Δ𝑆𝑆𝑑𝑑 does not appear, 
can be established by substituting (51) in (71). After some calculations, it reads: 

∆𝐶𝐶𝑝𝑝𝐿𝐿 = 𝜉𝜉𝑒𝑒 �
𝜕𝜕Δ𝐻𝐻𝑑𝑑
𝜕𝜕𝑇𝑇

�
𝑝𝑝
− 𝑇𝑇 �

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑇𝑇2

�
𝑝𝑝
𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒) +

�Δ𝐻𝐻𝑑𝑑 + 𝑤𝑤(1 − 2𝜉𝜉𝑒𝑒) − 𝑇𝑇 �𝜕𝜕𝑤𝑤𝜕𝜕𝑇𝑇�𝑝𝑝
(1 − 2𝜉𝜉𝑒𝑒)�

2

�1 − 2𝑤𝑤
𝑅𝑅𝑇𝑇 𝜉𝜉𝑒𝑒(1− 𝜉𝜉𝑒𝑒)�

𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒)
𝑅𝑅𝑇𝑇2

 (74) 

If  𝑤𝑤 is independent of  temperature, eq. (74) simplifies to: 
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∆𝐶𝐶𝑝𝑝𝐿𝐿 = 𝜉𝜉𝑒𝑒 �
𝜕𝜕Δ𝐻𝐻𝑑𝑑
𝜕𝜕𝑇𝑇

�
𝑝𝑝

+
�Δ𝐻𝐻𝑑𝑑 + 𝑤𝑤(1 − 2𝜉𝜉𝑒𝑒)�

2

�1 − 2𝑤𝑤
𝑅𝑅𝑇𝑇 𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒)�

𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒)
𝑅𝑅𝑇𝑇2

 (75) 

If  𝛥𝛥𝐻𝐻𝑑𝑑 is also independent of  temperature, eq. (75) further simplifies to: 

∆𝐶𝐶𝑝𝑝𝐿𝐿 =
�Δ𝐻𝐻𝑑𝑑 + 𝑤𝑤(1 − 2𝜉𝜉𝑒𝑒)�

2

�1 − 2𝑤𝑤
𝑅𝑅𝑇𝑇 𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒)�

𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒)
𝑅𝑅𝑇𝑇2

 (76) 

In this form, it is easier to see that when 𝑤𝑤 = 0, eq. (24) of  the ideal 2-state model is again found. 
Furthermore, the heat capacity diverges when approaching a spinodal instability because the term in 
parentheses in the denominator of  eq. (76) becomes zero when 𝑇𝑇 is given by eq. (58). 

The interaction parameter allows the shape of  the evolution of  the configurational part of  the 
thermodynamic functions to change radically with temperature, as illustrated in Figure 8. 

More precisely, a strongly positive value of  the interaction parameter (red curves in Figure 8) results in a 
sharp peak in heat capacity (Figure 8c), the counterpart of  which is an abrupt decrease of  the entropy 
when the liquid cools down (Figure 8b). 

 
a) 
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b) 

 
c) 

Figure 8. Evolution of  a) the fraction of  excited units, b) the configurational entropy and c) the configurational heat 
capacity of  the liquid for ∆𝐻𝐻𝑑𝑑 = 5000 𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1, ∆𝑆𝑆𝑑𝑑 = 𝑅𝑅 and various values of  𝑤𝑤  given as legend in c). 

6 The regular 2-state model at high pressures 
Under ambient pressure, the formalism presented in sections 4 and 5 is sufficient. However, when high 
pressures are applied to liquids in which the structural entities A and B have different molar volumes, it 
becomes mandatory to explicitly introduce the mechanical work term in the two-state model. 

Following Rapoport [56], Johari [38] or Ponyatovsky [60], we now expand the Gibbs energy difference 
between the 2 states under the form: 

Δ𝐺𝐺𝑑𝑑 = Δ𝐺𝐺𝑑𝑑 + 𝑒𝑒Δ𝑉𝑉𝑑𝑑 − 𝑇𝑇Δ𝑆𝑆𝑑𝑑 (77) 
By deriving the expression (45) for Gibbs energy with respect to pressure, and using the internal 
equilibrium condition (47), we show that: 

𝑉𝑉𝐿𝐿 = �
𝜕𝜕𝐺𝐺𝐿𝐿
𝜕𝜕𝑒𝑒

�
𝑇𝑇

= 𝑉𝑉𝐴𝐴° + 𝜉𝜉𝑒𝑒Δ𝑉𝑉𝑑𝑑 + �
𝜕𝜕𝑤𝑤
𝜕𝜕𝑒𝑒
�
𝑇𝑇
𝜉𝜉𝑒𝑒(1− 𝜉𝜉𝑒𝑒) (78) 

In which, we have noted: 

Δ𝑉𝑉𝑑𝑑 = 𝑉𝑉𝐵𝐵° − 𝑉𝑉𝐴𝐴° = �
𝜕𝜕Δ𝐺𝐺𝑑𝑑
𝜕𝜕𝑒𝑒

�
𝑇𝑇
 (79) 

Which can be positive for “normal” liquids or negative for “abnormal” tetrahedral networks liquids such 
as H2O [58]. Equation (78) is identical to equation (9) of  [56] noting that Rapoport had taken the opposite 
sign convention in his notation of  the volume difference between the two states. 

If  the interaction coefficient is independent of  the pressure, we find the volume of  the ideal solution 
which is also that of  a simple mechanical mixture: 

𝑉𝑉𝐿𝐿 = 𝑉𝑉𝐴𝐴° + 𝜉𝜉𝑒𝑒Δ𝑉𝑉𝑑𝑑 (80) 
This is equation (5.37) on page 146 of  [74], equation (11) of  [56] which can also been found in [75] (page 
3, top of  column 2) or eq. (5) of  [76]. 

By denoting the configurational volume ∆𝑉𝑉𝐿𝐿 = 𝑉𝑉𝐿𝐿 − 𝑉𝑉𝐴𝐴° eq. (80) can be rewritten in the condensed form: 
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∆𝑉𝑉𝐿𝐿 = 𝜉𝜉𝑒𝑒Δ𝑉𝑉𝑑𝑑 (81) 
By deriving equation (78) with respect to temperature and rearranging terms, the configurational 
coefficient of  thermal expansion ∆𝛼𝛼𝐿𝐿 reads: 

𝑉𝑉𝐿𝐿∆𝛼𝛼𝐿𝐿 = �
𝜕𝜕2Δ𝐺𝐺𝐿𝐿
𝜕𝜕𝑇𝑇𝜕𝜕𝑒𝑒

�
𝑝𝑝,𝑇𝑇

= �
𝜕𝜕∆𝑉𝑉𝐿𝐿
𝜕𝜕𝑇𝑇

�
𝑝𝑝

= 𝜉𝜉𝑒𝑒 �
𝜕𝜕∆𝑉𝑉𝑑𝑑
𝜕𝜕𝑇𝑇

�
𝑝𝑝

+ �
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑇𝑇𝜕𝜕𝑒𝑒

�
𝑝𝑝,𝑇𝑇

𝜉𝜉𝑒𝑒(1− 𝜉𝜉𝑒𝑒) + 

�Δ𝑉𝑉𝑑𝑑 + �𝜕𝜕𝑤𝑤𝜕𝜕𝑒𝑒�𝑇𝑇
(1 − 2𝜉𝜉𝑒𝑒)� �∆𝑆𝑆𝑑𝑑 − 𝑅𝑅𝑙𝑙𝑙𝑙 𝜉𝜉𝑒𝑒

1 − 𝜉𝜉𝑒𝑒
− �𝜕𝜕𝑤𝑤𝜕𝜕𝑇𝑇�𝑝𝑝

(1 − 2𝜉𝜉𝑒𝑒)�

𝑅𝑅𝑇𝑇
𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒) − 2𝑤𝑤

 

(82) 

If  Δ𝑉𝑉𝑑𝑑 does not depend on 𝑇𝑇 and 𝑤𝑤 does not depend on 𝑇𝑇 and 𝑒𝑒, equation (82) simplifies to:  

𝑉𝑉𝐿𝐿∆𝛼𝛼𝐿𝐿 =
Δ𝑉𝑉𝑑𝑑 �∆𝑆𝑆𝑑𝑑 − 𝑅𝑅𝑙𝑙𝑙𝑙 𝜉𝜉𝑒𝑒

1 − 𝜉𝜉𝑒𝑒
�

𝑅𝑅𝑇𝑇
𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒) − 2𝑤𝑤

 (83) 

We find equation (18) of  Moynihan [61]. 

The configurational coefficient of  compressibility ∆𝜅𝜅𝐿𝐿 can be evaluated by deriving eq. (81) with respect 
to pressure. 

It is first needed to evaluate the pressure derivative of  the internal equilibrium condition (50). We obtain: 

�
𝜕𝜕𝜉𝜉𝑒𝑒
𝜕𝜕𝑒𝑒

�
𝑇𝑇

= −
Δ𝑉𝑉𝑑𝑑 + �𝜕𝜕𝑤𝑤𝜕𝜕𝑒𝑒�𝑇𝑇

(1 − 2𝜉𝜉𝑒𝑒)

𝑅𝑅𝑇𝑇
𝜉𝜉𝑒𝑒(1− 𝜉𝜉𝑒𝑒) − 2𝑤𝑤

 (84) 

The rate of  change of  the structural order parameter with the pressure for the ideal 2-state model is 
obtained by taking 𝑤𝑤 = 0 in eq. (84) yielding: 

�
𝜕𝜕𝜉𝜉𝑒𝑒
𝜕𝜕𝑒𝑒

�
𝑇𝑇

= −
Δ𝑉𝑉𝑑𝑑
𝑅𝑅𝑇𝑇

𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒) (85) 

This equation has already been obtained, notably by Kauzmann (see eq. (12) of  [77]. 

The configurational coefficient of  compressibility ∆𝜅𝜅𝐿𝐿 reads: 

𝑉𝑉𝐿𝐿∆𝜅𝜅𝐿𝐿 = −�
𝜕𝜕2Δ𝐺𝐺𝐿𝐿
𝜕𝜕𝑒𝑒2

�
𝑇𝑇

= −�
𝜕𝜕∆𝑉𝑉𝐿𝐿
𝜕𝜕𝑒𝑒

�
𝑇𝑇
 

= −𝜉𝜉𝑒𝑒 �
𝜕𝜕∆𝑉𝑉𝑑𝑑
𝜕𝜕𝑒𝑒

�
𝑇𝑇
− �

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑒𝑒2

�
𝑝𝑝,𝑇𝑇

𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒) +  
�Δ𝑉𝑉𝑑𝑑 + �𝜕𝜕𝑤𝑤𝜕𝜕𝑒𝑒�𝑇𝑇

(1 − 2𝜉𝜉𝑒𝑒)�
2

𝑅𝑅𝑇𝑇
𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒) − 2𝑤𝑤

 

(86) 

If  Δ𝑉𝑉𝑑𝑑 and 𝑤𝑤 do not depend on 𝑒𝑒, eq. (86) simplifies to: 

𝑉𝑉𝐿𝐿∆𝜅𝜅𝐿𝐿 =  
Δ𝑉𝑉𝑑𝑑2

𝑅𝑅𝑇𝑇
𝜉𝜉𝑒𝑒(1 − 𝜉𝜉𝑒𝑒) − 2𝑤𝑤

 (87) 
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We find equation (19) of  Moynihan [61]2. 

The phase diagram of  the model can be calculated. 

The 𝑒𝑒(𝑇𝑇)  expression is simply obtained from the condition of  coexistence (55) under the form: 

𝑒𝑒 =
𝑇𝑇Δ𝑆𝑆𝑑𝑑 − Δ𝐺𝐺𝑑𝑑

Δ𝑉𝑉𝑑𝑑
 (88) 

Particularly, at the critical point (𝑇𝑇𝑐𝑐,𝑒𝑒𝑐𝑐): 

𝑒𝑒𝑐𝑐 =
𝑇𝑇𝑐𝑐Δ𝑆𝑆𝑑𝑑 − Δ𝐺𝐺𝑑𝑑

Δ𝑉𝑉𝑑𝑑
 (89) 

We define the dimensionless pressure 𝑒𝑒∗ according to: 

𝑒𝑒∗ =
𝑒𝑒
𝑒𝑒𝑐𝑐

 (90) 

By substituting Δ𝑉𝑉𝑑𝑑 in (88) using (89), a dimensionless form of  the condition of  coexistence is obtained: 

𝑒𝑒* =
𝑇𝑇* Δ𝑆𝑆𝑑𝑑

𝑅𝑅 − Δ𝐺𝐺𝑑𝑑
𝑅𝑅𝑇𝑇𝑐𝑐

Δ𝑆𝑆𝑑𝑑
𝑅𝑅 − Δ𝐺𝐺𝑑𝑑

𝑅𝑅𝑇𝑇𝑐𝑐

 (91) 

Injecting (77) in the internal equilibrium condition (50) and using (53) and (89) yields a new dimensionless 
form of  the internal equilibrium condition: 

𝑒𝑒* =
𝑇𝑇* �Δ𝑆𝑆𝑑𝑑𝑅𝑅 − ln 𝜉𝜉𝑒𝑒

1 − 𝜉𝜉𝑒𝑒
� − Δ𝐺𝐺𝑑𝑑

𝑅𝑅𝑇𝑇𝑐𝑐
− 2(1 − 2𝜉𝜉𝑒𝑒)

Δ𝑆𝑆𝑑𝑑
𝑅𝑅 − Δ𝐺𝐺𝑑𝑑

𝑅𝑅𝑇𝑇𝑐𝑐

 (92) 

The two spinodal curves can be obtained as follows. For given 𝑇𝑇∗  <  1, the two corresponding values 
of  the internal variable 𝜉𝜉𝑖𝑖𝑖𝑖𝑖𝑖  and 𝜉𝜉𝑐𝑐𝑠𝑠𝑝𝑝  are calculated using (64), then the two corresponding pressure 
values 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖∗   and 𝑒𝑒𝑐𝑐𝑠𝑠𝑝𝑝∗  are calculated with (92) using (𝑇𝑇∗, 𝜉𝜉𝑖𝑖𝑖𝑖𝑖𝑖) and (𝑇𝑇∗, 𝜉𝜉𝑐𝑐𝑠𝑠𝑝𝑝) as inputs. 

The pressure-temperature phase diagram of  the regular 2-state model is plotted in dimensionless 
coordinates in Figure 9 using equations (91) and (92). 

 
2 Note that expressions of  the configurational heat capacity (76), thermal expansion (83) and compressibility (87) coefficients 

have also been established by Ponyatovsky [60] however his equations (11) and (12) are misprinted. The right hand 
side of  his eq. (11) in fact corresponds to the left hand side of  his eq. (12) while the right hand side of  his eq. (12) 
corresponds to the left hand side of  eq. (11). 
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Figure 9. Pressure-temperature phase diagram of  the regular 2-state model in dimensionless coordinates. The diagram is 
plotted with the dimensionless parameter values 𝛥𝛥𝑆𝑆𝑑𝑑/𝑅𝑅 = 3 and 𝛥𝛥𝐺𝐺𝑑𝑑/ 𝑅𝑅𝑇𝑇𝑐𝑐  = 2.4 taken as a typical example eq. 
(10) from [61]. Solid line is the coexistence curve between a High Density Liquid (HDL) and a Low Density Liquid 
(LDL) terminating at the critical point (black dot). The dashed and dotted curves are the HDL and LDL spinodals 
respectively. 

By taking the derivative of  the internal equilibrium condition (50) with respect to pressure at constant 𝜉𝜉𝑒𝑒, 
and considering parameters Δ𝐺𝐺𝑑𝑑 ,Δ𝑉𝑉𝑑𝑑,Δ𝑆𝑆𝑑𝑑 as constants, we obtain: 

�
𝑑𝑑𝑇𝑇
𝑑𝑑𝑒𝑒

 �
𝜉𝜉𝑒𝑒

=
∆𝑉𝑉𝑑𝑑

Δ𝑆𝑆𝑑𝑑 − 𝑅𝑅 𝑙𝑙𝑙𝑙 𝜉𝜉𝑒𝑒
1 − 𝜉𝜉𝑒𝑒

 (93) 

Hence, with constant parameters, an isofraction curve is a straight line whose slope is given by eq. (93) 
and the intercept can be calculated using the internal equilibrium condition (51). 

Considering the parameters Δ𝐺𝐺𝑑𝑑 ,Δ𝑆𝑆𝑑𝑑,Δ𝑉𝑉𝑑𝑑 as constants, the Clapeyron slope of  the coexistence line is: 

𝑑𝑑𝑒𝑒
𝑑𝑑𝑇𝑇

=
Δ𝑆𝑆𝑑𝑑
Δ𝑉𝑉𝑑𝑑

 (94) 

7 Two examples 
Disregarding the modeling of  the background contribution, application of  the regular formalism to a 
real substance requires to adjust the values of  the 4 parameters Δ𝐺𝐺𝑑𝑑,Δ𝑉𝑉𝑑𝑑,Δ𝑆𝑆𝑑𝑑 and 𝑤𝑤 of  the model. In 
this section, two examples are selected from literature to highlight various types of  relevant calculations 
that can be performed with the model. 

Rapoport [57] applied the model to explain the melting curve maxima observed at high pressures for 
certain elements such as Cs or Te. For Te, Rapoport assumed that the liquid was a mixture of  Te(I) and 
Te(III) species corresponding, in terms of  short range order, to their crystalline counterparts the Te(I) 
low-pressure crystal being a p-type semi-conductor and the Te(III) high-pressure crystal being metallic. 
In this case, the excited level of  the model corresponds to the Te(III) metallic species. He tuned the 
parameters of  the model using a complex optimization procedure based mainly on Hall coefficient and 
electrical conductivity data in the liquid, assuming a negligible contribution of  Te(I) species to these 
physical quantities. The optimized values of  the parameters are listed in Table 2. 
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Table 2. Parameters of  the regular 2-state model from 2 literature studies. 𝑅𝑅 is the gas constant. 

Reference Substance Δ𝐺𝐺𝑑𝑑 

/𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1 

Δ𝑉𝑉𝑑𝑑 

/𝑚𝑚3 𝑚𝑚𝑚𝑚𝑙𝑙−1 

Δ𝑆𝑆𝑑𝑑 

/𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1𝐾𝐾−1   

𝑤𝑤 

/𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1 

[57] Te 41 × 4.184 −1.5 10−6 −0.154 × 4.184 2.01𝑅𝑅 × 737.15 

[61] H2O 1940 −4.5 10−6 0.98𝑅𝑅 3610 

 

We have recalculated figure 3 of  the original article in the Figure 10 below. The isofraction lines calculated 
using equations (93) and (51) show that the Te(III) species predominates in the liquid at high pressures. 
The experimental data on the melting line of  Te(I) crystal of  Stishov & Tikhomirova [78] and Klement 
et al. [79] are superimposed on the figure. In our plotting procedure, a cubic fit of  the data of  Stishov & 
Tikhomirova [78] is used as a lower bound of  the calculated liquid isofraction lines. 

 
Figure 10. 𝑇𝑇 − 𝑒𝑒 phase diagram of  pure tellurium. Scatter symbols are experimental points of  Stishov & Tikhomirova 
() [78]  and Klement et al. () [79]. The fan-shaped cluster of  colored curves are the isofraction lines in the liquid 
calculated with the regular 2-state model and parameter values from Rapoport [57]. The solid black line is a cubic fit to 
the datapoints of  Stishov & Tikhomirova and materializes the limit to the extension of  the liquid isofraction lines. 

The study of  Rapoport concentrates on the low pressure range, up to 20 kbar, of  the 𝑇𝑇 − 𝑒𝑒 phase 
diagram of  pure Tellurium. More recently, Brazkhin et al. [80] have discovered a liquid-liquid equilibrium 
line in the liquid domain at higher pressure and temperature. Modelling this phase separation would be 
possible using the regular 2-state model but would require a different parametrization of  the model than 
Rapoport. 

The case of  water, one of  the most studied liquid, is selected as the second example. A recent review of  
LL phase separation and polyamorphism phenomena in supercooled water has been carried out by 
Tanaka [52]. The existence of  LL phase separation remains controversial because of  the difficulty of  
observing it directly. It is likely to be hidden in the supercooled regime at temperatures below the 
homogeneous nucleation temperature of  crystalline ice. However, the evolutions of  the susceptibility 
coefficients, i.e. heat capacity, thermal expansivity and isothermal compressibility, as a function of  
temperature show striking anomalies. Many authors have attempted to model these thermodynamic 
anomalies using two-state descriptions. An extensive list of  early works can be found in the critical 
analysis of  Kauzmann [77], more recent works were already listed in section 3. Different types of  2-state 
models have in fact been used: ideal, regular/cooperative, entropy-driven athermal and mixed models 
combining the latter two. 
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The most comprehensive descriptions of  water using two-state models, based on extensive experimental 
datasets over wide temperature and pressure ranges, come from the work of  Anisimov and his colleagues 
[65] [66] [67] [81] [82]. However, in these sophisticated models, the analytical expressions used to 
formulate i) the Gibbs energy difference between the 2 states and ii) the background contributions to the 
thermodynamic quantities are quite different from those commonly used in 3rd generation CALPHAD 
models. Moreover, around 20 parameter values need to be adjusted in these descriptions. 

Therefore, for the application to water, we have instead chosen the much simpler model, and parameter 
values (Table 2), of  Moynihan [61] because it is consistent with the formalism presented in sections 4 to 
6. This formalism only represents the configurational part of  the thermodynamic functions and does not 
include the background contributions varying slowly with temperature and pressure. In order to be able 
to compare the model results with the available experimental data, in the present work, rough estimates 
of  the background contributions were made as constant values where necessary. 

An estimation of  the density of  water in the stable and metastable temperature range under atmospheric 
pressure is also required for comparing the calculated thermal expansion and compressibility with 
experimental data. The density of  water was estimated by combining the experimental dataset of  Hare 
& Sorensen [83] in the supercooled range with the data from the Handbook of  Chemistry & Physics [84] 
between 0 and 100°C. The obtained dataset of  495 points was then simply fitted by a 6th degree 
polynomial. 

The heat capacity, the coefficient of  thermal expansion and the isothermal compressibility calculated at 
atmospheric pressure with the regular 2-state model are plotted against temperature and compared with 
experimental results from various literature studies in Figure 11. A global good agreement is observed 
which could probably be improved with a more thorough assessment of  the background contributions. 

.  

a) Scatter symbols are experimental points of  Anisimov et al. () [85], Angell et al. () [86], Tombari et al. (×) 
[87] and Archer & Carter (◊) [88]. Solid line is calculated with eq. (76) adding a constant 𝐶𝐶𝑝𝑝0 =

 75.25 𝐽𝐽 𝑚𝑚𝑚𝑚𝑙𝑙−1 𝐾𝐾−1 background contribution. 
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b) Scatter symbols () are experimental points of  Hare &Sorensen [83], solid line is calculated with eq. (83) and 

adding a constant 𝛼𝛼𝐿𝐿0 = 3 10−4 𝐾𝐾−1 background contribution. 

 
c) Scatter symbols () are experimental points of  Speedy &Angell [89], solid line is calculated with eq. (87) and 

adding a constant 𝜅𝜅𝐿𝐿0 =  8 10−5𝑀𝑀𝑀𝑀𝑎𝑎−1 background contribution. 

Figure 11. Evolution of  the a) heat capacity b) thermal expansion coefficient and c) isothermal compressibility of  water 
with temperature at atmospheric pressure. Solid lines are calculated with the regular 2-state model and parameters from 
Moynihan [61]. Where required, the molar volume of  water is estimated using the procedure described in the text. 

In Mishima’s experiment [90], amorphous ice is submitted to a compression-decompression-
recompression cycle at an average temperature of  135 ± 5 K, very close to the value of  the glass transition 
temperature (136 K) traditionally accepted for water [91] [92]. This 𝑇𝑇𝑔𝑔  value remains however 
controversial as it has been estimated at 165 ± 5 𝐾𝐾 by Angell and coworkers [93] [94] [95]. Mishima 
discovered a reversible first order transition between a Low Density Amorphous (LDA) phase and a High 
Density Amorphous (HDA) phase. Moynihan used Mishima's data to optimize the model parameter 
values, so we have tried to reproduce Mishima's experimental results with the parameter set in Table 2. 
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The volume calculated with eq. (80) is compared to the experimental data in Figure 12. In performing 
this comparison, it is further assumed in the present work that, in eq. (80), the volume of  the A entities 
depends on pressure according to: 

𝑉𝑉𝐴𝐴° = 𝑉𝑉0exp (−𝜅𝜅𝐿𝐿0(𝑒𝑒 − 𝑒𝑒0)) (95) 
Where 𝑒𝑒0  is the atmospheric pressure and 𝑉𝑉0  is the volume of  amorphous ice under atmospheric 
pressure at 135 K estimated to be 𝑉𝑉0 ≈ 1.09 𝑐𝑐𝑚𝑚3 𝑔𝑔−1  from Mishima’s data. The same constant 
background compressibility value 𝜅𝜅𝐿𝐿0 =  8 10−5𝑀𝑀𝑀𝑀𝑎𝑎−1 is used to calculate Figure 11c and Figure 12. 
A good agreement is observed between the calculated curve and the experimental points in Figure 12. 

 
Figure 12. Evolution of  the volume of  amorphous ice during a compression-decompression-recompression cycle at 𝑇𝑇 =
 135 ± 5 𝐾𝐾. Scatter symbols () are experimental points of  Mishima [90]. The solid line is calculated with eq. (80) 
using parameters from Moynihan [61]. The effect of  the pressure on the background contribution is estimated using the 
procedure described in the text. The downward and upward black arrows indicate the branches of  the experimental curve 
followed on compression and decompression respectively. The overall shape is typical of  a 1st order transition occurring 
abruptly on reaching spinodal instabilities at 𝑒𝑒 ≈ 0.32 𝐺𝐺𝑀𝑀𝑎𝑎 on compression and 𝑒𝑒 ≈ 0.05 𝐺𝐺𝑀𝑀𝑎𝑎 on decompression. 
The portion of  the calculated curve for which (𝜕𝜕𝑉𝑉𝐿𝐿 𝜕𝜕𝑒𝑒⁄ )𝑇𝑇 > 0 corresponds to mechanically unstable states. 

The metastable temperature-pressure phase diagram of  liquid/glassy water is plotted in Figure 13. At 
𝑇𝑇 =  135 ± 5 𝐾𝐾 the experimentally observed LDA  HDA transition on compression and HDA  
LDA transition on decompression both coincide with the calculated spinodal curves as already shown in 
Figure 12. In Figure 13, it can also be seen that the so-called Widom line (dotted line) rather than the LL 
line (solid line) is crossed when cooling liquid water under atmospheric pressure. Thus, there is no 
discontinuity in the response coefficients plotted against temperature in Figure 11 a) to c), but peaks are 
observed. 
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Figure 13. 𝑇𝑇 − 𝑒𝑒 phase diagram of  liquid/amorphous water according to the regular 2-state model of  Moynihan [61]. 
Solid line is the LDA-HDA coexistence curve terminating at the critical point (•). The extension of  the coexistence curve 
beyond the critical point is the so-called Widom line (dotted line). The dashed and dash-dotted curves are the two spinodals. 
In Mishima’s experiment [90] at 𝑇𝑇 =  135 ± 5 𝐾𝐾, the LDA  HDA transition is observed around 𝑒𝑒 ≈ 0.32 𝐺𝐺𝑀𝑀𝑎𝑎 
on compression () and the HDA  LDA transition occurs around 𝑒𝑒 ≈ 0.05 𝐺𝐺𝑀𝑀𝑎𝑎 on decompression (). 

8 Discussion 
We now return to the main focus of  the present article which is the interest of  the regular 2-state model 
for CALPHAD type modeling. 

Let us first consider the 3rd generation descriptions of  the pure elements already available and involving 
only the temperature variable. For the subset of  elements (Al, Au, Fe, Ga, In, Mn, Pb, Sn) listed in Table 
1 for which experimental heat capacity data are available for the liquid phase, only Pb shows a fairly 
strong increase in heat capacity as the temperature is decreased below the melting point. The 
experimentally observed increase in heat capacity appears to be slightly steeper (see fig. 8b of  [15]) than 
that calculated with the ideal 2-state model. In this case, it is possible that the agreement could be 
improved by using the regular 2-state model, but this has not been attempted in the present work. 

To our knowledge, Sn is the only element for which a complete 𝑇𝑇 − 𝑒𝑒 3rd generation description [17] is 
available. In this literature study, the liquid phase is described using the ideal 2-state model neglecting the 
possible effect of  the pressure variable on the Gibbs energy difference between the 2 states. It is 
suggested in the present work that such a modification might be relevant in cases where a significant 
difference in volume between the two states is expected. 

The regular formalism presented in this article is most likely to bring significant improvements and find 
its most useful applications in the following cases. 

Firstly, on substances for which extensive experimental data are available concerning the liquid phase, 
both at the stable and metastable, supercooled, states and the glassy phase. The thermodynamic behavior 
of  strong and fragile liquids is strikingly different. This difference in behavior is well illustrated by Figure 
4 in [25], despite its qualitative nature. By comparison with the quantitative Figure 8 in the present paper, 
it can be concluded that, as already pointed out by Angell & Moynihan [37], increasing the value of  the 
parameter 𝑤𝑤 increases the fragility of  the liquid. Hence, the blue (slightly attractive A-B interaction) or 
orange (ideal A-B solution) curves correspond to strong liquid behavior while the red curves (repulsive 
A-B interaction) describe the behavior of  a fragile liquid. Hence, the regular 2-state model offers the 
possibility to simulate the main archetypes of  glass forming liquids and can offer more flexibility in the 
fitting process, even in the case of  strong liquids such as GeO2 and SiO2. 
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Secondly, in 𝑇𝑇 − 𝑒𝑒 unary phase diagrams, the occurrence of  a melting maximum for a specific crystalline 
phase at high pressure can be explained using a regular 2-state model [50] [56]. The case of  Te was 
considered in former section. Another example is provided by the phase diagram of  pure C, in which the 
graphite [96], diamond and BC8 [97] phases all show this characteristic. Occurrence of  a melting 
maximum is probably not a so rare event when the 𝑇𝑇 − 𝑒𝑒 plane is explored. 

Thirdly, unlike its ideal counterpart, the regular 2-state model is also able to simulate LL transitions in 
pure substances. In the case of  water discussed above, the transition occurs in a 𝑇𝑇 − 𝑒𝑒 region of  the 
phase diagram where the liquid is metastable compared to crystalline ice. Such LL transitions are very 
difficult to observe experimentally because they can be easily masked by crystallization or by the 
occurrence of  the kinetic glass transition on cooling. However, for other pure substances such as Bismuth 
[98], a LL transition has been detected in the domain of  liquid stability. Moreover, in the case of  Sulphur, 
and for the first time, the critical point terminating the LL coexistence curve at high pressure and 
temperature could be determined [99]. It is also worth adding that an accurate knowledge of  the critical 
point is of  great value for tuning the parameters of  the regular 2-state model using equations (52), (53), 
(54) and (89). LL transitions are in fact suspected to occur in many substances including pure elements 
such as Bi, C, Ge, P, S, Si, pure oxides such as GeO2 and SiO2, and organic substances like TriPhenyl 
Phosphite (TPP) [100]. Unambiguous demonstration of  their existence is generally missing owing to the 
high experimental difficulties involved. The reader is referred to the comprehensive reviews of  Wilding 
et al. [51] and Tanaka [52] for a more thorough analysis of  these issues and more exhaustive list of  
chemical systems where possible existences of  LL transitions are under investigation. 

We would like to add some general considerations to end this discussion. It is not excluded, and even 
strongly suggested by some authors, that more than two liquid polymorphs may exist, especially in cases 
where several crystalline phases are successively stabilized by the pressure increase. Indeed, phase 
diagrams in which the liquid phase has several LL coexistence lines and corresponding critical points 
have been drawn schematically notably by Tanaka (fig. 2 of  [63]) or McMillan (fig. 1c of  [50]). 

In most CALPHAD modelling work, the gas and liquid phases are treated as separate phases. However, 
the most obvious polymorph of  any liquid is the gas phase itself, as it is common knowledge that the 
thermodynamic description of  the liquid and gas phases can be unified through the van der Waals fluid 
EOS. Interestingly, Anisimov et al. [101] have proposed a general thermodynamic formalism to describe 
fluid polyamorphism. The approach elegantly combines a regular 2-state model with a van der Waals 
model, or alternatively a lattice-gas model. To be more precise, the background contribution of  the 2-
state model (the A ground-state) is modelled as a van der Waals fluid or a lattice-gas, two descriptions 
that are qualitatively close [102]. The approach of  Anisimov et al. is therefore able to describe the liquid-
liquid and liquid-vapor equilibria in a pure substance in a unified way. 

In relation to the gas, one may wonder about the nature of  the liquid occupying the other end of  the 
entropy scale, i.e. a liquid polymorph having a small excess entropy over the crystal, which can be possibly 
formed through a 1st order LL transition. Such a liquid could be considered as an “ideal glass”. 

Conclusion 
The ideal 2-state model is exclusively used for describing the liquid phase in 3rd generation CALPHAD 
work. The present article does not invalidate this earlier work, but rather suggests that the regular 2-state 
model may represent a valuable complementary modeling tool that considerably broadens the spectrum 
of  phenomena that can be described. The application of  the regular 2-state model to a new test case will 
be the subject of  a future work. This model should only be used if  it significantly improves the 
description compared to the ideal model, and its applicability in a multicomponent system should also be 
verified. 
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Methodology 
The numerical calculations required in this work were performed using a home-made Python program 
and the Numpy package, instead of  a more conventional CALPHAD software. For this reason, there is 
no TDB file for this work. All figures are generated with the Matplotlib library. 
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Abbreviations 
EOS Equation Of  State 

FTS Fragile To Strong (transition) 

LDA Low Density Amorphous (phase) 

LDL Low Density Liquid 

LL Liquid-Liquid (transition or phase separation or coexistence) 

HDA High Density Amorphous (phase) 

HDL High Density Liquid 
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