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Abstract: In recent years, the maintenance of multicomponent systems has been discussed in many
papers. The aim of these studies is to use the maintenance duration of one component for the mainte-
nance of other components to minimize the total maintenance cost of the system. The complexity of
the maintenance of this kind of system is due to its structure and its large number of components.
The present paper suggests a grouped maintenance policy for multicomponent systems in a finite
planning horizon based on the systemic inspection feedback data. The system considered is peri-
odically inspected. Then, the collected data are triply censored (left, right, and interval censored).
The proposed grouped maintenance strategy starts by clustering the components into g clusters
according to their degradation model. Then, an expectation minimization algorithm is applied to
correct the censorship in the data and to associate a Weibull distribution with each cluster. The
proposed grouped maintenance strategy begins by specifying an individual maintenance plan for
each cluster by identifying an optimal replacement path. Then, this step is followed by finding an
optimal grouping strategy using a genetic algorithm. The aim is to identify a point in time when
the components can be maintained simultaneously. To illustrate the proposed strategy, the grouped
maintenance policy is applied to the feedback data of the road markings of French National Road 4
(NR4) connecting Paris and Strasbourg.

Keywords: grouping maintenance strategy; road marking; transportation infrastructure reliability;
retroreflection; Weibull analysis

1. Introduction

The development of maintenance strategies for multicomponent systems is an in-
creasingly important topic in the field of reliability. In the industrial field, choices must
be made between different maintenance options such as those regarding the nature of the
maintenance (preventive or corrective) and the frequency or type of maintenance action to
perform. When a single-component system is considered, maintenance optimization seems
“simple” (the optimization is then a strategy of finding the best times to intervene while
accounting for the dynamics of system degradation and constraints relating to availability,
safety, maintainability, etc.), but the problem increases in complexity as the size of the sys-
tem increases. Complexity is added when there are interactions (economic, stochastic, etc.)
between the components of the system. In this case, the optimal solution for a multi-
component system can be very far from a “stacking” of the individual optimal strategies
characterizing each component considered alone. Research on maintenance optimization
dates to the 1960s, and many works try to deal with some aspects of this particularly hard
and complex problem: from modeling the degradation processes to taking on constraints
such as reliability, staff availability, costs, etc., or more recently, taking advantage of the
advancements in monitoring or new technologies such as artificial intelligence, machine
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learning, big data, and the Internet of Things. For more details, readers could refer to the
last literature review on maintenance optimization proposed by Pincirolli et al. [1].

To optimize the maintenance cost of a multicomponent system, approaches that group
maintenance actions are generally proposed. These groupings are beneficial from an
economic perspective (in particular, grouping reduces fixed costs), but also ensure that
the system functions well overall. In recent years, many maintenance strategies have been
proposed that bundle maintenance tasks. Several papers have discussed this problem;
see, for example, Refs. [2–5]. The aim of these strategies is to minimize maintenance costs
and ensure system availability. For example, Dekker et al. reviewed the literature on
multicomponent system maintenance strategies considering the economic dependence
between systems’ components [2]. They listed different types of strategies: stationary
politics with a long-term stable situation and dynamic strategies that account for the
modification of the system in the short term. Those strategies handle either corrective or
preventive maintenance or, in some cases, combined corrective and preventive maintenance
actions. The operational nature of the system indicates the type of planning horizon.
In [5], most grouping policies are concerned with series systems because the shutdown
of one component leads to the total shutdown of the system. Then, authors proposed
a maintenance strategy for multicomponent systems with dynamic contexts and a finite
horizon model to optimize online the maintenance strategy in dynamic contexts. The
paper neglects the maintenance duration and the impacts of the grouped maintenance on
the production systems. The proposed strategy was applied to a numerical example of a
16-component system. The results highlight the preference and robustness of the proposed
maintenance grouping strategy.

Proposing a maintenance grouping strategy for a system with several components
starts with the proposal of an individual preventive maintenance plan for each component.
In industry, preventive maintenance is the act of periodically performing a maintenance
action to fix or replace a component before its failure. Different preventive maintenance
approaches exist. A systematic approach identifies an optimal maintenance path in accor-
dance with the lifetime of the component and the maintenance cost; see, for example, [6].
The aim of a conditional policy is to determine an optimal preventive degradation threshold
according to the degradation model, maximum degradation threshold, and maintenance
cost [7]. The last preventive maintenance type is the predictive approach. This approach is
like the conditional approach, but the preventive threshold is replaced by a failure risk as
the remaining useful life [8]. This paper considers the systematic approach.

To evaluate the state of a system S at time t, a decision variable is assigned for each
component to identify whether it has failed or is operating, and since the maintenance
strategy proposed in this paper is based on reliability, it is necessary to identify the state
space of the system. In our study, the decision variables are therefore the ones that provide
the renewal (or repair) times. In the literature, two approaches have generally been
considered. The state space
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of a given component denoted i can be either continuous
(e.g., the percentage of pavement cracked) or discrete with a finite number of states. In this
study, the states can be reduced to two: respectively, the operating and failure states.

In the case in which the decision variable is continuous, a component is considered
to have failed if this variable exceeds a set failure threshold. In this work, the condition
of each component i is periodically inspected (an inspection step is set), and the decision
variable is continuous. With this approach, the exact date when the component crosses
the failure threshold is not known. Then, the inspection data are said to be censored. The
censored data are categorized into three types: left censored, interval censored, and right
censored. Thus, to address this kind of problem, the literature proposes three families of
algorithms: expectation–maximization (EM) [9,10], stochastic expectation–maximization
(SEM) [11,12], and Bayesian restoration maximization (BRM) [13–15]. In this work, an EM
algorithm is considered.

Although there are several papers in the literature that study the maintenance of
road infrastructure, no studies take into consideration all the components of the road



Future Transp. 2023, 3 770

infrastructure (pavement and marker lines). The main goal of this paper is, therefore, to
propose an optimal maintenance plan of all the marker lines of a given road infrastructure
regarding a grouping approach. To achieve this goal, a specific data processing and analysis
approach is proposed. This study is motivated by the needs of autonomous and connected
vehicles for road infrastructure.

2. Introduction to the Problem and the Use Case

Preventive maintenance has been discussed by many authors. In industry, preventive
maintenance is the act of periodically performing a maintenance action to x or replace a
component before its failure. In the literature, many preventive maintenance strategies
exist. In [16], two types of preventive maintenance policies are considered. The first is
useful for maintaining simple equipment, and the second is useful for maintaining complex
systems. In the same context, Valdez-Flores et al. included optimization models for the
repair, replacement, and inspection of systems subject to stochastic deterioration [17]. In
2002, Wang proposed different types of preventive maintenance: the age replacement policy,
random age replacement policy, block replacement policy, and repair cost limit policy [18].
Finally, Barlo and Proshan concluded that the age replacement policy is an economical way
to determine block replacement age [19]. Under this policy, a component is replaced at
age T* or after failure. Refs. [20,21] introduced another type of preventive maintenance
policy (imperfect maintenance) with minimal repair. This policy is equivalent to a perfect
repair with probability p and a minimal repair with probability 1 − p. After imperfect
maintenance, the component is not as good as new but is younger. In the same context,
Ref. [22] discussed conditional preventive maintenance. This type of policy is based on
controls and inspections to guarantee the optimal availability of a component. This paper
considered an age replacement policy.

Then, the optimization of maintenance strategies is also a key issue. As many papers
can easily be found in the literature, we chose to focus on works dedicated to road infras-
tructure. Thus, Guan et al. proposed a multi-objective optimization model considering
the interactions between pavement condition and traffic dynamics for the planning of
multi-year road network maintenance considering a genetic algorithm [23]. In [24], authors
proposed a multiple Markov decision process model and a priority-based two-stage method
for determining optimal maintenance decisions for road infrastructure. In [25], based on a
semi-Markov approach to model the road deterioration through a Weibull model, linear
programing models were proposed to define optimal maintenance policies to minimize the
lifecycle cost of a road.

As mentioned in Section 1, our work focuses on multicomponent systems that refer
to a mixture of a few components which may interact with each other. These components
are structured in different configurations: serial, parallel, or a complex combination of
serial and parallel structures. The structure of the system represents the way in which the
components are arranged to perform a common function. The modeling of the system
structure is vital because it conditions the overall functioning of the system. A serial
system works if all its components work, but a parallel system works if at least one of its
components works.

In industry, grouping maintenance is a way to minimize preventive maintenance costs.
The aim of the method is to identify the optimal time to simultaneously maintain a complex
system’s components. According to [2], the dependencies between the system’s components
are classified into stochastic, structural, and economic. Many grouped maintenance policies
are presented, and most consider only economic dependence.

Nguyen introduced two types of grouped maintenance policies: dynamic policies
that allow maintenance plans to be updated in a dynamic context and stationary policies
that do not consider the dynamic context [26]. However, grouping maintenance actions
can also be conducted in a dynamic context [4,5]. In this case, some changes both in
the costs during the planning horizon and in the system’s structure must be introduced.
Ref. [27] proposed a stationary grouped maintenance strategy for systems with complex
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structures. The grouping methodology is presented as a policy for making the mainte-
nance cost cheaper than separately performing the maintenance activities. In the same
context, [3] proposed a grouped maintenance optimization for series systems subject to
reliability constraints. Most of the grouping strategies are based on genetic algorithms, and
some recent papers explored other operational research solutions. Thus, a particle swarm
optimization algorithm was proposed for both optimizing the availability of a system
and minimizing the cost of its preventive maintenance through a grouping strategy [28].
More recently, a clustering approach was proposed for optimal grouping maintenance
strategies for complex structure systems [29]. Finally, some grouping strategies tried to
take constraints into account. Up to now, only one constraint is generally introduced in
grouping policies, mainly connected to maintenance teams. Thus, Do et al. proposed a
dynamic maintenance grouping strategy, optimized on a rolling horizon using a genetic
algorithm, under both availability and limited repairmen constraints [30]. In a road context,
Jha et al. considered a cost minimization problem considering work shift and overtime
constraints. An algorithm using Floyd’s shortest path method was developed to optimize
the time and paths for efficient inspection of highway assets [31].

In our paper, the proposed methodology considers the interdependence existing
between components. In conclusion, the main aim of this study is to propose a grouped
maintenance policy for multicomponent systems in a finite planning horizon.

For some systems, the components do not really fail but reach a serviceability threshold.
Therefore, even for serial systems, if a component reaches a serviceability limit state, the
entire system remains in operation. Thus, it is important to inspect the system to know
the condition of each component. As introduced in Section 1, the aim of this paper is
to determine an optimal maintenance strategy for road marking considering a grouping
approach. For this, a specific data processing approach to analyze the feedback data of
multicomponent systems is defined and introduced. The contribution of this study is
summarized in Figure 1, which introduces our contribution and all the algorithms used.
As illustrated in Figure 1, the proposed grouping strategy involves four main steps:

• Data collection and analysis;
• Classification of system components into several clusters according to their

degradation process;
• Individual maintenance optimization for each cluster;
• Maintenance action grouping, considering the interactions between the system

components.

The contributions of this paper focus on the last three steps previously introduced.
Each of these steps will be discussed and detailed in the next sections.

The proposed strategy is applied to periodically inspected feedback data. The exact
failure time is not generally observed, and the feedback data contain multiple types of
censoring: left censoring, interval censoring, and right censoring. To address this kind
of data, a Weibull analysis is proposed for estimating the failure time using maximum
likelihood estimation (MLE).

In 2007, Hunter suggested using the EM algorithm to estimate the date of failure [8].
In the case of incomplete or missing data, an EM algorithm is a useful method for find-
ing the maximum likelihood. A Weibull analysis is a commonly used methodology for
performing life data analysis. Indeed, it is an effective method for determining reliability
characteristics and has demonstrated a good “agility” to fit the behavior of a population.
Ducros and Pamphile proposed EM, SEM, and BRM algorithms for estimating the Weibull
parameters [14]. In the second section of this paper, an extension of the EM algorithm for
processing left- and right-censored data is presented. The proposed algorithm is applicable
to all observation vectors independent of the nature of the censoring.

In this paper, the EM algorithm proposed by M. Redondin is used. According to the
work of Sathyanarayanan, this algorithm is suitable for the simulation of road marking
degradation [32]. To simplify the study, the components of the system are clustered into
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groups according to their degradation level. Then, a maintenance strategy is proposed for
each cluster.
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In data mining, two types of classification exist: supervised and unsupervised. Super-
vised classification is the data mining algorithm most often used for quantitative analysis.
In the literature, supervised classification algorithms are often used with image data. In
this case study, agglomerative hierarchical clustering (AHC) combined with a factor anal-
ysis of mixed data (FAMD) is considered since its use has been proven relevant for road
markings [33]. This strategy is introduced in Section 4.

In this article, the feedback data (the inspection date t and the level of degradation
of a component) are classified in a state space marked D. In this framework, the data
are censored, so the state space is divided into four subspaces according to the nature
of the censoring. D = DE ∪ DL ∪ DI ∪ DR, where DE represents the exact data, DL the
left-censored data, DI the interval-censored, data and DR the right-censored data. Then, the
data collected during inspections are clustered into k clusters according to their degradation
model. To correct the censoring of each cluster Cj with j ∈ {1, . . . , k}, an EM algorithm
is applied to estimate the exact dates of failure and assign a probability distribution for
the degradation model for each cluster Cj with j ∈ {1, . . . , k}. Once the parameters of the
Weibull distribution (αj, βj) are estimated and the various maintenance costs are set, an
optimal replacement period Tj

∗ is defined for each cluster Cj. For minimizing maintenance
costs, a bundling strategy is applied to identify a maintenance date that bundles several
maintenance actions together.

This paper considers an example structured as a series system whose components are
independent and periodically inspected. The decision variable is continuous.

In conclusion, although the case study is limited to serial systems, the minimum
requirement to apply this grouping strategy is to have an inspection history of the different
components of the system. The feedback data process and grouped maintenance strategy,
illustrated in Figure 1, is proposed for:

• Complex structure systems;
• Finite-horizon planning;
• Age-based replacement policy.

This paper is structured as follows. In Section 3, a strategic clustering of the system
components is discussed. The aim is to group the components that degrade in the same
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way in order to assign a maintenance strategy to each cluster. The feedback data considered
in this paper are censored. Instead of correcting the censoring for each component, it
is corrected for each cluster by applying an EM algorithm, presented in Section 4. The
maintenance policy chosen (for each cluster) in this paper is an age-based policy. It is
discussed in detail in Section 5. To minimize the preventive maintenance cost of a given
system, a grouping policy is proposed in Section 6, and its application is discussed in
Section 7.

3. Strategic Clustering for Preventive Maintenance

To simplify the study, all components of a given system S are clustered into g groups
according to their degradation level, observed between two inspections It and It+1. The
aim of this strategy is to identify the internal grouping in a set of data to apply a Weibull
analysis and propose a preventive maintenance strategy adapted to each cluster Cj. In the
absence of a class label, the clustering method used is unsupervised. In data mining, there
are numerous unsupervised clustering algorithms, such as k-means, hierarchical clustering,
and Gaussian mixture models. In [33], authors suggested clustering the components using
an AHC. Each group Cj contains those components that degrade in the same way. An
automatic classification and analysis of multiple-criteria decision making was proposed
in [34]. The unsupervised clustering algorithms are used to generate rules from a learning
database. In both papers, [33,34], the AHC is used because it offers a simple and clear
approach to facilitate the structuring of information. It returns a hierarchical structure that is
more informative than the unstructured set of clusters produced by k-means, for example.

According to [30], hierarchical clustering is an approach that builds hierarchies of
clusters through two approaches:

• Agglomerative: A bottom-up strategy, where each observation starts in its own cluster,
and pairs of clusters are merged upwards in the hierarchy;

• Divisive: A top-down strategy, where all the observations start out in the same cluster,
and then the clusters are divided recursively downwards in the hierarchy.

To identify which clusters to merge or split, a measure of the distance between clusters
is introduced. Ref. [33] proposed the Ward distance that defines the distance between two
clusters, Cj and Cj ′ , as the sum of squares, which increase when they are merged. This
parameter is given by (1), where d is the Euclidean distance.

dw

(
Cj, Cj′

)
=

d
(

mj, mj′
)

1
nj
+ 1

nj′

(1)

where mj and mj ′ are the average profiles of the clusters, nj and nj, are the corresponding
numbers of observations in each cluster, and d is the Euclidian distance.

Then, Tidjani et al. chose the optimal number of clusters based on the semi-partial R2

criterion [32]. This term represents the loss between inertial class references. Hierarchical
clustering is a method that builds a cluster tree (named dendrogram) to present the data. A
node in the dendrogram contains a group of similar data.

As mentioned in the previous section, the data considered in this work are censored.
To correct the censored data, a Weibull analysis is applied to each cluster Cj. The goal of the
analysis is to estimate the exact failure date and the associated parameters of the Weibull
distribution. This methodology is presented in the next section.

4. EM Algorithm

The Weibull distribution considered in this paper is defined by the probability den-
sity function given in Equation (2), where α > 0 and β > 0 are the associated scale and
shape parameters:

f (x) =

{
β
α

( x
α

)β−1e−(
x
α )

β
i f x > 0

0 i f x ≤ 0
(2)
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Assume that W is the lifetime variable of the road markings. The observed data (τ1, τ2,
. . . , τn) should be independent and identically distributed. The feedback data are censored.
In this paper, three types of censored data are assumed:

• If failure occurs before the first inspection I1, the data are left censored;
• If failure occurs between two inspections, the data are interval censored. The time

interval in this case is [l, r], where l is the date of inspection Il and r is the date of the
l + 1 inspection;

• If failure has not been observed by the last observation, the data are right censored.

For simplicity, the censoring types are coded as follows:
i = 1, . . . , n

∀i = 1, . . . , n, δi =


0 i f τi is uncensored

1 i f τi is le f t censored
2 i f τi is interval censored

3 i f τi is right censored

(3)

The observed data are divided according to the censoring type:

DE = {τ ∈ ((τ1, δ1), . . . , (τn, δn)/δi = 0)} (4)

DL = {τ ∈ ((τ1, δ1), . . . , (τn, δn)/δi = 1)} (5)

DI = {τ ∈ ((τ1, δ1), . . . , (τn, δn)/δi = 2)} (6)

DR = {τ ∈ ((τ1, δ1), . . . , (τn, δn)/δi = 3)} (7)

In statistics, MLE is a method for estimating the parameters of a distribution function.
The uncensored data are computed as follows:

L(α, β) =
n

∏
i=1

f (τi) (8)

For censored data, the likelihood function is defined as:

L(α, β) = ∏τ∈DE
fE(τ)∏τ∈DL

FL(τ)∏τ∈DI
(RI(l)− RI(r))∏τ∈DR

RR(τ) (9)

fE is the probability density function of subspace DE, and FL(τ) = P (W < τ) is the
cumulative distribution function of subspace DL. This expression represents the probability
that failure occurs before time τ, and RL(τ) = 1 − FL(τ) and RR(τ) = 1 − FR(τ) of subspaces
DI and DR, respectively, represent the probabilities that failure will occur after τ.

In the case of censored data, the classical method is not applicable. In 2019, Redondin
et al. proposed an extension of the EM algorithm for censored data [9]. This process
interprets the censored data as missing data and iteratively computes two steps:

• The expectation step estimates the censored data according to a given Weibull distri-
bution Ω(α, β);

• The maximization step estimates a Weibull distribution by MLE according to both the
uncensored and complete data.

4.1. Expected Step

To simplify the EM algorithm, substituting α← α
1
β was suggested [35]. Following

this modification, the Weibull density function is:

f (x) =

{
αβ(x)β−1e−αxβ

i f x > 0
0 i f x ≤ 0

(10)



Future Transp. 2023, 3 775

In this step, the likelihood estimated is computed as the maximized expectation of the
likelihood function conditional on the uncensored data.

LC(α, β) = E[L(α, β)|τ] (11)

The aim of this strategy is to estimate the censored data; each one is a conditional
expectation adapted for a specific censoring. The following estimators were proposed
in [9]:

t̂L = E[W|W < τ] =
αβ
∫ τ

0 xβe−αxβ
dx

1− e−ατβ
(12)

t̂I = E[W|l < W < r] =
αβ
∫ r

l xβe−αxβ
dx

e−αlβ − e−αrβ
(13)

ˆtR = E[W|W > τ] =
αβ
∫ +∞

τ xβe−αxβ
dx

−e−ατβ
(14)

Using these estimators, the likelihood function Lc associated with the censored data in
the estimation of the Weibull distribution parameters is defined by (15).

LC(α, β) = ∏t∈DE
fE(t)∏t̂L∈DL

FL

(
ˆ̂tL

)
∏t̂I∈DI

FI
(
t̂I
)
∏ ˆtR∈DR

FR
(

ˆtR
)

(15)

4.2. Maximization Step

The parameters of the Weibull density (α, β) annul the two partial derivatives of the
completed log likelihood function.

δαLC =
n
α
− ∑

t∈DE

tβ − ∑
t̂L∈DL

t̂L
β − ∑

t̂I∈DI

t̂I
β − ∑

R̂∈DR

ˆtR
β (16)

δβLC = n
β −∑t∈DE

ln(t)−∑t̂L∈DL
ln
(
t̂L
)
−∑t̂I∈DI

ln
(
t̂I
)
−∑ ˆtR∈DR

ln
(

ˆtR
)
−

α
[
∑t∈DE

ln(t) + ∑t̂L∈DL
t̂L

β ln
(
t̂L
)
+ ∑t̂I∈DI

t̂I
β ln
(
t̂I
)
−∑ ˆtR∈DR

ˆtR
βln
(

ˆtR
)] (17)

In [9], authors proposed estimating the Weibull parameters (α, β) as a nonlinear
problem. This problem is solved by a fixed-point approach. α is estimated by equation
∂αLc (α, β) = 0 as:

α =
n

∑t∈DE
tβ −∑t̂L∈DL

t̂L
β −∑t̂I∈DI

t̂I
β −∑ ˆtR∈DR

ˆtR
β

(18)

The estimation of α clearly depends on β since Equation (18) is a function of β. Replac-
ing α by (18) in (17), a function g(β), as ∂βLc = g(β) − β, is extracted in Equation (19). β is
defined as the convergence point of the sequence in (20).

g(β) =
1

∑t∈DE
tβ ln(t)+∑s∈S ŝβ ln(ŝ)

∑t∈DE
tβ+∑s∈S ŝβ +

∑t∈DE
ln(t)+∑s∈S ln(ŝ)

n

(19)

where S is the set of lifetime durations corrected by the proposed EM algorithm over DL,
DI, and DR.

The fixed point of g(β) is β, where g(β) = β. Given the initial value, the problem is
modeled as:

(Un)n≥0 =

{
u0 > 0 arbitrary

un = g(un−1) n > 0
(20)



Future Transp. 2023, 3 776

4.3. Iteration and Convergence

Given the arbitrary initial distribution Ω(α0, β0), Redondin et al. proposed that α0 and
β0 are the MLE estimations when the censored data are ignored [10]. For each iteration k,
the Weibull distribution is given by Ω(αk, βk). Using (20), βk is computed as (21):

(βk)k≥0 =


β0 > 0

α = lim
x→0

{
u0 = βk−1

un = g(un−1)
(21)

Referring to [9], it was proposed to stop the iterations when |βk − βk−1| < 10−4. The
EM algorithm convergence is defined by the convergence of the sequences (βk)k≥0 and (18):

β = lim
k→∞

βk

α = n
∑t∈DE

tβ+∑ ˆtL∈DL
t̂L

β
+∑t̂I∈DI

t̂I
β
+∑ ˆtR∈DR

ˆtR
β

(22)

Finally, the modification α← 1
β√α

is intended to return to Weibull distribution (2).
When the associated Weibull parameters are defined, a preventive maintenance strategy
adapted to each cluster can be proposed as introduced in the following section.

5. Individual Maintenance Strategy Optimization

The components of the system are clustered into g groups. For each cluster Cj (with
j ∈ {1, g}), a Weibull analysis using the EM algorithm presented in the previous section is
applied to identify the parameters (αj, βj). The policy suggested in this section is an age-
based replacement for each cluster Cj. As illustrated in Figure 2, the preventive replacement
of cluster Cj is carried out once the age of the component reaches a critical operational age
Tj∗ (Tj∗ being the optimal replacement age of all components in cluster j). If the component
fails between two replacement dates, the component is replaced, and the maintenance
action cost is Ccj. To avoid over-maintenance, the age of the component is initialized at 0
after a corrective action and the preventive action scheduling is translated from the date of
the failure.
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The replacement of the component restores the system operating conditions to “as
good as new”. The optimal age for replacing the components of cluster Cj is defined by (23),
and Tj∗ presents the optimal frequency of preventive maintenance action.

T∗J =
{

T/Csys(T) = mint>0
(
Csys(t)

)}
(23)

The long-term asymptotic cost C(∞) defines the cost of the corrective maintenance
per unit of time. This term is computed by (26). C(∞) depends on the mean time before
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replacement (MTBR). The MTBR is associated with the Weibull density Ω(αj, βj) of the
jth cluster.

C(∞) = lim
t→∞

Csys(t) =
Cj

p + Cj
c∫ +∞

0 Rj(x)dx
(24)

C(∞) = lim
t→∞

Csys(t) =
Cj

p + Cj
c

MTBR
(25)

C(∞) = lim
t→∞

Csys(t) =
Cj

p + Cj
c

αjΓ
(

1 + 1
β j

) (26)

where Cj
p and Cj

c are, respectively, the cost of a preventive or corrective maintenance action

for the jth cluster. To identify the benefit profit of preventive maintenance, the ratio Csys(t)
C(∞)

is used.
It measures the financial benefit of preventive maintenance at time t compared to

corrective maintenance. The value of this ratio determines whether corrective mainte-
nance or preventive maintenance is better. If it is over 1, corrective maintenance is more
economically beneficial. In the opposite case, preventive maintenance provides more
economical benefits.

The proposed maintenance strategy is applied to each cluster to identify an optimal
path of maintenance. The next section presents a grouped maintenance strategy to minimize
the maintenance costs.

6. Grouping Maintenance Strategy

As mentioned above, grouping maintenance actions can reduce the system mainte-
nance cost. In this section, based on the formalism proposed in [5,31], a statistical grouped
maintenance strategy is proposed. As presented in Section 1, this strategy is characterized
by a finite planning horizon, denoted HZ, which will be defined in the next section.

6.1. Defining the Planning Horizon

The first step in defining the planning horizon is to determine the beginning date
Tbegin. In this case study, we will assume that Tbegin = 0. To ensure that all the components
are maintained, the end of the planning horizon, denoted Tend, is defined as:

Tend = maxi=1...N{ti1} (27)

where ti1 defines the first maintenance action for component i. To illustrate this method,
an example is presented in Figure 3. In this example, HZ = HZ = [0, ti1]. In this plan-
ning horizon, components 1 and 2 are maintained twice and component N is maintained
only once.
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6.2. Mathematical Formulation of Economic Profit

For the problem of optimizing maintenance strategy for a multicomponent system by
grouping maintenance actions, a candidate solution is presented as an array denoted Z.
For a given solution, the economic profit is calculated for each group Gk of the proposed
solution, and the total economic profit is divided into the following three parts.

Setup cost: When the preventive maintenance actions are grouped, the setup cost of a
group is reduced and is calculated as follows:

UGk =
[
Card

(
Gk
)
− 1
]
Sp (28)

where Card(Gk) is the number of maintenance actions for group Gk and Sp is the individual
setup cost.

Penalty cost: Let tij be the time of the jth maintenance action for component i. When
the maintenance actions are grouped, the maintenance execution time of the grouped
maintenance actions is changed to tGk . The difference between the initial time and tGk

is denoted ∆tij. Figure 4 introduces an example of the changing execution time process.
Initially, the actions j, j + 1, and j + 2 of component i were all Ti* apart. Since action j + 1
was grouped at time tGk which is ∆tij later, action j + 2 had also to be delayed by ∆tij.
Thus, such changes involve a penalty cost, denoted ∆HG1

k, because either the service life
of component i is reduced or the likelihood of failure increases (with respect to the sign
of ∆tij).
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Let hi(∆tij) be the penalty cost for component i, which is defined as:

hi
(
∆tij

)
= E

[
MCi

(
T∗i + ∆tij

)]
+ E[MCi(T∗i )]− ∆tij CA∗ (29)

where MCi(t) = Cc
i
( t

α

)β is the total corrective maintenance cost in the interval [0, t] for
component i, and CA∗ = ∆tij

Ci βi
T∗i (βi−1) is the average asymptotic cost [4]. The penalty

cost for group Gk is calculated by Equation (31). Minimizing (30) provides the optimal
maintenance time, denoted t∗Gk :

∆H1
Gk = ∑

ij∈Gk

hi
(
∆tij

)
(30)

Additional gain due to the structure: The structure of the system plays a major role in
identifying the shutdown cost for preventive maintenance. Let ∆H2

Gk be the additional gain
due to the structure, which is defined by:

∆H2
Gk = πGk .

(
C −

Gk
−CGk

)
(31)
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where C −
Gk

is the total planned shutdown cost if the maintenance activities are performed

separately, which is given by:

C −
Gk

= ∑
ijεGk

[
πi.C

p
sys + (1− πi)cl

i

]
(32)

where Cp
sys is the planned shutdown cost of the system and cl

i is the penalty cost to be paid
if component i does not operate. πi represents the indicator parameters, where:

πi =

{
1 i f component i is critical

0 otherwise
(33)

Note that πGk represents the same indicator, equal to 1 if group Gk is critical.
A component is said to be critical if its shutdown, for whatever reasons, leads to the

shutdown of the system, and a component is non-critical if the system can continue to
function when the component stops. Let CGk be the planned shutdown cost when the
maintenance activities are performed together, which is defined as:

CGk = Cp
sys (34)

6.3. Economic Profit

For a given group Gk, the economic profit is defined by:

EP
(

Gk
)
= UGk − ∆H1

Gk + ∆H2
Gk (35)

Then, the considered objective function is calculated from the total economic profit for
a given candidate solution SGM, which is given by:

TEP(SGM) = ∑GkεSGM EP
(

Gk
)

(36)

The optimal solution SGMopt is chosen by maximizing the total economic profit:

SGMopt = maxSGMTEP(SGM) (37)

To identify the optimal grouped maintenance of each cluster Cj, an optimization
algorithm must be used to identify the best grouping structure. In this paper, a genetic
algorithm (GA) is introduced. To evaluate the performance of some individuals, a fitness
function (i.e., an objective function for optimizing a specific problem) is considered to
calculate each generation. In this case study, the fitness function is represented by the
economic profit. The next sections introduce the used GA and how the fitness function
(economic profit) is computed.

6.4. Genetic Algorithm and Its Application to Optimal Grouping Maintenance Strategies

GAs are fundamental evolutionary stochastic optimization algorithms. These algo-
rithms are based on the ideas of natural selection and genetics. GAs are commonly used to
generate high-quality solutions for optimization problems. Based on biological evaluation,
GAs are designed to select the best solution from each iteration (generation). According
to [36,37], the genotype is a candidate solution. The phenotype is what the genotype
produces. Often, in GAs, the two are very different, much like there is a large difference
between a biological organism (the phenotype) and its DNA (the genotype). The objective
function is a type of phenotype. GAs are employed in many domains, such as finance
and economics, social sciences, industrial management, and engineering. A solution is
produced as a population (generation). In each iteration (generation), an optimal solution is
created by selecting the individuals (chromosomes) that have the best fitness in the problem.
In this case study, a GA is used to select the solution that yields the optimal economic profit.
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To structure the problem in the algorithm, the individuals are coded. In the literature,
binary coding is the most used. In this study, the chromosomes are coded as follows:

Let Z be an array of M components, where M defines the number of preventive main-
tenance actions timed in the planning horizon. Z is structured as shown in Equation (38).
This shows that if the jth preventive maintenance action for component i belongs to group
k, then the kth component of Z is k.

ij ∈ Gk → Z
(

ij
)
= k; k ∈ [1 . . . M− 1] (38)

As an illustration, Figure 5 introduces an example of a Z array for a four-component
system, considering six maintenance actions and proposing a four group-structure where
the first action on component 1 is alone in the first group when the second action on
component 1 and the first on component 2 are in the second group.
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The first phase of the GA is the creation of an initial population. In this research
framework, the initial population is constructed with Np randomly drawn chromosomes.
A GA is a four-step algorithm. The first step is the selection step. The aim of this step is to
choose individuals from a given population. In the literature, many methods of selection
exist, including roulette wheel selection, rank selection, steady-state selection, tournament
selection, and elitism selection. In this section, roulette selection is used. This mechanism
problematically selects individuals according to their performance. The choice of this
method is justified by the fact that a fair chance is given to each individual, which can
ensure the diversity of the population.

The selection phase is followed by the crossover phase. In this step, new chromosomes
are produced using existing chromosomes (parents). This phase is also called recombination.
The new individuals have some of the parents’ parts. In the literature, many methods of
crossover exist: single-point crossover, two-point and K-point crossover, uniform crossover,
and crossover for ordered lists. In this work, a single-point crossover method is used,
and the single point is randomly defined. Figure 6 shows an example of crossover in the
fourth step.

Future Transp. 2023, 3, FOR PEER REVIEW  14 
 

 

The first phase of the GA is the creation of an initial population. In this research 
framework, the initial population is constructed with Np randomly drawn chromosomes. 
A GA is a four-step algorithm. The first step is the selection step. The aim of this step is to 
choose individuals from a given population. In the literature, many methods of selection 
exist, including roulette wheel selection, rank selection, steady-state selection, tournament 
selection, and elitism selection. In this section, roulette selection is used. This mechanism 
problematically selects individuals according to their performance. The choice of this 
method is justified by the fact that a fair chance is given to each individual, which can 
ensure the diversity of the population. 

The selection phase is followed by the crossover phase. In this step, new 
chromosomes are produced using existing chromosomes (parents). This phase is also 
called recombination. The new individuals have some of the parents� parts. In the 
literature, many methods of crossover exist: single-point crossover, two-point and K-point 
crossover, uniform crossover, and crossover for ordered lists. In this work, a single-point 
crossover method is used, and the single point is randomly defined. Figure 6 shows an 
example of crossover in the fourth step. 

 
Figure 6. Crossover step. 

To generate new solutions, one allele of a gene is replaced by another. A simple 
example of mutation is shown in Figure 7. The candidate solution obtained during the 
previous steps can have some deficiencies such as empty groups and incoherent 
maintenance action execution times. To address these defects, the solutions are repaired.  

 
Figure 7. Mutation step. 

7. Short Application and Comparison of the Proposed Grouping Strategy 
This section shows how the proposed methodology can be applied to 

multicomponent systems to minimize the cost of preventive maintenance actions. 
To validate the grouping algorithm proposed in this paper, it was applied to a 

numerical example proposed by [5] whose structure is shown in Figure 8. This structure 
is a combination of series, parallel, series–parallel, and parallel–series configurations. 
From a methodological perspective, this configuration is a complete example to illustrate 
the different steps of the proposed maintenance grouping strategy. The results of our 
algorithm previously introduced are illustrated in Figure 9.  

Figure 6. Crossover step.

To generate new solutions, one allele of a gene is replaced by another. A simple exam-
ple of mutation is shown in Figure 7. The candidate solution obtained during the previous
steps can have some deficiencies such as empty groups and incoherent maintenance action
execution times. To address these defects, the solutions are repaired.
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7. Short Application and Comparison of the Proposed Grouping Strategy

This section shows how the proposed methodology can be applied to multicomponent
systems to minimize the cost of preventive maintenance actions.

To validate the grouping algorithm proposed in this paper, it was applied to a nu-
merical example proposed by [5] whose structure is shown in Figure 8. This structure is a
combination of series, parallel, series–parallel, and parallel–series configurations. From
a methodological perspective, this configuration is a complete example to illustrate the
different steps of the proposed maintenance grouping strategy. The results of our algorithm
previously introduced are illustrated in Figure 9.
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The blue dots represent the maintenance times for each of the 16 components proposed
and their individual optimization. The red ones are the maintenance times provided by
our grouping strategy.

We can note that the grouping approach produces the optimal grouping plan, which
consists in four groups with a total economic profit equal to 524.61, while the total economic
profit was 523.83 in [5]. We therefore notice a slight difference between the two economic
profits, and we can conclude that our grouping strategy seems to be applicable in the case
of systems with a complex structure.

8. Application of the Grouping Strategy to Road Markings

As mentioned above, serial systems are considered in the study case, and the compo-
nents are periodically inspected. To highlight the proposed grouping process, the proposed
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strategy is applied to the retroreflective road markings of French National Road 4 (NR4)
connecting Paris to Strasbourg.

The retroreflective road markings on road lanes can reflect the light from a vehicle’s
headlight back to the driver. The retroreflectivity of road markings is used to improve the
quality of road lanes in low-light and night conditions. These markings provide visual
guidance for drivers.

According to NF EN 1436, the French standard for road markings—the retroreflection
luminance of markings—is a standard measure used for evaluating marking degradation.
This road section is managed by the DIR Est. To evaluate the state of the markings,
one inspection per year, in late September, is conducted. The retroreflectivity level of a
marking is measured in millicandela per square meter and by luminance (mcd/m2/lx). For
simplicity, a measurement is generally interpreted as a single marking, a point of reference
(PR), located by a landmark (e.g., a mile marker). According to Tidjani et al., a road marking
is considered to have “failed” and must be replaced if its retroreflectivity level is less than
150 mcd/m2/lx [33]. In this case, the replacement is the only maintenance action.

The NR4 generally consists of three lines: the median strip line (MSL), emergency line
(EL), and broken center line (BCL). The road marking is then represented by a serial system,
denoted S, with three components.

As mentioned above, road markings are periodically inspected. Thus, the exact failure
time is unknown. In this case, the feedback data contain many censored data points. The
EM algorithm is then applied to the PR of each line. To simplify the study, the PR values of
all the lines are clustered into g clusters according to the retroreflectivity level degradation
using the AHC introduced in Section 3. This methodology shows that each line can be
clustered into nine clusters. Figure 10 directly presents all these nine clusters on the map
(each color represents a cluster).
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Projecting the clustering results on the map, we can see that it is mainly based on
different characteristics of the road (type of pavement, type of lanes, and location: city,
village, etc.).

The first cluster, represented in black on the map, contains 9% of the PRs of the NR4.
It appears that the road markings in this cluster are laid on 2 × 2 lanes and two-lane single
pavements in excellent condition. On these sections, some grading, interchanges, and
planes are noticed.

Cluster 2, presented in yellow on the map, contains 12% of the marking lines. The
pavement is generally paved with very thin modified bitumen, and is a 2 × 2 lane-divided
pavement. In this cluster, there is the presence of unevenness, and the markings have
exhibited rather stable evolution over time.

Cluster 3 groups together only the pavements in poor condition, and this is essentially
a 2 × 2 lane-divided pavement surfaced with very thin modified bitumen.

Cluster 4 represents 11% of the road lines. A significant number of markings belonging
to this cluster have poor pavement conditions. This includes markings on single four-lane
roadways paved with very thin modified asphalt. The intersection in the plan is remarkable.

In cluster 5, The road markings have acceptable conditions and are primarily placed
on single two-lane roadways. This is the only cluster that contains a portion of three-lane
single pavement.

Cluster 6 focuses on 2 × 2 lane-divided roadways paved with very thin modi-
fied bitumen and in acceptable condition. There is a significant presence of gradients
and interchanges.
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Cluster 7 consists mostly of single two-lane pavement paved with pure thin bitumen
in acceptable condition. It is the only cluster in which there are no special crossings, and its
asphalt is the oldest of all and has the lowest daily traffic rate.

Cluster 8 is the only cluster where all road markings are in excellent condition. It
contains, in particular, 2 × 2 lane-divided roads. Apart from the presence of gradients and
planes in this cluster, a fairly high percentage of interchanges is noted.

Finally, cluster 9 has a significant percentage of grade separation. Single two-lane pave-
ments and 2 × 2 lane-divided pavements, semi-gritty bitumen, and acceptable condition
are observed. All three types of markings in this cluster show a similar pattern.

The literature shows that the Weibull distribution is suitable for analyzing the reliability
of road markings. Thus, to correct the censored data, the EM algorithm is applied to each
cluster j ∈ {1 . . . g} with g = 9. For each cluster Cj, a Weibull analysis is applied using the EM
algorithm presented in Section 4. The aim of this analysis is to determine the parameters of
the Weibull distribution for each cluster.

Let Cp
j and Cc

j be, respectively, the preventive and corrective maintenance costs of
cluster Cj. The preventive maintenance cost allocated for road markings is Cp = 10 K, and
the corrective maintenance cost is arbitrarily defined as Cc = 3∗Cp. This global budget is
distributed equitably according to the size of the clusters. With these costs in mind, the
optimal maintenance path T∗j is defined using age-based maintenance.

Tables 1–3 show the Weibull parameters αj and βj of each cluster Cj and the optimal
maintenance replacement path for each of the three lines (respectively, broken center line,
emergency line, and median strip line). Note that colors in the first column refer to the
clustering of the roadmap introduced in Figure 10.

Table 1. Weibull parameters of the broken center line.

Cluster—Numbers
(Frequency) Lifetime Model Mean Time to

Failure (Months)

Optimum
Replacement

(Months)
1–94 (9%) W(21.84, 2.01) 19 11

2–140 (12%) W(14.89, 1.14) 14 14
3–111 (11%) W(19.54, 1.50) 18 13
4–111 (11%) W(19.46, 1.48) 18 14

5–16 (2%) W(11.13, 1.43) 10 8
6–270 (27%) W(19.72, 1.56) 18 12

7–40 (4%) W(18.42, 1.43) 17 14
8–188 (19%) W(10.85, 1.19) 10 18

9–48 (5%) W(14.45, 1.14) 16 14

Table 2. Weibull parameters of the emergency line.

Cluster—Numbers
(Frequency) Lifetime Model Mean Time to

Failure (Months)

Optimum
Replacement

(Months)
1–94 (9%) W(23.80, 2.02) 21 12

2–140 (12%) W(29.12, 1.95) 26 15
3–111 (11%) W(24.19, 1.26) 22 28
4–111 (11%) W(15.93, 1.80) 14 9

5–16 (2%) W(25.34, 1.97) 22 13
6–270 (27%) W(18.19, 2.01) 16 9

7–40 (4%) W(18.16, 1.98) 16 9
8–188 (19%) W(25.29, 3.24) 23 13

9–48 (5%) W(13.75, 1.15) 13 13
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Table 3. Weibull parameters of the median strip line.

Cluster—Numbers
(Frequency) Lifetime Model Mean Time to

Failure (Months)

Optimum
Replacement

(Months)
1–94 (9%) W(30.34, 6.64) 28 19

2–140 (12%) W(32.81, 1.74) 29 18
3–111 (11%) W(26.60, 7.38) 25 17
4–111 (11%) W(24.79, 1.55) 22 16

5–16 (2%) W(32.23, 0.64) 45 45
6–270 (27%) No median strip line

7–40 (4%) W(20.24, 4.27) 18 11
8–188 (19%) No median strip line

9–48 (5%) W(20.94, 0.93) 22 22

The first column presents the number of the PRs that belong to each cluster with their
frequency. The second one shows the associated Weibull parameters estimated by the EM
algorithm. The third column presents the average operating time, and the last one lists the
optimum replacement period associated with each cluster.

The replacement interval for the axial line varies between 8 and 18 months, that
of the EL varies between 9 and 28 months, and that of the MSL varies between 11 and
45 months. The difference in replacement frequency is due to the nature of the road section
and its location.

As an illustration, we take the first cluster as an example. It represents 9% of the
PRs of NR4. The lifetime model associated with the BCL is Ω(21.84, 2.01). The preventive
maintenance cost is estimated to be 940 units, and the corrective maintenance cost is defined
as three times the preventive cost. According to the age-based replacement strategy, the
PRs belonging to this cluster must be replaced every 19 months. The same methodology is
applied to the other lines, which shows that the EL and MSL can be replaced every 12 and
19 months, respectively.

According to Tidjani et al., the clustering algorithm is followed by a FAMD to analyze
the clusters or the strategic maintenance areas [33]. The FAMD proposes data management
and identifies different correlations between variables. However, the FAMD considers only
the CBL and EL because those of the MSL are not available everywhere on NR4.

To minimize the preventive maintenance cost of the system S, we assume that each
cluster represents a component of a new system denoted S′. Then, S′ is a system consisting
in nine subsystems, S1

′, S2
′ . . . S9

′, construed as illustrated in Figure 11.
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To minimize the preventive maintenance cost, the grouping methodology presented in
this paper is applied to the components of each subsystem Si

′, where i ∈ {1 . . . 9}. The aim
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is to determine an optimal maintenance time for replacing the three types of road markings
(BCL, EL, and MSL).

It is assumed that the components have just been held and that the planning time fence
starts at time t = 0 (Tbegin = 0). This strategy is applied to the rst subspace, and the planning
horizon thus becomes HZ = [0,19]. At this horizon, each component must be replaced
only once. For determining the optimal grouping structure, the previously introduced GA
presented is considered.

Then, an initial population has to first be generated, and then the GA can be applied.
The maintenance actions over the planning horizon are {1(1), 2(1), 3(1)}. As an illustration,
we consider two examples of grouping structures with two groups: G1 = {1(1), 3(1)} and
G2 = {2(1)} or G1 = {1(1), 2(1)} and G2 = {3(1)}, as illustrated Figure 12.
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strategy. The blue points indicate the maintenance action for the individual optimal plan, 
and the red ones are the maintenance times for the grouped strategy. For this cluster, each 
component is maintained only once per cycle, and the cluster plan indicates that all three 
components can be maintained simultaneously every 13 months. 

Figure 12. Examples of grouping structures with two groups.

The two considered candidate solutions are encoded considering the method intro-
duced in the previous section. Then, to generate new candidate solutions, the crossover
step has to be considered. A random crossover point is chosen (e.g., point 2), and the new
solutions are constructed, as represented in Figure 13.
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The other steps of the GA are then applied, and other solutions are thus generated. In
each iteration, the economic profit is calculated, and the best solutions are selected for the
next iteration (generation). The economic benefit is calculated for each solution, and the
optimal one is the candidate with the greatest total economic benefit.

Table 4 shows the optimal grouping structure for each iteration and the associated
economic profit with the optimal grouping time. The best economic profit is obtained
when all the maintenance actions are performed 13 months after the last replacement. This
represents a 10% gain in the total maintenance cost.

Table 4. Total economic profit according to each solution candidate.

Optimal Grouping Structure Optimal Grouping Time TEP

{11, 21}, {31} 11, 19 247.25
{21, 31}, {11} 15, 11 113.18
{11, 31}, {21} 14, 12 62.07
{11, 21, 31} 13 291.58

To evaluate the reliability of the system in the case of grouped maintenance, we apply
the maintenance strategies over a planning horizon of 60 months (5 years). Figure 14
presents a comparison between the individual maintenance plan and one with a grouping
strategy. The blue points indicate the maintenance action for the individual optimal plan,
and the red ones are the maintenance times for the grouped strategy. For this cluster, each
component is maintained only once per cycle, and the cluster plan indicates that all three
components can be maintained simultaneously every 13 months.
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To assess the effectiveness of the bundled maintenance plan, the reliability of the
system was studied under three different maintenance strategies, as shown in Figure 15:

• Without maintenance: no maintenance action is performed over the planning horizon;
• Individual maintenance: each component i is maintained at time Ti* according to the

optimal individual strategy introduced in Section 5;
• Grouped maintenance: the proposed static grouped maintenance strategy is employed.
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Figure 15. Reliability of the system, in respect of time (in months), under three maintenance strategies
for cluster 1.

The blue graph represents the reliability of the system when no maintenance is per-
formed. In this case, the reliability drops to 0.2 after 20 months, and the system is considered
to have failed (nil reliability) after 30 months. The yellow graph represents the reliability
of the system when an individual strategy is considered. The reliability varies between 1
and 0.6. After the first maintenance actions, the reliability is no longer equal to 1 because
the components are no longer maintained simultaneously. Since the maintenance times are
quite close (11, 12, and 19 months), reliability remains high. Finally, the green curve shows
the behavior of the reliability when a grouping strategy is applied. In this case, the reliabil-
ity of the system remains periodic: the three marker lines are maintained simultaneously,
and their age is initialized to 0 after each replacement. As the maintenance instants are
moved after each replacement (as presented in Figure 4), the same time interval between
maintenance actions is always considered, hence the periodicity of reliability.

The green curve encompasses the yellow one. Even if in the case of grouped main-
tenance, we tolerate a lower reliability than in the case of a strategy with individual
maintenance, but from an economic perspective, we save 10% of the budget allocated to
maintenance for each cycle. In this case, without any constraints imposed by the infras-
tructure manager, the grouping strategy remains the most interesting. Moreover, both
approaches have the same mean value for reliability, and even if the individual approach
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provides a better variance, it is easy to understand that the availability of infrastructure
will be optimized with the grouped approach.

Table 5 shows the optimal grouping strategy for each cluster and the associated
economic profit. We consider cluster 5 as an example. On the planning horizon, the EL
and the BCL have to be replaced many times. Whenever maintenance actions are grouped
together, the next maintenance instances are shifted, and only those remaining on the
planning horizon are taken into consideration. For this cluster, the grouping strategy allows
a 16% gain in the TEP in comparison with an individual optimization approach.

Table 5. Total economic profit according to each solution candidate for cluster 5.

Cluster Optimal Grouping
Structures

Optimal Grouping
Times TEP TEP Gains (%)

2 {11, 21, 31} 16 482.44 +17%
3 {11}, {12}, {21, 31} 13, 26, 19 216.36 +12%
4 {11, 31}, {21} 11.9 113.89 +9%

5 {11, 21}, {12, 22},{13, 23},
{14},{15, 31}

9, 18, 27, 36, 45 542.1 +16%

6 {11, 21} 9 52.47 +7%
7 {11, 21, 31} 10 215.48 +10%
8 {11, 21} 14 47.1 +7%
9 {11, 21, 31} 12 239.13 +10%

In Table 6, the average reliability for each cluster under the three considered different
maintenance strategies is introduced. If no maintenance action is performed, the average
reliability does not exceed 0.24%, which is perfectly understandable since the road markings
performance decrease to zero and then stay null up to the end of the time horizon. We can
notice that, as previously introduced, the average reliability for the considered two mainte-
nance strategies is quite close and generally better for the grouped approach (even if we
also noticed that the variance is generally better for the individual approach). However, in
terms of economic perspectives, the grouped maintenance strategy systematically provides
an interesting economic benefit. In this case, the grouped maintenance strategy is more
interesting. Moreover, we noticed that the availability of infrastructures is necessarily better
with grouped actions than with individual strategies, which is a not-negligible advantage.

Table 6. Average reliability for each cluster with respect to the considered maintenance strategy.

Cluster No Maintenance Individual Optimization Grouped Strategy

1 0.24 0.83 0.83
2 0.17 0.56 0.59
3 0.2 0.54 0.66
4 0.16 0.6 0.6
5 0.11 0.39 0.42
6 0.2 0.77 0.84
7 0.17 0.71 0.79
8 0.16 0.52 0.58
9 0.1 0.31 0.51

9. Conclusions and Prospects

The aim of this study was to determine the optimal maintenance plan for all the road
markings of an infrastructure. For this, we first proposed a feedback data process to identify
several degradation profiles and cluster the infrastructure. The systems considered in this
study are periodically inspected. The monitoring data are generally triply censored with
right, left, and interval censoring. In this paper, the proposed maintenance grouping policy
was applied to road markings by considering road infrastructure as a three-component
serial system. In our case study, the whole infrastructure was considered as a set a sections
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characterized by their own degradation process (influenced by the typology of the section,
the nature of the pavement, its location, etc.). To group the road sections that degrade in
the same way, the unsupervised clustering algorithm AHC was applied. This clustering
grouped the road marking lines into nine clusters. Each cluster grouped the components
that have the same evolution or degradation over time. In this case, instead of correcting
the censoring and assigning a maintenance plan for each marking, the proposed analysis
was applied to each cluster. We thus applied an extension of the EM algorithm to estimate
the failure time and assign a Weibull distribution to each cluster.

Then, the grouped maintenance strategy started by identifying an optimal individual
maintenance period for each cluster. An age-based maintenance replacement was consid-
ered in this paper. Since simultaneously performing all maintenance tasks is not always
the optimal solution, a GA was used to determine the optimal solution by grouping several
actions. This algorithm offers better results than dynamic programming and entails a
reasonable execution time. This grouping strategy considers budget constraints and the
previously described life duration model. It demonstrated a significant decrease in the
budget allocated to preventive maintenance. The advantages and strengths of the proposed
process lie in the fact that it can address highly censored data. This type of data is often
encountered when a system is periodically inspected and maintained. The maintenance
process proposed in this paper is based on individual optimization with clustering of the
monitoring database. In our case study, the clustering was very useful to the infrastructure
manager because it helped to better understand the road network behavior.

Although the case study, which is the main objective of this work, is a simple system,
our approach has demonstrated its applicability to even more complex structures through
its application to a 16-component complex structure system from the literature.

On the other hand, the strategy has some limitations. First, the optimal grouped main-
tenance clearly depends on the planning horizon, which, in our case, is finite. The definition
of this horizon, in an optimal way, could depend on budget and availability constraints.
Future works could deal with defining the value of the time horizon with respect to such
constraints. Moreover, the literature has shown that, in general, the GA is the most-used
algorithm to optimize a grouping maintenance strategy; however, other works such as [29]
have shown that other optimization approaches offer interesting solutions (mainly in terms
of complexity). Indeed, GA generally faces some limitations when the system has a complex
structure, and other algorithms such as PSO and clustering optimization seem to be more
efficient and could be added to our work.

Finally, the last limitation, but not the least important, deals with taking constraints
into account in the optimization process. The next step of this study is currently in progress
through two new PhD projects, taking into account new constraints such as maintenance
action durations and resource constraints (maintenance staff and maintenance equipment),
but also some availability constraints connected with operating needs. Indeed, the literature
review underlines that no previous study has considered more than one of these constraints
in its maintenance optimization process for complex systems.
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Notation

HZ planning horizon
Tbegin the beginning date of the planning horizon
Tend the end date of the planning horizon
N number of components of the system
M number of maintenance activities in the planning horizon
ij jth maintenance occurrence of component i over the planning horizon
Csys maintenance cost
Cip preventive maintenance cost of component i
Cic corrective maintenance cost of component i
Sp setup cost
πi indicator function = 1 if i is a critical component, 0 otherwise
Ti
∗ optimal preventive maintenance path replacement

D state space
k number of clusters
Cj cluster j, where j∈{1, . . . , g}
It inspection date of the system at date t
αi, βi Weibull scale and shape parameters for life distribution of component i
f Weibull distribution
F Weibull cumulative distribution function
R Weibull survival distribution
δi indicator function for the type of censoring
Gk kth group of maintenance activities in the planning horizon
UGk setup cost of group Gk
hi(t) penalty cost for component i at t
∆HG1k penalty cost of group Gk
∆HG2k additional gain due to the structure for group Gk
CGk total planned shutdown cost if maintenance activities are performed separately
SGM candidate solution
SGMopt optimal solution
EP economic profit of a group
TEP total economic profit of a solution SGM
GA genetic algorithm
EM algorithm expectation maximization algorithm
S the considered system
MTBR mean time before repair

References
1. Pinciroli, L.; Baraldi, P.; Zio, E. Maintenance optimization in industry 4.0. Reliab. Eng. Syst. Saf. 2023, 234, 109204. [CrossRef]
2. Dekker, R.; Wildeman, R.E.; Van Egmond, F.A. A review of multi-component maintenance models with economic dependence.

Math. Methods Oper. Res. 1997, 45, 411–435. [CrossRef]
3. Faddoul, R.; Raphael, W.; Chateauneuf, A. Maintenance optimization of series systems subject to reliability constraints. Reliab.

Eng. Syst. Saf. 2018, 180, 179–188. [CrossRef]
4. Wildeman, R.E.; Rommert, D.; Smit, A.C.J.M. A dynamic policy for grouping maintenance activities. Eur. J. Oper. Res. 1997, 99,

530–551. [CrossRef]
5. Vu, H.C.; Do, P.; Barros, A.; Berenguer, C. Maintenance grouping strategy for multi-component systems with dynamic contexts.

Reliab. Eng. Syst. Saf. 2014, 132, 233–249. [CrossRef]
6. Redondin, M.; Bouillaut, L.; Daucher, D. A clustering-based approach to segment a pavement markings line. Int. J. Perform. Eng.

2020, 16, 1497–1508.
7. Luce, S. Choice criteria in conditional preventive maintenance. Mech. Syst. Signal Process. 1999, 13, 163–168. [CrossRef]
8. Mobley, R.K. An Introduction to Predictive Maintenance, 2nd ed.; Elsevier: Paris, France, 2002.
9. Hunter, M.L. Climate change and moving species: Furthering the debate on assisted colonization. Conserv. Biol. 2007, 21,

1356–1358. [CrossRef]

https://doi.org/10.1016/j.ress.2023.109204
https://doi.org/10.1007/BF01194788
https://doi.org/10.1016/j.ress.2018.07.016
https://doi.org/10.1016/S0377-2217(97)00319-6
https://doi.org/10.1016/j.ress.2014.08.002
https://doi.org/10.1006/mssp.1998.0176
https://doi.org/10.1111/j.1523-1739.2007.00780.x


Future Transp. 2023, 3 790

10. Redondin, M.; Daucher, D.; Bouillaut, L. An EM approach for a Weibull analysis of pavement markings in context of a strong
censored life time. Int. J. Perform. Eng. 2021, 17, 333–342. [CrossRef]

11. Celeux, G.; Chauveau, D.; Diebolt, J. On Stochastic Versions of the EM Algorithm. Ph.D. Thesis, INRIA Research Program,
Versailles, France, 1995.

12. Marschner, I.C. Miscellanea On stochastic versions of the algorithm. Biometrika 2001, 88, 281–286. [CrossRef]
13. Gelman, A.; Carlin, J.B.; Stern, S.H.; Rubin, D.B. Bayesian Data Analysis, 3rd ed.; Taylor & Francis: New York, NY, USA, 2013.
14. Congdon, P. Bayesian Statistical Modelling, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2007.
15. Ducros, F.; Pamphile, P.; Université Paris Sud, Orsay, France. Maintenance Cost Forecasting for a Fleet of Vehicles. Personal

communication, 2019.
16. Nakagawa, T. A summary of imperfect preventive maintenance policies with minimal repair. RAIRO-Oper. Res. 1980, 14, 249–255.

[CrossRef]
17. Valdez-Flores, C.; Feldman, R.M. A survey of preventive maintenance models for stochastically deteriorating single-unit systems.

Nav. Res. Logist. 1989, 36, 419–446. [CrossRef]
18. Wang, H. A survey of maintenance policies of deteriorating systems. Eur. J. Oper. Res. 2002, 139, 469–489. [CrossRef]
19. Barlow, R.E.; Proshan, F. Mathematical Theory of Reliability, 1st ed.; John Wiley: New York, NY, USA, 1965.
20. Zhang, Y.L.; Yam, R.C.; Zuo, M.J. Optimal replacement policy for a deteriorating production system with preventive maintenance.

Int. J. Syst. Sci. 2001, 32, 1193–1198. [CrossRef]
21. Pham, H.; Wang, H. Imperfect maintenance. Eur. J. Oper. Res. 1996, 94, 425–438. [CrossRef]
22. Saada, Y.; Yahyaoui, E.M.; Ouadoudi, N.; Skouri, R.; Daya, A. Mathematical Simulation Methods to Evaluate the Effects of Actions

on Conditional Preventive Maintenance of Complex Systems. Int. J. Eng. Res. Afr. 2018, 35, 38–59. [CrossRef]
23. Guan, J.; Yang, X.; You, L.; Ding, L.; Cheng, X. Multi-objective optimization for sustainable road network maintenance under

traffic equilibrium: Incorporating costs and environmental impacts. J. Clean. Prod. 2022, 334, 130103. [CrossRef]
24. Shi, Y.; Xiang, Y.; Xiao, H.; Xing, L. Joint optimization of budget allocation and maintenance planning of multi-facility transporta-

tion infrastructure systems. Eur. J. Oper. Res. 2021, 16, 382–393. [CrossRef]
25. Zhang, X.; Gao, H. Road maintenance optimization through a discrete-time semi-Markov decision process. Reliab. Eng. Syst. Saf.

2012, 103, 110–119. [CrossRef]
26. Nguyen, H.S.H. Development of a Dynamic Grouping Maintenance Strategy for a Geographically Dispersed Production System.

Ph.D. Thesis, Université de Lorraine, Nancy, France, 2019.
27. Vu, H.C.; Do, P.; Barros, A. A stationary grouping maintenance strategy using mean residual life and the Birnbaum importance

measure for complex structures. IEEE Trans. Reliab. 2015, 65, 217–234. [CrossRef]
28. Chalabi, N.; Dahane, M.; Beldjilali, B.; Neki, A. Optimisation of preventive maintenance grouping strategy for multi-component

series systems: Particle swarm based approach. Comput. Ind. Eng. 2016, 102, 440–445. [CrossRef]
29. Hanini, M.; Khebbache, S.; Bouillaut, L.; Hadji, M. Dynamic and adaptive grouping maintenance strategies: New scalable

optimization algorithms. Proc. IMechE Part O J. Risk Reliab. 2022, 236, 647–660. [CrossRef]
30. Do, P.; Vu, H.C.; Barros, A.; Bérenguer, C. Maintenance grouping for multi-component systems with availability constraints and

limited maintenance teams. Reliab. Eng. Syst. Saf. 2015, 142, 56–67. [CrossRef]
31. Jha, M.K.; Udenta, F.; Chacha, S.; Abdullah, J. Formulation and solution algorithms for highway infrastructure maintenance

optimisation with work-shift and overtime limit constraints. Procedia—Soc. Behav. Sci. 2010, 2, 6323–6331. [CrossRef]
32. Sathyanarayanan, S.; Shankar, V.; Donnell, E.T. Pavement Marking Retroreflectivity Inspection Data: A Weibull Analysis. Transp.

Res. Rec. J. Transp. Res. Board 2008, 2055, 63–70. [CrossRef]
33. Tidjani, A.; Redondin, M.; Bouillaut, L.; Daucher, D. Impact of Road Infrastructure Characteristics on Road Markings. In

Proceedings of the 29th ESRA European Safety & Reliability International Conference ESREL’19, Hannover, Germany, 22–26
September 2019.

34. Derbe, A.; Boujelbene, Y. Automatic Classification and Analysis of Multiple-Criteria Decision Making. In Proceedings of the 8th
International Conference on Sciences of Electronics, Technologies of Information and Telecommunications SETIT’18, Maghreb,
Tunisia, 18–20 December 2018.

35. Duchesnay, E. Statistics and Machine Learning in Python, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2019.
36. Pradhan, B.; Kundu, D. Analysis of interval-censored data with Weibull lifetime distribution. Indian J. Stat. 2014, 76, 120–139.

[CrossRef]
37. Shapiro, J. Genetic algorithms in machine learning. In Proceedings of the Advanced Course on Artificial Intelligence, Chania,

Greece, 5–16 July 1999; pp. 146–168.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.23940/ijpe.21.04.p1.333342
https://doi.org/10.1093/biomet/88.1.281
https://doi.org/10.1051/ro/1980140302491
https://doi.org/10.1002/1520-6750(198908)36:4&lt;419::AID-NAV3220360407&gt;3.0.CO;2-5
https://doi.org/10.1016/S0377-2217(01)00197-7
https://doi.org/10.1080/00207720010024979
https://doi.org/10.1016/S0377-2217(96)00099-9
https://doi.org/10.4028/www.scientific.net/JERA.35.38
https://doi.org/10.1016/j.jclepro.2021.130103
https://doi.org/10.1016/j.ejor.2020.05.050
https://doi.org/10.1016/j.ress.2012.03.011
https://doi.org/10.1109/TR.2015.2455498
https://doi.org/10.1016/j.cie.2016.04.018
https://doi.org/10.1177/1748006X211049924
https://doi.org/10.1016/j.ress.2015.04.022
https://doi.org/10.1016/j.sbspro.2010.04.041
https://doi.org/10.3141/2055-08
https://doi.org/10.1007/s13571-013-0076-1

	Introduction 
	Introduction to the Problem and the Use Case 
	Strategic Clustering for Preventive Maintenance 
	EM Algorithm 
	Expected Step 
	Maximization Step 
	Iteration and Convergence 

	Individual Maintenance Strategy Optimization 
	Grouping Maintenance Strategy 
	Defining the Planning Horizon 
	Mathematical Formulation of Economic Profit 
	Economic Profit 
	Genetic Algorithm and Its Application to Optimal Grouping Maintenance Strategies 

	Short Application and Comparison of the Proposed Grouping Strategy 
	Application of the Grouping Strategy to Road Markings 
	Conclusions and Prospects 
	References

