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Context

We pick e-sport winner prediction as a binary task on tabular data where human and Al
could compete. We take a popular game, League of Legends, to recruit student participants
with a form of expertise* on the task. The analogy with expert task like fraud detection 1s
hindered by the low dimensionality of our setting (d=23 vs. ~80).

*No real form of expertise could be exhibited through this study.

Expertise was evaluated only with a survey (discussed with an e-sport
—a» z= professional, but no significant correlation with empirical results could be
' found.
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Explanations do not affect human accuracy on an
e-sport prediction task, even with a
multi-explanation system.

Human alone : 72%4% Al alone : 74%24%
H-Al team with XAl : 7218%

Asking for explanation is also correlated with slower decisions.

So what?

Explanation might still be valuable for users:

e Users mostly appreciated and used the XAI system:
o Positive results in perceived ease of use and perceived utility.

e Results show the importance of perceived case difficulty:
o Case difficulty 1s positively correlated with response time.
o Case difficulty 1s positively correlated with the use of the explanations.
o Case difficulty 1s positively correlated with perceived utility of explanations.
o Case difficulty is correlated with the model’s confidence toward its prediction

e Results suggest the importance of individual preferences towards the explanations:
o These preferences may not be predictable.

e Decision diversity should be a metric:

o As accuracy 1s linked with human-AI agreement, this agreement should always be
measured prior to an XAl application-based evaluation, using human decisions
without Al as reference.

o Participants agreement with the Al was lesser when they had access to the XAI
system than in control condition.

Additional figures
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Our XAl system :

The ML model 1s a random forest. The decision making interface displays data first (II.).
The user must click (I.) to gain access to Al prediction and score (I11.). The 3 explanations
(III.) are available through a radio button (I.).

Decision interface example (with explanation B: LIME)
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The explanation methods used:

A/ Confidence score, without further calibration.
B/ Surrogate Model, using a simple rule model: skope-rules.
C/ LIME, computed with 7k data samples, displayed through shap library.

D/ Nearest Neighbor, with additional information (class, Al score, search for contrast).
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Within-subject study
N=27 participants
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Comparisons between explanations are done
through an observational study inside XAl condition
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Additional results
Objective and subjective metrics evaluation explanations

Users Use rate Usefulness Time spent | Interpretability
Confidence 24 16% 66% 3.23s 2.99
Surrogate rule 10 19% 44%, 4.565 -0.99
LIME 21 49% 88% 6.50s 1.38
Neighbor 19 42% 15% 1.01s 0.21
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