
HAL Id: hal-04418559
https://hal.science/hal-04418559

Submitted on 30 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward a human-like sound perception for reactive
virtual agents

Audrey Pichard, Gauthier Couzon, Eliott Zimmermann, Pierre Raimbaud

To cite this version:
Audrey Pichard, Gauthier Couzon, Eliott Zimmermann, Pierre Raimbaud. Toward a human-like sound
perception for reactive virtual agents. IVA ’23: ACM International Conference on Intelligent Virtual
Agents, Sep 2023, Würzburg Germany, France. pp.1-4, �10.1145/3570945.3607346�. �hal-04418559�

https://hal.science/hal-04418559
https://hal.archives-ouvertes.fr


Toward a Human-like Sound Perception for Reactive
Virtual Agents

Gauthier Couzon
gauthier.couzon@enise.fr
ENISE, Centrale Lyon
Saint-Etienne, France

Audrey Pichard
audrey.pichard@enise.fr
ENISE, Centrale Lyon
Saint-Etienne, France

Eliott Zimmermann
eliott.zimmermann@enise.ec-lyon.fr

Univ Lyon, Centrale Lyon, CNRS, INSA Lyon, UCBL,
LIRIS, UMR5205, ENISE
Saint-Etienne, France

Pierre Raimbaud∗
pierre.raimbaud@ec-lyon.fr

Univ Lyon, Centrale Lyon, CNRS, INSA Lyon, UCBL,
LIRIS, UMR5205, ENISE
Saint-Etienne, France

Figure 1: An Intelligent Virtual Agent having a reactive behaviour in the direction of a sound coming from the right

ABSTRACT
Human social interactions rely on multisensory cues. In this regard,
visual and auditory cues are paramount during the initiation of an
interaction. In this preliminary work, we propose an approach to
let Intelligent Virtual Agents (IVAs) simulating sound perception
capabilities. Our model targets to control IVAs’ reactive behaviour
through their analysis of perceived other agents’ emitted sounds.
For that, we explored auditory features close to the human system.
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1 INTRODUCTION
As humans are social beings [16], social behaviours are paramount
to any daily interaction. Moreover, humans expect other beings to
have social behaviours with them, as shown in the literature for
animals [1, 32], robots [17, 26], and virtual agents [5, 10].

In the field of virtual reality (VR), virtual agents are key to convey
emotions and to allow for social interactions. They contribute to the
social presence felt by users [29], along with their immersion [27]
and engagement in VR [28]. However, to elicit such effects and to
observe complex social behavioural responses [20], the design of vir-
tual agents must overcome several issues. Yet, solutions are highly
context-depend, for example for the visual appearance of agents,
the appropriate quality level varies according to the quality of the
environment and its purposes [31], e.g., when seeking naturalness
in interactions, a photorealistic appearance elicits more realistic
social responses [40]. Similarly, realistic motions, as well as speech
quality, are key for VR users’ perception of virtual agents [35].

Challenges remain to improve agents’ believability [13], espe-
cially for social interactions, toward reactive behaviour modelling,
contributing to making them Intelligent Virtual Agents (IVA). For
this, Raimbaud et al. [30] proposed a visual perception approach,
based on the analysis of how the motions of an agent are per-
ceived from an other agent viewpoint. From the context andmotion-
depend features computed on the observed motions, reactions are
triggered on the observer. However, no other kind of perception
than the visual one was used in this study, despite humans daily
use other types of cues to perceive an action before reacting to it.

Humans rely on crossmodal perceptions [15] that they process
and balance to act and react, in real life and in VR [37], with real
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humans and other agents (robots [36], virtual agents [24]). In many
contexts, sound perception is paramount – usually combined with
other sensory perceptions [14, 34], particularly to draw and main-
tain attention. In driving context,Wang et al. [38] found that drivers’
performance improved through newusages of sound for advisory in-
formation (replacing visual cues), whereas Bellotti et al. [3] showed
that its spatialisation improved driving, especially in case of low vis-
ibility. Similarly, it has been shown that spatialised sounds helped
listeners to understand recorded music concerts, either regarding
the music itself [2] or its social context [33]. Thus, in these contexts
and based on human abilities to localise sources [8], spatialised
sounds have succeeded in triggering oriented actions or reactions.
This has also been observed on VR users [19]. Moreover, Huang
et al. [22, 39] implemented a sound localisation approach to drive
virtual agents’ behaviours (e.g., chasing agents), relying on a sound
field propagation model, used then to determine the source origin.
In line with this, Chemistruck et al. [6] built another energy-wave
propagation model, improved with masking and reverberation com-
ponents. Finally, Cowan et al. [9] proposed to use a spatial graph
and to estimate the sound propagation by computing its shortest
path between the source and the receiver, from occlusions. However,
these approaches did not intend to mimick the human receiving
auditory system. Therefore, we propose in this paper a new model
for sound reactive behaviours of virtual agents, from an egocentric
viewpoint and inspired by human perception. Section 2 presents it,
Section 3 a case study, and Section 4 its limitations and perspectives.

2 EGOCENTRIC SOUND PERCEPTION MODEL
We present here a new approach that contributes to the modelling
of reactive behaviours – either between IVAs or with a VR user. It
relies on a human-like egocentric perception of sounds, proposing
thus a different perspective compared to previous work on agents
in virtual environments [6, 9, 22, 39]. Fig. 2 displays our approach,
which encompasses two steps: the computation of acoustic features
on sounds as perceived from the receiver viewpoint, and a result
synthesis step to induce reactive behaviours on the receiving agent.

Figure 2: Sound perceptionmodel for IVA reactive behaviours

2.1 Acoustic features computation
Our first step consists in computing acoustic features from the
receiver viewpoint, regardless of source sound characteristics and
in a human-like perception way. We present three main features i)
the perceived sound intensity, ii) the perceived distance, and iii) the
perceived orientation; yet, our model is not limited to these ones.

In physical terms, the sound power P describes the behaviour
of a sound source, independently from the distance, position and
environment, whereas the sound intensity I refers to its power in a
given area, thus measured at a specific position and representing the
sound information perceived there. Therefore, capturing through a

listener the sound intensity at the receiver position is a paramount
feature to understand the local perception of sound. In addition,
the perceived intensity feature I can be used to compute a perceived
distance r to the source, through the following formula [23], valid
for source emission in spherical volumes and knowing its power P :

𝐼 =
𝑃

4𝜋𝑟2
⇐⇒ 𝑟 =

√︂
𝑃

4𝜋𝐼
It should be noted that, in a virtual environment and thus for

numerical sounds, the computation of power and intensity depends
on the induced volume of the different software layers (operating
system, applications). A common approach is thus to use a reference
power level value of the sound on a given volume, and to measure
the intensity level at the virtual agent’s position with the same
volume, allowing then for the computation of the distance r.

The Interaural Time Difference (ITD) [25] refers to the time
between the perception of a sound in the left ear and in the right
ear, which is perceptible and used by humans for source localisation.
The ITD can be expressed from the interaural distance (r𝑖𝑛𝑡 ), the
sound celerity c in the environment, and the 𝜃 azimuth between the
sound emitter direction and the axis passing through the ears, and
therefore the perceived orientation feature can be computed from:

Δ𝑡 =
𝑟𝑖𝑛𝑡 · (𝜃 + sin(𝜃 ))

𝑐

2.2 Results synthesis and reactions generation
Mimicking the perception-action loop used by humans [21], we pro-
pose to generate and trigger reactions on the receiving agent [12]
from the perceived acoustic features. This second step consists in
synthesising the acoustic features results to drive realistic reaction
behaviours on the IVA. We present here some possible analyses
and syntheses from the acoustic features previously presented.

An analysis can be done on the perceived intensity by comparing
it to a threshold value. For example, this one can be determined as
the intensity of the ambient sound of the environment (background
noise), or as a fixed minimum value for sounds to be considered as
“triggering sources”. In both cases, a reaction would be triggered
on the IVA when the perceived intensity is higher to the threshold
value. Thresholds on the perceived distance can be used similarly.

Another analysis can be performed on the perceived distance,
along with the perceived orientation. The combined result can be
used to determine a perceived position for the sound source from
the receiver agent’s viewpoint, and therefore to generate a reactive
orientation motion in the direction of this computed position.

3 CASE STUDY: A CALL IN THE STREET
We present an illustrative case study to exhibit our approach: an IVA
calls another IVA in the street – at a distance of 5m and at 90° on its
right, to draw its attention by shouting. In this case, the perceived
distance and perceived orientation acoustic features are computed
in the first step of our model (results: 4.89m and 90°). From this, a
perceived position is deduced, and a combination between torso,
head and eye orientations is generated for a reactive behaviour of
the receiving IVA toward the estimated sound source, realistically
simulating a response to the calling of the other IVA. Fig. 1 shows
this case study in a virtual environment where we implemented
our model, here in Unity with sound spatialisation by SteamAudio.
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4 LIMITATIONS AND FUTUREWORK
A first limitation, in the current development state of our model, is
that we use sound power to compute the perceived distance feature.
In real-life, humans use their ability to recognise the type of a sound,
which they associate to a known power when they are familiar to
it, to estimate then its distance [4, 11]. It would be interesting to
use a similar approach in our model, e.g., through deep-learning
approaches to recognise the type of the perceived sounds. Then,
with our current implementation, results accuracy for the perceived
azimuth orientation can vary depending on the IVAs’ relative posi-
tions, e.g., with ±0-1° accuracy for a 90° angle, and ±5-10° for 135°.
Even though human accuracy to localise sound can be up to 5 or
10° compared the real position in most conditions [18], our model
could be improved by using more “human-like physiology” mea-
sures than only the ITD, e.g., interaural phase and level differences
etc. This would also contribute to expand our human-like model
with more features such as the perceived elevation angle.

As future work, our approach could be integrated in a more com-
plex framework for IVAs’ reactive behaviours, where multimodal
egocentric perceptions would be used as humans do (e.g. combin-
ing our sound-based model with vision-based approaches [30]), as
well as other types of approaches (e.g. deep-learning approaches
where agents are trained to navigate to a sound source, as recently
developed for robots [7]). Finally, we also aim to extend the use of
our model to other case studies and contexts, notably with multiple
“receiver agents”, and also in VR with users that would interact with
the virtual agents, and trigger reactive behaviours on them.
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