
HAL Id: hal-04418528
https://hal.science/hal-04418528v1

Preprint submitted on 26 Jan 2024 (v1), last revised 6 Oct 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Algorithm xxx: Evaluating a Boolean Polynomial on All
Possible Inputs
Charles Bouillaguet

To cite this version:
Charles Bouillaguet. Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs. 2024.
�hal-04418528v1�

https://hal.science/hal-04418528v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

111

Algorithm xxx: Evaluating a Boolean Polynomial on All
Possible Inputs
CHARLES BOUILLAGUET, Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Evaluating a Boolean polynomial on all possible inputs (i.e. building the truth table of the corresponding

Boolean function) is a simple computational problem that sometimes appears inside broader applications,

for instance in cryptanalysis or in the implementation of more sophisticated algorithms to solve Boolean

polynomial systems.

Two techniques share the crown to perform this task : the “Fast Exhaustive Search” (FES) algorithm from

2010 (which is based on Gray Codes) and the space-efficient Moebius transform from 2021 (which is reminiscent

of the FFT). Both require O(𝑑2𝑛) operations for a degree-𝑑 Boolean polynomial on 𝑛 variables and operate

mostly in-place, but have other slightly different characteristics. They both provide an efficient iterator over

the full truth table.

This article describes BeanPolE (BoolEAN POLynomial Evaluation), a concise and flexible C library that

implements both algorithms, as well as many other functions to deal with Boolean multivariate polynomials

in dense representation.

CCS Concepts: • Mathematics of computing→ Mathematical software; • Computing methodologies→
Representation of polynomials; Boolean algebra algorithms.

Additional Key Words and Phrases: Boolean polynomials, exhaustive search, Moebius transform, software

implementation

ACM Reference Format:
Charles Bouillaguet. 2018. Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs. J. ACM 37,

4, Article 111 (August 2018), 36 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
We consider the problem of efficiently evaluating a Boolean polynomial, given by its coefficients,

on all possible values of the input variables. This provides a way to build the truth table of the

corresponding Boolean function. Any Boolean function

𝑓 : {0, 1}𝑛 → {0, 1}
(𝑥0, . . . , 𝑥𝑛−1) ↦→ 𝑓 (𝑥0, . . . , 𝑥𝑛−1)

on 𝑛 variables can be completely described by providing its truth table, namely the array of 2
𝑛
bits

that contain its value on each of the possible values of the 𝑛 input variables.

Low-degree Boolean polynomials admit a much more compact representation. For instance, a

Boolean quadratic polynomial

𝑓 (𝑥0, . . . , 𝑥𝑛−1) =
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=𝑖+1

𝑎𝑖 𝑗𝑥𝑖𝑥 𝑗 +
𝑛−1∑︁
𝑖=0

𝑏𝑖𝑥𝑖 + 𝑐

Author’s address: Charles Bouillaguet, charles.bouillaguet@lip6.fr, Sorbonne Université, CNRS, LIP6, F-75005 Paris, 4 place

Jussieu, Paris, France, 75252.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0004-5411/2018/8-ART111 $15.00

https://doi.org/XXXXXXX.XXXXXXX

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

HTTPS://ORCID.ORG/0000-0001-9416-6244
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0001-9416-6244
https://doi.org/XXXXXXX.XXXXXXX

111:2 Charles Bouillaguet

is entirely described by the values of its 𝑛(𝑛 + 1)/2 + 1 coefficients. In general, a degree-𝑑 Boolean

polynomial has O(𝑛𝑑) coefficients. As such, low-degree Boolean polynomials are easier to manipu-

late than generic Boolean functions, even with a high number of variables.

Our focus is on the case of dense Boolean polynomials with a potentially high number of varia-

bles (𝑛) but a relatively low degree (𝑑). Typical sizes that can be practically relevant are 𝑛 ≈ 80 and

𝑑 = 5. A Boolean polynomial of this size can be represented in about 3MB in memory, yet storing

its full truth table would require 2
80
bits, and that is strictly impossible.

This article describes the BeanPolE library (BoolEAN POLynomial Evaluation), that offers a

toolbox to deal with such Boolean polynomials. It is written in plain C for maximum portability.

Besides a handful of useful low-level functions to manipulate dense multivariate Boolean polyno-

mials, it implements two different algorithms to visit all entries of the truth table of a degree-𝑑

polynomial 𝑓 in 𝑛 variables given by its coefficients. In other terms, it offers efficient ways to iterate

over pairs (𝑥, 𝑓 (𝑥)) for all bit strings 𝑥 ∈ {0, 1}𝑛 . These two procedures are not only efficient but

quite frugal: they require only O(𝑛) words of extra memory in addition to the space needed to

store the input polynomial 𝑓 .

The first of these procedures is a slight variation of the “Fast Exhaustive Search” (FES) algo-

rithm [BCC
+
10]. The second is a slight variation of the “Space-EfficientMoebius Transform” [Din21a].

Both require O(𝑑2𝑛) operations to enumerate the full truth table of a degree-𝑑 polynomial in 𝑛

variables (2
𝑛
is an obvious lower-bound on the running-time, as it is the size of the output). Three

main applications of these algorithms are known to the author:

(1) Solving systems of Boolean polynomial equations by exhaustive search. The FES algo-

rithm was designed for this purpose. This NP-complete problem is practically relevant

because the security of several digital signature schemes rely on the assumption that it is

intractable [CHR
+
16, DS05, CFMR

+
17, BP17]. One of these schemes was practically broken

by a cryptographic attack that reduced the problem to a smaller subsystem; it could be then

be solved using the FES algorithm [DDVY21].

(2) Use as a sub-component inside more sophisticated Boolean solvers. Many improved algorithm

have been proposed to solve systems of Boolean polynomial equations (mostly of degree

two) [BFSS13, LPT
+
17, JV17, BKW19, Din21b, Din21a, BDT22]. All of them combine exhaus-

tive search with other techniques. Specifically, they need to either completely evaluate some

polynomials over all possible inputs, or to partially evaluate them (i.e. obtain x ↦→ 𝑓 (x, y) for
all possible values of the variables in y).

(3) Direct computation of the truth table. This is required for instance in some cryptographic

attacks against symmetric primitives. A relevant example is provided by the recent and

practical attack of [BDL
+
21] against the GPRS Encryption Algorithms GEA-1 and GEA-2,

used in “2G cellphones”. This repeatedly builds the truth table of several degree-4 polynomials

in 33 variables. Other examples include [DS11] (degree-6 polynomials on 32 variables) and

[DRS20] (degree-4 polynomials on ≈ 128 variables).

2 RELATED SOFTWARE PACKAGES
To the best of our knowledge, there is no software library devoted to the manipulation of dense

Boolean Polynomials.

There are software libraries devoted to the analysis of (arbitrary) Boolean functions such as

VBF [ACZ16]. It allows in particular the conversion of the Algebraic Normal Form of a Boolean

function (its representation by the coefficients of a polynomial) into the truth table and vice-versa.

These libraries are usually limited to a small number of variables, if only because the truth table has

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs 111:3

to fit entirely in memory. Their typical use case is 𝑛 = 8 variables, which matches sizes commonly

used in cryptographic constructions.

TheMQSoft library [FPR19] implements several operations over F2𝑛 that are required for the

implementation of some “post-quantum” digital signature schemes bases on the hardness of solving

systems of Boolean polynomial equations. In particular, it implements an efficient procedure to

evaluate a collection of quadratic Boolean polynomials on a single arbitrary input. This is designed

to handle a few hundred variables.

TheGF2X library [BGTZ08] manipulates univariate polynomials over F2, in dense representation

(one bit per coefficient). It implements asymptotically fast multiplication algorithms in particular.

The PolyBori library [BD09] is devoted to the algebraic manipulation of sparse Boolean polynomi-

als in a large number of variables. It is used for this purpose inside the SageMath computer algebra

system [The23]. PolyBori is also used as a foundation in some Boolean solvers such as [ZZL
+
21].

The FES algorithm was implemented several times by the author with the objective of maximum

speed. The libfes-lite1 library is the latest iteration. It is restricted to quadratic Boolean systems

(the most relevant case in cryptology). In terms of usability, it provides a standalone multi-threaded

program that reads a Boolean polynomial system from a text file in a simple format and prints its

solutions. It is the fastest CPU-only implementation of exhaustive search for Boolean quadratic

polynomials at the time of this writing. However, because it is restricted to quadratic polynomials

only, it is not suited to most of the applications discussed in the introduction.

It must be noted that although exhaustive search used to be the most practical method to

solve unstructured (random) dense Boolean polynomial systems, that is no longer the case. The

“Crossbred” algorithm [JV17], combining exhaustive search and algebraic techniques, has been

demonstrated to be significantly faster in practice. It requires the evaluation of a large number

of Boolean polynomials on all possible inputs and therefore can be implemented on top of the

algorithms presented in this article.

The BeanPolE library does not aim for maximum speed, but for simplicity, flexibility and ease of

reuse in more complex software packages.

3 PRELIMINARIES
In the sequel, we will often omit the word “Boolean”. Polynomials, monomials, variables, etc. are

all Boolean. Given an array A, we occasionally use the “slice notation” A[𝑖 : 𝑗], as found in Python,
to denote the sub-array A[𝑖], A[𝑖 + 1], . . . , A[𝑗 − 1].

3.1 Bit strings and Integers
Bit strings are elements of {0, 1}∗. The 𝑖-th symbol of a bit string 𝑎 is denoted as 𝑎𝑖 . We simply

denote by 𝑎𝑏 the concatenation of two bit strings 𝑎 and 𝑏. Similarly, if 𝑎 is a bit string, we write

𝑎𝑘 = 𝑎𝑎𝑎 . . . 𝑎 where 𝑎 is repeated 𝑘 times.

Any non-negative integer can be written in base two as 𝑖 = (. . . 𝑎3𝑎2𝑎1𝑎0)2 =
∑

𝑘 𝑎𝑘2
𝑘
, where

𝑎 is a bit string. Therefore we often identify bit strings and integers. The right shift operator is

defined by 𝑖 ≫ 𝑘 = ⌊𝑖/2𝑘⌋. Clearly, if 𝑖 = (. . . 𝑎2𝑎1𝑎0)2, then 𝑖 ≫ 𝑘 = (. . . 𝑎𝑘+2𝑎𝑘+1𝑎𝑘)2. In the same

vein, the left-shift operator is defined by 𝑖 ≪ 𝑘 = 𝑖2𝑘 =
(
. . . 𝑎2𝑎1𝑎00

𝑘
)
2
.

We denote by 𝐸𝑖 the 𝑛-bit string which is zero everywhere except on the 𝑖-th coordinate — the

value of 𝑛 is usually clearly given by the context. Note that (𝐸𝑖)2 represents the integer 2𝑖 . The
sequence (𝐸0, 𝐸1, . . . , 𝐸𝑛−2) forms the canonical basis of the vector space F2

𝑛
.

We denote by ⊕ the exclusive-or operation (XOR) applied indistinctively to integers and to bit

strings. This is also the addition in the field with two elements or in vector spaces over F2. We

1
https://gitlab.lip6.fr/almasty/libfes-lite

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://gitlab.lip6.fr/almasty/libfes-lite

111:4 Charles Bouillaguet

use − to denote the usual subtraction over Z and ⊟ to denote saturating subtraction: if 𝑎 ≥ 𝑏, then
𝑎 ⊟ 𝑏 = 𝑎 − 𝑏, otherwise 𝑎 ⊟ 𝑏 = 0.

Let 𝜌 (𝑖) denote the greatest integer 𝑘 such that 2
𝑘
divides 𝑖 , with 𝜌 (0) = +∞. This is also known

as the “ruler function” or the 2-adic valuation of 𝑖 . This locates the rightmost “1” bit in the binary

representation of the integer 𝑖 . We will later need the following

Lemma 3.1. For all integers 𝑖 , we have: 𝑖 ⊕ (𝑖 + 1) = 2
𝜌 (𝑖+1)+1 − 1.

Proof. Take an integer 𝑖 and write it in binary as 𝑖 = (𝑥01𝑎)
2
for some bit string 𝑥 and some

integer 𝑎 ≥ 0. Incrementing 𝑖 clears the least significant run of ones and we get that 𝑖 + 1 = (𝑥10𝑎)
2
.

This shows in passing that 𝑎 is simply 𝜌 (𝑖 + 1). It follows that 𝑖 ⊕ (𝑖 + 1) =
(
1
𝑎+1)

2
, hence the

announced result. □

Finally, define the “generalized” function 𝜌∗ : (. . . 𝑎2𝑎1𝑎0)2 ↦→ { 𝑗 ∈ N : 𝑎 𝑗 = 1}. This tracks the
location of all “1” bits in the binary representation of its argument. For instance, 42 = (101010)2,
therefore 𝜌∗ (42) = {1, 3, 5}. Also, 1337 = (10100111001)2, and 𝜌∗ (1337) = {0, 3, 4, 5, 8, 10}. It follows
that 𝜌 (𝑖) = min 𝜌∗ (𝑖). Also define 𝜌𝑖 (𝑥) to be the 𝑖-th smallest element of 𝜌∗ (𝑥) — this is the

position of the 𝑖-th rightmost “1” bit in 𝑥 . This means that 𝜌 (𝑥) = 𝜌1 (𝑥).

3.2 Boolean Monomials and Boolean Polynomials
The ring of Boolean polynomials in 𝑛 variables 𝑥 = (𝑥0, . . . , 𝑥𝑛−1), hereafter denoted by R, is
the quotient of the polynomial ring F2 [𝑥0, . . . , 𝑥𝑛−1] by the ideal spanned by the so-called “field

equations”

〈
𝑥2
0
− 𝑥0, . . . , 𝑥2𝑛−1 − 𝑥𝑛−1

〉
. Therefore, if 𝑓 is a Boolean polynomial, then the exponent

of any variable in all monomials is either 0 or 1. Note that we use the symbol + to denote addition

in R.
A Boolean monomial 𝑥0

𝑒0𝑥1
𝑒1 . . . 𝑥𝑛−1𝑒𝑛−1 is completely described by the bit string 𝑒0 . . . 𝑒𝑛−1 (the

“exponent vector”). It is also completely determined by the set {0 ≤ 𝑖 < 𝑛 : 𝑒𝑖 = 1}. Therefore, we
happily identify monomials with 𝑛-bit strings and with subsets of {0, . . . , 𝑛 − 1}. Beware that the
constant monomial 1 is identified with the all-zero bit string (this can be confusing).

The degree of a monomial is the Hamming weight of the exponent bit string. The degree of a

Boolean polynomial 𝑓 , denoted by deg 𝑓 , is the largest degree of its monomials.

A Boolean polynomial of degree 𝑑 in 𝑛 variables has at most

(
𝑛
↓𝑑
)
=

∑𝑑
𝑘=0

(
𝑛
𝑘

)
terms — this

convenient notation for the partial sum is borrowed from [Din21a]. Indeed, there are

(
𝑛
𝑘

)
Boolean

monomials of degree 𝑘 : they are the product of 𝑘 distinct variables.

3.3 Monomial Orders
Monomials can be ordered in a variety of ways — the reader may consult [CLO07] for a gentle

introduction to the subject. It turns out that different algorithms favor different orders.

The usual lexicographic order over monomials is obtained by ordering the exponent vectors in

lexicographic order. This yields for example:

1 < 𝑥7 < 𝑥4𝑥5 < 𝑥1 < 𝑥0 < 𝑥0𝑥7 < 𝑥0𝑥1

All monomials that contain 𝑥0 (the first variable) are greater than monomials that do not contain it.

The colexicographic order (often abbreviated colex) is obtained by ordering the exponent vectors

in lexicographic order while reading them from the least significant bit to the most significant.

This is the same thing as taking the usual lexicographic order with variables in reversed order

(. . . , 𝑥2, 𝑥1, 𝑥0). The previous example now becomes:

1 < 𝑥0 < 𝑥1 < 𝑥0𝑥1 < 𝑥4𝑥5 < 𝑥7 < 𝑥0𝑥7

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs 111:5

All monomials that contain 𝑥7 (the last variable) are greater than monomials that do not. More

formally, 𝑠 < 𝑡 iff there exists 0 ≤ 𝑖 < 𝑛 such that the last 𝑖 − 1 exponents of 𝑠 and 𝑡 are equal but
the 𝑖-th exponent of 𝑠 is less than the 𝑖-th exponent of 𝑡 .

The colex order is called invlex in SageMath and rp in Singular. Using the colex order greatly

simplifies the implementation of some functions without a significant loss of generality, since the

variables just have to be reversed. This fact is pointed out in [Rus03].

The Moebius transform usually requires the lexicographic or colexicographic order. In contrast,

our implementation of FES uses the graded colexicographic order: monomials are ordered by

increasing degree, and ties are broken using the colex order. This yields

1 < 𝑥0 < 𝑥1 < 𝑥7 < 𝑥0𝑥1 < 𝑥4𝑥5 < 𝑥0𝑥7 <

In this order, all monomials of degree 𝑘 come before monomials of degree 𝑘 + 1. Note that this is
not the same as the more common “graded reverse lexicographic order” that is often favored when

computing Gröbner bases.

Each monomial has a rank in a given order, which is simply its position in the totally ordered

sequence. Ranking is the operation of computing the rank of a monomial, while unranking is the

operation of building a monomial given its rank. The ability to do both efficiently is crucial to the

performance of BeanPolE.

3.4 Derivatives
By analogy with the corresponding notion from calculus, define the “differential operator” 𝐷𝑘 :

R ↦→ R that differentiates with respect to the 𝑘-th variable as

𝐷𝑘 : 𝑓 ↦→ 𝑓 (𝑥 + 𝐸𝑘) − 𝑓 (𝑥)

Note that subtraction and addition coincide in characteristic two. 𝐷𝑘 is easily seen to be a linear

operator on R. If𝑚 denotes a monomial that is not a multiple of 𝑥𝑘 , then it is easy to check that

𝐷𝑘 (𝑚) = 0 and 𝐷𝑘 (𝑚𝑥𝑘) =𝑚. These properties make it straightforward to evaluate the derivatives

of any polynomial. In fact, this shows that 𝐷𝑘 (𝑓) contains all the monomials of 𝑓 that are divisible

by 𝑥𝑘 , divided by 𝑥𝑘 . It follows that 𝐷𝑘 (𝑓) does not depend on 𝑥𝑘 and that deg𝐷𝑘 (𝑓) ≤ deg 𝑓 − 1.
More precisely, we can write

𝑓 (𝑥) = 𝑓 (𝑥0, . . . , 𝑥𝑘−1, 0, 𝑥𝑘+1, . . . , 𝑥𝑛−1) + 𝑥𝑘 · 𝐷𝑘 (𝑓) (𝑥)

Higher-order derivatives are simply the derivatives of the derivatives. For instance

𝐷ℓ ◦ 𝐷𝑘 : 𝑓 ↦→ (𝑓 (𝑥 + 𝐸𝑘 + 𝐸ℓ) − 𝑓 (𝑥 + 𝐸ℓ)) − (𝑓 (𝑥 + 𝐸𝑘) − 𝑓 (𝑥)) .

Looking at this definition, it is easy to conclude that the differentiation operators commute:𝐷𝑘◦𝐷ℓ =

𝐷ℓ ◦ 𝐷𝑘 . This implies that differentiating with respect to a subset of the variables (i.e. a monomial)

makes sense. We thus write 𝐷𝑘,ℓ to denote the second-order differentiation operator with respect

to the two variables 𝑥𝑘 and 𝑥ℓ , and 𝐷𝑚 for differentiation with respect to the variables contained in

an arbitrary monomial𝑚. The special case𝑚 = 1 corresponds to the derivation with respect to

nothing, and thus we set 𝐷1 (𝑓) = 𝑓 . If 𝑓 has degree 𝑑 , then its 𝑑-th order derivatives are constant.

The polynomial 𝐷𝑚 (𝑓) contains all monomials of 𝑓 that are multiples of𝑚, divided by𝑚. It follows

that evaluating 𝐷𝑚 (𝑓) on zero yields the coefficient of the monomial𝑚 in 𝑓 .

The derivative of a polynomial 𝑓 with respect to𝑚 is denoted as 𝐷𝑚 (𝑓), and its evaluation on a

vector 𝑥 is logically denoted as 𝐷𝑚 (𝑓) (𝑥). To alleviate notations, we will often omit 𝑓 , because it is

usually fixed and obvious from the context. The result of the evaluation of the polynomial 𝐷𝑚 (𝑓)
on 𝑥 will thus be denoted as 𝐷𝑚 (𝑥).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:6 Charles Bouillaguet

3.5 Computational Model
The computational complexities of algorithms described in this article are given in the transdi-
chotomous model [FW93, FW94]. It is the familiar model taught in most algorithmic classes and

described in the introduction of the well-known textbook [CLRS09].

It assumes a machine with a finite number of𝑤-bit registers and an unbounded memory where

each memory location holds a 𝑤-bit word. Arithmetic or logical operations between registers

have unit cost. Reading or writing the memory location whose address is in a register is also an

elementary operation with unit cost. On an input of size 𝑛, the machine word size𝑤 is assumed to

be larger than 𝑐 · log𝑛 for some constant 𝑐 . In other terms, the machine is large enough to deal

with the input.

For practical input sizes, the stated complexities correspond, up to a constant factor, to the number

of instructions executed by a RISC-V processor running the compiled C code. The algorithms given

in this paper do not require multiplication, so the minimal RV64I ISA is actually sufficient.

4 THE BEANPOLE LIBRARY
BeanPolE is a concise C library totalling 840 lines of code and headers. It is bundled with a

comprehensive user manual in the form of a texinfo document and a test suite. The test suite

contains demonstration programs that illustrate how the library could be used.

BeanPolE has been developed with the explicit goal of providing the necessary foundation

upon which to build state-of-the art algorithms to solve quadratic Boolean systems. It has notably

been used in a complete implementation of the Joux-Vitse algorithm [JV17] that currently holds

computational records. This makes uses of nearly all the functionalities of the library.

4.1 Algorithmic Improvements
The twomain algorithms implemented in the BeanPolE library are slightly better than their previous
presentations. First of all, both are nearly in-place: they alter the input polynomial, but restore it

to its original state once the full truth table has been visited. They require O(𝑛) extra words of
storage in addition to the space needed for the input polynomial

2
.

The version of the FES algorithm implemented in BeanPolE also improves over [BCC
+
10] in

two other ways: it visits the next entry of the truth table in O(𝑑) operations in the worst case —as

opposed to O(𝑑) amortized operations— and its setup phase is simpler.

The space-efficient Moebius transform also improves upon the presentation given in [Din21a]

in that it runs in time O(𝑑2𝑛) on usual computers. The original presentation of the algorithm

claims this many bit operations in the abstract computational model of straight-line programs.

These programs have no loops and the measure of computational complexity is just the size of

the program, i.e. the number of statements. The programs are specific to the size of the input,

have exponential size (because their running time is exponential), and therefore may contain an

exponential amount of precomputed information that depends on the size of the input.

In the case of the Moebius transform, these straight-line programs perform an exponential

number of memory accesses at addresses that are “hard-coded” — this is an exponential amount of

information embedded in the code.

In BeanPolE, there is a single, fixed, programwritten in the C programming language that accepts

inputs of any size. This implies that the exponentially many memory addresses that are accessed

are computed “on the fly”, in constant time.

2
The commonly accepted meaning of “in-place” requires the extra space requirements to be logarithmic in the input size

and it is not the case here. However, the extra space requirements are practically negligible compared to the input size.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs 111:7

4.2 Data Structures
BeanPolE uses a simple dense representation: all coefficients of a polynomial 𝑓 are stored contigu-

ously in a single array (denoted by A). It follows that A has
(
𝑛
↓𝑑
)
entries if 𝑓 is a degree-𝑑 polynomial

in 𝑛 variables. Once a monomial order has been fixed, the coefficient of the 𝑖-th monomial in this

order is stored in A[i].
The use of a simple array allows constant-time access to the coefficients of a monomial, once

the corresponding rank in the array has been determined. This is a decisive advantage to obtain

asymptotically efficient algorithms. However, determining the index positions to access the array

concentrates all the technical difficulties.

It is the user’s responsibility to prepare the array containing the coefficients of the polynomial

before feeding it to BeanPolE. Helper functions are provided to determine its size and to compute

the rank of monomials in the relevant monomial orders. The companion demonstration programs

illustrate how to parse text representations of polynomials and populate this dense representation.

Functions of the BeanPolE library are data-oblivious, i.e. they perform the same sequence of

operations regardless of the input values. Moreover, they only access the coefficients through two

simple “update” operations: A[𝑖] ← A[𝑖] ⊕ B[𝑗] or A[𝑖] ← A[𝑖] ⊕ (B[𝑗] & C[𝑘]), where A, B and C
are arrays of coefficients. This makes the library quite generic: it only requires the two update

functions described above to be provided, and is oblivious to the actual machine representation of

the coefficients. This genericity is implemented in the C programming language using function

pointers. It has several advantages. The same unmodified library code is capable of:

• Working with a simple representation that uses a value of type bool to store a coefficient.

• Working with a packed representation that uses a single bit per coefficient.

• Dealing with𝑚 polynomials simultaneously by seeing them as a single polynomial whose

coefficients are𝑚-bit strings.

The companion demonstration programs illustrate these capabilities.

The main drawback of using a dense representation is that the number of variables and the

degree of the polynomial usually have to be known beforehand, at least to allocate the array. This

is slightly inconvenient, for instance when reading a file containing the description of a polynomial

of unknown degree.

4.3 Interface
BeanPolE is written in plain C for maximum portability and ease of reuse. Its main features are

efficient iterators over the truth table of a Boolean polynomial, with slightly different characteristics.

• The FES algorithm takes as input a degree-𝑑 polynomial in 𝑛 variables, in graded colex order.

It iterates over the entries of the truth table in the order specified by the binary reflected Gray

code. It moves to the next entry inO(𝑑) operations. It requires a setup phasewhose asymptotic

complexity is not easy to analyze precisely, besides the obvious claim that it is quadratic

in the size of the polynomial. In some specific scenarios (e.g., degree-𝑛/3 polynomials in

𝑛 variables), this setup phase asymptotically dominates the cost of building the full truth

table — these scenarios are mostly of theoretical interest; our practical experience with the

algorithm is that the setup phase is completely negligible.

• The in-place Moebius transform takes as input the coefficients of a polynomial in colex order.

It iterates over the truth table in lexicographic order, by producing chunks of size 2
𝑑
at a

time. This has to be repeated 2
𝑛−𝑑

times to obtain the full truth table. Obtaining the next

chunk has amortized complexity O(𝑑2𝑑) but its worst-case execution time may be almost

linear in the size of the input polynomial.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:8 Charles Bouillaguet

Operating on polynomials stored in dense representation, i.e. as a linear array of coefficients,

makes crucial use of the ranking operation for the (graded) colex order. It also requires the ability to

efficiently iterate over monomials of degree 𝑘 (resp. at most 𝑘) in 𝑛 variables. Functions performing

these tasks form the infrastructure of the library.

In order to iterate over a sequence of objects (entries of the truth table, monomials, etc.), the

library exposes iterators made of three functions:

• void xxx_prepare (..., struct beanpole_iterator ∗ it): initializes the iteration.

• void xxx_advance(struct beanpole_iterator ∗ it): move to the next element.

• bool xxx_finished (const struct beanpole_iterator ∗ it): indicates if there is a next element.

The iterators maintain their state in an ad hoc variable, the struct beanpole_iterator object. The

user accesses the current state of the iteration by reading some fields of this iterator variable.

5 CORE INFRASTRUCTURE
This section describes the low-level functions that underlie all operations on multivariate polyno-

mials in dense representation. This includes functions to iterate over the set of all monomials, as

well as function to rank and unrank monomials. The definitions of these functions are shown in

Figure 1.

Most of these function operate on the set of all monomials of degree at most 𝑑 in 𝑛 variables in a

specific order. They usually take arguments named 𝑛, 𝑑 and 𝑜𝑟𝑑𝑒𝑟 for this purpose. A monomial is

described by its degree and an array containing the indices of the variables it contains, in increasing

order.

5.1 Enumerating Monomials
Enumerating all degree-𝑘 monomials in colex order is strictly equivalent to the well-known problem

of enumerating all 𝑘-subsets of {0, 1, 2, . . . , 𝑛 − 1} in colex order. For this, we use the venerable

algorithm first described in [Mif63], along with the optimization described in [Dvo90]. All of this

is summarized in algorithm T from [Knu14, §7.2.1.3]. It moves to the next monomial in amortized

constant time. Repeating this for 𝑘 = 0, . . . , 𝑑 allows the enumeration of all monomials of degree at

most 𝑑 in the graded colex order.

We could not trace a reference to an algorithm that enumerates all subsets of {0, 1, 2, . . . , 𝑛 − 1}
of size at most 𝑑 in colex order, therefore we now describe the one we use, even though we suspect

that it belongs to the folklore.

The iteration maintains an integer 𝑘 and an array 𝑆 of size 𝑑 +1. At all times, 𝑆 [𝑑 −𝑘 : 𝑑] contains
the elements of the current subset in ascending order. We set a “sentinel” value 𝑆 [𝑑] ← 1. The

enumeration starts with 𝑘 = 0, and thus with the empty set. Advancing to the next subset proceeds

as shown in Figure 2.

Lemma 5.1. The procedure shown in Figure 2 transforms 𝑆 into the next monomial of degree at most
𝑑 in 𝑛 variables in colex order.

Proof. It is convenient to consider that the current subset 𝑆 ⊆ {0, . . . , 𝑛− 1} is described by a bit
string 𝑠 = 𝑠0𝑠1 . . . 𝑠𝑛−1, where 𝑖 ∈ 𝑆 ⇔ 𝑠𝑖 = 1. In particular, we write 𝑠 = 0

𝑎
1
𝑏
0𝑥 for some integers

𝑎, 𝑏 ≥ 0 and some suffix 𝑥 ∈ {0, 1}∗. This means that 𝑆 = {𝑎, 𝑎 + 1, . . . , 𝑎 + 𝑏 − 1, . . . }.
First, if 0 ∉ 𝑆 and |𝑆 | < 𝑑 , then {0} ∪ 𝑆 is the next subset in lexicographic order and satisfies the

size constraint, therefore it is acceptable.

Otherwise, we have |𝑆 | = 𝑑 or 0 ∈ 𝑆 . In both cases, 𝑆 ≠ ∅ and therefore 𝑏 > 0 in the bit string

representation.

If |𝑆 | = 𝑑 , then the next 2
𝑎 − 1 subsets in lexicographic order have size strictly greater than 𝑑

because they correspond to the bit strings 𝑦1𝑏0𝑥 where 1
𝑏𝑥 has weight exactly 𝑑 , 𝑦 ∈ {0, 1}𝑎 and

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs 111:9

typedef enum {BEANPOLE_COLEX, BEANPOLE_GRCOLEX} beanpole_order;

struct beanpole_iterator {

int k; /* degree of the current monomial */
int m[]; /* variables of the current monomial */
size_t rank; /* rank of the current monomial */
...

};

/* Return the total number of monomials in n variables of degree at most d */
size_t beanpole_size (int n, int d);

/* Iterator over all monomials of degree <= d in n variables in the given order */
void beanpole_monomials_prepare(int n, int d, beanpole_order order , struct beanpole_iterator ∗ it);

void beanpole_monomials_advance(struct beanpole_iterator ∗ it);

bool beanpole_monomials_finished(const struct beanpole_iterator ∗ it);

/* c <--- a*b (monomials product). Return the degree of c */
int beanpole_monomials_product(int adeg, const int ax [], int bdeg, const int bx [], int cx []);

/* Return the rank of the given monomial */
size_t beanpole_rank(int n, int d, beanpole_order order , int k, const int m[]);

/* Write the monomial of the given rank in m and return its degree */
int beanpole_unrank(int n, int d, beanpole_order order , size_t rank, int m[]);

Fig. 1. Declarations of the “infrastructure” functions in BeanPolE.

1: if 𝑘 ≠ 𝑑 and 𝑆 [𝑑 − 𝑘] ≠ 0 then
2: Increment 𝑘 ⊲ Add zero

3: set 𝑆 [𝑑 − 𝑘] ← 0

4: else
5: while 𝑘 > 1 and 𝑆 [𝑑 − 𝑘] + 1 = 𝑆 [𝑑 − 𝑘 + 1] do
6: Decrement 𝑘 ⊲ Erase smallest “run”

7: Increment 𝑆 [𝑑 − 𝑘] ⊲ Bump smallest digit

Fig. 2. Advancing to the next subset of {0, . . . , 𝑛 − 1} of size at most 𝑑 in lexicographic order.

𝑦 ≠ 00 . . . 0. The following subset in lexicographic order is 0
𝑎
0
𝑏
1𝑥 . It has size less than or equal to

𝑑 , hence it is acceptable.

If 0 ∈ 𝑆 , then 𝑎 = 0 and the next subset in lexicographic order is again 0
𝑎
0
𝑏
1𝑥 , which is acceptable.

It follows that either it is possible to add zero to the current subset, or we need to transform

{𝑎, 𝑎 + 1, . . . , 𝑎 + 𝑏 − 1, . . . } into {𝑎 + 𝑏, . . . }. This is precisely what the algorithm does. □

Lemma 5.2. The procedure shown in Figure 2 runs in constant amortized time.

Proof. If thewhile loop does 𝑡 iterations (i.e. if line 6 is executed 𝑡 times), then the total number

of statement executed is 3 + 2𝑡 .
By the accounting method, assume that each invocation of the procedure requires a deposit

of 5 credits and that executing a single statement costs one credit. When the condition of the if

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:10 Charles Bouillaguet

statement is true, then one item is added to the current subset, the procedure terminates quickly

and two extra credits are left in the account.

Otherwise, 𝑡 iterations of the while loop take place, 𝑡 items are removed from the current subset

and the balance of the account decreases by 2𝑡 − 2.
If follows that the balance of the account is always greater than two times the size of the current

subset, and as such it cannot become negative. A sequence of 𝑁 invocations of the procedure

therefore executes less than 5𝑁 statements in total, hence the constant amortized cost. □

5.2 Ranking
It is not very difficult to compute the rank of a given degree-𝑘 monomial among all monomials

of degree at most 𝑑 in 𝑛 variables, in the orders that matter to us. All of this is well-known, see

for instance the textbook [Rus03]. The rank of𝑚 is the number of strictly smaller monomials. A

ranking function assigns a distinct positive integer to each monomial.

Let us begin with the colex order restricted to degree-𝑘 monomials. Let 𝜇𝑘 denote the corre-

sponding ranking function, which assigns an integer less than

(
𝑛
𝑘

)
to each monomial of degree 𝑘 in

𝑛 variables. If𝑚 = {𝑖0, . . . , 𝑖𝑘−1}, then𝑚 is greater than all degree-𝑘 monomials only containing

variables strictly smaller than 𝑖𝑘−1. There are
(𝑖𝑘−1
𝑘

)
such monomials (recall that variable numbering

starts at zero). Then, the rank of𝑚 among all degree-𝑘 monomials whose greatest variable is 𝑖𝑘−1
is precisely 𝜇𝑘−1 (𝑖0, . . . , 𝑖𝑘−2). This leads to the recursive definition:

𝜇0 (∅) := 0

𝜇𝑘 ({𝑖0, . . . , 𝑖𝑘−1}) :=
(
𝑖𝑘−1
𝑘

)
+ 𝜇𝑘−1 (𝑖0, . . . , 𝑖𝑘−2)

Unfolding the recursive definitions leads to the sum:

𝜇𝑘 ({𝑖0, . . . , 𝑖𝑘−1}) =
𝑘−1∑︁
𝑗=0

(
𝑖 𝑗

𝑗 + 1

)
(1)

Let 𝜈 denote the ranking function for the graded colexicographic order on 𝑛 variables. Because

monomial are ordered by degree, then 𝜈 (𝑚) < 𝜈 (𝑚′) if deg𝑚 < deg𝑚′. If a monomial 𝑚 has

degree 𝑘 , there are
(

𝑛
↓𝑘−1

)
monomials of strictly smaller degree. This shows that:

𝜈 (𝑚) :=
(

𝑛

↓ deg𝑚 − 1

)
+ 𝜇deg𝑚 (𝑚).

Evaluating 𝜇𝑘 and 𝜈 requires 𝑘 operations, assuming that the binomial coefficients and their

partial sums are precomputed.

Finally, let 𝜇↓𝑑 denote the the ranking function for all monomials of degree at most𝑑 in𝑛 variables

in the colex order. It assigns integer less than

(
𝑛
↓𝑑
)
to each of them. A similar reasoning that what

has already been done shows that:

𝜇↓0 (∅) := 0

𝜇↓𝑑 ({𝑖0, . . . , 𝑖𝑘−1}) :=
(
𝑖𝑘−1
↓ 𝑑

)
+ 𝜇↓𝑑−1 (𝑖0, . . . , 𝑖𝑘−2)

Unfolding this recursive definitions leads to:

𝜇↓𝑑 ({𝑖0, . . . , 𝑖𝑘−1}) =
𝑘−1∑︁
𝑗=0

(
𝑖 𝑗

↓ 𝑑 − 𝑘 + 𝑗 + 1

)
(2)

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs 111:11

6 SUPPORT FUNCTIONS
The “core infrastructure” functions described in the previous section make it easy to implement

many higher-level operations on dense Boolean polynomials.

6.1 Input / Output
One of the first relevant use is the ability to load and store polynomial to and from text files. The

companion demonstration programs load a polynomial from a file as follows:

(1) Find the degree 𝑑 and the number of variables 𝑛; choose a monomial order.

(2) Set 𝑁 ← beanpole_size(n, d); allocate an array A of size 𝑁 and initialize it with zeros.

(3) Read the next monomial from the file; sort its variables; compute its rank 𝑖 using the

beanpole_rank() function and set A[𝑖] ← 1.

(4) Repeat step 3 until all the monomials have been read from the file.

Writing a polynomial represented by an array A to a text file can be done like this:

(1) Initialize an iterator over all monomials in 𝑛 variables of degree at most 𝑑 in the correct order.

(2) While there is a next monomial, find the rank 𝑖 of the current monomial in the iterator

variable; if A[𝑖] = 1, then write the description of the monomial accessible in the iterator to

the text file.

(3) Advance the iterator to the next monomial and return to step 2.

6.2 Change of Order
If necessary, copying a degree-𝑑 polynomial and changing its monomial order is simple:

(1) Allocate an array B of the right size; initialize an iterator over all degree-𝑑 monomials in 𝑛

variables in the input order.

(2) While there is a next monomial, find the rank 𝑖 of the current monomial𝑚 in the iterator

variable; compute the rank 𝑗 of𝑚 among all monomials in 𝑛 variables of degree at most 𝑑 in

the desired output order using beanpole_rank(); set B[𝑗] ← A[𝑖].
(3) Advance the iterator to the next monomial and return to step 2.

This requires at most 𝑑 operation per coefficient of the input polynomial.

6.3 Multiplication
The beanpole_product_pxp function naively computes the product (𝐶 ← 𝐶 + 𝐴 × 𝐵) of two
polynomials (in any order, with the output in any desired order). It works as follows:

(1) Initialize an “outer” iterator over all monomials of 𝐴 in the correct order. Set 𝑑 ′ ← deg𝐴 +
deg𝐵. Fill the output array 𝐶 with zeros.

(2) If there is no next monomial in𝐴, stop the algorithm. Otherwise, look the rank 𝑖 of the current

monomial𝑚 in 𝐴; initialize an “inner” iterator over all monomials of 𝐵 in the correct order.

(3) If there is no next monomial in 𝐵, go to step 5. Otherwise, look the rank 𝑗 of the current mono-

mial𝑚′ in 𝐵; compute the monomial product𝑚×𝑚′ using beanpole_monomials_product();
compute the rank 𝑘 of𝑚 ×𝑚′ among all monomials in 𝑛 variables of degree at most 𝑑 ′ using
the beanpole_rank() function; set 𝐶 [𝑘] ← 𝐶 [𝑘] ⊕ (𝐴[𝑖] &𝐵 [𝑗]).

(4) Advance the inner iterator to the next monomial of 𝐵 and return to step 3.

(5) Advance the outer iterator to the next monomial of 𝐴 and return to step 2.

If 𝑆𝐴 and 𝑆𝐵 denote the respective sizes of the two input polynomials, then this function requires at

most (deg𝐴 + deg𝐵)𝑆𝐴𝑆𝐵 operation.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:12 Charles Bouillaguet

6.4 Last Variable Substitution
The beanpole_subslastvar_colex() function takes as argument the coefficients of a polyno-

mial 𝑓 , an array of Booleans b and overwrite the input polynomial with the coefficients of

𝑓 (𝑥0, 𝑥1, . . . , 𝑥𝑛−2, 𝑥𝑛−1+𝑏0𝑥0+· · ·+𝑏𝑛−2𝑥𝑛−2). In other terms, it adds an arbitrary linear combination

of the 𝑛−1 first variables to the last one. Note that this operation is involutive. Subsequently setting

the last variable to zero makes it possible to perform the substitution 𝑥𝑛−1 ← 𝑏0𝑥0 + · · · + 𝑏𝑛−2𝑥𝑛−2.
This function only works with polynomials in colex order. Note that adding a constant term to the

last variable is also possible and it is more efficient; this is discussed in section 8.1.

Let𝑚 denote a monomial of degree strictly less than𝑑 that does not contain 𝑥𝑛−1. The substitution
turns 𝑚𝑥𝑛−1 into 𝑚𝑥𝑛−1 + 𝑏0𝑚𝑥0 + · · · + 𝑏𝑛−2𝑚𝑥𝑛−2. Let 𝑐 denote the coefficient of 𝑚𝑥𝑛−1; the
substitution can be realized in-place by adding 𝑐 × 𝑏𝑖 to the coefficient of𝑚𝑥𝑖 , for all𝑚 and 𝑖 .

The procedure operates as follows:

(1) Initialize an iterator over all monomials of degree at most 𝑑 − 1 in 𝑛 − 1 variables in colex

order; set 𝑢 ←
(
𝑛−1
↓𝑑

)
[𝑢 is then the rank of𝑚𝑥𝑛−1 where𝑚 is the monomial in the iterator].

(2) If there is no next monomial, stop the algorithm. Otherwise, set 𝑖 ← 0.

(3) If 𝑖 = 𝑛 − 1, then advance the iterator to the next monomial, increment 𝑢 and return to step 2.

(4) If b[𝑖] = 0, then advance to step 5. Otherwise, compute the monomial product 𝑚𝑥𝑖 us-

ing beanpole_monomials_product(); compute the rank 𝑣 of𝑚𝑥𝑖 among monomials in 𝑛

variables of degree at most 𝑑 using beanpole_rank(); set 𝐴[𝑣] ← 𝐴[𝑣] ⊕ 𝐴[𝑢].
(5) Increment 𝑖 and return to step 3.

Up to a constant multiplicative factor, the total number of operation is 𝑛𝑑
(
𝑛−1
↓𝑑−1

)
. This is essentially

𝑑 times the size of the polynomial.

6.5 Evaluation
The beanpole_eval() functions evaluates a degree-𝑑 polynomial on an arbitrary input 𝑎 given as

an array of Booleans. More precisely, given𝑦, it computes𝑦⊕ 𝑓 (𝑎0, . . . , 𝑎𝑛−1). A monomial evaluates

to 1 on input 𝑎 when it only contains variables 𝑥𝑖 such that 𝑎𝑖 = 1. Therefore we enumerate the

subsets of size at most 𝑑 of {0 ≤ 𝑖 < 𝑛 : 𝑎𝑖 = 1} and sum the corresponding coefficients of the

polynomial. The evaluation function thus works as follows:

(1) Initialize two arrays xx and mm of size 𝑛 and set ℎ ← 0.

(2) For 0 ≤ 𝑖 < 𝑛, do: if 𝑎𝑖 = 1, then set xx[ℎ] ← 𝑖 and increment ℎ. [after this ℎ is the Hamming

weight of 𝑎].

(3) Set 𝐷 ← min(ℎ,𝑑); initialize an iterator on all monomials of degree at most 𝐷 in ℎ variables.

(4) If there is no next monomial, stop the algorithm. Otherwise, look the degree 𝑘 of the current

monomial𝑚 in the iterator; for 0 ≤ 𝑖 < 𝑘 , do: mm[𝑖] ← xx[𝑚[𝑖]]. [mm is the next monomial

that evaluates to 1 on input 𝑎].

(5) Compute the rank 𝑗 of mm among all monomials in 𝑛 variables of degree at most 𝑑 in the

input order using beanpole_rank(); set 𝑦 ← 𝑦 ⊕ 𝐴[𝑗].
(6) Advance the iterator to the next monomial and return to step 4.

Up to a constant multiplicative factor, the running time of this function is upper-bounded by 𝑑
(
ℎ
↓𝑑
)
,

where ℎ denotes the Hamming weight of the evaluation point 𝑥 . On random inputs, where on

expectation ℎ = 𝑛/2, this is approximately 𝑑2−𝑑 times the size of the input polynomial (when 𝑛 is

large compared to 𝑑).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs 111:13

6.6 Computation of Derivatives
The derivative of a degree-𝑑 polynomial 𝑓 with respect to a degree-𝑑 ′ monomial𝑚 (with 𝑑 ′ ≤ 𝑑)
contains all monomials of 𝑓 that are multiples of𝑚, divided by𝑚. We compute it by enumerating

all monomials of degree at most 𝑑 of the form𝑚 ×𝑚′ where𝑚′ does not contain any variable of𝑚.

The procedure works as follows:

(1) Initialize arrays mprime and xbar of size 𝑛 and set 𝑢 ← 0, 𝑣 ← 0.

(2) Initialize an array B of size

(
𝑛−𝑑 ′
↓𝑑−𝑑 ′

)
and fill it with zeros.

(3) For 0 ≤ 𝑖 < 𝑛, do: if𝑚[𝑢] = 𝑖 , then increment 𝑢; otherwise set xbar[𝑣] ← 𝑖 and increment 𝑣 .

(at this point, xbar contains variables not in𝑚)

(4) Initialize an iterator on all monomials of degree at most 𝑑 − 𝑑 ′ in 𝑛 − 𝑑 ′ variables in the

desired output order.

(5) If there is no next monomial, stop the algorithm. Otherwise, look the degree 𝑘 of the current

monomial 𝑚 in the iterator; for 0 ≤ 𝑖 < 𝑘 , do: mprime[𝑖] ← xbar[𝑚[𝑖]]. (𝑚′ is the next
monomial on variables not in𝑚).

(6) Compute themonomial product𝑚×𝑚′ using beanpole_monomials_product(); Let𝑢 denote
the rank of𝑚 accessible in the iterator; compute the rank 𝑣 of𝑚×𝑚′ among all monomials in

𝑛 variables of degree at most 𝑑 in the input order using beanpole_rank(); set 𝐵 [𝑢] ← 𝐴[𝑣].
(7) Advance the iterator to the next monomial and return to step 5.

6.7 Computation of Macaulay Matrices
We conclude with one last direct application of the “core infrastructure” functions: the generation

of a Macaulay matrix in sparse representation. This is for instance required when implementing the

“Crossbred” algorithm to solve Boolean polynomial systems [JV17]. The set of all polynomials of

degree at most𝐷 form a vector space of dimension

(
𝑛
↓𝐷
)
. Let 𝑓0, . . . , 𝑓ℓ−1 denote degree-𝑑 polynomials

and consider the subspace 𝑈 spanned by all the𝑚 × 𝑓𝑖 , where 0 ≤ 𝑖 < ℓ and𝑚 ranges across all

degree-(𝐷 − 𝑑) monomials. We consider the problem of assembling the corresponding Macaulay

matrix𝑀 , namely the matrix of dimension ℓ
(

𝑛
𝐷−𝑑

)
×
(
𝑛
↓𝐷
)
whose rows describe the generators of 𝑈 .

Computing a Gröbner basis of the polynomial ideal spanned by the 𝑓𝑖 ’s can be done by putting

such matrices into reduced row echelon form, if 𝐷 is sufficiently large. These matrices are very

sparse, and only the non-zero coefficients need to be stored. The procedure shown in Figure 3

generates the list of non-zero entries of the matrix row-by-row, which is convenient when dealing

with sparse matrices in Compressed Sparse Row (CSR) representation.

The next two sections describe the pièce de résistance of the BeanPolE library, namely the two

algorithms that iterate over the truth table of a Boolean polynomial.

7 THE FAST EXHAUSTIVE SEARCH (FES) ALGORITHM
This section presents a version of the FES algorithm that is slightly enhanced compared to its

original presentation in [BCC
+
10].

7.1 Main Ideas
The FES algorithm walks through the truth table by flipping a single variable at each step, using

the binary reflected Gray code. Flipping variables 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, . . . will

eventually visit all 𝑛-bit strings exactly once. More precisely, the enumeration process evaluates 𝑓

on a sequence of inputs 𝑔 (𝑗) for 𝑗 = 0, 1, 2, The initial value is 𝑔 (0) = 000 . . . 000 (the all-zero

𝑛-bit string). Jumping to the next input is done by setting 𝑔 (𝑗+1) = 𝑔 (𝑗) + 𝐸𝑘 (flipping the 𝑘-th

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:14 Charles Bouillaguet

1: procedureMacaulay(𝑛,𝑑, 𝐷, A)
2: Set 𝑘 ← 0 ⊲ current row of the matrix

3: for all monomials𝑚 of degree at most 𝐷 − 𝑑 do ⊲ use iterator

4: for 0 ≤ 𝑖 < ℓ do
5: # emit𝑚 × 𝑓𝑖
6: for all monomial𝑚′ of degree less than 𝑑 do ⊲ use iterator

7: 𝑢 ← rank of𝑚′ ⊲ accessible in the iterator

8: if 𝐴[𝑖, 𝑢] = 1 then ⊲ coefficients of 𝑓𝑖 are available in 𝐴[𝑖, ·]
9: Compute the monomial𝑚 ×𝑚′ ⊲ monomial product

10: 𝑣 ← rank of𝑚 ×𝑚′ (𝑛 variables, degree ≤ 𝐷) ⊲ ranking function

11: Set𝑀 [𝑘, 𝑣] ← 1 ⊲ append new non-zero entry to𝑀

12: Increment 𝑘 ⊲ advance to the next row

Fig. 3. Creating a Macaulay matrix in sparse representation

variable), where 𝑘 = 𝜌 (𝑗 + 1). It is well-known that using such a Gray code, the 𝑗-th visited bit

string is given by

𝑔 (𝑗) = 𝑗 ⊕ (𝑗 ≫ 1). (3)

We also introduce the notation ⟦ 𝑗⟧ as a shorthand for 𝑔 (𝑗) = 𝑗 ⊕ (𝑗 ≫ 1), namely the 𝑗-th entry of

the binary reflected Gray code. We will use several times the following simple

Lemma 7.1.

�
(2𝑘+1 − 1) ≪ ℓ

�
=

{
𝐸𝑘 if ℓ = 0

𝐸𝑘+ℓ ⊕ 𝐸ℓ−1 if ℓ > 0.

Proof. If ℓ = 0, then �
2
𝑘+1 − 1

�
= 1

𝑘+1 ⊕ 1
𝑘 = 10

𝑘 = 𝐸𝑘 .

Otherwise, if ℓ > 0, then�
(2𝑘+1 − 1) ≪ ℓ

�
= 1

𝑘+1
0
ℓ ⊕ 1

𝑘+1
0
ℓ−1 = 10

𝑘
10

ℓ−1 = 𝐸𝑘+ℓ ⊕ 𝐸ℓ−1
□

The main idea behind the algorithm is the following. Suppose that 𝑦 (𝑗) = 𝑓 (⟦ 𝑗⟧). Moving on to

the next input ⟦ 𝑗 + 1⟧ requires flipping the 𝑘-th variable with 𝑘 = 𝜌 (𝑗 + 1). By definition of the

derivative of 𝑓 with respect to the 𝑘-th variable (cf. section 3.4), this yields 𝑦 (𝑗+1) = 𝑦 (𝑗) ⊕ 𝐷𝑘 (⟦ 𝑗⟧).
In order to move on to the next entry of the truth table, it is sufficient to evaluate 𝐷𝑘 on ⟦ 𝑗⟧ and
to XOR the result onto 𝑦 (𝑗) . This is easier than the original problem because 𝐷𝑘 has degree 𝑑 − 1,
whereas 𝑓 has degree 𝑑 .

The idea of using a Gray code to evaluate a Boolean polynomial on all inputs appears to belong

to the folklore — we could not trace a precise reference to the first time it has been used. The FES

algorithm goes further by using it recursively on the derivatives. The end result is that a single

XOR operation allows to decrease by one the degree of the derivative that remains to be evaluated,

until it drops to zero. Because 𝑓 has degree 𝑑 , a total of 𝑑 XOR operations is required to “update” 𝑦

each time a variable is flipped, plus some bookkeeping that also requires O(𝑑) operations.
In order to make this possible, the key observation is that in the procedure described above, the

derivative 𝐷𝑘 with respect to the 𝑘-th variable only needs to be evaluated on ⟦ 𝑗⟧when 𝜌 (𝑗 + 1) = 𝑘 .
This happens when 𝑗 + 1 = 2

𝑘 + 𝑖2𝑘+1 for 𝑖 = 0, 1, 2, In other terms, it happens very regularly,

every 2
𝑘+1

iterations.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs 111:15

The main idea behind the FES algorithm consists in storing the values of all the derivatives on

their last evaluation point, and “update” these when needed using higher-order derivatives. These

updated derivatives must be stored somewhere, and the only available space is the array holding

the coefficients of 𝑓 . Let us denote by A an array that can be directly indexed by monomials. Then

a natural dense representation of 𝑓 consists in storing in A[𝑚] the coefficient of𝑚 in 𝑓 . It follows

from the discussion of section 3.4 thatA[𝑚] = 𝐷𝑚 (0). We make use of this fact by considering that

A initially contains all the derivatives of 𝑓 evaluated on zero. In the sequel, if𝑚 is any monomial,

then we mostly deal with “the derivative of 𝑓 with respect to𝑚” instead of “the coefficients of𝑚

in 𝑓 ”. When all the derivatives are evaluated on zero, the two concepts coincide. However, as the

algorithm progresses, the evaluation points of the derivatives change.

In the procedure outlined above, the first evaluation of 𝐷0 happens when 𝑗 = 0 and 𝐷0 must be

evaluated on 𝑔 (0) = ⟦0⟧ = 0. There is nothing to do, as 𝐷0 (0) is already available in A[𝑥0]. The
first evaluation of 𝐷𝑘 (with 𝑘 > 0) happens when 𝑗 + 1 = 2

𝑘
and lemma 7.1 tells us that ⟦ 𝑗⟧ = 𝐸𝑘−1.

From the definition of 𝐷𝑘−1, we see that 𝐷𝑘 (𝐸𝑘−1) can be obtained as

𝐷𝑘 (𝐸𝑘−1) = 𝐷𝑘 (0) ⊕ 𝐷𝑘−1,𝑘 (0). (4)

Note that𝐷𝑘 (0) and𝐷𝑘−1,𝑘 (0) are the coefficients of the monomials 𝑥𝑘 and 𝑥𝑘−1𝑥𝑘 in 𝑓 , respectively.
Let us now consider the subsequent evaluations of the first-order derivatives. Suppose that we

have in store the result of the evaluation of 𝐷𝑘 on 𝑢 :=
�
2
𝑘 + 𝑖2𝑘+1

�
and we wish to “update” this

to the result of the next evaluation on 𝑣 :=
�
2
𝑘 + (𝑖 + 1)2𝑘+1

�
. What is to be done? To obtain the

answer, consider the XOR-difference between the two successive evaluation points. It is an easy

consequence of (3) that ⟦𝑠⟧ ⊕ ⟦𝑡⟧ = ⟦𝑠 ⊕ 𝑡⟧. In addition, the integer additions in 𝑢 and 𝑣 are in

fact XOR operations because the two summands only have bits in disjoint locations. This implies

that 𝑢 ⊕ 𝑣 = ⟦(𝑖 ⊕ (𝑖 + 1)) ≪ (𝑘 + 1)⟧. Lemma 3.1 tells us that 𝑖 ⊕ (𝑖 + 1) = 2
𝜌 (𝑖+1)+1 − 1. Finally,

lemma 7.1 yields �
2
𝑘 + (𝑖 + 1)2𝑘+1

�
︸ ︷︷ ︸

𝑣

=

�
2
𝑘 + 𝑖2𝑘+1

�
︸ ︷︷ ︸

𝑢

+𝐸𝜌 (𝑖+1)+𝑘+1 + 𝐸𝑘 (5)

In other terms, each time 𝐷𝑘 has to be evaluated, the new evaluation point only differ from the

previous one by two bits; one of these bits is the 𝑘-th, and 𝐷𝑘 does not depend on the 𝑘-th variable.

The other bit has index ℓ := 𝑘 + 1 + 𝜌 (𝑖 + 1) = 𝜌2 (𝑗 + 1). Recall from section 3.1 that 𝜌2 (𝑗 + 1)
denotes the position of the second rightmost bit in 𝑗 + 1. It follows from (5) that:

𝐷𝑘 (𝑣) = 𝐷𝑘 (𝑢) + 𝐷𝑘,ℓ (𝑢) (6)

Therefore, updating the derivative with respect to the 𝑘-th variable from its evaluation on 𝑢 to its

evaluation on 𝑣 requires the evaluation of the second-order derivative on 𝑢.

In the specific case of quadratic polynomials, where second-order derivatives are constant

functions, we can stop there. As an introduction to the full-blown FES algorithm, the pseudo-code

in Figure 4 shows the FES algorithm specialized for quadratic polynomials. This procedure evaluates

a quadratic polynomial 𝑓 on the 2
𝑛
possible inputs using a constant number of operations per

iteration. For the sake of hiding nasty technical details, 𝑓 is represented by a dictionary A that

maps all Boolean monomials to their coefficients in 𝑓 . Turning this pseudo-code into an actual

program requires some additional work, notably to locate the rightmost bit and second-rightmost

bit in a counter efficiently, and to implement the A data structure efficiently.

The libfes-lite library essentially implements the algorithm of Figure 4, along with several

optimizations:

• The main loop is deeply unrolled (256 or 512 times). This practically removes the need to

evaluate 𝜌1 (𝑗 + 1) and 𝜌2 (𝑗 + 1), as their value is known at compile-time in most iterations.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:16 Charles Bouillaguet

1: procedureQuadraticFES(A, 𝑛)
2: # prepare initial values of first-order derivatives
3: for 1 ≤ 𝑘 < 𝑛 do
4: A [𝑥𝑘] ← A [𝑥𝑘] + A [𝑥𝑘−1𝑥𝑘] ⊲ evaluate 𝐷𝑘 on 𝐸𝑘−1 using (4)

5: # main loop
6: 𝑔← (0, 0, . . . , 0) ⊲ size 𝑛

7: for 0 ≤ 𝑗 < 2
𝑛 do

8: emit (𝑔,A[1]) ⊲ A[1] = 𝑓 (𝑔)
9: 𝑘 ← 𝜌 (𝑗 + 1) ⊲ locate rightmost set bit

10: ℓ ← 𝜌2 (𝑗 + 1) ⊲ locate second rightmost set bit

11: 𝑔𝑘 ← 𝑔𝑘 + 1 ⊲ bump 𝑔 to the next 𝑛-bit string

12: if ℓ < +∞ then
13: A [𝑥𝑘] ← A [𝑥𝑘] + A [𝑥𝑘𝑥ℓ] ⊲ update 𝐷𝑘 with 𝐷𝑘,ℓ using (6)

14: A[1] ← A[1] + A [𝑥𝑘] ⊲ update 𝑓 (𝑔) using 𝐷𝑘

Fig. 4. A simplified FES algorithm restricted to quadratic polynomials.

• The input polynomial 𝑓 is extended with 2 “fictitious” variables 𝑥𝑛 and 𝑥𝑛+1 that it does not
depend upon. The main loop starts with 𝑗 = (100𝑛)

2
and runs while 𝑗 < (110𝑛)

2
— this makes

2
𝑛
iterations. The point is that 𝜌2 (𝑗 + 1) is then always defined. Setting 𝐷𝑛 = 0 and 𝐷𝑛+1 = 0

removes the need for the conditional statement of line 12.

The rest of this section presents the full FES algorithm and demonstrates its correctness.

7.2 Tracking Bits in a Counter
We describe a (worst-case) constant-time algorithm to evaluate 𝜌∗ on consecutive integers, starting

from zero. In other terms, we track the positions of all set bits in a counter 𝑗 as it is repeatedly

incremented. This can be seen as a way to increment an 𝑛-bit counter in worst-case constant

time, as opposed to the classic solution of propagating carries that requires amortized constant

time. This is required to implement the FES algorithm efficiently, as it provides the evaluation of

𝜌 (𝑗 + 1), 𝜌2 (𝑗 + 1), . . .
We represent the counter using a stack of height at most 𝑛. It contains, from bottom to top,

the locations of all non-zero bits of the counter, from the most significant (at the bottom of the

stack) to least significant (at the top). If the counter is zero, the stack is empty. If the counter is,

say, (1010010)2, then the stack is [6, 4, 1]. If the counter is incremented to (1010011)2, the stack
becomes [6, 4, 1, 0]. Note that the actual binary value of the counter 𝑗 is not stored, because it

is represented implicitly by the stack and it would not be possible to update it in constant time

anyway.

In any case, 𝜌∗ (𝑗) can be directly read off the stack. If ℎ denotes its height, we find that 𝜌𝑘 (𝑗)
is +∞ if 𝑘 > ℎ and that it is the (𝑘 − 1)-th item from the top of the stack otherwise.

Here is how to update the stack when the counter is incremented. The counter can always be

written 𝑗 =
(
𝑎01𝑘

)
2
for some 𝑘 ≥ 0 and some bit string 𝑎. The next value is 𝑗 + 1 =

(
𝑎10𝑘

)
2
. Note

that 𝑘 = 𝜌 (𝑗 + 1) is in fact the position of the rightmost non-zero bit of 𝑗 + 1. To maintain the stack

while 𝑗 is incremented, we need to 1) pop the top 𝑘 entries and 2) push 𝑘 .

Maintaining the stack while the counter is incremented thus boils down to evaluating 𝜌 on

consecutive integers, starting from zero. Some CPUs have a hardware instruction to evaluate 𝜌 . For

instance, the x86-compatible CPUs have the bsf instruction that does just this. TheGnu C Compiler

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs 111:17

exposes the __builtin_ffs() pseudo-function that invokes the corresponding instruction if the

target architecture has it. On the other hand, trying to evaluate 𝜌 efficiently without relying on ad
hoc hardware instructions leads to a wealth of algorithmic tricks.

A particularly elegant solution has been proposed in [Ehr73, BER76] and summarized in [Knu14,

§7.2.1.1]. Using an array of (𝑛+1) “focus pointers” (hereafter denoted by 𝑝), it enables the evaluation
of 𝜌 on the next value of the counter in a constant number of operations without special hardware

support.

Using the technique based on “focus pointers”, we now provide a procedure that evaluates 𝜌∗ on
all consecutive integers. It first needs to be initialized as follows:

1: Allocate an array 𝑝 of size 𝑛 + 1 ⊲ 𝑝 holds the “focus pointers”

2: Allocate an array stack of size 𝑛
3: ℎ ← 0 ⊲ Height of the stack

4: for 0 ≤ 𝑖 < 𝑛 + 1 do
5: 𝑝 [𝑖] ← 𝑖 ⊲ Initial values of the focus pointers

The constant-time procedure based on “focus pointers” that computes 𝜌 (𝑗 + 1) is as follows. Its
correctness is proved in the original articles that describe it.

7: 𝑘 ← 𝑝 [0] ⊲ 𝑘 = 𝜌 (𝑗 + 1)
8: 𝑝 [0] ← 0 ⊲ update focus pointers

9: 𝑝 [𝑘] = 𝑝 [𝑘 + 1]
10: 𝑝 [𝑘 + 1] = 𝑘 + 1
Once 𝑘 is known, updating the stack is straightforward, and the correctness of the procedure

follows from the above discussion.

11: ℎ = ℎ − 𝑘 ⊲ Pop top 𝑘 elements from the stack

12: stack[ℎ] ← 𝑘 ⊲ Push 𝑘 onto the stack

13: ℎ ← ℎ + 1

7.3 Enumeration in Any Degree
The quadratic FES algorithm shown in Figure 4 works by updating first-order derivatives using

second-order derivatives, and updates the current value of the polynomial (i.e. the zero-th order

derivative) using the first-order derivatives. The second-order derivative are constant and thus do

not require updating. The full FES algorithm works for any degree; it uses the constant 𝑑-th degree

derivatives to update the (𝑑 − 1)-th order derivatives, then use these to update the (𝑑 − 2)-th order

derivatives, etc.

Figure 5 shows full FES the algorithm implemented in BeanPolE. All the low-level details have
been dealt with and this pseudo-code is easy to translate to the C language. Our C implementation

is 128 line long, in a slightly verbose style. By inspection, it is straightforward that each iteration of

the main loop requires O(𝑑) operations.
In the 𝑗-th iteration, an update sequence is determined. It is fully described by a monomial

𝑚 (𝑗) = 𝑥𝑖1𝑥𝑖2 . . . 𝑥𝑖𝑡 of degree at most 𝑑 (1 ≤ 𝑡 ≤ 𝑑). The indices 𝑖1, . . . , 𝑖𝑡 are given by 𝜌∗ (𝑗 + 1). In
other terms, they correspond to the locations of the rightmost bits of 𝑗 + 1. They are determined

by lines 19–26 of the pseudo-code, in constant time, using the technique described in section 7.2.

Note that the quadratic version presented in Figure 4 does a special case of this by computing

𝑘 = 𝑖1 = 𝜌 (𝑖 + 1) and ℓ = 𝑖2 = 𝜌2 (𝑖 + 1).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:18 Charles Bouillaguet

1: procedure FES(𝐴,𝑛, 𝑑)
2: 𝑔← (0, 0, . . . , 0) ⊲ current evaluation point — size 𝑛

3: 𝑟 ← (0, 0, . . . , 0) ⊲ 𝑟 [0] = 𝜈 (1) — size 𝑑 + 1
4: # Initialize the stack and the focus pointers (cf. section 7.2)
5: Allocate an array 𝑝 of size 𝑛 + 1 ⊲ 𝑝 holds the “focus pointers”

6: Allocate an array stack of size 𝑛
7: ℎ ← 0 ⊲ height of the stack

8: for 0 ≤ 𝑖 < 𝑛 + 1 do
9: 𝑝 [𝑖] ← 𝑖 ⊲ initial values of the focus pointers

10: # Prepare initial values of derivatives
11: for all monomials𝑚 of degree ≤ 𝑑 − 1 do ⊲ using iterator

12: 𝑖 ← Rank of𝑚 ⊲ accessible in the iterator

13: if 𝑚 ≠ 1 then
14: A[𝑖] ← 𝐷𝑚 (𝑚 ⊕ (𝑚 ≫ 1)) ⊲ using evaluation function

15: # Main loop
16: loop
17: emit (𝑔, A[0]) ⊲ A[0] = 𝑓 (𝑔)
18: # Update the stack and the focus pointers (cf. section 7.2)
19: 𝑘 ← 𝑝 [0] ⊲ 𝑘 = 𝜌 (𝑗 + 1)
20: 𝑝 [0] ← 0 ⊲ update focus pointers

21: 𝑝 [𝑘] = 𝑝 [𝑘 + 1]
22: 𝑝 [𝑘 + 1] = 𝑘 + 1
23: ℎ = ℎ − 𝑘 ⊲ pop top 𝑘 elements from the stack

24: stack[ℎ] ← 𝑘 ⊲ push 𝑘 onto the stack

25: ℎ ← ℎ + 1
26: 𝑡 ← min(ℎ,𝑑) ⊲ write 𝑖𝑡 , . . . , 𝑖2, 𝑖1 = stack[ℎ − 𝑡 : ℎ]
27: if 𝑘 = 𝑛 then
28: stop the algorithm

29: # Compute the ranks of the relevant derivatives (cf. section 5.2)
30: 𝑎 ← 0 ⊲ accumulator

31: for ℓ = 1, 2, . . . , 𝑡 do
32: 𝑖ℓ ← stack[ℎ − ℓ] ⊲ write𝑚ℓ = 𝑥𝑖1𝑥𝑖2 . . . 𝑥𝑖ℓ
33: 𝑎 ← 𝑎 +

(
𝑖ℓ
ℓ

)
⊲ 𝑎 = 𝜇𝑘 (𝑚ℓ)

34: 𝑟 [𝑘] ← 𝑎 +
(

𝑛
↓ℓ−1

)
⊲ 𝑟 [𝑖] = 𝜈 (𝑚ℓ)

35: # Advance to the next entry of the truth table
36: 𝑔𝑘 ← 𝑔𝑘 ⊕ 1 ⊲ Update 𝑔

37: for ℓ = 𝑡 − 1, 𝑡 − 2, . . . , 0 do
38: A[𝑟 [ℓ]] ← A[𝑟 [ℓ]] ⊕ A[𝑟 [ℓ + 1]] ⊲ Update derivatives

Fig. 5. An efficient implementation of the FES algorithm for any degree. If emits (𝑥, 𝑓 (𝑥)) for all 𝑥 ∈ {0, 1}𝑛 ,
where 𝑓 is a degree-𝑑 polynomial in 𝑛 variables described by the dense array of coefficients A. The coefficients
must be in graded colex order.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs 111:19

The 𝑡 derivatives that are updated in the 𝑗-th iteration are given by the set of prefixes of𝑚 (𝑗) ,
namely

𝑚0 = 1,

𝑚1 = 𝑥𝑖1 ,

𝑚2 = 𝑥𝑖1𝑥𝑖2 ,

...

𝑚𝑡 = 𝑥𝑖1𝑥𝑖2 . . . 𝑥𝑖𝑡 =𝑚.

𝐷𝑚𝑖
is updated using 𝐷𝑚𝑖+1 for 𝑖 = 𝑡 − 1, . . . , 0. This is what happens on line 38 in Figure 5.

Computing the ranks of the 𝑡 derivatives with respect to𝑚𝑖 is necessary to access them in the

array A. It follows from eq. (1) that computing 𝜇𝑘 (𝑚𝑡) yields in passing the values of

𝜇0 (𝑚0) , 𝜇1 (𝑚1) , 𝜇2 (𝑚2) , . . . , 𝜇𝑘−1 (𝑚𝑘−1) .
This naturally extends to 𝜈 . In other terms, it is possible to compute the ranks (in the graded colex

order) of all prefixes of a given degree-𝑡 monomial in O(𝑡) operations. This is done in lines 30–34

of the pseudo-code. This is the reason why the FES algorithms favors the graded colex order.

The only extra memory that is needed beyond the input polynomial is for storing the stack and

the focus pointers; this makes O(𝑛) words — this is always less than the size of the polynomial if

it is non-linear. Once the enumeration is terminated, the original array is left in a modified state.

However, it is possible to restore the input state; this requires approximately the same time as the

setup phase.

The “setup phase” (lines 11–14) evaluates all non-constant derivatives, and there are O(𝑛𝑑−1)
of them. A very crude upper-bound on the time complexity of the setup phase is thus given by

O(𝑛2𝑑−1). It is possible to obtain refined complexity bounds but this is largely irrelevant, because

the cost of the setup phase is negligible in front of the 𝑑2𝑛 operations required by the enumeration

itself in all practical scenarios.

7.4 Correctness
We now prove that the algorithm shown in Figure 5 is correct. Following what has implicitly been

done previously, we denote by foo(𝑗) the value of variable foo at the beginning of the 𝑗-th iteration

of the main loop (the while loop of line 16). The first iteration corresponds to 𝑗 = 0.

For the sake of lighter notations, given amonomial𝑚, we use the shorthandA[𝑚] = A[Rank(𝑚)].
In other terms, while A is the regular array accessed in the pseudo-code of Figure 5, A is a version

that can be directly indexed by monomials. For instance, line 38 of the algorithm could be rewritten

as

A [𝑚ℓ] ← A [𝑚ℓ] ⊕ A [𝑚ℓ+1] . (7)

Let LV(𝑚) denotes the index of the leading variable of the monomial𝑚, i.e. the greatest index of
any variable that occurs in𝑚. For instance, LV(𝑥2𝑥6) = 6. We define LV(1) = −1. In fact, LV(𝑚) is
the index of the most significant set bit in the exponent vector of𝑚. Finally, define

𝜓 (𝑚, 𝑗) = ⟦𝑚⟧ ⊕
(
⟦(𝑗 ⊟𝑚) ≫ (LV(𝑚) + 1)⟧ ≪ (LV(𝑚) + 1)

)
.

The following result fully describes the progress of the computation as the main loop of algorithm

of 5 runs.

Lemma 7.2. At the beginning of each iteration of the loop of line 16, and for all monomial𝑚 of
degree at most 𝑑 , we have:

A (𝑗) [𝑚] = 𝐷𝑚 (𝜓 (𝑚, 𝑗)) . (★)

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:20 Charles Bouillaguet

𝑗 𝜓 (𝑚0, 𝑗) 𝑚1 𝜓 (𝑚1, 𝑗) 𝑚2 𝜓 (𝑚2, 𝑗) 𝑚3

00000 00000 𝑥0 00001

00001 00001 𝑥1 00011

00010 00011 𝑥0 00001→ 00011 𝑥0𝑥1 00010

00011 00010 𝑥2 00110

00100 00110 𝑥0 00011→ 00111 𝑥0𝑥2 00111

00101 00111 𝑥1 00011→ 00111 𝑥1𝑥2 00101

00110 00101 𝑥0 00111→ 00101 𝑥0𝑥1 00010→ 00110

00111 00100 𝑥3 01100

01000 01100 𝑥0 00101→ 01101 𝑥0𝑥3 01101

01001 01101 𝑥1 00111→ 01111 𝑥1𝑥3 01111

01010 01111 𝑥0 01101→ 01111 𝑥0𝑥1 00110→ 01110 𝑥0𝑥1𝑥3
01011 01110 𝑥2 00110→ 01110 𝑥2𝑥3 01010

01100 01010 𝑥0 01111→ 01011 𝑥0𝑥2 00111→ 01111 𝑥0𝑥2𝑥3
01101 01011 𝑥1 01111→ 01011 𝑥1𝑥2 00101→ 01101 𝑥1𝑥2𝑥3
01110 01001 𝑥0 01011→ 01001 𝑥0𝑥1 01110→ 01010 𝑥0𝑥1𝑥2
01111 01000 𝑥4 11000

10000 11000 𝑥0 01001→ 11001 𝑥0𝑥4 11001

10001 11001 𝑥1 01011→ 11011 𝑥1𝑥4 11011

10010 11011 𝑥0 11001→ 11011 𝑥0𝑥1 01010→ 11010 𝑥0𝑥1𝑥4
10011 11010 𝑥2 01110→ 11110 𝑥2𝑥4 11110

10100 11110 𝑥0 11011→ 11111 𝑥0𝑥2 01111→ 11111 𝑥0𝑥2𝑥4
10101 11111 𝑥1 11011→ 11111 𝑥1𝑥2 01101→ 11101 𝑥1𝑥2𝑥4
10110 11101 𝑥0 11111→ 11101 𝑥0𝑥1 11010→ 11110 𝑥0𝑥1𝑥2
10111 11100 𝑥3 01100→ 11100 𝑥3𝑥4 10100

11000 10100 𝑥0 11101→ 10101 𝑥0𝑥3 01101→ 11101 𝑥0𝑥3𝑥4
11001 10101 𝑥1 11111→ 10111 𝑥1𝑥3 01111→ 11111 𝑥1𝑥3𝑥4
11010 10111 𝑥0 10101→ 10111 𝑥0𝑥1 11110→ 10110 𝑥0𝑥1𝑥3
11011 10110 𝑥2 11110→ 10110 𝑥2𝑥3 01010→ 11010 𝑥2𝑥3𝑥4
11100 10010 𝑥0 10111→ 10011 𝑥0𝑥2 11111→ 10111 𝑥0𝑥2𝑥3
11101 10011 𝑥1 10111→ 10011 𝑥1𝑥2 11101→ 10101 𝑥1𝑥2𝑥3
11110 10001 𝑥0 10011→ 10001 𝑥0𝑥1 10110→ 10010 𝑥0𝑥1𝑥2
11111 10000 stop

Fig. 6. Execution trace of the algorithm with 𝑛 = 5 and 𝑑 = 3.

Lemma 7.2 with𝑚 = 1 states that the sequence of evaluation points of the polynomial is actually

𝜓 (1, 𝑗) = ⟦ 𝑗⟧. In other terms, the algorithm evaluates 𝑓 on all successive 𝑛-bit strings in the order

given by the binary reflected gray code. Proving lemma 7.2 thus establishes the correctness of the

algorithm.

The table in Figure 6 illustrate the progress of the algorithm on a small example. This shows

for instance that A[𝑥1𝑥2] keeps its initial value until the 14-th iteration. The 15-th iteration (with

𝑗 = 14), the 23-th (with 𝑗 = 22) and the 31-th (with 𝑗 = 30) begin with a “new” value that was not

present at the beginning of the previous iteration.

We now characterize precisely what happens in each iteration of the main loop. Define 𝜌 (𝑗) =
𝜌∗ (𝑗) − max 𝜌∗ (𝑗). For instance, 𝜌∗ (1337) = {0, 3, 4, 5, 8, 10} and 𝜌 (1337) = {0, 3, 4, 5, 8}. Let

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs 111:21

Prefix(𝑚) denote the set of all prefixes of the monomial 𝑚. For instance Prefix(𝑥0𝑥3𝑥4) =

{1, 𝑥0, 𝑥0𝑥3, 𝑥0𝑥3𝑥4}.

Lemma 7.3. For all 𝑗 ≥ 0 and all monomial𝑚. Then:

𝜓 (𝑚, 𝑗 + 1) =
{
𝜓 (𝑚, 𝑗) ⊕ 𝐸𝜌

1+deg𝑚 (𝑗+1) if𝑚 ∈ Prefix (𝜌 (𝑗 + 1)) ,
𝜓 (𝑚, 𝑗) otherwise

Proof. Set 𝑘 = LV(𝑚) + 1 and write:

𝑗 ⊟𝑚 = (𝑥 𝑎𝑘−1 . . . 𝑎1𝑎0)2,
(𝑗 + 1) ⊟𝑚 = (𝑥 ′𝑏𝑘−1 . . . 𝑏1𝑏0)2,

where 𝑥, 𝑥 ′ are some bit strings. Rearranging these expressions, we obtain (𝑗 ⊟𝑚) ≫ 𝑘 = (𝑥)2 and
((𝑗 + 1) ⊟𝑚) ≫ 𝑘 = (𝑥 ′)2.
Suppose that𝜓 (𝑚, 𝑗) ≠ 𝜓 (𝑚, 𝑗 + 1). Looking at the definition of𝜓 , it is clear that (𝑗 ⊟𝑚) ≫ 𝑘 ≠

((𝑗 + 1) ⊟𝑚) ≫ 𝑘 . This is equivalent to 𝑥 ≠ 𝑥 ′ with the above notations. By inspection, the only

possibility for this to happen is 𝑗 ⊟𝑚 =
(
𝑥1𝑘

)
2
and (𝑗 + 1) ⊟𝑚 =

(
𝑥 ′0𝑘

)
2
with (𝑥 ′)2 = (𝑥)2 + 1.

It follows that (𝑗 + 1) ⊟𝑚 = (𝑥 + 1) ≪ 𝑘 . Because the right-hand side is non-zero, we can get rid

of the saturating subtraction and obtain

𝑗 + 1 =𝑚 + (𝑥 + 1) ≪ 𝑘. (8)

Unfolding the definition of𝜓 then yields:

𝜓 (𝑚, 𝑗) = ⟦𝑚⟧ ⊕ (⟦𝑥⟧ ≪ 𝑘),
𝜓 (𝑚, 𝑗 + 1) = ⟦𝑚⟧ ⊕ (⟦𝑥 + 1⟧ ≪ 𝑘),

and therefore 𝜓 (𝑚, 𝑗) ⊕ 𝜓 (𝑚, 𝑗 + 1) = ⟦𝑥 ⊕ (𝑥 + 1)⟧ ≪ 𝑘 . Lemma 3.1 tells us that 𝑥 ⊕ (𝑥 + 1) =(
1
𝜌 (𝑥+1)+1)

2
and we conclude from from lemma 7.1 that ⟦𝑥 ⊕ (𝑥 + 1)⟧ = 𝐸𝜌 (𝑥+1) .

Eq. (8) implies that the lower-significant bits of 𝑗 + 1 coincide with those of the exponent vector

of𝑚. More precisely, we have:

𝜌𝑖 (𝑗 + 1) =
{
𝜌𝑖 (𝑚) 1 ≤ 𝑖 ≤ deg𝑚

𝜌𝑖−deg𝑚 (𝑥 + 1) + 𝑘 otherwise

Therefore, 𝜌 (𝑥 + 1) + 𝑘 = 𝜌1+deg𝑚 (𝑗 + 1). This enables us to conclude that if𝜓 (𝑚, 𝑗) ≠ 𝜓 (𝑚, 𝑗 + 1),
then𝜓 (𝑚, 𝑗 + 1) = 𝜓 (𝑚, 𝑗) ⊕ 𝐸𝜌

deg𝑚+1 (𝑗+1) .
The above reasoning in fact shows that eq. (8) is a necessary and sufficient for condition for

𝜓 (𝑚, 𝑗) ≠ 𝜓 (𝑚, 𝑗 +1). Therefore we now seek to characterize the set of monomials𝑚 that satisfy (8).

It is clear that the constant monomial𝑚 = 1 does so, therefore we concentrate our attention on

non-constant monomials.

Write again 𝑗 + 1 and𝑚 in binary, as 𝑗 + 1 = (𝑐𝑛−1 . . . 𝑐1𝑐0)2 and𝑚 = (1𝑑𝑘−2 . . . 𝑑1𝑑0)2. Then (8)

is equivalent to 𝑐𝑖 = 𝑑𝑖 for 0 ≤ 𝑖 < 𝑘 (this implies that 𝑐𝑘−1 = 1) and (𝑐𝑛 . . . 𝑐𝑘)2 ≥ 1.

It appears that each 1 bit in the binary writing of 𝑗 + 1, except the leftmost one, gives rise to a

monomial𝑚 that satisfies (8). Write 𝜌∗ (𝑗 + 1) = {𝑖0, 𝑖1, . . . , 𝑖ℓ }. Then 1, 𝑥𝑖0 , 𝑥𝑖0𝑥𝑖1 , . . . , 𝑥𝑖0 . . . 𝑥𝑖ℓ−1 are

the monomials that satisfy (8), and this is precisely Prefix (𝜌 (𝑗 + 1)). □

We now prove the main result.

Proof of lemma 7.2. Observe first that (★) always hold for degree-𝑑 monomials𝑚, because 𝐷𝑚

is constant and A[𝑚] is never modified.

We prove that (★) always holds for derivatives of lesser order by induction on the number

of iterations of the main loop. First, it clearly does at the beginning of the first iteration of the

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:22 Charles Bouillaguet

main loop (𝑗 = 0). Indeed, the “setup phase” of lines 11–14 serves precisely this purpose. It sets

A[𝑚] = 𝐷𝑚 (⟦𝑚⟧) for all monomials𝑚, and𝜓 (𝑚, 0) = ⟦𝑚⟧.
Next, suppose that (★) holds at the beginning of the 𝑗-th iteration of the main loop for all𝑚 of

degree at most 𝑑 , and let us show that it is still the case at the beginning of the (𝑗 + 1)-th iteration.

Write 𝜌∗ (𝑗 + 1) = {𝑖1, 𝑖2, . . . , 𝑖𝑡 , . . . }. Looking at the pseudo-code, we see that the sequence of

modified derivatives𝑚0,𝑚1, . . . ,𝑚𝑡−1 is precisely Prefix ({𝑖1, . . . , 𝑖𝑡−1}). All other derivatives are
left untouched, and according to lemma 7.3, they are not supposed to change, so (★) still holds at

the beginning of the next iteration for the derivatives that are not modified.

It remains to show that those that are modified still satisfy (★) at the beginning of the next

iteration. In the sequel, 𝑡 denotes the value computed on line 26 of the pseudo-code. The algorithm

executes the following sequence of 𝑡 − 1 updates:

A (𝑗+1) [𝑚𝑡−1] ← A (𝑗) [𝑚𝑡−1] ⊕ A (𝑗) [𝑚𝑡] ,
A (𝑗+1) [𝑚𝑡−2] ← A (𝑗) [𝑚𝑡−2] ⊕ A (𝑗+1) [𝑚𝑡−1] ,

...

A (𝑗+1) [𝑚0] ← A (𝑗) [𝑚0] ⊕ A (𝑗+1) [𝑚1] .

We show by descending induction on ℓ = 𝑡 −1, 𝑡 −2, . . . , 0, thatA (𝑗+1) [𝑚ℓ] satisfies (★). This will
establish the result of the lemma. The first “updater” A (𝑗) [𝑚𝑡] satisfies (★) because either 𝑡 = 𝑑
and it is constant (always correct), or 𝑡 < 𝑑 and it is not modified, so it satisfies (★) by induction

hypothesis on 𝑗 .

Next, consider the update:

A (𝑗+1) [𝑚ℓ] ← A (𝑗) [𝑚ℓ] ⊕ A (𝑗+1) [𝑚ℓ+1]

and suppose that A (𝑗+1) [𝑚ℓ+1] satisfies (★). The initial value A (𝑗) [𝑚ℓ] of the “updatee” also

satisfies (★) by induction hypothesis on 𝑗 . The final value A (𝑗+1) [𝑚ℓ] of the “updatee” is correct if
and only if:

𝐷𝑚ℓ
(𝜓 (𝑚ℓ , 𝑗 + 1)) = 𝐷𝑚ℓ

(𝜓 (𝑚ℓ , 𝑗)) ⊕ 𝐷𝑚ℓ+1 (𝜓 (𝑚ℓ+1, 𝑗 + 1)) . (9)

We conclude the proof by showing that (9) is true. By lemma 7.3, we have

𝜓 (𝑚ℓ , 𝑗 + 1) = 𝜓 (𝑚ℓ , 𝑗) ⊕ 𝐸𝑖ℓ+1 . (10)

Eq. (9) is therefore equivalent to

𝐷𝑚ℓ

(
𝜓 (𝑚ℓ , 𝑗) ⊕ 𝐸𝑖ℓ+1

)
= 𝐷𝑚ℓ

(𝜓 (𝑚ℓ , 𝑗)) ⊕ 𝐷𝑚ℓ+1 (𝜓 (𝑚ℓ+1, 𝑗 + 1)) . (11)

Note that𝑚ℓ+1 =𝑚ℓ𝑥𝑖ℓ+1 . By definition of the derivative, we have that

𝐷𝑚ℓ

(
𝜓 (𝑚ℓ , 𝑗) ⊕ 𝐸𝑖ℓ+1

)
= 𝐷𝑚ℓ

(𝜓 (𝑚ℓ , 𝑗)) ⊕ 𝐷𝑚ℓ+1 (𝜓 (𝑚ℓ , 𝑗)) .

Therefore (9) is equivalent to

𝐷𝑚ℓ+1 (𝜓 (𝑚ℓ , 𝑗)) = 𝐷𝑚ℓ+1 (𝜓 (𝑚ℓ+1, 𝑗 + 1)) .

Using (10) again, this becomes

𝐷𝑚ℓ+1 (𝜓 (𝑚ℓ , 𝑗)) = 𝐷𝑚ℓ+1

(
𝜓 (𝑚ℓ , 𝑗) ⊕ 𝐸𝑖ℓ+1

)
.

This last equation is always satisfied, because 𝐷𝑚ℓ+1 does not depend on 𝑥𝑖ℓ+1 . □

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs 111:23

/*
* A[0:2**n] contains the truth table of f;
* this overwrites it with its Moebius transform
*/
void Moebius(bool ∗A, int n)

{

int S = 1;

int N = 1 << n;

for (int i = 0; i < n; i++) {

for (int p = 0; p < N; p += 2 ∗ S)

for (int j = 0; j < S; j++)

A[p + S + j] ^= A[p + j];

S += S;

}

}

Fig. 7. C code of the classic Moebius transform, adapted from [Jou09].

8 NEARLY IN-PLACE MOEBIUS TRANSFORM FOR LOW-DEGREE POLYNOMIALS
The “classic”, usual Moebius transform converts the truth table of a boolean function to its algebraic

normal form, i.e. the coefficients of its polynomial representation, and vice-versa (it is involutive).

It can be computed in-place by a few lines of C code, as shown in Figure 7. The interested reader

can consult [Jou09, §9.2] for more details. This well-known procedure requires O(𝑛2𝑛) operations.
It applies to arbitrary Boolean functions and therefore operates on an array of size 2

𝑛
.

Designing an in-placeMoebius transform that converts the coefficients of a low-degree polynomial

to its truth table presents an obvious and seemingly insurmountable challenge: the input is much

smaller than the output. Indeed, on input we have an array of size O(𝑛𝑑) holding the coefficients of

a degree-𝑑 polynomial, while on output we should provide an array of size 2
𝑛
containing its truth

table.

The only way such a procedure could use less than 2
𝑛
bits of memory is by incrementally

producing the truth table, one chunk at a time, without ever holding its 2
𝑛
entries in memory all at

once. The algorithm implemented in BeanPolE is adapted from [Din21a], which is not in-place. It

relies on two sub-algorithms:

• The classic in-place Moebius transform that operates on arrays of size 2
𝑛
.

• An in-place procedure to “flip” the last variable in sub-linear time.

It assumes that 𝑛 ≥ 𝑑 and works as follows:

1. If there are exactly 𝑑 variables:

a. Run the “classic” in-placeMoebius transform described in Figure 7. [this turn the 2
𝑑
coefficients

of the polynomial into its truth table of size 2
𝑑
]

b. Emit the corresponding chunk of 2
𝑑
entries of the truth table.

c. Run the classic in-place Moebius again. [this reverts the polynomial to its original state]

2. Otherwise:

a. Proceed recursively on 𝑓 (𝑥0, . . . , 𝑥𝑛−2, 0) — one less variable.

b. Proceed recursively on 𝑓 (𝑥0, . . . , 𝑥𝑛−2, 1) — one less variable.

This procedure uses the colexicographic order for two reasons. Firstly, it is required by the classic

Moebius transform. Secondly, it enables the last variable to be fixed in-place, and the operation to

be efficiently reverted.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:24 Charles Bouillaguet

Let A denote the array representing the coefficients of a degree-𝑑 polynomial 𝑓 in 𝑛 vari-

able in colex order. A has size

(
𝑛
↓𝑑
)
. Denote by 𝑓𝑏 the polynomial in one less variable given by

𝑓 (𝑥0, . . . , 𝑥𝑛−2, 𝑏).
The description of 𝑓0 is in fact readily available in A: all the coefficients of monomials containing

the last variable are located at the end of A in the colex order. Therefore the first

(
𝑛−1
↓𝑑

)
elements of

A are precisely the coefficients of 𝑓0.

Obtaining 𝑓1 requires a bit more work. To this end, our main tool is an efficient procedure that flips

the last variable in-place: it overwrites the coefficients of 𝑓 with those of 𝑓 (𝑥0, . . . , 𝑥𝑛−2, 𝑥𝑛−1 + 1).
This operation is clearly involutive. Working with the coefficients of 𝑓1 is done as follows:

• Flip the last variable in-place. [the beginning of A then contains the coefficients of 𝑓1].

• Do whatever is needed with 𝑓1.

• Flip the last variable in-place once more. [this restores A to its original state].

8.1 Flipping the Last Variable In-Place
Let𝑚 denote a monomials that does not contain 𝑥𝑛−1. The transformation 𝑥𝑛−1 ↦→ 𝑥𝑛−1 + 1 leaves
𝑚 invariant and turns 𝑚𝑥𝑛−1 into 𝑚 +𝑚𝑥𝑛−1. Let B denote the array containing coefficients of

𝑓 (𝑥0, . . . , 𝑥𝑛−2, 𝑥𝑛−1 + 1). Assuming that A and B can be indexed with monomials, we have:

𝐵 [𝑚𝑥𝑛−1] = 𝐴[𝑚𝑥𝑛−1]
𝐵 [𝑚] = 𝐴[𝑚] ⊕ 𝐴[𝑚𝑥𝑛−1]

We now describe an in-place procedure that overwrites the content of A with that of B. For each
monomial𝑚 of degree at most 𝑑 in 𝑛 − 1 variables: let 𝑖 (resp. 𝑗) denote the colex rank of𝑚 (resp.

𝑚𝑥𝑛−1) among all degree-𝑑 monomials, then do 𝐴[𝑖] ← 𝐴[𝑖] ⊕ 𝐴[𝑗]. The only technical difficulty

is to compute the ranks 𝑖 and 𝑗 efficiently.

Suppose that 𝑟 = 𝜇↓𝑑 ({𝑖0, . . . , 𝑖𝑘−1}) is the colex rank of a monomial among all degree-𝑑 mono-

mials. It follows from (2) that is easy to update 𝑟 if the smallest variable is removed, or if another

even smaller variable 𝑗 < 𝑖0 is added:

𝜇↓𝑑 ({𝑖1, . . . , 𝑖𝑘−1}) = 𝑟 −
(

𝑖0

↓ 𝑑 − 𝑘 + 1

)
(12)

𝜇↓𝑑 ({ 𝑗, 𝑖0, . . . , 𝑖𝑘−1}) = 𝑟 +
(

𝑗

↓ 𝑑 − 𝑘

)
(13)

This ability to “update” the rank of a monomial in constant time plays a crucial role in the

procedure that flips the last variable of a Boolean polynomial described in Figure 8.

Each iteration of the for loop uses the algorithm of Figure 2 to advance to the next monomial

𝑚 in 𝑛 − 1 variables of degree at most (𝑑 − 1). It also maintains the colex rank of𝑚 among all

monomials of degree at most 𝑑 using equations (12) and (13). During this enumeration, the rank of

𝑚𝑥𝑛−1 increases monotonically from

(
𝑛−1
↓𝑑

)
to

(
𝑛
↓𝑑
)
.

The correctness of this procedure follows from lemma 5.1 and from the discussion above about

incrementally updating the rank of a monomial. The proof of lemma 5.2 also shows that it runs in

amortized constant time per iteration. It follows that flipping the last variable takes time proportional

to

(
𝑛−1
↓𝑑−1

)
, namely the number of updated coefficients.

8.2 An Iterative Nearly In-place Moebius Transform
The full pseudo-code of the in-place Moebius transform implemented in BeanPolE is shown in

Figure 9. It remains to determine its complexity. The classic Moebius transform is invoked 2
𝑛−𝑑+1

times on arrays of size 2
𝑑
, so the total number of operations this represents is O(𝑑2𝑛). We now

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs 111:25

1: procedure FlipLastVariable(A, 𝑛, 𝑑)
2: 𝑘 ← 0 ⊲ 𝑘 = deg𝑚

3: 𝑚[𝑑 − 1] ← 0

4: 𝑚[𝑑] ← 1 ⊲ variables of𝑚 appear in𝑚[𝑑 − 𝑘 + 1 : 𝑑]
5: 𝑖 ← 0 ⊲ 𝑖 = 𝜇↓𝑑−1 (𝑚)
6: for

(
𝑛−1
↓𝑑

)
<= 𝑗 <

(
𝑛
↓𝑑
)
do ⊲ 𝑗 = 𝜇↓𝑑 (𝑚𝑥𝑛−1) with deg𝑚 ≤ 𝑑 − 1

7: A[𝑖] ← A[𝑖] ⊕ A[𝑗] ⊲ Update A

The sequel advances to the next𝑚 using the algorithm of Figure 2.
It maintains the corresponding rank 𝑖 using (12) and (13).

8: if 𝑘 ≠ 𝑑 − 1 and𝑚[𝑑 − 𝑘] ≠ 0 then
9: 𝑘 ← 𝑘 + 1 ⊲ Add 𝑥0 to𝑚

10: 𝑚[𝑑 − 𝑘] ← 0

11: 𝑖 ← 𝑖 + 1 ⊲ add smallest variable using eq. (13)

12: else
13: while 𝑘 > 1 and𝑚[𝑑 − 𝑘] + 1 =𝑚[𝑑 − 𝑘 + 1] do ⊲ Erase smallest “run”

14: 𝑖 = 𝑖 −
(𝑚[𝑑−𝑘]
↓𝑑−𝑘+1

)
⊲ remove smallest variable using eq. (12)

15: 𝑘 ← 𝑘 − 1
16: 𝑖 = 𝑖 −

(𝑚[𝑑−𝑘]
↓𝑑−𝑘+1

)
⊲ remove smallest variable using eq. (12)

17: 𝑚[𝑑 − 𝑘] =𝑚[𝑑 − 𝑘] + 1 ⊲ Replace smallest variable by the next one

18: 𝑖 = 𝑖 +
(𝑚[𝑑−𝑘]
↓𝑑−𝑘+1

)
⊲ add smallest variable using eq. (13)

Fig. 8. Flipping the last variable of a Boolean polynomial in colex order, in-place.

1: procedure InPlaceMoebius(A, 𝑛, 𝑑)
2: Allocate an array 𝑥 of 𝑛 + 1 bits
3: Set 𝑥𝑖 ← 0 for all 0 ≤ 𝑖 ≤ 𝑛.
4: Moebius(A, 𝑑) ⊲ coefficients→ truth table

5: while 𝑥 [𝑛] = 0 do

At this point A[0 : 2𝑑] contains the next chunk of 2𝑑 entries of the truth table
6: emit A[0 : 2𝑑]
7: Moebius(A, 𝑑) ⊲ truth table→ coefficients

8: Set 𝑖 ← 𝑑 ⊲ unwind the recursion stack

9: while 𝑖 < 𝑛 and 𝑥 [𝑖] = 1 do
10: Set 𝑥 [𝑖] ← 0

11: FlipLastVariable(A, 𝑖 + 1, 𝑑)
12: Increment 𝑖

13: Set 𝑥 [𝑖] ← 1 ⊲ flip the last variable

14: if 𝑖 < 𝑛 then
15: FlipLastVariable(A, 𝑖 + 1, 𝑑)
16: Moebius(A, 𝑑) ⊲ coefficients→ truth table

Fig. 9. The nearly in-place Moebius transform for low-degree polynomials.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:26 Charles Bouillaguet

claim that the total time spent flipping variables is also O(𝑑2𝑛). The (𝑑 + 𝑖)-th variable is flipped

2
𝑛−𝑑−𝑖−1

times. The total time spent in variable flipping is then (up to a constant factor)

𝑇 =

𝑛−1∑︁
𝑖=𝑑

2
𝑛−𝑖−1

(
𝑖 − 1
↓ 𝑑 − 1

)
Suppose that 𝑑 ≤ 𝑛/2. Under this assumption, the trivial bound

(
𝑛
↓𝑘
)
≤ 𝑘

(
𝑛
𝑘

)
shows that the time

spent flipping variables is upper-bounded by

𝑇 ≤ 𝑑2𝑛−1
𝑛−1∑︁
𝑖=𝑑

2
−𝑖
(
𝑖 − 1
𝑑 − 1

)
Because

(
𝑛
𝑘

)
= 𝑛

𝑘

(
𝑛−1
𝑘−1

)
, it follows that:

𝑇 ≤ 𝑑22𝑛−1
𝑛−1∑︁
𝑖=𝑑

2
−𝑖

𝑖

(
𝑖

𝑑

)
(14)

But we then have the following

Lemma 8.1. For any 𝑑 ∈ N,
+∞∑︁
𝑖=0

2
−𝑖
(
𝑖

𝑑

)
= 2.

Proof. To begin with, it is clear that the series converges by the ratio test. We establish the

result using the method of “creative telescoping” [PWZ96]. Define 𝐹 (𝑑, 𝑖) = 2
−𝑖 (𝑖

𝑑

)
and 𝐺 (𝑑, 𝑖) =

2
𝑑−𝑖
𝑑+1𝐹 (𝑑, 𝑖). Then we have

𝐹 (𝑑 + 1, 𝑖) − 𝐹 (𝑑, 𝑖) = 𝐺 (𝑑, 𝑖 + 1) −𝐺 (𝑑, 𝑖).

Summing on 0 ≤ 𝑖 ≤ 𝑛 yields

𝑛∑︁
𝑖=0

𝐹 (𝑑 + 1, 𝑖) −
𝑛∑︁
𝑖=0

𝐹 (𝑑, 𝑖) = 𝐺 (𝑑, 𝑛 + 1) −𝐺 (𝑑, 0).

In all cases, 𝐺 (𝑑, 0) = 0. Then passing to the limit with 𝑛 → +∞, we find that:

+∞∑︁
𝑖=0

𝐹 (𝑑 + 1, 𝑖) −
+∞∑︁
𝑖=0

𝐹 (𝑑, 𝑖) = lim

𝑛→+∞
𝐺 (𝑑, 𝑛 + 1) = 0.

This shows that the sum of the series is independent of 𝑑 . Then with 𝑑 = 0 we quickly find that

+∞∑︁
𝑖=0

𝐹 (0, 𝑖) =
+∞∑︁
𝑖=0

2
−𝑖 = 2.

□

It then follows from lemma 8.1 that

𝑛−1∑︁
𝑖=𝑑

2
−𝑖

𝑖

(
𝑖

𝑑

)
≤ 1

𝑑

𝑛−1∑︁
𝑖=𝑑

2
−𝑖
(
𝑖

𝑑

)
≤ 2

𝑑

Combining this with (14) finally shows that the total time spent flipping variable is O(𝑑2𝑛). This
establishes the announced complexity.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs 111:27

9 PRACTICAL RESULTS
To the best of our knowledge, there is no other software package devoted to handling dense

multivariate Boolean polynomials. Speed comparisons are thus of little interest. The few experiments

reported belowwere performed on a machine equipped with a pair of Intel Xeon Gold 6130 (Skylake)
CPUs running at 2.1GHz. To ensure a frequency of exactly 2.1GHz, “Turbo Boost” was disabled.

Only a single core was used, with a single pinned process. A single core has a 32KB L1 cache, a

1MB L2 cache and a 22MB L3 cache is shared with all the (otherwise idle) cores of the CPU.

Note that when used to measure size in bytes or in bits, the suffixes G, M and K mean 2
30, 220

and 2
10
, respectively, but in any other context they mean 10

9
, 10

6
and 10

3
.

The most closely related software package is without doubt the PolyBoRi library, but it does not
target the same applications. PolyBori uses Binary Decision Diagrams to represent the set of Boolean

monomials of each polynomial. This is particularly well-suited for sparse polynomials in a high

number of variables. This makes PolyBori capable of handling sparse, high-degree polynomials in

a large number of variable, something that BeanPolE cannot do because their dense representation

would use too much space. The downside is that PolyBori is not so efficient with dense polynomials.

Multiplication. Before writing BeanPolE, the author was facing the following practical problem:

compute 𝑅 ← 𝑅 + 𝑃 ×𝑄 , where 𝑃 and 𝑄 are random polynomials of degree 2 and 3, respectively,

in 80 variables. Polynomial multiplication is not the main feature of BeanPolE, but this example

illustrates that, by design, it is better suited at dealing with dense, low-degree polynomials than

existing software.

The naive quadratic multiplication algorithm described in section 6.3 represents 20 lines of C

code in BeanPolE. It computes the product (𝑅 ← 𝑅 + 𝑃 ×𝑄) in 10.8s, using the most compact dense

representation with a single bit per coefficient. The result 𝑅 requires 3MB of memory. Using a

simpler memory representation with an array of bool (one per coefficient) yields essentially the

same performance but uses 8 times more memory, as gcc uses 8-bit integers to represent values of

type bool. Finally, performing 32 parallel, “vectorized”, multiplications using 32-bit coefficients

takes exactly the same amount of time as doing just one.

The SageMath v9.5 open-source computer algebra system uses PolyBoRi to handle multivariate

Boolean Polynomials. A direct performance comparison is complicated by the fact that PolyBoRi
maintains a global state; the performance of the next operation is affected by the history of past

operations and tends to degrade over time. This concerns both the computation of the product

(𝑅 ← 𝑅 + 𝑃 ×𝑄) and the generation of random 𝑃,𝑄 . We therefore repeated 10 times the operation,

starting with 𝑅 = 0 and drawing random 𝑃 and 𝑄 in each iteration. Figure 10 shows the result.

The memory footprint increases during the first iterations then stabilizes. This requires 581MB of

memory to store 𝑅, about 24 bytes per coefficient. With 𝑛 = 128 variables, BeanPolE does a single

multiplication of a bit-packed polynomial in 112s; the result 𝑅 requires 33MB. SageMath does it in

195s; the result requires 7620MB.

TheMAGMA v2.26-8 closed-source computer algebra system [BCP97] also offers facilities for

dealing with Boolean polynomials. Its documentation does not explicitly specify what kind of

data structure it uses to represent them in memory, but the same experiment suggests the use

of sparse polynomials. The time taken to do 𝑅 ← 𝑅 + 𝑃 ×𝑄 depends on the previous value of 𝑅.

On a machine
3
equipped with Intel Xeon CPU E5-2680 v4 CPUs,MAGMA takes 365s to compute

When 𝑅 ← 𝑃 ×𝑄 . The memory usage increasd from 64MB to 4GB, which makes about 160 bytes

per coefficient of 𝑅. We guess that each exponent is represented using a 16-bit integer. After that,

subsequent updates 𝑅 ← 𝑅 + 𝑃 ×𝑄 , with fresh 𝑃 and 𝑄 , take 1065s.

3
We unfortunately do not own a MAGMA licence so we had to rely on a third party to run the experiment for us.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:28 Charles Bouillaguet

𝑛 Operation Time (1st iteration) Time (10th iteration) Memory footprint

80

random 𝑃 0.05 1

581MBrandom 𝑄 4.5 60

𝑅 ← 𝑅 + 𝑃 ×𝑄 15 14

128

random 𝑃 0.15 25

7.6GBrandom 𝑄 26 3047

𝑅 ← 𝑅 + 𝑃 ×𝑄 195 182

Fig. 10. Performance of the polynomial product using SageMath 9.5, that itself uses PolyBori. Times are given
in seconds. 𝑃 has degree 2 and 𝑄 has degree 3.

Boolean System Solving. The BeanPolE library is bundled with a few demonstration programs.

Two of them solve systems of 64 polynomial equations in 𝑛 variables by exhaustive search, using

either the FES algorithm or the in-place Moebius transform. They evaluate the 64 input polynomials

on all the 2
𝑛
input values and check if all the polynomials vanish simultaneously. Figures 11 and 12

show a speed comparison between the FES algorithm and the in-place Moebius transform.

Here are a few comments. The main loop of the FES algorithm always seem to be faster than that

of the Moebius transform by a factor of about two. It seems that this gap narrows when the degree

increase. Both algorithm require O(𝑑) amortized operations to produce the next entry of the truth

table. Figure 13 shows the number of CPU cycles per entry of the truth table, divided by 𝑑 — this

exposes the constant factor inside the O(. . .). It confirms that the dependence to 𝑛 is very weak.

Such a dependence, which is not visible in the theoretical analysis in a simplified abstract model,

could be exposed by architectural details of the target machine: the algorithms randomly access an

array that gets larger with 𝑛, so that cache misses, TLB faults, etc. could become more frequent

when 𝑛 increases. We observe that it is not the case, and that the memory access pattern of the

algorithms is dealt with efficiently by the memory subsystem. In any case, the slight superiority of

the main loop of the FES algorithm is manifest.

However, the FES algorithm has a setup phase before its main loop, and our experiments show

that in some circumstances its complexity cannot be neglected. This is in particular the case when

𝑑 is not negligible compared to 𝑛. Figure 14 shows the running time of the setup phase. In the case

of 𝑛 = 32 variables for instance, the Moebius transform gets faster than the FES algorithm as soon

as 𝑑 ≥ 12, because the setup phase dominates. Numerical estimates suggest that it is always the

case when 𝑑 = 𝑛/3. However, when 𝑛 increases and 𝑑 stays fixed, the complexity of the setup phase

tends to become negligible compared to that of the main loop. When it is the case, gaining a factor

of two in the main loop by switching from the Moebius transform to the FES algorithm yields a

global improvement in running time.

For the sake of comparison, the libfes-lite library, which contains a very optimized version of

the FES algorithm restricted to quadratic polynomials does this exhaustive search in 0.15s, about

200× faster than the BeanPolE implementation. However, BeanPolE is written in plain C, does not

use bits of hand-tuned CPU-specific assembler code, and works for any degree.

As reported in the introduction, several cryptographic attacks require the computation of the

truth table of low-degree Boolean polynomials. The time BeanPolE would take to perform these

tasks can be inferred from the tables shown in Figure 11 and 12. Producing the truth table of

degree-4 polynomials in 33 variables (as in [BDL
+
21]) would take 222s on a core of the target

machine, while for degree-6 polynomials in 32 variables (as in [DS11]) it would take 151s.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs 111:29

Fig. 11. Using BeanPolE to solve Boolean polynomial systems by exhaustive search. Random systems of 64
polynomials in 𝑛 = 32 variables of increasing degrees are solved. The “size” column indicates the total size of
the polynomial system, using a single bit to store each coefficient. The “FES” and “Moebius” columns indicate
the running time of the full enumeration, as well as the number of CPU cycles per entry of the truth table.
For the FES algorithm, the running of the setup has to be added to the running time of the main loop. The
running time of the main loop was extrapolated from the first 230 iterations.

𝑛 𝑑 Size (B)

FES Moebius

setup main loop cycles / it main loop cycles / it

32

2 4.1K 0.0s 78.0s 38 122s 60

3 42.9K 0.0s 96.4s 47 166s 81

4 324K 0.0s 111s 54 213s 104

5 1.9M 0.0s 125s 61 252s 123

6 8.8M 0.1s 151s 74 299s 146

7 34.4M 0.4s 175s 86 348s 170

8 115M 2.1s 191s 93 397s 194

9 329M 9.0s 213s 104 437s 214

10 821M 33.8s 229s 112 486s 238

11 1.8G 114s 251s 123 527s 258

12 3.4G 351s 303s 148 564s 276

13 6.0G 996s 356s 174 611s 299

14 9.5G 2544s 407s 199 651s 318

15 13.8G 1.7h 421s 206 670s 327

16 18.2G 3.5h 452s 221 668s 327

36

2 5.2K 0.0s 1248s 38 1952s 60

3 61.0K 0.0s 1606s 49 2714s 83

4 521K 0.0s 1798s 55 3366s 103

5 3.4M 0.0s 2010s 61 1.1h 124

6 18.2M 0.2s 2394s 73 1.3h 145

7 81.9M 1.0s 2714s 83 1.6h 172

8 313M 5.3s 3002s 92 1.7h 192

9 1.0G 25.0s 3379s 103 2.0h 218

10 2.9G 108s 1.1h 116 2.2h 241

11 7.4G 410s 1.1h 125 2.3h 256

12 16.7G 1429s 1.4h 149 2.5h 280

13 33.9G 1.3h 1.6h 174 2.7h 292

40

2 6.4K 0.0s 5.5h 38 9.0h 62

3 83.6K 0.0s 7.0h 48 12.1h 83

4 798K 0.0s 8.0h 55 15.2h 104

5 5.8M 0.0s 9.5h 65 18.1h 124

6 35.1M 0.3s 10.6h 73 21.7h 149

7 177M 2.0s 12.5h 86 25.4h 175

8 764M 11.7s 13.6h 93 28.6h 196

9 2.8G 62.4s 15.4h 106 32.1h 221

10 9.1G 294s 16.6h 114 34.2h 235

11 26.3G 1263s 17.9h 123 37.3h 257

12 67.9G 1.4h 22.1h 152 41.5h 285

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:30 Charles Bouillaguet

Fig. 12. Figure 11, continued.

𝑛 𝑑 Size (B)

FES Moebius

setup (s) main loop (s) cycles / it main loop (s) cycles / it

44

2 7.7K 0.0s 90.1h 39 141.5h 61

3 111K 0.0s 106.5h 46 195.7h 84

4 1.1M 0.0s 125.2h 54 241.2h 104

5 9.4M 0.1s 149.3h 64 294.9h 127

6 63.3M 0.5s 166.6h 72 351.3h 151

7 356M 3.7s 197.1h 85 405.0h 174

8 1.7G 24.4s 215.7h 93 455.1h 196

9 6.9G 140s 243.9h 105 509.3h 219

10 25.4G 734s 263.1h 113 549.8h 236

11 82.6G 3473s 292.6h 126 600.3h 258

48

2 9.2K 0.0s 1.4Kh 39 2.3Kh 61

3 144K 0.0s 1.7Kh 46 3.1Kh 84

4 1.6M 0.0s 2.0Kh 54 3.8Kh 103

5 14.7M 0.1s 2.4Kh 64 4.6Kh 125

6 108M 0.8s 2.6Kh 71 5.5Kh 147

7 670M 6.7s 3.1Kh 83 6.5Kh 174

8 3.5G 47.1s 3.4Kh 92 7.3Kh 197

9 16.0G 297s 3.9Kh 104 8.2Kh 220

10 64.7G 1688s 4.3Kh 116 9.0Kh 243

2 4 6 8 10 12 14 16
d

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

cy
cle

s /
 it

 /
d

FES (n=32)
FES (n=36)
FES (n=40)
FES (n=44)
FES (n=48)
Moebius (n=32)
Moebius (n=36)
Moebius (n=40)
Moebius (n=44)
Moebius (n=48)

Normalized Cycles per Iteration (divided by d)

Fig. 13. Comparison of the main loops of both algorithms.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs 111:31

6 8 10 12 14 16
d

100

101

102

103

104

T
(s

)

FES (n=32)
FES (n=36)
FES (n=40)
FES (n=44)
FES (n=48)

Setup phase of the FES algorithm (log scale)

Fig. 14. Running time of the setup phase of the FES algorithm.

Use in the “Crossbred” algorithm. We conclude with the most relevant use of the library. The

“Crossbred” algorithm [JV17] is presently the most efficient solution to solve quadratic Boolean

systems. Its most computationally heavy phase requires the evaluation of a large collection of

degree-𝐷 polynomials on all possible inputs, with 𝐷 ∈ {3, 4, 5}.
A record-size system of 186 random quadratic polynomials in 83 variables has recently been

solved using the Crossbred algorithm implemented on top of BeanPolE4. If AVX512 instructions
are available (as it is the case on the “Skylake” Xeon CPUs), this can be done by evaluating 532K

degree-4 polynomials and 20.5K degree-5 polynomials on 48 variables. The FES algorithm was used,

because it is slightly faster. These large collections of𝑤 polynomials are represented as a single

polynomial with𝑤-bit coefficients.

The coefficients are so large that the “derivative update” step of line 38 in Figure 5 completely

dominates the running time of the FES algorithm. Let us for instance consider the case of 532480

degree-4 polynomials, that was executed in practice. The critical “derivative update” step boils

down to executing the sequence of operations:

𝑑 ← 𝑑 ⊕ 𝑒
𝑐 ← 𝑐 ⊕ 𝑑
𝑏 ← 𝑏 ⊕ 𝑐
𝑎 ← 𝑎 ⊕ 𝑏

where 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 denote long bit strings of size 532480. Each iteration needs to read 𝑎, 𝑏, 𝑐, 𝑑

and 𝑒 (5 × 532𝐾𝑏 = 325𝐾𝐵) from memory and writes back 𝑎, 𝑏, 𝑐 and 𝑑 (4 × 532𝐾𝑏 = 260𝐾𝐵). It

is the understanding of the author that a “skylake” core has two 512-bit load units, two 512-bit

integer Arithmetic and Logical Units as well as a single 512-bit store unit. Figure 15 summarizes

this. Performing all the XORs operation requires at least 2080 cycles, but writing the updated values

to memory requires at least 4160 cycles (because there is only a single store unit).

4
See https://www.mqchallenge.org/details/details_I_20230916.html

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://www.mqchallenge.org/details/details_I_20230916.html

111:32 Charles Bouillaguet

operation

Maximum instructions / cycle

AVX2 (256-bit vectors) AVX-512 (512-bit vectors)

register← register ⊕ register 3 2

register← memory 2 2

memory← register 1 1

Fig. 15. Instruction-level parallelism in a “Skylake” CPU core.

Access every . . . iteration 1 2 4 8 16

Coefficient

1 𝑥0 𝑥1 𝑥2 𝑥3
𝑥0𝑥1 𝑥0𝑥2 𝑥0𝑥3

𝑥1𝑥2 𝑥1𝑥3
𝑥0𝑥1𝑥2 𝑥2𝑥3

𝑥0𝑥1𝑥3
𝑥0𝑥2𝑥3
𝑥1𝑥2𝑥3
𝑥0𝑥1𝑥2𝑥3

Fig. 16. Most frequently accessed coefficients in the FES algorithm.

In addition, a single coefficient is about twice the size of the L1 cache. We also understand that

the bandwidth between the L1 and L2 cache is only 512 bits per cycle in either direction. Only one

operation can be done each cycle: the L1 cache can either send or receive data from the L2 cache,

but not both. This creates an extra bottleneck and leads to a more stringent theoretical lower-bound

of 9360 cycles per iteration.

Finally, the bandwidth between the L2 and the L3 cache is at most 256 bits per cycle in either

direction. The coefficient are so large that the 1MB L2 cache can only store about 15.75 of them. It

follows that L2 cache misses are bound to be frequent, and the L2↔ L3 bandwidth can also be a

limiting factor.

In the best of all possible worlds, the 16 most frequently accessed coefficients (shown in Figure 16)

would always stay in the L2 cache and never be evicted. In this ideal scenario, there would be

on expectation 1/16 L2 cache misses for degree-1 coefficients per iteration, plus 5/16 misses for

degree-2 coefficients, plus 11/16 for degree-3 coefficients, plus 15/16 for degree-4 coefficients. Any

higher-order coefficient would create a cache miss. Therefore, exactly 𝐷 − 2 coefficients would be

transferred from the L3 cache to the L2 cache on expectation, and 𝐷 − 3 would be transferred back

to the L3 cache per iteration.

However, the L2 cache unfortunately most likely implements a variant of the Least Recently

Used replacement strategy, so that the situation is both worse and messier in practice. In this case,

a simple simulation shows that when 𝐷 = 4, only the four most frequently accessed coefficients

(1, 𝑥0, 𝑥1 and 𝑥0𝑥1) always stay in the L2 cache; all the other are almost systematically evicted.

Under this assumption, 3 coefficients would have to be read from the L3 cache on expectation per

iteration, and 2 would have to be written back. This means that 5 full coefficients would have to be

transferred to and from the L3 cache per iteration, and its bandwidth limitation would then impose

a lower-bound of 10400 cycles per iteration.

Running the actual code, we observe using actual hardware performance counters that 3.2

coefficients are loaded on average from the L3 cache per iteration. This confirms the result of the

simulation. Our code actually runs at 24850 cycles / iteration. About 13.7 bytes are transferred to or

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs 111:33

from the L3 cache per cycle. This is less than the theoretical maximum of 32. However, [Int23, Table

2.9] suggests a “Sustained bandwidth” of 15 bytes per cycle, and [VSIH22] empirically measured

it at 11.3 bytes / cycle, so we are somewhere in the middle. This leads us to conclude that, with a

large number of polynomials, the FES algorithm is in fact memory-bound and runs close to the

peak performance of the hardware.

Another simple experiment confirms this observation: an AVX2 version was assembled and

benchmarked. It runs at exactly the same speed as the AVX512 version. Looking at the table of

Figure 15, we see that when restricted to AVX2 instructions, in a single clock cycle a CPU core can

only:

• Load 512 bits from the L1 cache (vs. 1024 with AVX512)

• XOR 768 bits (vs 1024)

• Store 256 bits in the L1 cache (vs 512)

We conclude that if the AVX2 version was bottlenecked by the speed at which the CPU can

execute instructions without stalls, then it would be slower than the AVX512 version by a factor

between 1.33 and 2. The fact that it runs at the same speed then strongly suggest that the process

is memory-bound.

On the target machine, the full evaluation of 532K degree-4 polynomials on 48 variables would

have taken about 9.25M CPU·hours.

10 EXTENSIONS AND FUTUREWORK
This concluding section discusses how the BeanPolE library could be extended, and pinpoints some

research perspectives.

The in-place Moebius transform emits the truth table in chunks of size 2
𝑑
. It would not be difficult

to modify the code to obtain it in chunks of size 2
𝑘
, with 𝑘 ≠ 𝑑 . If 𝑘 > 𝑑 , then it would need to be

out-of-place, as in the original presentation. This could potentially be more practical for some use

cases. The runtime would increase to O(𝑘2𝑛).
While the FES algorithm is intrinsically sequential, the Moebius transform offers potential

for parallelization both inside the “classic” Moebius transform and inside the “last variable flip”

sub-algorithm. It could also be possible to “backport” the idea to use a Gray code in the Moebius

transform. It could lead to a constant speed-up, at the expense of not visiting the truth table in

lexicographic order.

With Boolean polynomials, evaluation and interpolation are very similar, and sometimes they

coincide: the classic Moebius transform does both. Adapting the in-place Moebius transform to

interpolate a degree-𝑑 polynomial seems relatively straightforward. Turning the FES algorithm

into an interpolation algorithm is less direct, and thus more interesting.

This also opens up an interesting algorithmic perspective: a degree-𝑑 polynomial can be in-

terpolated from

(
𝑛
↓𝑑
)
evaluations, for instance with its value on all monomials of degree at most

𝑑 . Designing a fast procedure to convert these

(
𝑛
↓𝑑
)
evaluations to the

(
𝑛
↓𝑑
)
coefficients of the

polynomial would be interesting.

In the reverse direction, evaluating a degree-𝑑 polynomial on all bit strings of Hamming weight

at most 𝑑 would be relevant. In [Din21a], Dinur suggests to use the FES algorithm for this purpose,

on the basis that there exist “monotonic” Gray codes that enumerate all bit strings by increasing

Hamming weight, while flipping one variable at a time.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:34 Charles Bouillaguet

Acknowledgments
Many thanks to Itai Dinur, Hiroki Furue and Quentin Hammerer for thought-provoking discussions.

The author is indebted to the two anonymous reviewers who provided accurate and in-depth

comments that helped improve the presentation of this work.

We acknowledge financial support from the French Agence Nationale de la Recherche under
project “GORILLA” (ANR-20-CE39-0002) and “PostCryptum” (ANR20-ASTR-0011).

Experiments presented in this paper were carried out using the Grid’5000 testbed, supported by

a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities

as well as other organizations (see https://www.grid5000.fr). This work also benefited from access

to the HPC resources of the "MatriCS Platform" at the Université de Picardie Jules Verne.

REFERENCES
[ACZ16] José Antonio Álvarez Cubero and Pedro J. Zufiria. Algorithm 959: Vbf: A library of c++ classes for vector

boolean functions in cryptography. ACM Trans. Math. Softw., 42(2), may 2016.

[BCC
+
10] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben Niederhagen, Adi Shamir, and

Bo-Yin Yang. Fast exhaustive search for polynomial systems in F2. In Stefan Mangard and François-Xavier

Standaert, editors, Cryptographic Hardware and Embedded Systems, CHES 2010, 12th International Workshop,
Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, volume 6225 of Lecture Notes in Computer Science,
pages 203–218. Springer, 2010.

[BCP97] Wieb Bosma, John J. Cannon, and Catherine Playoust. The Magma Algebra System I: The User Language. J.
Symb. Comput., 24(3/4):235–265, 1997.

[BD09] Michael Brickenstein and Alexander Dreyer. Polybori: A framework for gröbner-basis computations with

boolean polynomials. Journal of Symbolic Computation, 44(9):1326 – 1345, 2009. Effective Methods in Algebraic

Geometry.

[BDL
+
21] Christof Beierle, Patrick Derbez, Gregor Leander, Gaëtan Leurent, Håvard Raddum, Yann Rotella, David

Rupprecht, and Lukas Stennes. Cryptanalysis of the GPRS encryption algorithms GEA-1 and GEA-2. In Anne

Canteaut and François-Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT 2021 - 40th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October
17-21, 2021, Proceedings, Part II, volume 12697 of Lecture Notes in Computer Science, pages 155–183. Springer,
2021.

[BDT22] Charles Bouillaguet, Claire Delaplace, and Monika Trimoska. A simple deterministic algorithm for systems of

quadratic polynomials over gf(2). In Karl Bringmann and Timothy Chan, editors, 5th Symposium on Simplicity
in Algorithms, SOSA@SODA 2022, Virtual Conference, January 10-11, 2022, pages 285–296. SIAM, 2022.

[BER76] James R. Bitner, Gideon Ehrlich, and Edward M. Reingold. Efficient generation of the binary reflected gray

code and its applications. Commun. ACM, 19(9):517–521, 1976.

[BFSS13] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenlehauer. On the complexity of solving

quadratic boolean systems. J. Complexity, 29(1):53–75, 2013.
[BGTZ08] Richard P. Brent, Pierrick Gaudry, Emmanuel Thomé, and Paul Zimmermann. Faster multiplication in gf(2)[x].

In Alfred J. van der Poorten and Andreas Stein, editors,Algorithmic Number Theory, 8th International Symposium,
ANTS-VIII, Banff, Canada, May 17-22, 2008, Proceedings, volume 5011 of Lecture Notes in Computer Science, pages
153–166. Springer, 2008.

[BKW19] Andreas Björklund, Petteri Kaski, and Ryan Williams. Solving systems of polynomial equations over GF(2)

by a parity-counting self-reduction. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano

Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July
9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 26:1–26:13. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2019.

[BP17] Ward Beullens and Bart Preneel. Field lifting for smaller UOV public keys. In Arpita Patra and Nigel P. Smart,

editors, Progress in Cryptology - INDOCRYPT 2017 - 18th International Conference on Cryptology in India, Chennai,
India, December 10-13, 2017, Proceedings, volume 10698 of Lecture Notes in Computer Science, pages 227–246.
Springer, 2017.

[CFMR
+
17] Antoine Casanova, Jean-Charles Faugère, Gilles Macario-Rat, Jacques Patarin, Ludovic Perret, and Jocelyn

Ryckeghem. GeMSS: A Great Multivariate Short Signature. Research report, UPMC - Paris 6 Sorbonne Univer-

sités ; INRIA Paris Research Centre, MAMBA Team, F-75012, Paris, France ; LIP6 - Laboratoire d’Informatique

de Paris 6, December 2017.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://www.grid5000.fr

Algorithm xxx: Evaluating a Boolean Polynomial on All Possible Inputs 111:35

[CHR
+
16] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe. From 5-pass

MQ-based identification toMQ-based signatures. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in
Cryptology - ASIACRYPT 2016 - 22nd International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II, volume 10032 of Lecture Notes in
Computer Science, pages 135–165, 2016.

[CLO07] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational
Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics). Springer-Verlag,
Berlin, Heidelberg, 2007.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, 3rd
Edition. MIT Press, 2009.

[DDVY21] Jintai Ding, Joshua Deaton, Vishakha, and Bo-Yin Yang. The nested subset differential attack - A practical direct

attack against LUOV which forges a signature within 210 minutes. In Anne Canteaut and François-Xavier

Standaert, editors, Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part I,
volume 12696 of Lecture Notes in Computer Science, pages 329–347. Springer, 2021.

[Din21a] Itai Dinur. Cryptanalytic applications of the polynomial method for solving multivariate equation systems

over GF(2). In Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT
2021 - 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, October 17-21, 2021, Proceedings, Part I, volume 12696 of Lecture Notes in Computer Science, pages
374–403. Springer, 2021.

[Din21b] Itai Dinur. Improved algorithms for solving polynomial systems over GF(2) by multiple parity-counting. In

Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual
Conference, January 10 - 13, 2021, pages 2550–2564. SIAM, 2021.

[DRS20] Christoph Dobraunig, Yann Rotella, and Jan Schoone. Algebraic and higher-order differential cryptanalysis of

pyjamask-96. IACR Trans. Symmetric Cryptol., 2020(1):289–312, 2020.
[DS05] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial signature scheme. In John Ioannidis,

Angelos D. Keromytis, and Moti Yung, editors, Applied Cryptography and Network Security, Third International
Conference, ACNS 2005, New York, NY, USA, June 7-10, 2005, Proceedings, volume 3531 of Lecture Notes in
Computer Science, pages 164–175, 2005.

[DS11] Itai Dinur and Adi Shamir. An improved algebraic attack on hamsi-256. In Antoine Joux, editor, Fast Software
Encryption - 18th International Workshop, FSE 2011, Lyngby, Denmark, February 13-16, 2011, Revised Selected
Papers, volume 6733 of Lecture Notes in Computer Science, pages 88–106. Springer, 2011.

[Dvo90] S. Dvořák. Correspondance. Comput. J., 33(2):188, 1990.
[Ehr73] Gideon Ehrlich. Loopless algorithms for generating permutations, combinations, and other combinatorial

configurations. J. ACM, 20(3):500–513, 1973.

[FPR19] Jean-Charles Faugère, Ludovic Perret, and Jocelyn Ryckeghem. Software toolkit for hfe-based multivariate

schemes. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(3):257–304, 2019.
[FW93] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with fusion trees. J.

Comput. Syst. Sci., 47(3):424–436, 1993.
[FW94] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for minimum spanning trees and

shortest paths. J. Comput. Syst. Sci., 48(3):533–551, 1994.
[Int23] Intel® 64 and IA-32 Architectures Optimization Reference Manual: Volume 1, 2023.
[Jou09] Antoine Joux. Algorithmic cryptanalysis. CRC Press, 2009.

[JV17] Antoine Joux and Vanessa Vitse. A Crossbred Algorithm for Solving Boolean Polynomial Systems. In NuTMiC,
volume 10737 of Lecture Notes in Computer Science, pages 3–21. Springer, 2017. https://eprint.iacr.org/2017/372.
pdf.

[Knu14] Donald Ervin Knuth. The art of computer programming, Volume 4A: Combinatorial Algorithms, Part 1. Addison-
Wesley, 2014.

[LPT
+
17] Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, R. Ryan Williams, and Huacheng Yu. Beating brute

force for systems of polynomial equations over finite fields. In Philip N. Klein, editor, Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 2190–2202. SIAM, 2017.

[Mif63] Charles J. Mifsud. Algorithm 154: combination in lexicographical order. Commun. ACM, 6(3):103, 1963.

[PWZ96] Marko Petkovsek, Herbert S Wilf, and Doron Zeilberger. 𝐴 = 𝐵. A K Peters/CRC Press, 1996.

[Rus03] Frank Ruskey. Combinatorial generation, 2003. unpublished book, available online.

[The23] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.5), 2023.

https://www.sagemath.org.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://eprint.iacr.org/2017/372.pdf
https://eprint.iacr.org/2017/372.pdf

111:36 Charles Bouillaguet

[VSIH22] Markus Velten, Robert Schöne, Thomas Ilsche, and Daniel Hackenberg. Memory performance of AMD EPYC

rome and intel cascade lake SP server processors. In Dan Feng, Steffen Becker, Nikolas Herbst, and Philipp

Leitner, editors, ICPE ’22: ACM/SPEC International Conference on Performance Engineering, Bejing, China, April 9
- 13, 2022, pages 165–175. ACM, 2022.

[ZZL
+
21] Juan Zhao, Min Zhu, Xiaoyong Li, Zhenyu Huang, Jincai Li, and Junqiang Song. Solving boolean polynomial

systems by parallelizing characteristic set method for cyber-physical systems. Software: Practice and Experience,
51(11):2143–2167, 2021.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Related Software Packages
	3 Preliminaries
	3.1 Bit strings and Integers
	3.2 Boolean Monomials and Boolean Polynomials
	3.3 Monomial Orders
	3.4 Derivatives
	3.5 Computational Model

	4 The BeanPolE Library
	4.1 Algorithmic Improvements
	4.2 Data Structures
	4.3 Interface

	5 Core Infrastructure
	5.1 Enumerating Monomials
	5.2 Ranking

	6 Support Functions
	6.1 Input / Output
	6.2 Change of Order
	6.3 Multiplication
	6.4 Last Variable Substitution
	6.5 Evaluation
	6.6 Computation of Derivatives
	6.7 Computation of Macaulay Matrices

	7 The Fast Exhaustive Search (FES) Algorithm
	7.1 Main Ideas
	7.2 Tracking Bits in a Counter
	7.3 Enumeration in Any Degree
	7.4 Correctness

	8 Nearly In-Place Moebius Transform For Low-Degree Polynomials
	8.1 Flipping the Last Variable In-Place
	8.2 An Iterative Nearly In-place Moebius Transform

	9 Practical Results
	10 Extensions and Future Work
	References

