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Many industrial combustion emissions in both gas-and particulate-phase may be detected and quantified using imaging Fourier transform spectrometers (IFTSs). These devices generate intensity images of the plume at many distinct wavenumbers. This information may be used to identify the species within the plume and map their column density estimates. However, it is also important to quantify the uncertainty attached to these estimates, some of which arise from measurement noise. This work uses Bayesian inference to propagate measurement noise into column density estimates. Two distinct models for measurement noise are presented and discussed: the signaldependant Poisson-Gaussian noise model, and the noise-equivalent spectral radiance. The measurement noise is propagated through the inference and the species density quantification model to obtain density uncertainty estimates for carbon dioxide and methane releases in a laboratory experiment.

Introduction

Industrial combustion processes have a considerable impact on the environment and human health, leading to HCs [START_REF] Strosher | Characterization of emissions from diffusion flare systems[END_REF], sulfur dioxide (SO 2 ) [START_REF] Myhre | Anthropogenic and natural radiative forcing[END_REF], particulate matter (soot) [START_REF] Weyant | Black carbon emissions from associated natural gas flaring[END_REF], and other volatile organic compounds (VOCs) emissions [START_REF] Allen | Carbon dioxide, methane and black carbon emissions from upstream oil and gas flaring in the united states[END_REF]. Mitigation and regulation of these emissions require accurate detection of the combustion products and adequate quantification techniques. In the field of optical remote sensing, recent developments in imaging Fourier transform spectrometers (IFTSs) led to infrared hyperspectral imaging instruments capable of capturing spatial and spectral infrared emissions from diverse gaseous sources. IFTS hyperspectral imaging has been used to analyze both the combustion dynamics [START_REF] Tremblay | Understanding and overcoming scene-change artifacts in imaging fourier-transform spectroscopy of turbulent jet engine exhaust[END_REF][START_REF] Gross | Ifts for turbulent flow field diagnostics[END_REF][START_REF] Harley | Imaging fourier-transform spectrometer measurements of a turbulent nonpremixed jet flame[END_REF] and plumes thermodynamic state, including species concentration and plume temperature [START_REF] Gross | Remote identification and quantification of industrial smokestack effluents via imaging fouriertransform spectroscopy[END_REF][START_REF] Harley | Remote quantification of smokestack effluent mass flow rates using imaging fourier transform spectrometry[END_REF].

The earliest optical remote sensing techniques developed in that prospect are active and passive Fourier transform infrared spectrometers (AFTIR and PFTIR) [START_REF] Mcdaniel | Flare efficiency study[END_REF]. Based on tunable laser technology, they generate spectrally resolved intensity measurements along lines-of-sight (LOS) that transect the gas plume. The highly resolved spectra make them suitable to investigate combustion plume compositions and temperature (e.g. flares combustion products [START_REF] Wormhoudt | Comparison of remote sensing and extractive sampling measurements of flare combustion efficiency[END_REF]). However, FTIR measurements are localized, only providing intensity spectra along a single LOS. An improvement with IFTS hyperspectral imaging consists of measuring images, where each pixel LOS contains an intensity spectrum in the mid-infrared region (typically from 2000 cm -1 to 3400 cm -1 ).

As the hyperspectral mid-infrared spectral range includes absorption features from CO, CO 2 , H 2 O, SO 2 , NO, HCl, CH 4 , and other hydrocarbons (HCs), they have been used to detect and quantify the species densities in smokestacks [START_REF] Gross | Remote identification and quantification of industrial smokestack effluents via imaging fouriertransform spectroscopy[END_REF][START_REF] Bradley | Midwave infrared imaging Fourier transform spectrometry of combustion plumes[END_REF][START_REF] Harley | Remote quantification of smokestack effluent mass flow rates using imaging fourier transform spectrometry[END_REF], jet engine [START_REF] Gross | First imaging fourier-transform spectral measurements of detonation in an internal combustion engine[END_REF][START_REF] Harley | Imaging fourier-transform spectrometer measurements of a turbulent nonpremixed jet flame[END_REF], automobile engine [START_REF] Rodríguez-Conejo | Hyperspectral quantitative imaging of gas sources in the mid-infrared[END_REF], and flare [START_REF] Savary | Standoff identification and quantification of flare emissions using infrared hyperspectral imaging[END_REF] gases. IFTSs generate a sequence of broadband images of the scene at very high framerates (e.g. 750 Hz in this work), capable of capturing the plume's turbulent dynamic [START_REF] Tremblay | Understanding and overcoming scene-change artifacts in imaging fourier-transform spectroscopy of turbulent jet engine exhaust[END_REF] and, in turn, infer the gas intensity-weighted velocity field. Combining the gas velocities with the species column densities, several studies worked on the quantification of species mass flow rates [START_REF] Grauer | Gaussian model for emission rate measurement of heated plumes using hyperspectral data[END_REF][START_REF] Miguel | Assessing flare combustion efficiency using imaging fourier transform spectroscopy[END_REF], and process combustion efficiency [START_REF] Lapeyre | Quantifying flare combustion efficiency using an imaging fourier transform spectrometer[END_REF].

Quantities inferred from the IFTS are subject to several sources of uncertainty [START_REF] Kerekes | Hyperspectral imaging system modeling[END_REF]. While measurement noise is associated with the instrument components and characteristics (e.g. optics and sensors), uncertain model parameters and approximations embedded in the models themselves also contribute to uncertainty. Bayesian inference is well-suited to account for these uncertainties, which are interpreted probabilistically and propagated to an a posteriori probability distribution function of the quantity-of-interest. As an example, the ambient gas temperature and background temperature, key parameters in the radiometric model, may be considered as random variables (RVs) with a known, previously derived, probability density function (PDF) [START_REF] Emery | Uncertainties in parameter estimation: the optimal experiment design[END_REF][START_REF] Heasler | Nonlinear bayesian algorithms for gas plume detection and estimation from hyper-spectral thermal image data[END_REF]. Additional uncertainties are introduced through measurement artifacts that cannot be removed entirely from the data. In the context of hyperspectral imaging of turbulent gas plumes, temporal variations in the scene intensity, caused by turbulent fluctuations in gas temperature and concentration as the interferogram is being formed, become convolved with intensity fluctuations, caused by wave interference, manifesting as broadband "scene change artifacts" (SCAs) in the recovered spectra [START_REF] Harley | Imaging fourier-transform spectrometer measurements of a turbulent nonpremixed jet flame[END_REF][START_REF] Gross | First imaging fourier-transform spectral measurements of detonation in an internal combustion engine[END_REF]. Methods have been developed to remove these artifacts, and statistical descriptors have been derived to account for the related uncertainties [START_REF] Gross | Ifts for turbulent flow field diagnostics[END_REF], making their integration in a Bayesian framework possible.

Uncertainty is also introduced through simplifications in the measurement model used to infer species concentrations and plume temperature.

The measurement model is comprised of spectroscopic and instrument submodels [START_REF] Miguel | Assessing flare combustion efficiency using imaging fourier transform spectroscopy[END_REF][START_REF] Tremblay | Standoff gas identification and quantification from turbulent stack plumes with an imaging fourier-transform spectrometer[END_REF][START_REF] Spencer | A comparison of the theoretical and measured performance of the herschel/spire imaging fourier transform spectrometer[END_REF]. However, through these models, many combinations and distributions of species concentrations and plume temperature can produce nearly identical intensity spectra, which makes the inversion procedure ill-posed. This ill-posedness may be mitigated by introducing prior information into the inference procedure. The most common approach is to assume spatially uniform profiles inside the plume, which means that species concentrations and plume temperature are considered constant along the line of sight (LOS) region that is crossing the plume [START_REF] Savary | Standoff identification and quantification of flare emissions using infrared hyperspectral imaging[END_REF][START_REF] Moore | Characterizing and overcoming spectral artifacts in imaging fourier-transform spectroscopy of turbulent exhaust plumes[END_REF][START_REF] Rodríguez-Conejo | Hyperspectral quantitative imaging of gas sources in the mid-infrared[END_REF]. However, Grauer, et al. [START_REF] Grauer | Gaussian model for emission rate measurement of heated plumes using hyperspectral data[END_REF] show that assuming a non-uniform profile (Gaussian) for the concentration and temperature inside the plume may improve the accuracy of the inferred column density. While these assumptions may be reasonable in a time-averaged sense [START_REF] Tremblay | Understanding and overcoming scene-change artifacts in imaging fourier-transform spectroscopy of turbulent jet engine exhaust[END_REF], the spectral intensity detected by the IFTS arises from a highly irregular, and only partially-correlated distribution of concentration and temperature, resulting in the well-known turbulence-radiation interaction [START_REF] Li | Application of composition pdf methods in the investigation of turbulence-radiation interactions[END_REF][START_REF] Coelho | Turbulence radiation interaction: from theory to applica-tion in numerical simulations[END_REF].

Measurement noise in IFTS data comes from multiple sources, including sensor-related uncertainties, e.g. photon shot noise, dark current noise, quantization noises, thermal noise, detector read-out noise [START_REF] Dudzik | Electro-optical systems design, analysis, and testing[END_REF][START_REF] Keller | Imaging fourier transform spectrometer (ifts): parametric sensitivity analysis[END_REF], as well as interferometer [START_REF] Tremblay | Continuous-scan imaging fts with an integrating camera-contributions of sampling jitter noise to nesr[END_REF], optics, and calibration-related uncertainties [START_REF] Acito | Subspace-based striping noise reduction in hyperspectral images[END_REF][START_REF] Liu | Reduction of signal-dependent noise from hyperspectral images for target detection[END_REF][START_REF] Kerekes | Hyperspectral imaging system modeling[END_REF].

Radiometric noise sources may be classified depending on whether they observe a fully random or a fixed-pattern behavior [START_REF] Liu | Reduction of signal-dependent noise from hyperspectral images for target detection[END_REF]. For example, photon shot noise and thermal noise are random noises, whereas optics and calibration errors are fixed-pattern noises. For hyperspectral imaging sensors, random noises may be signal-dependent (SD) (e.g. photon shot noise) or signal-independent (SI) (e.g. electronic and thermal noises). The noise model commonly used to describe the uncertainty associated with sensor behavior encompasses both SD and SI noises, showing a linear relationship between the overall noise variance and the expected signal. Indeed, SD noise often obeys a Poisson distribution, while SI noise is normally-distributed white noise; these noise sources are often combined into a Poisson-Gaussian noise model [START_REF] Keller | Imaging fourier transform spectrometer (ifts): parametric sensitivity analysis[END_REF][START_REF] Foi | Practical poissoniangaussian noise modeling and fitting for single-image raw-data[END_REF]. In the literature, this model has been used for noise reduction for hyperspectral images [START_REF] Acito | Subspace-based striping noise reduction in hyperspectral images[END_REF][START_REF] Liu | Reduction of signal-dependent noise from hyperspectral images for target detection[END_REF][START_REF] Foi | Practical poissoniangaussian noise modeling and fitting for single-image raw-data[END_REF], parametric sensitivity analysis [START_REF] Kerekes | Hyperspectral imaging system modeling[END_REF][START_REF] Keller | Imaging fourier transform spectrometer (ifts): parametric sensitivity analysis[END_REF], and inversion procedures for identification or quantification of scene properties (e.g. gases and material properties) [START_REF] Rodríguez-Conejo | Hyperspectral quantitative imaging of gas sources in the mid-infrared[END_REF][START_REF] Heasler | Nonlinear bayesian algorithms for gas plume detection and estimation from hyper-spectral thermal image data[END_REF][START_REF] Borel | Error analysis for a temperature and emissivity retrieval algorithm for hyperspectral imaging data[END_REF]. In Keller, et al. [START_REF] Keller | Imaging fourier transform spectrometer (ifts): parametric sensitivity analysis[END_REF], the noise linear relationship is propagated from the hyperspectral raw signal measured by the sensor (in the units of counts) to the intensity spectra. Their study theoretically relates the Poisson-Gaussian noise model to other noise indicators, commonly used in the context of IFTS, such as the noise equivalent spectral radiance (NESR). Indeed, the NESR theoretically accounts for all instrument noise sources (e.g. shot noise, dark current noise and read out noise), and can be estimated experimentally [START_REF] Farley | Performance of the first: a long-wave infrared hyperspectral imaging sensor[END_REF][START_REF] Turcotte | Performance assessment of the new telops hyper-cam airborne mini[END_REF]. However, very few studies investigate the Poisson-Gaussian noise model experimentally for hyperspectral imagers [START_REF] Uss | Local signal-dependent noise variance estimation from hyperspectral textural images[END_REF].

In this work, CO 2 and CH 4 concentrations and temperatures are inferred from hyperspectral measurements of a heated gas plume within a Bayesian framework, focusing on the impact of signal noise. First, the experimental procedure and the measurement model are presented. Then the instrument sensor noise model is described, as well as its propagation to the calibrated intensity spectra, and the noise model is investigated experimentally. Results

show that the IFTS raw measurement noise cannot be described using the Poisson-Gaussian noise model, which lead us to investigate the processed intensity spectra NESR distribution. Finally, based on the characterized noise, quantification of CO 2 and CH 4 column densities are conducted, accounting for uncertainty propagation through this inference and the quantification procedures. While this treatment excludes other important sources of uncertainty (model parameter uncertainty, model error), it lays a foundation for incorporating these factors in future work.

Experimental procedure and measurement model

Heated vent experiment

The experiment consists of releasing a heated gas mixture of CO 2 and CH 4 in front of a temperature-controlled black background, at a defined volumetric flow rate, and capturing a mid-infrared hyperspectral image of the plume using an IFTS. The apparatus is described in Figure 1. The gases are discharged in a heated hose by two mass flow controllers, one for CO 2 (Brooks SLA5850), and one for CH 4 (Brooks GF40). The mixture consists of approximately 60% CO 2 and 40% CH 4 by volume, with a total volumetric flow rate of 26 L/min. The nozzle diameter is 19 mm. The background is composed of four 30 cm × 30 cm plates, painted with matt black paint (Krylon k01602) having a spectral emissivity between 0.95 to 0.97 over the detection spectrum, as determined using a Bruker Invineo-X FTIR spectrometer equipped with an integrating sphere. The gas temperature is measured at the nozzle exit using a K-type thermocouple, indicating a temperature of 349 K. The background temperature was maintained at 283 K using a water/ethylene glycol mixture to maintain a significant thermal contrast between the plume and background temperature. The camera was located 4.2 m away from the plume centerline. that reaches the camera aperture is I η .

Hyperspectral measurements

Hyperspectral imaging is done using a Telops MW HyperCam IFTS with a detection spectrum between 2000 cm -1 and 3300 cm -1 and a resolution of 4 cm -1 . The camera is equipped with a 320×256 pixel focal plane array (FPA) of InSb detectors, but only a subdomain of 128×128 was used for this measurement, corresponding to a 15.7 cm × 15.7 cm scene area. The scene spectral intensity enters the camera aperture and is imaged through a Michelson interferometer. The interferometer is illustrated in Figure 2, it contains a beam-splitter that directs half the image to a fixed mirror, and the other half to a moving mirror. The reflected images are recombined, and the 

Y (x) = ∞ -∞ 1 2 S η [1 + cos(2πηx)] dη = ∞ -∞ 1 2 I η ξ η [1 + cos(2πηx)] dη (1)
where x is the mirror displacement, η is the wavenumber, and ξ η is the spectral responsivity of the FPA sensors, that account for its photoelectric efficiency, relating the spectral intensity to analog counts. The interferogram consists of a modulated part, Y (x), and an unmodulated (constant) part Ȳ :

Y (x) = Ȳ + Y (x) (2) 
A Fourier transform of the interferogram leads to a unitless intensity spectrum S η . The spectrum is then calibrated using a two-point calibration procedure [START_REF] Revercomb | Radiometric calibration of ir fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder[END_REF] that assumes a linear relationship between the FPA incident intensity and the output calibrated data:

I η,meas = R Gη F Y + Õη (3) 
where I η,meas is the calibrated intensity spectra imaged by the IFTS, R refers to the real part of a complex number, Gη is the calibration gain and Õη the calibration offset, both being complex numbers.

Measurement model

The 

I η = I η,bg exp - L 0 κ η (s)ds + L 0 κ η (s)I η,b [T (s)] exp - L s κ η (s ′ )ds ′ ds ( 4 
)
where L is the distance between the camera and the blackbody plates and s defines a location along the LOS. The absorption coefficient at wavenumber η and position s is found by the summation:

κ η,k [χ k (s), T (s)] = ij S k,ij [T (s)] f [η, η ij , T (s), p] χ k (s)p k B T (s) ( 5 
)
where k is the number of participating species, S k,ij is the k th species spectral line intensity for the transition between i and j, f k,ij is the Lorentz line shape function, p is the gas pressure (taken to be atmospheric), and k B is Boltzmann's constant. The absorption coefficient depends on species concentration χ k and temperature T along the LOS. These variables are assumed to follow a Gaussian profile along each LOS section crossing the plume, and the peak concentrations and peak temperature are the quantities-of-interest (QoI) for the inversion procedure.

ϕ(s) = ϕ min + (ϕ peak -ϕ min ) exp - (s -s pc ) 2 2σ 2 p ( 6 
)
where ϕ can be either χ k or T , ϕ min is a minimum value for ϕ inside the plume (e.g. ambient temperature), σ p is a representative plume thickness and s pc is the plume center. The computation of each species' absorption coefficient is based on the HITRAN database [START_REF] Gordon | The hitran2020 molecular spectroscopic database[END_REF].

Instrument transfer function

The instrument transfer function characterizes the impact the instrument has on the measurement. While the interferometer acquires the interferogram, the moving mirror traverses across a finite range (x ∈ [-x M , x M ] -see Figure 2), taking discrete positions. Technically, this will affect the spectral resolution of the intensity spectra as the OPD x M is related to the spectral resolution by δη res = 1.20671/2x M , and the spectrum shape through its convolution with the apodization function:

I η,mod = F [Y (x)B(x, x M )] = F [Y (x)] * [B(x, x M )] = I η * ILS(η, x M ) (7)
where B is the boxcar apodization function and

ILS(η, x M ) = 2x M sinc(2πηx M )
is the instrument line shape function.

Noise modelling

In the Bayesian inference framework, the measured data is regarded as an RV that differs from modeled data due to additive noise [START_REF] Kaipio | Statistical and computational inverse problems[END_REF]:

I η,cam = I η,mod + δI η,noise + δI η,mod (8) 
where the additive noises δI η,noise and δI η,mod represent measurement noise and model related uncertainties. When model uncertainty comprises model simplifications or numerical approximations, measurement noise accounts for the uncertainty in the data due to the stochastic and fixed-pattern behavior of the measurement process. To account for the noise characteristics, one has to assume its potential bias and uncertainty to be known a priori, and therefore have a good knowledge or representation of the measurement process.

This work excludes model error, but the same methodology may be applied provided that the underlying distribution for δI η,mod is known. The following analysis reviews the measurement process to infer a distribution for δI η,noise , only considering the FPA sensor SD and SI measurement noises. 

Y meas = E (χY ) + δY P + δY G (9) 
where δY G is an RV that obeys a Gaussian distribution N (0, σ 2 G ) and δY P is an RV that obeys a Poisson distribution P [0, E (χY )], χ containing both the photoelectric efficiency and the analog gain, which is acting as an amplification of the theoretical analog signal described in Eq.1 [START_REF] Foi | Practical poissoniangaussian noise modeling and fitting for single-image raw-data[END_REF]. The Poisson distribution tends towards a Gaussian distribution when the number of counts is sufficiently large, which should be the case for these experiments. Since both noises are normally distributed, their sum is also normally distributed and the Poisson-Gaussian noise is then

δY meas = δY P + δY G ∼ N 0, E (χY ) + σ 2 G ( 10 
)

Poisson-Gaussian noise propagation through the measurement model

The raw data noise distribution, Eq.10, is related to the measured intensity noise distribution by propagating δY meas through the measurement model:

I η,cam = I η,mod + δI η,noise = I η,mod + F δ Ymeas * ILS (η, x M ) (11) 
The with q ∈ [0, Q], Q being the number of spectral bins). Assuming that the modulated interferogram noise components δ Yn are independent and following the variance properties for independent variables, the distribution of the Fourier transform of the interferogram modulated noise is:

F δ Y q ∼ N 0, T σ 2 Y q ( 13 
)
where T is the interferogram variance transformation into intensity spectral variance and is derived in Appendix A. Finally, the measured intensity probability density function can be stated as

I η,meas = I η,mod + δI η,noise ∼ N I η,mod , Γ T , Y (14) 
where the calibrated covariance matrix Γ T , Y is a diagonal matrix with vari-

ance σ T , Y ,q = G2 η R T E (χY ) + σ 2 G + σ 2 δ Ȳmeas q (15) 

Experimental investigation of the noise model parameters

In section 3, a model for the raw signal noise δY meas has been described, as well as its propagation into the measurement model and calibration procedure, leading to a model for the spectral intensity noise δI η,noise . In the Bayesian framework presented in Section 5, the noise covariance matrix Γ T , Y is paramount since it conditions the likelihood function of Bayes equation.

While the covariance matrix terms are described by Eq.15, the noise parameters χ, σ 2 G and σ 2 δ Ȳmeas are unknown and should be derived from the raw data Y meas .

Investigating the raw analog signal noise

In Eq.12, the raw signal variance is given by σ 2 Y ,n = E (χY )+σ For each mirror position (or OPD), the pixel sensor is receiving and processing signal for which the noise should be normally distributed with variance σ 2 Y ,n Eq.12. Therefore, the Poisson-Gaussian noise model should apply for each pixel and each OPD (with index n) of the raw datacube. Based on the 200 raw datacubes, the raw analog signal variances were computed and plotted against the raw analog signal mean (Fig. 4). In Figure 4, the 

Investigating the NESR

Instead, we define an empirical noise model following the method applied in Ref. [START_REF] Turcotte | Performance assessment of the new telops hyper-cam airborne mini[END_REF]. The same laboratory experiment and camera settings as the one described in Section 4.1 were used to measure a series of 200 intensity spectra datacubes, for a plate temperature of 60 • C. The mean and variance of the intensity spectra were computed for each pixel to obtain the NESR, that is the standard deviation of Īη,meas for each wavenumber. Figure 5 shows the mean intensity spectra (5(a)), the calculated NESR (5(b)), as well as I η,meas distributions for η = 2191 cm -1 and η = 2714 cm -1 (5(c) and (d), respectively). The intensity I η,meas appears to be normally-distributed and Gaussian probability density functions are plotted against the histograms, using the NESR as standard deviation. Figure 5 shows that δI η,noise , for a given wavenumber η, is normally-distributed, with zero mean and the NESR as the standard deviation. When considering the entire spectrum, δI η,noise obeys a multivariate normal distribution with covariance matrix Γ NESR . Each spectral bin's noise is independent, the covariance matrix being diagonal with diagonal terms σ 2 NESR .

Bayesian inference for the species column densities

As discussed in the introduction (Sec. 1), conducting hyperspectral measurements on a turbulent plume is complicated because of scene change artifacts (SCAs) caused by temporal fluctuations in intensity that become convolved with intensity changes induced by the interferometer, leading to broadband artifacts in the transformed spectrum. Tremblay et al. show that SCA artifacts may be mitigated by median-filtering the raw interferograms, provided that the turbulent flow is stationary [START_REF] Tremblay | Understanding and overcoming scene-change artifacts in imaging fourier-transform spectroscopy of turbulent jet engine exhaust[END_REF]. In this paper, CO 2 and CH 4 column densities are inferred at the stack exit, where the turbulence patterns are not fully developed, reducing the SCAs in the measured spectra. 

Bayesian inference

In Bayesian inference, all variables are considered RVs that obey probability density functions. Relating those densities through Bayes' equation implies integrating all the a priori knowledge in the inversion procedure. In this case, the QoI are peak CO 2 and CH 4 molar fractions, and the peak plume temperature, contained in the vector x = [χ CO 2 , χ CH 4 , T plume ], to be inferred from a subset of the measured spectral intensity I η,meas contained in vector b.

Following Ref. [START_REF] Rodríguez-Conejo | Hyperspectral quantitative imaging of gas sources in the mid-infrared[END_REF], the measurement data b comprises intensities measured between 2200 cm -1 to 2470 cm -1 (corresponding to CO 2 ) and 2800 cm -1 to 3300 cm -1 (corresponding to CH 4 ) and is represented by:

b = m(x, φ) + δb (16) 
where m(x, φ) is the measurement model (Eq.7) covering the corresponding spectral subset, φ is a vector of ancillary model parameters (here the ambient and background temperature, as well as ambient CO 2 concentration, φ = [χ amb,CO 2 , T bg , T amb ]), and δb is the difference between the measured and modeled data, which is this case is assumed to be due entirely to measurement noise and is described by N (0, Γ N ESR ) as shown in Sec.

Bayes' equation describes the QoI posterior density function:

p (x, φ|b) = p (b|x, φ) p pr (x) p pr (φ) p (b) (17) 
where p (x, φ|b) is the posterior pdf of the estimate x and parameters φ, conditional on the measured intensity spectrum, p (b|x, φ) is the likelihood pdf of observing the measured intensity spectrum given hypothetical species concentrations and plume temperature and p pr (x) and p pr (φ) are pdfs that define the prior information on the estimates and the model parameters respectively. In this work, the QoI's prior p pr (x) is a non-negativity prior. The ancillary parameters prior distribution is a multivariate normal distribution, with mean µ φ and covariance matrix Γ φ inferred from background pixels before the QoI's inference. The evidence p (b) ensures that the posterior distribution satisfies the Law of Total Probability. For additive noise models, the likelihood pdf is equal to the noise distribution pdf:

p (b|x, φ) = p (δb) = p [b -m(x, φ)] (18) 
Solving the inference problem amounts to evaluating the posterior distribution by estimating x MAP , the maximum a posteriori estimate (MAP), and Γ MAP , the MAP covariance matrix. In this case, it is equivalent to solving:

x MAP = arg min x,φ L b m(x) -b 2 + L φ µ φ -φ 2 (19) 
where L b = chol (Γ N ESR ) -1 and L φ = chol (Γ φ ) -1 are weights depending on the data and the ancillary parameters uncertainties. The MAP covariance matrix is obtained by computing:

Γ MAP =   J T MAP Γ -1 N ESR J MAP +   0 0 0 Γ -1 φ     -1 (20) 
The minimization problem, Eq. 19, is solved using the non-linear least-square solver in MATLAB.

Results

Column densities for CO 2 and CH 4 result from the concentrations and temperature Gaussian profile integration along each pixel line-of-sight (LOS).

In this work, column densities were estimated for pixels located at a position ℓ along a control line, crossing the plume near the stack exit (Fig. 6(a)):

ρ k (ℓ) = P M k k B N a LOS χ k (s) T (s) ds (21) 
For each pixel at position ℓ along the control line, the posterior density function p (x, φ|b) is evaluated (solving Eq.19) and the ancillary parameters in φ are marginalized out to obtain the QoI's posterior density function The MAP estimates for CO 2 and CH 4 column densities in the plume center (pixel (C)), as well as the corresponding 5 th and 95 th percentiles, are presented in Table 1. For this specific pixel, the plume thickness crossed by the control line is assumed equal to the nozzle diameter. From the measured plume temperature, and the known species volume fractions, a ground truth estimate is computed via Eq.21 (volume fractions and temperature are as- as the plume layer thickness. Empirically accounting for these uncertainties (σ χ GT = 0.05 and σ layer = 0.0015 m), the ground truth CO 2 credible interval is 13 g/s for the 5 th percentile and 19.5 g/s for the 95 th percentile.

Conclusion

In the field of combustion diagnostic and gas detection, Imaging Fourier show that for pixels outside the plume region, where the pixels LOS aim at the cold black plates and the signal-to-noise ratio is low, the column density posterior distribution is widely spread over the column density range and prevents proper MAP estimate. For pixels within the plume, MAP estimates show close agreement with the ground truth.

This work focuses on measurement error, but it is important to recognize that the modeling choices also introduce uncertainties (especially the assumption of Gaussian profiles along each LOS) that should be accounted for in the likelihood function. Relaxing the Gaussian profile hypothesis is not an option regarding the inversion procedure challenges but other models could be investigated to account for the turbulence patterns of the plume.

This topic is the focus of ongoing work that is crucial in quantifying the overall uncertainty of the column densities.
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 1 Figure 1: Schematic of the heated vent apparatus. The IFTS hyperspectral camera measures an infrared image of the scene, each pixel containing a spectrum I η,meas . The intensity emitted by the background I η,bg is attenuated along the LOS by the plume and ambient layers while the plume emission is only attenuated by the ambient layer that separates it from the camera. The intensity emitted along the LOS (with coordinate s)
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 2 Figure 2: Schematic of the Michelson interferometer.

  constructive and destructive wave interference patterns produce an interferogram that is recorded by the FPA. Each photon reaching the InSb sensors generates a voltage that is assimilated as counts. The relation between the scene intensity, I η , and the measured interferogram in counts is given by:

  measurement model comprises the scene radiative transfer model and the instrument model. It relates the state of the gas plume to the data collected by the IFTS, I η,meas . The radiative transfer equation (RTE) models the scene radiation and the intensity I η incident on the camera aperture while the instrument transfer function models the effect of the interferometer moving mirror limited range on the incident intensity. The outcome of the measurement model simulation is the simulated intensity, I η,mod . Scene radiation model The intensity reaching the camera aperture I η is modeled, along each pixel LOS, by the radiative transfer equation (RTE) for non-scattering media:

3. 1 .

 1 Poisson-Gaussian noise model IFTS measurement noise mainly originates from the FPA, where the photoelectric InSb sensors generate photon shot noise and the read-out circuit generates electrical and thermal noise. Photon shot noise obeys a Poisson distribution and electrical and thermal noise is normally-distributed. In principle, the raw measurement (interferogram) can therefore be described using a Poisson-Gaussian noise model:

2 G + σ 2 δ( 12 ) 2 Y

 22122 intensity noise is related to the Fourier transform of the interferogram modulated part noise by assuming that I η,cam = F Ymeas (x) + δ Ymeas (x) B (x; x M ) which leads to Eq.11. Distribution of the modulated noise As shown in Eq.1, the modulated part of the interferogram Y is the difference between the interferogram Y and the DC part Ȳ . When considering the Poisson-Gaussian noise model for the interferogram measurement, the modulated interferogram is Ymeas (x) = Y meas (x) -Ȳmeas + δY meas -δ Ȳmeas where: δ Ymeas = δY meas -δ Ȳmeas ∼ N 0, E (χY ) + σ Ȳmeas The error related to the DC part of the signal, σ δ Ȳmeas , can be inferred from the data, by computing Ȳmeas from the interferogram average over the mirror positions. The modulated interferogram noise covariance matrix is Γ Y and supposed to be diagonal with the n th diagonal member equal to σ ,n = E (χY ) + σ 2 G + σ 2 δ Ȳmeas . Distribution of the Fourier transform noise Since the interferograms are measured at discrete positions of the interferometer mirror (Y meas,n with n ∈ [0, N -1], N being the number of mirror positions), the fast Fourier transformation is used to obtain the discretized intensity spectra (I meas,q

Figure 4 :

 4 Figure 4: Raw analog signal variance σ 2 Y ,n plotted against the raw analog signal mean Y avg for all n OPDs of the interferograms in Fig3.

Figure 5 :

 5 Figure 5: (a) The mean intensity spectra Īη,meas , measured from black plates at 60 • C and at a distance of 4.2 m. The ambient gas layer between the plates and the camera contains CO 2 and H 2 O that are absorbing the plate emission and emitting at ambient temperature, corresponding to the drop-in intensity between 2000 cm -1 and 2100 cm -1 for H 2 O, and between 2250 cm -1 and 2400 cm -1 for CO 2 . (b) Calculated NESR for the intensity series. Absorption features in the CO 2 spectral region appear to generate more uncertainty that should be accounted for by the NESR. (c) Intensity spectra distribution at wavenumber 2191 cm -1 and Gaussian fit based on the calculated NESR (see red dot in (b)). (d) Intensity spectra distribution at wavenumber 2714 cm -1 and Gaussian fit based on the calculated NESR (see red dot in (b)).

Figure 6 :

 6 Figure 6: (a) Intensity map at wavenumber 2300 cm -1 . The plume is crossed by a control line of length L = 6 cm. (b) CO 2 and CH 4 maximum a posteriori column densities estimates and 90% highest posterior density (HDP) credible intervals along the control line. Shaded red regions correspond to pixels where no MAP column densities unique solution could be inferred from the column densities probability density functions (Fig. 8). Pixels (A), (B), and (C), correspond respectively to distances ℓ = 0.72 cm, ℓ = 1.3 cm, ℓ = 2.4 cm along the control line.

Figure 7 :

 7 Figure 7: Top row: Bivariate joint probability distributions inferred at pixel (C) in Fig.6, for (a) the peak concentrations (χ CO2 , χ CH4 ), (b) peak CO 2 and plume temperature (χ CO2 , T ), and (c) peak CH 4 and plume temperature (χ CH4 , T ) along the LOS. Bottom row: Bivariate joint probability distributions inferred at pixel (A) in Fig.6, for (a) the peak concentrations (χ CO2 , χ CH4 ), (b) peak CO 2 and plume temperature (χ CO2 , T ), and (c) peak CH 4 and plume temperature (χ CH4 , T ) along the LOS.

Figure 8 :

 8 Figure 8: Probability density functions for CO 2 and CH 4 column densities at distance ℓ = 0.72 cm along the control line (a), ℓ = 1.3 cm along the control line (b), and ℓ = 2.4 cm (c).

  transform spectrometers (IFTSs) are promising technologies, capable of detecting and quantifying pollutant emissions. Quantification techniques rely on spectrally refined images, and the inversion of a spectroscopic model to recover concentrations and plume temperature, leading to a column density estimation. Uncertainties associated with this estimate are multiple, they contain instrument noise, model choices, and scene change artifacts. Quantification of the column density uncertainty is as important as the estimate itself. In that regard, Bayesian inference may be used to propagate measurement noise and other uncertainty sources into a posterior probability density function of the column densities. This work presents a Bayesian framework to infer CH 4 and CO 2 column densities from mid-wavelength hyperspectral images of a vented gas mixture. Specifically, it focuses on the measurement noise, investigating the instrument sensor noise model. It is shown that the data does not obey the hypothesized Poisson-Gaussian noise model. Therefore, the overall measurement noise is accounted for by computing the NESR corresponding to the measurement conditions (specific instrument settings, specific range of scene temperatures). The NESR distribution reveals features of a normal distribution and is used as the measurement error distribution in the Bayesian inference. Column densities posterior distributions are inferred for pixels along a control line crossing the plume. Results

Table 1 :

 1 MAP estimates for CO 2 and CH 4 column densities at the plume center (pixel sumed constant inside the plume layer). The CH 4 and CO 2 ground truth column density estimates are respectively 4.6 g/m 2 and 16.3 g/m 2 . While the CH 4 ground truth estimates fall within the MAP 90% HDP credible interval, it is not the case for CO 2 . However, uncertainties on the ground truth column density estimates are multiples, starting with the assumption of uniform volume fractions and temperature over the plume layer, as well

	(C)).			
	Species ρ MAP (g/m 2 ) ρ -5 th percentile ρ -95 th percentile
	CO 2	12.7	11.8	13.6
	CH 4	4.5	3.6	5.3
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Appendix A. Distribution of the Fourier transforms noise

Applied to the modulated interferogram noise δ Yn the fast Fourier transformation is:

where δ Yn ∼ N 0, σ 2

Yn

, the constant v m is the mirror velocity and f s the sampling frequency. Assuming that the modulated interferogram noise components δ Yn are independent and following the variance properties for independent variables, the variance of the Fourier transform of the interferogram modulated noise is: