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ABSTRACT: Expanding the borders of asymmetric synthesis by designing original chiral 

molecules and sustainable strategies to synthesize them holds great promise not only for the 

pharmaceutical industry but also for material science and agrochemistry. In particular, 

straightforward, one-step synthesis of enantiopure scaffolds featuring two proximal chiral axes 

presents a great scientific challenge. Herein, unique asymmetric C-H activation reaction has 

been used to achieve the first intermolecular direct arylation-type reaction, affording indoles 

bearing simultaneously C2-atropisomeric Ar-Ar’ axis together with C-N axial chirality. 

Remarkably, the desired reactivity could be achieved using a chiral cobalt complex as a 

sustainable and cheap catalyst, thus delivering the expected multiatropisomeric compounds in 

high yields and excellent diastereoselectivities and enantioselectivities. In addition, detailed 

mechanistic studies provide fundamental comprehension of this unique transformation. 
 

Introduction 

Chirality, the unique feature of nature, has been continuously inspiring modern research and 

attracting the attention of the scientific community. Initially considered rather as a scientific 

curiosity and fundamental research challenge, implementation of stereogenic information and 

escaping from flat-land while designing complex molecules for biological purposes,1 

agrochemicals2 and advanced organic material,3 is now a widely recognized tool to meet 

superior properties. While chirality has been, for decades, mainly attributed to a presence of a 



C-stereogenic center, other chiral elements such as planar-chirality, heteroatom-centered point-

chirality, atropoisomerism or axial C-N axis have progressively established themselves as 

valuable and intriguing stereogenic motifs, thus providing additional opportunities for the 

design of enantiopure molecules of interest (Figure 1a). Recently, in order to further enhance 

the benefits arising from a stereogenic character of a molecule, assembling compounds bearing 

multiple proximal stereoelements has emerged as an innovative research axis (Figure 1b).4 

While a diversity of synthetic approaches, including olefins’ functionalization and 

stereoselective aldol reactions, can be envisioned to access in one step molecules bearing two 

proximal stereocenters, conception of strategies delivering vicinal multi-atropisomeric 

compounds is infinitely more challenging. Recently, a few ingenious approaches have been 

designed to assemble in one step complex chiral molecules bearing contiguous atropo-biaryl 

axes. In particular cycloaddition-type reactions,5 organocatalyzed [3+3] or [3+2] annulations,6 

intramolecular aldol condensations7 or central-to-axial chirality transfer8 reactions proved their 

potential. 

In clear contrast, the synthesis of chiral scaffolds featuring proximal atropisomeric Ar-Ar’ and 

N-Ar axes is considerably more challenging and remains an almost uncharted research field. 

The difficulty arises from frequently relatively low atropostability of the Ar-N bond combined 

with the limited synthetic approaches providing a stereoselective synthesis of C-N 

atropisomeric compounds.9 In consequence, one-step synthesis of such compounds remains 

extremely rare and mainly limited to Rh-catalyzed [2+2+2] cycloaddition,10 oganocatalyzed 

intramolecular heteroaromatic ring formation11 or very recent intramolecular annulation-type 

protocol (Figure 1d).12 Therefore, while considering the expanding interest in such products as 

illustrated by modern drug-design (such as BMS-986142,13 an inhibitor of BTK and Sotorasib14 

for example, Figure 1c),15 design of innovative synthetic routes furnishing chiral molecules 

bearing both biaryl and Ar-N axial axes is urgently needed.  



The last decade was clearly marked by major advances achieved in the field of C-H 

activation.16 This methodology, considered as scientific curiosity twenty years ago, is nowadays 

a well-established tool to assemble molecular complexity in a sustainable manner, using simple 

starting materials and limiting waste generation. Consequently, implementation of a chirality 

transfer within direct functionalization reactions has been gaining growing importance, 

resulting in the appearance of original and complex enantiopure molecules, difficult to access 

via standard asymmetric synthesis routes.17 Progressively, the asymmetric C-H activation 

mindset inspired the design of conceptually unprecedented transformations, delivering in one-

step multi-chiral scaffolds, bearing for example axial and point chirality18 or two atropisomeric 

axes.19 However, the majority of these transformations thus far required the use of expensive 

and rare transition metal-based complexes, including chiral palladium- and rhodium-catalysts. 

In clear contrast, the exploitation of more sustainable, less expensive, and abundant 3d-metal 

chiral catalysts20 to promote asymmetric C-H activation reactions is still limited.21 While 

considering the importance of multi-atropisomeric scaffolds featuring N-Ar bond, combined 

with the lack of synthetic routes to prepare them and the potential of asymmetric C-H activation 

to pave the way towards conceptually innovative synthetic disconnections, implementation of 

the C-H activation mindset to assemble such compounds thus present a formidable scientific 

challenge. 

Following this goal, we report herein a unique protocol furnishing complex chiral molecules 

featuring both Ar-Ar’ and N-Ar axes. The salient features of this reaction is: 1) the utilization 

of simple indole precursors, 2) high reactivity and excellent diastereo- and enantio-selectivities 

achieved while using low-valent cobalt-catalyst, 3) mild reaction conditions, and 4) the 

possibility to prepare unprecedented biatropisomeric indoles (Figure 1e). 



 
 

Figure 1 : From simple chirality to innovative tridimensional structures for advanced applications. a) examples of different 
types of chirality and their applications; b) recent advances: design and synthesis of multichiral molecules with chirality 
elements in close proximity; c) recent design of biologically active scaffolds bearing both C-C and C-N chiral axes; d) example 
of simultaneous generation of C-C and C-N atropisomeric axes via intramolecular reaction; e) application of Co-catalyzed 
asymmetric C-H arylation to assembly unique indoles with C-C and C-N chiral axes. 
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I. Optimization	of	the	reaction	
 
While conceiving the herein targeted double atroposelective C-H activation, we hypothesized 

that N-arylated indoles bearing a directing group at C3                                                                                                                                                                                                                                                                                                            

positions should react efficiently under the C-H activation protocol (Erreur ! Source du renvoi 

introuvable.).22 Installation of an additional substituent at the C2 position should potentially 

induce not only the newly generated C2-Ar bond but also prevent the rotation of the Ar-N motif 

thus delivering the desired indole product with two perfectly controlled chiral axes. Following 

this hypothesis, N-aryl-indole 1a was selected as a standard substrate, together with 1-

chloronaphtalene 2. An unusual meta-substituted NHC-ligand L123 gave promising results as 

the desired product could be isolated in 70% yield as 87:13 mixture of two diastereoisomers 

and an excellent 95:5 enantiomeric ratio for the major one. Interestingly, detailed ligand design 

revealed that the presence of finely adjusted substituents at ortho-, meta- and para-positions is 

crucial, as in the presence of L3, L5, and L7 either enantioselectivity or diastereoselectivity 

could not be reached. Non-meta-substituted ligand L3, delivered both diastereomers of the 

products as racemates (entry 3), thus clearly indicating the pivotal role of this substituent in the 

chiral induction. In contrast, both ortho- and para-substituents are crucial to enhance catalytic 

activity and diastereoselectivity. In addition, the optimization of the reaction conditions 

confirmed the best reactivity in THF solvent and also the importance of 1:2 metal to ligand 

ratio. Remarkably, this transformation is specific to cobalt-catalysis as no reaction occurred 

while using various other standard Pd, Ru, Mn, Ni, and Fe catalysts (entry 13). Test reactions 

confirmed that in the absence of cobalt, or the ligand, no reaction occurred, while 

chloronaphthalene clearly outcompeted other naphthalene coupling partners (entries 10-11). 

Finally, a reduced reaction time translated into a further improvement of the chirality transfer 

(entry 12). 

 



 

Table 1: Optimization of the reaction conditions of atroposelective direct Co-catalyzed arylation 

 

 

Entry Ligand or cat. d.r. yield % er  major dia er minor dia 
1 L*1 87 : 13 70% 95 : 5 61 : 39 
2 L*2 68 : 32 50% 95.5 : 4.5 55 : 45 
3 L*3 30 : 70 33 % 50 :50 50 :50 
4 L*4 66 : 34 43% 96 : 4 50:50 
5 L*5 50 : 50 ND ND ND 
6 L*6 78 : 22 35% 96.5 : 3.5 56.6 : 43.5 
7 L*7 50 : 50 ND ND ND 
8 L*8 67 : 33 38% 90 : 10 52 : 48 
9 L1[a] 97 : 03 80 96.5 : 3.5 ND 

10 1-Bromonaphtalene instead 
of 1-chloronaphtalene[a,c] 72 :28 20 56.5:43.5 50 :50 

11 1-Iodonaphtalene instead of 
1-chloronaphtalene[a,c] 50 :50 Traces ND ND 

12 L1[a,b] 97 :03 80 96:04 ND 

13 

PdCl2, Pd(OAc)2,  
[Ru(p-cymene)Cl2]2, 
RuCl3, MnBr2, NiCl2, 

Fe(acac)3
[a,c] 

NR - - - 

Reaction conditions: 1a (0.1 mmol scale, 1 equiv.), 2 (0.2 mmol scale, 2 equiv.), THF (0.286 M). [a]20 
mol% of ligand; 

[b]7h reaction time; [c]with L*1. Reported yields are isolated yields. The 
diastereomeric ratio (d.r.) was determined by 1H NMR spectroscopy. The enantiomeric ratio (er) was 
determined by chiral HPLC. 

 

II. Scope	of	the	reaction	
 
With the optimized conditions in hand, the scope of this reaction was evaluated. First, the 

impact of the electronic and steric properties of the Ar-substituent of the N-atom of indole was 

investigated (Scheme 1). Indeed, the steric hindrance at the ortho-position of this aromatic ring 

controls the atropostability of the newly induced C-N axis. Me-, Et-, and Ph-ortho-substituents 
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performed equally well, delivering the desired products 3a – 3c in high enantioselectivity, 

diastereoselectivity, and yields. In clear contrast, further increased steric hindrance around the 

C-N bond (i-Pr group) resulted in lower reaction efficiency and diastereoselectivity, arguably 

due to the restricted rotation around the C-N of the corresponding substrate. Naphthyl-

substituted indole 1e performed well, delivering the desired product in good yield and 

diastereoselectivity, but the loss of the enantioselectivity was observed. In contrast, the reaction 

tolerates ortho-OCF3 substituent, affording 3f in 65% yield and with good control of the 

stereoselectivity. 

 Subsequently, the scope of the indole core was investigated. Various electron donating, as well 

as electron withdrawing groups (fluorine or trifluoromethyle for example), were well tolerated 

regardless of their position on the indole substrate, thus furnishing the arylated products in 

moderate to good yields and with high control of both, diastereoselectivity and 

enantioselectivity. Generally considered as challenging, the thioether motif, turned out to be 

perfectly compatible with this asymmetric transformation, as the product 3l was isolated in 83% 

yield and excellent chiral induction (er of 99:1). Remarkably, azaindole 3s, a potential drug 

candidate, was delivered in 80% yield, 95:5 d.r and 96.5:3.5 e.r. thus clearly illustrating the 

potential of this protocol for drug design.  

Finally, the scope of naphthyl-coupling partners was evaluated. Despite the increased steric 

hindrance, chloro-pyrene was found to be an efficient coupling partner in this reaction, 

providing 3u in good yield and high stereoselectivities. Para-substituted chloro-naphthyls 

showed good reactivity under the standard reaction conditions, furnishing efficiently 3v, 3w, 

and 3x. Finally, the compound 3z was obtained in 25% yield but with an excellent control of 

the diastereoselectivity but with loss of enantioselectivity. 

 



 
 
Scheme 1 : Scope of the reaction. (The scope was performed on a 0.2 mmol scale. Reported yields are isolated yields. The 
diastereomeric ratio (d.r.) was determined by 1H NMR spectroscopy. The enantiomeric excess (ee) was determined by chiral 
HPLC.) 

 

The absolute aRC-N,aSC-C configuration of the obtained compounds was unambiguously 

confirmed based on the X-ray structure of 3k.24 In addition, the experimental study of the 

epimerization of 3a revealed the rotational barrier of the C-C axis of ΔG1C-C = 25.6 kcal mol-1, 

while the value of the rotational barrier of the C-N axis could not be reached experimentally 

even after a prolonged heating at 80 °C. These experimental results thus indicate a surprisingly 

strong atropostability of the C-N motif. Accordingly, the measurements of the rotational barrier 
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of C-C axis at 80 °C with chiral HPLC clearly shows equilibrium between two diastereomers 

reached after several hours while both diastereomers remains enantiomerically enriched. 

III. Gram-scale	synthesis	and	and	Post-functionalization	
 
To further illustrate the synthetic value of this newly developed transformation, a gram scale 

reaction was performed (Scheme 2), yielding 3a in high 72% yield and with no impact on the 

diastereoselectivity (d.r. 96:04) and enantioselectivity (91% ee). Moreover, washing with cold 

diethyl ether afforded the product (61% yield) as a single diastereoisomer.  

Subsequent post-functionalizations revealed that the aldehyde motif present at C3-position can 

be astutely used to direct a direct amination into the C4-position25,26 delivering the highly 

decorated indole 4a in good yield, while conserving its stereochemical purity.  The cleavage of 

the Ts group performed well, delivering 4b in 76% yield and same d.r. and e.r. Alternatively, 

a ketone-derived product 4c was accessed easily and under mild conditions. with high diastereo- 

and enantioselectivity,  



 

Scheme 2 : Large-scale synthesis and post-modifications. 
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Scheme 3 : Investigations of the KIE. 

 
In order to shed light on the mechanism of this transformation, combined experimental and 

theoretical mechanistic investigations were undertaken (Scheme 3). The kinetic isotope effect 

was measured via both, parallel initial rate comparison and competition experiments, indicating 

in both cases value close to 1. Therefore, the C-H activation is expected to be non-rate-

determining.  Besides, the linear correlation between the optical purity of the ligand used and 

the enantiomeric excess of the product formed clearly were suggestive of the absence of the 

non-linear effect and thus indicated implication of monomeric Co-L species (See SI Figure 5). 
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Intrigued by the origins of the enantioselectivity and diastereoselectivity, these were 

interrogated by computational mechanistic studies through DFT calculations at the 

ωB97XD/def2-TZVPP+SMD(THF)//TPSS-D3(BJ)/def2-SVP level of theory for C–H 

activation, oxidative addition and reductive elimination elementary steps (Figure 2).[25] Given 

the intrinsic nature of the cobalt(I) intermediates I-1, both high-spin (triplet) and low-spin 

(singlet) complexes were taken into consideration for the C–H activation as well as for the 

oxidative addition elementary steps (See SI Figures 6-10). The latter gives origin to cobalt(III) 

complexes I-3, which lead to C–C bond formation through reductive elimination [TS(4-5)]. 

Given the d6 electronic configuration of the cobalt(III) all possible spin states were assessed, 

namely high-spin (quintet), low-spin (singlet) and an intermediate-spin (triplet) (See SI Figures 

6-10). The triplet energy surface revealed to be the energetically preferred pathway over all the 

considered spin states with the absence of a spin-crossover reactivity. An assessment of the 

energy profile for the experimentally observed aRC-N,aSC-C-enantiomer shown that C–H 

activation proceeds through a facile ligand-to-ligand hydrogen transfer (LLHT) [TS(1-2)] with 

a barrier of 9.5 kcal mol-1. The oxidative addition revealed to be the rate determining step, 

presenting an energy barrier hight of 11 kcal mol-1 [TS(3-4)], whereas for reductive elimination 

a barrier of 3.2 kcal mol-1 was calculated [TS(4-5)] (Figure 2). The oxidative addition for the 

aRC-N,aSC-C-enantiomer revealed to be stabilized by 2.4 kcal mol-1 over the aSC-N,aRC-C-

enantiomer (Figure 2). This energy difference can be translated into an enantiomeric excess of 

98% which is in good agreement with the experiments. The stabilization of the aRC-N,aSC-C -

enantiomer over the aSC-N,aRC-C-enantiomer may result from weak attractive dispersion 

interactions from the naphthyl and the N-alkylphenyl moiety of the substrate in the transition 

state TS(1-2), which is absent in the aSC-N,aRC-C-enantiomer (Figures 3 and 4). Additionally, 

calculations in the absence of dispersion corrections resulted in a change in the 



enantioselectivity, highlighting the importance of dispersion forces in such systems. Intrigued 

by the diastereoselectivity origins, and if this would be dictated before the rate determining 

step, the oxidative addition of the 1-chloronaphthalene, attention was given to the rotation 

barrier over the C–N axis in the cyclometalated complex I-2 for the experimentally preferred 

aRC-N,aSC-C -enantiomer. This was calculated to be 27.6 kcal mol-1 which corresponds to a half-

time (t1/2) of 221 days. Such indicates that the C–H activation elementary step highly influences 

the diasterioselectivity. 

 

Figure 2 : Computed relative Gibbs free energies (ΔG298.15) in kcal mol-1 for the oxidative addition and reductive elimination 
elementary steps, in the most stable triplet surface, for the aSC-N,aRC-C- and aRC-N,aSC-C-enantiomers at the ωB97XD/def2-
TZVPP+SMD(THF)//TPSS-D3(BJ)/def2-SVP level of theory with the chiral ligand L*1.  
 
 



 

Figure 3 : Visualization of the non-covalent interactions calculated with the help of the NCIPLOT program for the transition 
states involved in the oxidative addition step for both aSC-N,aRC- - and aRC-N,aSC-C -enantiomers. In the plotted surfaces, red 
correspond to strong repulsive interactions, while green and blue correspond to weak and strong interactions, respectively. 
 

 

Figure 4 : Optimized transition state structures for the oxidative addition elementary step in the triplet surface for the aSC-
N,aRC-C- and aRC-N,aSC-C -enantiomers obtained at theTPSS-D3(BJ)/def2-SVP level of theory with the chiral ligand L*1. Non-
relevant hydrogens were omitted for clarity. 
 

 
 
 

Conclusions 

In conclusion, we demonstrate herein that asymmetric C-H activation strategy opens new 

perspectives for the synthesis of complex, poly-chiral molecules. Unprecedented indole 

scaffolds  featuringcinal HetAr-Ar and Ar-N atropisomeric axis could be prepared via Co-

catalyzed enantioselective direct arylation. Excellent efficiencies, diastereoselectivities and  



enantioselectivities were reached employing enantioure Co-NHC ligand, that promotes this 

challenging transformation under mild reaction conditions, thus warranting atropostability of 

the productd under reaction conditions. The mechanistic studies reveals origins of the diastereo- 

and enantio-selectivity of this transformation, that can be attributed to dispersive interactions 

during the oxidative addition step and the control of the C-N axial chirality within the 

metallation event. 
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