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Abstract. Computer-Aided Diagnosis relies on accurate tumor volume
and heterogeneity assessment through CT-scans. Precise lesion segmen-
tation is essential for patient diagnosis, therefore the development of au-
tomatic tools for lesion segmentation is needed. To improve lung nodule
segmentation performance, lung segmentation masks serve as valuable
priors, narrowing the focus to lung regions. Current methods suffer from
the exclusion of pathological areas, especially in oncology patients, since
tumor tissue differ in voxel density from other structures in the lung.
Consequently, ensuring accurate lung segmentation encompassing all le-
sions is crucial. We developed a method based on supervoxels to fully
segment the lung while encompassing nodules if present using a prop-
agation algorithm based on geometrical properties. We compared our
method to a morphology based method and neural networks trained to
segment the lungs. Our method had the best performance in the inclusion
of lung lesions, while retaining an adequate level of precision.

Keywords: Lung segmentation · Medical Imaging · Supervoxel · Math-
ematical morphology.

1 Introduction

Lung cancer, one of the deadliest forms of cancer, requires early detection to
enhance the chances of successful treatment and recovery. This type of can-
cer has the capacity to evolve quite rapidly, hence growing in size fast. It of-
ten evolves into multiple small tumors covering large areas of the lungs, which
makes disease quantification more difficult since evaluation methods rely on tu-
mors measurements. Currently, radiologists use the RECIST criteria to evaluate
patient’s follow-up to treatment. This criterion relies on manual measurements
of the diameters of maximum 5 lesions, 2 per metastatic site [2]. One of the main
limitations of this tool is its selection process, which might underestimate the
true tumor burden, especially in metastatic patients [11]. From a practical per-
spective, RECIST is an adequate tool to assess patient response to treatment,
especially in routine practice where time is an issue. Manually delineating all tu-
mors is a time-consuming task, but offers better prognosis for patient’s response.
For this purpose, segmentation algorithms are of interest, as they might provide
more information and reduce radiologist annotation time, hence leading towards
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more precise medicine. Modern diagnostic procedures often involve Computer-
Aided Diagnosis (CAD) systems, which play a crucial role in assisting healthcare
professionals. For lung cancer, these CAD systems perform tumor segmentation
on lung images [4], necessitating an initial pre-processing step to segment the
lungs within the image and reduce the search space.

Our focus lies specifically on lung segmentation in Computed Tomography
(CT) scans, as the accuracy of CAD systems heavily relies on the accurate
delineation of lung structures [1]. While numerous lung segmentation algorithms
that rely on morphological methods or deep learning have been developed, they
often encounter challenges when dealing with scans containing tumors, since
they can be very similar to vessels or organs in the mediastinum and differ a lot
from lung tissue. Failure to accurately segment the lungs in such cases prevents
CAD systems from detecting these tumors. In response, we propose an efficient
method for integrating lung nodules into the lung segmentation mask, which
combines the strengths of morphological and graph-based image segmentation
techniques.

2 Related Works

2.1 Lung segmentation

Over the years, various morphological techniques, including active contours and
region growing, along with thresholding methods, have been employed for lung
segmentation on CT-scans. However, these methods often struggle to deliver
precise results when dealing with diseased lungs. Huidrom, R. et al. [4] have
specifically addressed the issue of pulmonary nodules that are closely connected
to the chest wall and pleural surface. Traditional morphological methods tend to
overlook such nodules, resulting in incomplete lung segmentation. In response,
Shanhui Sun et al. [9] proposed a robust active shape model approach. Nonethe-
less, they acknowledge limitations when dealing with ’out-of-the-norm’ cases
encountered in real-life scenarios, such as unique lung shapes or those afflicted
by numerous pathological regions. Deep learning methods, such as the U-Net
model, have been explored by researchers like Bizopoulos, P. et al. [1] for lung
segmentation. However, it’s important to note that even these advanced tech-
niques face significant challenges in accurately segmenting the lungs, particularly
in difficult cases. Moreover, they require the availability of manual annotations
for training as is the case for the Scancovia model [6] or TotalSegmentator [10].
Scancovia’s design for Covid-19 severity prediction on CT-scans includes a 3D
lung segmentation U-Net model trained on an in-house dataset. TotalSegmen-
tator, based on a nnU-net, is capable of segmenting 117 anatomical structures
on CT-scans. While both achieve high performance in lung segmentation, they
were trained on datasets from various origins, which may constitute a problem
when dealing with lungs affected by specific pathologies such as cancer. Since we
wish to develop a method of lung segmentation that does not require previous
annotations, we will be focusing on methods based on mathematical morphology
or unsupervised learning.
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Özsavaş, E.E et al. [7] proposed a method for accurate lung segmentation and
inclusion of pathological areas based on prior knowledge of CT-scan’s physics,
which can be summed up as follows:

Step 1. Rough lung segmentation To initiate the morphological segmenta-
tion process, the method begins by identifying the body region within the 3D
scan. This is achieved by isolating the largest high-density structure, between
-175 and 750 Hounsfield Unit (HU) on each slice, removing all the surrounding
objects such as the plate. Subsequently, a preliminary segmentation of the lung
is established through thresholding by keeping values with density below -300
HU in the body region, allowing for the initial delineation of the lung structure.

Step 2. Trachea segmentation and lung mask refinement To exclude the
trachea from the previously obtained mask, a process is employed to identify
the air-filled regions within the image. These regions, characterized by very low
density, are carefully evaluated using a gradually increasing threshold. This in-
cremental thresholding approach is applied to prevent any overlapping with the
lung structures, ensuring that the trachea is accurately delineated and removed
from the mask. A hole-filling algorithm is applied to include the vessels, nodules,
tumors or any other high density pathology that are inside the remaining lung
fields.

Step 3. Intestines removal Since intestines may have a density greater than
-300 HU, they ought to be removed. First, connectivity is checked to identify the
objects within the rough lung segmentation. Then, small regions in the rough
lung segmentation are removed if lower than 200mm2.

Step 4. Separation of the lungs The right and left lung are separated by a
high density junction that divides both structures. The algorithm is described
thoroughly in the original paper.

Step 5. Inclusion of pathological areas At this step, only the tumors that
are in relation with the borders of the lungs were excluded from the lung mask.
To remedy this problem, a three-step approach was established. Firstly, for each
voxel coordinates (x, y, z) contained in the rough lung mask, we identify zmin

and zmax for which (x, y, z) is included in the segment (x, y, zmin), (x, y, zmax).
All voxels in the segment between (x, y, zmin) and (x, y, zmax) (along the z axis)
are then labeled as lung on a new mask, that we denote as the extended mask.
Secondly, a propagation algorithm is employed to expand the lung mask into
regions belonging to the extended mask. This is achieved by examining the
surrounding 7x7x7 voxel neighborhood of each voxel in the border of the lung
mask. If more than half of the voxels’ neighborhood are part of the existing
extended mask, the voxel in question is added to the lung mask. This process
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continues until no more qualifying voxels can be identified. Finally, the updated
segmentation mask is refined by taking the intersection with the extended mask,
resulting in a comprehensive and accurate representation of the lung structure,
including the pathological areas.

2.2 Supervoxels

Supervoxels and superpixels algorithms group voxels/pixels into perceptually
meaningful regions. The image information are now represented by these su-
pervoxels/superpixels (instead of voxels/pixels), providing a convenient unit to
process local features on an image. In the domain of medical imaging, their us-
age has been progressively growing, particularly in segmentation tasks, as they
facilitate the formation of coherent regions. Notably, Hansen, S. et al. [3] have
leveraged supervoxels and superpixels as a preliminary step in the segmenta-
tion process to enhance the accuracy of abdominal organ segmentation and car-
diac segmentation. By employing these regions as sub-segmentation units, they
have achieved improved results in these critical medical imaging applications.
One notable approach within this framework is SLIC, or Simple Linear Itera-
tive Clustering, introduced by Achanta, R. et al. [8]. The objective of SLIC is
to clusterize pixels based on their color similarity and proximity in the image
space. SLIC operates by first over-segmenting an image into compact, roughly
equally-sized regions and then adjusts these regions to gather similar intensity
regions together. The key features of SLIC include its simplicity and efficiency,
making it well-suited for real-time or large-scale image processing tasks. It also
allows users to control the compactness of the superpixels, providing a balance
between more cubed shaped clusters, or more irregular supervoxels.

3 Method

We introduce a novel approach that capitalizes on the rich local information
offered by supervoxel segmentation to enhance the segmentation of lungs in
CT-scans. Drawing inspiration from Özsavaş, E.E et al.’s method, we adopt su-
pervoxels as a superior alternative to scrutinizing individual voxel surroundings.
This adaptation significantly improves efficiency, as we now analyze contiguous
groups of voxels that exhibit similarities.

3.1 Supervoxel segmentation

To perform the supervoxel segmentation of CT-scans, we employ an efficient
GPU-based implementation of the SLIC algorithm, known as cuda-slic4. Firstly,
the 3D scan is clipped to the range -1024 to 400. Voxels of the lungs and sur-
rounding organs all belong to this range. By clipping high density objects, we
make sure that those areas are not segmented into multiple supervoxels, as they

4 https://github.com/rosalindfranklininstitute/cuda-slic

https://github.com/rosalindfranklininstitute/cuda-slic
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are not relevant to lung segmentation. Secondly, similarly to Özsavaş, E.E et
al.’s Step 1 (Section 2.1), we extract the body region mask. Thirdly, we feed
the cuda-slic algorithm the clipped 3D scan multiplied by the body region mask
to obtain the most supervoxels in the body region. Lastly, all supervoxel outside
the body region are discarded.

Two key parameters are configured to guide the supervoxel generation pro-
cess:

– Number of Supervoxels : We ensure that the algorithm generates su-
pervoxels with a size around 7x7x7 voxels. This is roughly estimated by
dividing the total number of voxels in the 3D CT scan by the estimated size
of supervoxels.

– Compactness : The compactness parameter is set to 100, which was deter-
mined visually to obtain regular shaped supervoxels, while delineating organ
boundaries.

The output of the supervoxel algorithm is a 3D image where all voxels are
assigned a label corresponding to the supervoxel they belong to. From this we
generate two additional outputs, a 3D scan where all voxels are assigned their
supervoxel’s median density. We refer to this scan as the Supervoxel CT-scan.
Moreover, we construct a Region Adjacency Graph (RAG) to capture the spatial
relationships between supervoxels.

3.2 Rough lung segmentation and trachea removal

To obtain an initial lung segmentation, we use the methodology in [7] working
with the Supervoxel CT-scan, instead of the original scan. We follow their pro-
cess, performing the thresholding step to extract the rough lung segmentation,
and intestines removal as outlined in their paper.

We developed a new method for the segmentation of the trachea. We first
select an upper slice (∼ 35mm from the top) to determine a trachea seed point.
We perform a 2D connected component and select the object closest to the
center of the slice. Its center coordinates will represent the seed. Starting from a
subset of the scan including the upper slices, we incrementally include 10 more
slices and perform a 3D connected component. We continue including slices until
the object containing the seed doubles in size or does not change volume upon
inclusion, upon which we consider the previous objects voxels as trachea. This
mask is dilated to include airway walls and then subtracted from the lung mask.

Finally, the right and left lung are separated using the same algorithm in
Özsavaş, E.E et al.’s paper (Section 2.1).

3.3 Inclusion of pathological areas

For this step, in a similar fashion we construct an extended mask as in Step
5 of the previous method (Section 2.1). Two new masks were created after this
step: the broad mask containing all supervoxels that have at least one voxel in
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the extended mask; and the narrow mask including supervoxels whose centroids
are within the extended mask. Initially, all voxels contained in the narrow mask
are labeled as lung.

Next, we proceed to expand the narrow mask by including adjacent supervox-
els when the following criterion is met: if a defined percentage of the adjacent
supervoxel’s surface is in contact with lung supervoxels, then it is considered
lung. The rationale behind this procedure is that lung nodules will be enveloped
by lung tissue or other lung nodules supervoxels. To prevent unintended prop-
agation into the in-between region of the lungs (heart, etc.), while allowing for
the inclusion of nodules attached to the external bounds of the lung, we employ
a dynamic acceptance threshold strategy. The acceptance threshold for super-
voxel candidates is initially set to 0.5 for the supervoxel closest to the center
of the scan, and linearly decreases to 0.45 for those located further away. This
strategy ensures controlled propagation within the lung region, since the lungs
wraps more around the organs situated in the middle part of the body, which is
not the case for the exterior of the lung.

Our propagation process is designed to ensure controlled expansion from the
narrow mask into the pathological areas, while avoiding overflow beyond the
broader mask. To achieve this, we follow these steps:

– Initial Neighbor Consideration : We begin by considering all neighboring
supervoxels of those within the narrow mask that are included in the broad
mask.

– Lung Supervoxel Check : Among these neighboring supervoxels, we assess
whether they meet the criteria for being lung supervoxels. When we identify
supervoxels that qualify as lungs, we add them to the narrow mask. This
addition extends the segmentation further into the lung region.

– Propagation : We then repeat the process by considering the neighbors
of the newly added lung supervoxels that are still within the broad mask.
The propagation process continues until we no longer identify any new lung
supervoxels within the broad mask.

This process is showed on Figure 1 where the supervoxels appear on one axial
slice.
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Fig. 1. Propagation process projected on one slice for 3 iterations. in blue the
segmented lung supervoxels, in green the not selected lung candidates, and in
red the added lung supervoxels at each iteration. The propagation process is
performed in 3D.

Fig. 2. Example of lung segmentation obtained through thresholding, and the
lung segmentation of our algorithm. Left: Lung mask obtained through thresh-
olding. Right: Our algorithm’s mask. In purple: Lung segmentation mask. In
yellow: tumors not included in the mask. In orange: tumors included in the
mask.

Algorithm 1 Get Supervoxel Lung Segmentation

Input: S ▷ 3D CT scan data
Output: Mlung ▷ Lung segmentation mask

1: Ssuper ← SLIC(S) ▷ Using cuda slic
2: Sct

super ← Supervoxel CT scan ▷ Median intensity of each supervoxel
3: GRAG ← RAG(Ssuper) ▷ Section 3.1
4: Mrough ← Rough segmentation(Sct

super) ▷ Section 3.2
5: Mrough ← Mrough - Intestines(Mrough) - Trachea(Mrough)
6: [M left

rough Mright
rough] ← Separate lungs(Mrough) ▷ Section 2.1

7:
8: ▷ Begin the propagation
9: Mlung ← empty array of size S
10: for Mside

rough in [M left
rough Mright

rough] do

11: Mside
extended ← Extend mask(Mside

rough) ▷ See Section 2.1

12: [Mside
narrow Mside

broad] ← Get the narrow and broad mask from Mside
extended

13: candidates ← Get candidates(Mside
narrow, GRAG, M

side
broad)

a

14: while candidates is not empty do
15: Lnew ← {} ▷ New lung supervoxels
16: for c in candidates do
17: if

Area(c in contact with Mside
narrow)

Area(c)
> thresh then ▷ See 3.3

18: Lnew ← Lnew ∪ {c}
19: end if
20: end for
21: Mside

narrow ← Mside
narrow ∪ Lnew

22: candidates ← Get candidates(Mside
narrow, GRAG, M

side
broad)

23: end while
24: Mlung ←Mlung ∪Mside

narrow

25: end for
26: Return Mlung

a c is a candidate if c ∈ (GRAG.neighbors(c) ∩Mside
broad)−Mside

narrow



8 L. Stepien et al.

The difference between the lung segmentation mask obtained after thresh-
olding selection of lung tissue and the mask obtained after the propagation step
is displayed in Figure 2. A majority of tumors that were not included in the
first mask are now included with our method, and the surrounding organs were
removed. Algorithm 1 sums up our method.

4 Experiments

We designed three experiments to demonstrate the efficiency and effectiveness
of our method in comparison to the Özsavaş, E.E et al.’s method [7]. These
experiments encompass evaluating the method’s ability to handle scans of non-
sick patients without overflowing, and verifying that the segmentation results
across a large sample of scans includes tumor regions. For this purpose, we
analyzed the results of segmentation of 4 methods: ours (superlung), Özsavaş,
E.E et al., Scancovia and TotalSegmentator. Three datasets were studied: Lung
dataset, Tumors2D and Tumors3D.

4.1 Lung dataset

We assessed our method using 10 CT-scans from Nanjing Drum Tower Hospital
[5], where both lungs were meticulously annotated by two radiologists and vali-
dated by an experienced radiologist. Subsequently, we computed four key metrics
using the lung annotations: Intersection over Union (IOU), Precision, Recall, and
DICE score. These metrics provided valuable insights into our method’s capabil-
ity to avoid overflowing when propagating the segmentation mask into nodules.

Since lung voxels are included using a propagation process, we might expect
the output lung mask to overflow in non-lung regions. Utilizing fully annotated
lungs provides a reliable means to gauge the accuracy of our method in correctly
segmenting the lung. The mean scores for each metric are presented in Table 1.

Table 1. Lung segmentation metrics on the Lung dataset. The metrics represent
the mean (± std) over all scans.

Method IoU Precision Recall DICE

Superlung 0.87 (± 0.03) 0.89 (± 0.03) 0.98 (± 0.02) 0.93 (± 0.02)

Özsavaş, E.E et al. 0.89 (± 0.07) 0.94 (± 0.02) 0.94 (± 0.08) 0.94 (± 0.04)

Scancovia 0.95 (± 0.01) 0.96 (± 0.01) 0.99 (± 0.00) 0.98 (± 0.01)

TotalSegmentator 0.96 (± 0.01) 0.98 (± 0.00) 0.98 (± 0.00) 0.98 (± 0.00)

From these results, we can observe that the lung masks computed by our
method overflow to areas close to the lung. This is manifested by a portion of
false positive voxels included in the segmentation mask. Specifically, the average
precision for our mask stands at 0.89, in contrast to 0.96 and 0.98 achieved by
Scancovia and TotalSegmentator, respectively. However, our method does not
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seem to suffer from false negative voxels, as its average recall stands at 0.98,
on par with the U-Net model’s performance. Overall, all the methods seem to
perform well when it comes to lung segmentation in non-cancer patients, with
both neural network exhibiting an outstanding –0.98 Dice coefficient.

We identify two primary causes for this overflow phenomenon. Firstly, an
insufficiently accurate segmentation of the trachea results in the mask extend-
ing into regions between the lungs and the trachea. Secondly, propagation from
supervoxels located between lung supervoxels vertically, as these regions are not
always tumors. These problematic scenarios are exemplified in Figure 3, fea-
turing one of the fully annotated lungs. The image on the right showcases a
lung segmentation that extends into a region featuring tissue characteristics re-
sembling tumors, which may as well be tumors themselves. This type of error
represents a trade-off made to ensure the inclusion of as many tumors as pos-
sible, as will be seen in the next section (Section 4.2-4.3). The slight overflow
into the rib area can be attributed to the acceptance threshold for new lung
supervoxels, which might be set too low for this particular scan. This highlights
the potential necessity of customizing the acceptance threshold for each scan to
optimize segmentation results.

Fig. 3. Example of a segmentation using our algorithm. On the left, the trachea
was not thoroughly removed, which may impact the inclusion of non-pathological
areas. As a consequence, some of the heart (right image) was included in the lung
mask.

4.2 Tumors2D

The dataset contains 622 contrast-injected thoracic CT-scans, featuring a total
of 15386 lung lesions. 2D fine contour annotations of each lung lesion on the axial
slice with the largest diameter is provided. These scans originated from Gustave
Roussy (GR) and were annotated by 2 radiologists, with subsequent review by
1 expert radiologist.

To assess the quality of the segmentation masks produced by these methods,
we quantified the degree of overlap between these masks and the associated
tumors mask as described by Equation (1). This evaluation allowed us to gauge
how effectively the lesions were integrated into the lung masks.
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overlap =
|Lung mask ∩ Tumors mask|

|Tumors mask|
(1)

Fig. 4. Distribution of the overlap scores with the 622 scans from GR. The
overlap scores reflect the percentage of included tumor masks in the lung seg-
mentation.

We conducted an evaluation of the overlap between the segmentation masks
generated by all methods with the annotated lesions. As evidenced by the distri-
bution of overlap scores in Figure 4, Superlung manages to include more tumors
in the lung segmentation mask. Furthermore, our method achieves great results
consistently, as the first quartile corresponds to a 67% overlap of the annota-
tions. Some difficult cases include patients where the lung lesion was quite large,
covering most of the lung, or juxtapleural nodules that are big enough to not be
integrated in the extended mask.

4.3 Tumors3D

3D annotations for all nodules present in five scans from Tumors2D were ana-
lyzed, totaling 112 lesions. The same method of evaluation as before was used:
the lung mask was evaluated depending on the percentage of integrated nodules.

The overlap scores obtained by each method on each scan with fully anno-
tated lesions are summarized in Table 2.

Both TotalSegmentator and Scancovia fall short in detecting as many tumors
as Özsavaş, E.E et al. and our method. In Figure 5, we display an example of
segmented lungs of Scan 4 on one axial slice for each method. On this scan
TotalSegmentator and Scancovia completely overlook the tumor closest to the
center of the scan (missed parts in red), it underlines their weaknesses when it
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Table 2. Summary of the overlap score on 5 scans with fully 3D annotated
lung lesions. The overlap score reflects the percentage of lesion mask included
in the obtained lung mask. The number between parentheses are the number of
nodules in the scan.

Method
Scan 1
(3)

Scan 2
(5)

Scan 3
(5)

Scan 4
(98)

Scan 5
(1)

Overlap

Superlung 1.0 1.0 0.34 0.93 0.66

Özsavaş, E.E et al. 1.0 1.0 0.28 0.83 0.53
Scancovia 1.0 1.0 0.05 0.82 0.14
TotalSegmentator 0.31 0.98 0.05 0.71 0.86

comes to out of the norm lesions that result in unusual lung shape. This is most
probably due to the lack of cancer patients in the training of the U-Net models.

Fig. 5. Example of lung segmentation on an axial slice of Scan 4 of Tumors3D
dataset. In blue: the segmented lung. In green: tumors included by the lung
segmentation mask. In red: tumor not included in the lung segmentation. A
perfect segmentation would contain no red.
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5 Conclusion

Segmenting the lung region is a crucial step in CAD, especially when the pri-
mary goal is to identify and segment lung lesions. Therefore, it becomes essential
for the lung segmentation mask to effectively encompass all lesions. Our method
does encounter challenges related to the generalization of certain hyperparame-
ters, including the number and compactness of supervoxels, and the acceptance
threshold. These challenges occasionally result in minor overflow issues within
the segmentation mask. While our method overflows in the non-lung area, result-
ing in a degraded precision compared to other methods in non-cancer patients, it
has demonstrated its capacity in tumor inclusion in the lung mask compared to
other approaches. This accomplishment is attributed to our effective utilization
of spatial and structural information contained in supervoxels.
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