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Introduction

Hillel Furstenberg demonstrated in 1967 [START_REF] Furstenberg | Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation[END_REF] that, while the ×2 and ×3 mod 1 maps on T both individually admit an uncountable infinity of closed invariant Cantor sets, the only closed and infinite set jointly invariant under both maps is T itself. This led him to further conjecture the only Borel probability measure invariant under both maps (and that would not be a convex combination of finitely supported measures on T) would be the Lebesgue measure, which is known as the still open "Furstenberg ×2 ×3 conjecture". No better formulation of the core technical padlock of this conjecture has been made than the crystal-clear one of Pablo Shmerkin [START_REF] Shmerkin | Slices and distances: on two problems of Furstenberg and Falconer[END_REF], namely that "base 2 and base 3 developments share no known common structure", this being the case for any coprime bases p and q. For example, while the following number seems quite random in base 3:

201201200020012200201011102110210120022011102211122110222101210020211112211 02210211012102121022201101021001221021221121101121010100012220012012210221120 11020000000022122111102202122000201111110001221102022221122010212111002111222 12200012110110222101001202112202210101222220101220021201100202000222200002101 20110020200211212002111
it is in fact Mersenne prime 2 521 -1, and so the much clearer 521 consecutive digits 1 in base 2. Base changes (between coprime bases) can so effectively obfuscate a given digital sequence that they are becoming increasingly resorted to in chaotic cryptography [START_REF] Benssalah | Medical images encryption based on elliptic curve cryptography and chaos theory[END_REF] [4] [START_REF] Buls | The construction of efficient stream ciphers and cryptographically secure pseudo-random number generators[END_REF] [START_REF] Ribeiro | The entropy universe[END_REF], and the fundamental reason behind that the Furstenberg conjecture be still open is that iterated multiplications and/or divisions by coprimes have a chaotic effect on the number's representation in any of those bases.

Another system which chaoticity is critically dependent upon iterated base changes is the 3x+1 or Collatz map, which will exhibit the following base-crunching behaviours [START_REF] Rahn | An algorithm for linearizing the Collatz convergence[END_REF]:

(1) map any whole number with a trail of n consecutive digits 1 in base 2 to a number with exactly so many trailing digits 2 in base 3. For example, 2 521 -1 is mapped to 2(3 521 ) -1. This process is increasing. (2) map any odd number with a penultimate series of n > 1 consecutive digits 0 in base 2 to either the 2x+1 (if n was even) or the 4x+1 (if n was odd) of a number divisible by 3 exactly ⌊ n /2⌋ times. For example 2 521 +1 is mapped to 4(3 260 ) + 1. This process is decreasing.

That the Collatz sequence be blending and iterating the two above processes, one increasing and one decreasing, explains its infamous "hailstorm" structure, which chaoticity is determined by the strong unpredictability of both the number of penultimate consecutive digits 0 a number is left with in base 2 after the first process, and the number of consecutive digits 1 it is left with in the same base after the second process. Note we use the word "strong" in its cryptographic acception, as Bocart demonstrated [START_REF] Bocart | Inflation propensity of Collatz orbits: a new proof-of-work for blockchain applications[END_REF] one could use the inflation propensity of Collatz orbits as a more effective proof of work than Bitcoin's hashcash which is no small feat. For the time being, we may define a Furstenberg arithmetic as the closure of a given set by several unary actions (e.g. ×2, ×3) involving multiplications and/or divisions by coprimes.

Collatz basins are a Furstenberg arithmetic

One of the most fundamental properties of a multi-unary algebra (the closure of a set by several unary actions) may be its branching factor. In Peano Arithmetic for example, which is the closure of {0} by unary action x + 1, no branching appears as it is mono-unary and engenders the line of whole numbers. This very elementary system remains diagonalizable, a direct consequence of which are Gödel's incompleteness theorems, and thus the study of even such a simple mono-unary algebra may exhibit complex behaviors. We may expect the behavior of multi-unary algebras to be significantly more complex.

Let us consider A x , defined as the closure of any odd x by the three following unary actions :

• A(x) = (2x-1) /3 if x ≡ 2 mod 3 • C(x) = (4x-1) /3 if x ≡ 1 mod 3 • V (x) = 4x + 1 for all x
Lemma 2.1. For any odd x, A x contains all the odd numbers leading to the next odd number in the Collatz orbit of x Proof. For any odd x, 3x + 1 is either divisible by 2 2n for some whole n ≥ 1, then V n-1 (C(3x + 1)) = x, or by 2 2n+1 with n ≥ 0 then V n (A(3x + 1)) = x □ Let us note A x always has an infinite number of elements and is never a line, because V (x) can be iterated anywhere and for any x ≡ y mod 3, V (x) ≡ y + 1 mod 3. This simple mixingness property of action V over base 3 representations ensures A x be branching countably infinitely already but it has in fact more important consequences.

Lemma 2.2. Let V x be the closure of any odd x by action V and let V +n x be the closure of V x by actions A and C composed of elements with at most n more digits than x in base 2. Then lim n→∞ |V +n

x \Vx| /n = 1 Proof. V (x) is appending suffix 01 to any odd x in base 2. If x ≡ y mod 3 then V (x) ≡ y + 1 mod 3 and for any whole k, if x ≡ y mod 3

k then V 3 k (x) ≡ y mod 3 k . For example, if z ∈ V x can receive action A, then V (z) is divisible by 3 and V 2 (z) can receive action C. For any z ∈ V x , A k (z) is an integer only if z ≡ 3 k -1 mod 3 k , C k (z) is an integer only if z ≡ 1 mod 3 k
and in general any finite series of k consecutive non-V actions will result in an integer only if z has a certain and unique modularity in base 3 k (or equivalently, only one certain finite suffix of k digits in base 3). Action V 3 k (z) will reproduce any base 3 suffix of length k with the first digit on the left of the suffix receiving action +1. If any consecutive series of actions A or C of length k on some element y ∈ V x is outputting an integer divisible by 3, then V 3 k (y) and V 2•3 k (y) will be able to receive the same consecutive AC series, and output an integer with residue 1 or 2 in base 3 (not necessarily in this order) and V 3 k+1 (y) will also receive the same consecutive AC series, this time outputting a number divisible by 3. We finally have that when n → ∞ for any whole k there are ( 2 /3) k • n /2 elements of V x that may receive k consecutive non-V actions and remain whole, which gives exactly so many elements for |V +n

x \V x |:

(2.1) ∞ k=1 n 2 • ( 2 3 ) k = n □ Remark 2.
3. Action C extends the base 2 representation of a number of exactly 2 -log 2 (3) digits, while action A shortens it of exactly 1 -log 2 (3). As n → ∞ both actions A and C tend to be equifrequent when counted over all of V +n x while any word of length k composed only of letters A or C in equal frequency will have each character remove on average this many digits in the final base 2 representation: 2) So an interesting property of the elements of A x , seen as legal words in the V,A,C alphabet, is that when converted to base 2 and if A and C are equifrequent, one non-V character will remove on average the exact difference there is between 3 /2 and log(3) /log [START_REF] Shmerkin | Slices and distances: on two problems of Furstenberg and Falconer[END_REF]. That is, it will take a little less than 12 such characters to lose one digit in base 2. That any non-V word with an equal amount of letters A and C be decreasing is also an important property we use in the proof of the next lemma.

(2.2) 1 2 • (log 2 (4) + log 2 (2) -2 • log 2 (3)) = 3 2 - log(3) log(

Lemma 2.4. Let A n

x be the subset of A x composed of all elements with a binary representation of at most n more digits than that of x. Then Lemma 2.2 implies lim n→∞ |A n x | /2 n ≥ 1 Proof. Consider a much better-behaved bi-unary algebra, that is, the closure of {1} by S(x) = 2x + 1 and G(x) = 2x -1. We know there are 2 n -1 odd numbers that can be written with up to n more digits than 1 in base 2, which is the content of this closure, but for the sake of this demonstration we may break down the count in a more particular way. Let us note that a branch generated by the S-closure of length m (that is, all the trails of digits 1 added to the starting number and of length m at most) on a single number is also associated with the m branches corresponding to the G-closure of each new number. If we consider the closure of {1}, we begin with the Mersenne branch, and sum all the elements of the G-closures of each Mersenne (also noting 1 is the only fixed point of G, and thus there is one less G-closure than the total amount of Mersenne numbers), giving us the surface of a discrete right triangle that is, (2.3) n(n -1) 2 for the first iteration, and then, further generating the S-closure of each element of the previous G-closure and adding their count to it, we get the sum of the surface of a discrete right triangle of edges n and n -1 and the volume of a discrete right triangular prism of edges n, n -1 and n -2:

(2.4) n(n -1) 2 + n(n -1)(n -2) 2 • 3 As this process of iterated summations is continued to n, we get (2.5) n k=1 n! k!(n -k)! = 2 n -1
Such a count can be iterated only because every element of a given G-closure can take its own S-closure and vice-versa. Let us prove the same count can be applied to A n

x in spite of its much more complicated geometry, when n → ∞. Lemma 2.2 guarantees that as n → ∞ any ACV word outputting some odd y in A n

x and that is not ending in V has its own V + closure of k elements well-distributed among all the possible binary lengths of k more digits than y and none of them ending in letter V . If we iterate two V + closure on any such odd y up to extra length n we tend to get (at least) equation 2.3 new numbers and further, if we iterate three V + we tend to get equation 2.4 as a lower bound of newly generated numbers. As n → ∞ and so does the number of iterations, we now get equation 2.5 as a lower bound (which, by the way, is consistent with the empirical calculations performed in [START_REF] Rahn | An algorithm for linearizing the Collatz convergence[END_REF] and counting the elements of up to A 23 1 as a subset of A 33 1 ). □ Remark 2.5. The mixingness of V , which is a base 2 k action, over base 3 representations, is both decisive in constructing our proof, and in Furstenberg demonstrating no closed invariant subset of T will exist for both the ×2 and ×3 maps; it determines much, if not all, of the ergodicity of Collatz orbits.

Remark 2.6. While A 1 cannot contain numbers smaller than 1, and that 1 is the only fixed point of action C (that is, C k (1) = 1 for all k ≥ 0) A x may easily contain numbers smaller than x in general, which is why our lemma states lim n→∞ |A n x | /2 n ≥ 1 and not = 1 (which is the case for A 1 ). For example, A 121 contains the smaller 63 = A 5 (V (121)). Furthermore, we do not a priori eliminate the possibility that A x contain cycles, but the very definition of this arithmetic implies that all its elements must meet the next odd number in the orbit of x, and so the only cycle in A 1 is C(1) = 1, while any other cycle in some A x is both always, if it exists, unique and finite, and will never impact the limit result of Lemma 2.4.

Discussions

3.1. On chaotic induction. We believe the systematic study of multi-unary algebras could shed new light on several open problems of arithmetic dynamics, arithmetic topology and number theory in general. Here we have interested ourselves in a non-standard representation of numbers that, unlike Peano Arithmetic, is both chaotic and rapidly branching yet remains non-trivially well-orderable (although its branching factor ensures that such a "Collatz seaweed" or "Collatz feather" has as many branches as there are real numbers when n → ∞).

A first consequence of this interest, is that one can now theoretically establish a form of proof by chaotic induction, that is, while induction in Peano Arithmetic is incremented through the very well-behaved action x + 1, induction could now be defined, and incremented, through worse-behaved actions, say A(x) = (2x-1) /3 if x ≡ 2 mod 3 or C(x) = (4x-1) /3 if x ≡ 1 mod 3, either with each carrying a distinct property to be induced or the same. From cryptography to p-adic arithmetic and other fields, the potential of such a large family of "chaotic inductions" based on ad hoc "bad-behaved" unary actions could be quite diverse. As standard induction may also be extended to the transfinite, so can chaotic induction. From an epistemological point of view, in the same way that chaotic cryptography is a way of "recruiting chaos" in designing secure signal obfuscations, chaotic induction would be a novel way of practicing the same art in logic, set, model and category theory, considering the "Collatz feather" in our case as an ad hoc number system with its own variety of applications.

Besides, as the diagonalizability of Peano Arithmetic implied highly non-trivial results like Gödel's incompleteness theorems, that chaotic multi-unary algebras like A x also be diagonalizable may imply results far beyond the scope of this letter. Altogether, though it is very significant for the Collatz conjecture, A x is but one representative out of an infinite diversity of chaotic multi-unary algebras, the structure of which may be studied well beyond discrete dynamical systems (for example in p-adic geometry, arithmetic topology, model theory, category theory etc.).

On a program unifying the Collatz and Furstenberg conjectures.

In this letter we would like to outline a program by which we believe a systematic theory of multi-unary algebras may unify the Collatz and Furstenberg conjectures. To this end, we may state two founding conjectures in particular: Conjecture 3.1. That no closed infinite invariant subset of T exist under both the ×2 and ×3 mod 1 actions [START_REF] Furstenberg | Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation[END_REF]) directly implies there is no non-trivial Collatz cycle. Conjecture 3.2. If the Collatz conjecture is true, so is the Furstenberg ×2 ×3 conjecture.

As we have seen, the core mechanism behind the chaoticity of Collatz orbits is the strong mixingness of action 4x+1 over base 3 representations. This mechanism in turn belongs to the larger family of base-change dynamical systems with coprime bases, of which the Furstenberg ×2 ×3 system is another well-known example, with several applications in Number Theory owing to the "unreasonable" (Corso [START_REF] Corso | On the unreasonable effectiveness of ergodic theory in combinatorial number theory[END_REF]) or simply "remarkable" (Matheus [START_REF] Matheus | The remarkable effectiveness of ergodic theory in number theory[END_REF]) effectiveness of ergodic theory in number theory. Conjecture 3.1 states that the mixingness of action ×2 over base 3 representations, as already well-understood by Furstenberg, is enough in itself to forbid any legal ACV loop. In turn Conjecture 3.2 states that the special ergodicity and high entropy of Collatz orbits -understood as the branches of the Collatz feather, which pushed to infinity form R thus making the translation from the discrete (Collatz) to the continuous (Furstenberg) much apter -implies the only Borel probability measure over T invariant under both ×2 and ×3 and that is not a convex composition of finitely supported measures is the Lebesgue measure.

The theoretical endeavour we may recommend here would consist of establishing a theory of Furstenberg arithmetics (base-change multi-unary algebras) within a larger theory of multi-unary algebras in general (where one could now attack more complex systems like say the Juggler sequence) as still from an epistemological standpoint, while binary algebras have been intensively studied and theorized over the last two centuries, unary algebras have seldom received the same scholarly attention, with the diagonalizability of Peano Arithmetic or the convergence of Goodstein series remaining some of their most influential results. However, for any odd x of binary length m the same lemma implies that

(3.2) lim n→∞ |A n-m x | |A n 1 | ≥ 1 2 m > 0
Hence there is no odd x such that its Collatz basin is not in that of 1, or stated differently, every Collatz basin is always too large to belong to N\A 1 . □ Corollary 3.4. The ACV alphabet is a base with a unique development (and thus unique non-commutative pseudofactorization of the finite form X x1 ...X xn where X is any V,A,C letter) for any odd whole number.

Proof. That any element of A x lead to the next odd number in the Collatz orbit of x did not a priori forbid x be not in A x , but that any A x be a proper subset of A 1 per theorem 3.3 now guarantees that for whole numbers, (that is, as long as the development is finite) the only ever possible redundancy be C k (1) □ Remark 3.5. In a way, one can now see corollary 3.4 as a "fundamental theorem of a chaotic arithmetic", A x being a well-defined arithmetic and each of its element having a single ACV decomposition. However, converting any odd whole number to the ACV base is as hard as brute-forcing its forward Collatz orbit, and as such, is a symmetric proof of work (taking as long to generate as to verify). As the ACV arithmetic is but one out of many possible chaotic arithmetics, one could now establish new multi-unary algebras (which we may call µ-algebras), craft them with the specific property of their developments being both unique and total for some infinite sets of numbers, and generate new symmetric proofs of work on the fly.

Remark 3.6. The case becomes more interesting when ACV developments are allowed to be pushed to infinity. We then know there are as many such ACV words as there are branches in a Collatz feather pushed to infinity, that is, a continuum of them, but the topology of such a pathological object, and in particular the definition of its neighborhoods and infinitesimals will now become much more complicated, or much more intellectually fecund depending on one's perspective. We can only speculate that they would not remain unique anymore but the topology, differential geometry and ergodic theory of A ∞ 1 are forming, in our opinion, an interesting new field of mathematical enquiry.
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 333 On an important consequence of lemma 2.4. Let lim n→∞ |A n x | /2 n ≥ 1 for all odd x, then the Collatz conjecture is true.