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Abstract. Tumor volume and heterogeneity are important for patient
diagnosis, and automatic lesion segmentation is needed to compute this
information from routine CT-Scans. Training a supervised neural net-
work to solve these tasks demands good quality annotations on a large
quantity of fully annotated scans, which are difficult and time-consuming
to obtain. We propose a fast automatic method using morphological op-
erators to create 3D masks from hand drawn contours of the lesions on
their largest axial slice. This type of annotation leads to more precise 3D
masks than points or ellipses. Thus, the obtained mask may be used to
train end-to-end neural networks for detection and semantic segmenta-
tion of lesions on CT-Scans in 3D. We tested this methodology on the
LIDC-LUNA dataset to produce the 3D masks from automatically se-
lected 2D annotations. We also produced 3D masks of 115 lung lesions
from their 2D contours, and compared them to ground truth 3D masks
on an in-house dataset. The results are promising, and the method could
be adapted to other organs.

Keywords: Nodule Segmentation · Watershed · Medical Imaging.

1 Introduction

In oncology, radiologists often use the Response Evaluation Criteria In Solid Tu-
mors RECIST 1.1 [6] to evaluate patient’s response to treatment. By measuring
the largest diameter of 5 lesions on a 2D axial slice, the evolution of the sum
of diameters of measured lesions is used to classify the response of patients to
treatment. However, they provide less information than a volumetric assessment
that can be used to extract useful heterogeneity biomarkers [9]. A potential
drawback of the RECIST method is that it only considers up to 5 lesions, which
reflects the challenge of collecting more data. However, this may not capture the
full extent of tumor burden in patients with metastases [2]. Hence, it is impor-
tant to develop a method for segmenting all lesions in whole body CT-Scans.
Semi-supervised methods could be a promising solution, as they could reduce
the annotation time by allowing radiologists to mark a lesion and then letting
an algorithm complete the 3D segmentation. This could enable a better volu-
metric evaluation for therapeutic response, a more consistent analysis of tumor
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heterogeneity change over time, and a more precise identification of biomarkers
to predict treatment outcomes [4, 11]. Therefore, it is essential to develop 3D
automatic segmentation models for lung tumors on CT-Scans, since this is the
main modality for tumor assessment in oncology. However, training such models
is challenging due to the scarcity of fully 3D annotated datasets. To create such
datasets, trained radiologists have to annotate all tumors in a CT-Scan, which
is time-consuming and laborious. Furthermore, the annotations may not be very
precise because of various factors that affect the image quality and interpreta-
tion [13]. To facilitate the creation of large databases for training supervised
neural networks that can detect and segment all the tumors in a scan, a al-
gorithm for generating 3D masks from 2D annotations is desirable. The input
markers for semi-supervised algorithms can be various shapes around the target,
such as points, lines, boxes, circles or ellipses. In this study, we aim to explore
the benefits of using a hand drawn contour around the target lesion as an input
marker, and to obtain a 3D mask using morphological operators. We also aim
to adapt and improve a previously developed algorithm [10] for 3D lung nodules
segmentation from 2D annotations.

2 Related Works

Lung lesion segmentation methods often rely on deep learning, including vari-
ants of the U-Net architecture [8]. Jaeger, et al. [7] have developed the Retina
U-Net architecture for both nodule detection and semantic segmentation. One
drawback of deep-learning-based methods is that they need a lot of training
data, which is not easy to acquire in practice. This is because creating such
data requires a lot of work and time from expert radiologists, who have to anno-
tate the images manually. Another challenge of neural networks is that they are
black boxes whose behaviors are hard to interpret, which poses a problem for
radiological applications where unexpected errors can have serious implications.

Radiologists may prefer using semi-supervised segmentation methods that
rely on gray levels, graphs and morphological operations. These methods require
less work and still involve the radiologist in the process. They are also fast enough
to be used interactively. For example, Diciotti, et al. deduce 3D masks of small
lung nodules from points marking them through thresholding and shape analy-
sis [5]. Tan, et al. proposed an automatic segmentation of lung lesions [10] from
a surrounding ellipse on a reference slice, based on marker-controlled watershed,
active contours, and Markov random fields. Their method can be summed up as
follow.

Step 1. Markers. On the reference slice containing the annotation, a thresh-
old is determined via a Gaussian mixture model to distinguish the pixels of the
lesion in the ellipse. After morphological operations to refine the estimation of
the shape of the lesion, the center O of the region and the radius R̂ of the largest
inscribed circle with center O are obtained. The object marker is the circle with
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center O and radius R̂/2 on the reference slice. Voxels outside the ellipse or be-
longing to slices more than a + b away from the reference slice with a (resp. b)
the semi-major (resp. semi-minor) axis of the ellipse are marked as background.

Step 2. Watershed. The watershed followed by a morphological opening pro-
vides a first segmentation of the lesion. It is applied to a gradient image in which
the strength of the edges inside the lesion is reduced. The gradient is multiplied
by min(1, (r/R̂)2) where r describes the distance of a voxel to O.

Step 3. Active contours. The segmentation is refined by a geodesic active
contour [3, 12].

Step 4. Markov random fields. Some lesions may have ground glass opac-
ity (GGO) regions which have not been segmented. These cases are detected
according to the mean density of the pixels in the lesion at Step 1. A Markov
random field allows the segmentation of the image into three regions: the lung
parenchyma, the GGO regions, and the high density regions. The densities of the
voxels of each region are assumed to be drawn from a Gaussian distribution. The
result of this step is combined with the one of Step 3. The final segmentation
is obtained after morphological operations.

Our method aims to improve and adapt the method presented above to the
initial data of a polygon delimiting a lesion on a reference slice (the slice on
which the lesion has the largest area).

3 Method

Drawing a lesion’s 2D outline precisely provides more information than an el-
lipse around it. It shows the lesion’s shape better, which helps segment it more
accurately in 3D. We reuse the watershed and Markov random fields principles
given above with a few modifications. We propose a new way of defining markers
for the watershed, which allows us to avoid the active contour step, since it does
not improve results. The steps of our automatic lung lesion segmentation are as
follows:

Step 0. Preprocessing. The image is resized to obtain an isotropic voxel spac-
ing via linear interpolation. The new voxel spacing is chosen as the smallest voxel
spacing in the three dimensions of the initial image.
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Step 1. Markers. The polygonal 2D annotation delineates the lesion better.
It delimits a region A with centroid C which represents the segmentation of the
lesion on the reference slice S0. Let R be the radius of the largest inscribed circle
in A, which gives information on the width of the lesion. The object marker is
the erosion of A on the slice S0 by a disk with radius R/3. The background
marker on slice S0 is the complement of the dilation of A on the slice S0 by a
disk with radius R/3. Slices at a distance greater than 2ρ are deemed to belong
to the background where ρ is 1.5x of the maximum distance between a point of
A and C. On the remaining slices, the voxels outside the dilation of A on the
slice S0 by a disk with radius R are considered to belong to the background. The
erosions and dilations of A are applied with a structuring element large enough
to remedy any inaccuracies in the initial 2D manual annotation.

Step 2. Watershed. The marker-controlled watershed algorithm is applied
to a modified gradient image. Here, the voxel intensities are smoothed inside an
ellipsoid to avoid ragged edges. The gradient image is multiplied by the minimum
between 1 and the following value:(

2Ẑ
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where (X̂, Ŷ , Ẑ) are the coordinates of a voxel with origin C, a (resp. b) is the
semi-major (resp. semi-minor) axis of the ellipse that has the same second mo-
ments as A, and θ is the orientation of the ellipse. This modification of the
gradient image provides prior information on the shape of the lesion to be used.
The segmentation given by the watershed is refined by an opening followed by a
closing to obtain a smoother contour. The radius of the structuring element of
the closing is half that of the opening, which is 3/10 of the radius of the largest
inscribed ball in the segmentation.

Step 3. Markov random fields. If GGO regions are detected, a new segmen-
tation is computed using a classical Markov random fields (MRF) with pairwise
and unary terms. In terms of energy minimization, the problem is to find a label-
ing f (lung parenchyma, GGO region, or high intensity region) that minimizes
the energy

E(f) =
∑
p∈P

∑
q∈V(p)

βδ(fp, fq)−
∑
p∈P

logP(cp|fp) (2)

where P is the set of the voxels of the image, V(p) is the set of the neighboring
voxels of p ∈ P, fp (resp. cp) is the label (resp. the intensity in HU) of p. β is
set to 100 and P(cp|fp) is given by the Gaussian distribution proposed by Tan,
et al. [10]. δ(fp, fq) equals -1 if fp = fq and 1 otherwise. The new segmentation
is the union of the previous segmentation with the result of solving the MRF
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problem. However, if the volume of the MRF segmentation is too large (in our
case if it is greater than 3× the volume of a ball with radius ρ), the result is
considered inconsistent and is not taken into account. Similarly, the MRF result
is kept alone if the volume of the watershed segmentation is greater (by a factor
of 1.2 or more), since the watershed is supposed to be more conservative. Finally,
the contours are made smoother by morphological opening with a structuring
element of minimum radius between 2mm and 2ρ/5.

The active contours refinement was abandoned because it did not improve
results after the watershed step.

4 Experiments

4.1 Dataset

We evaluated the algorithms on 115 lung and pleural lesions from 6 contrast-
injected Thoracic CT-Scans from Gustave Roussy hospital to compare the method
of Tan, et al. [10] (denoted SEG0) to our method (denoted SEG). Scans 1 and
2 each have a single solid lung lesion. Scan 5 has 98 lesions in total, with a mix
of solid, GGO, necrotic and subpleural pulmonary nodules.

An expert radiologist first drew a polygon around each lesion on the axial
slice with the largest diameter. These were the 2D manual annotations. For
SEG0, we converted them into ellipses that enclosed the lesions, as Fig. 1 shows.
These annotations were the algorithms’ starting point.

These annotations were also the starting point of manually drawn 3D ref-
erence annotations, obtained by completing the annotations of each lesion on
all its axial slices. These were only used to compare the performance of both
algorithms and never as input.

Fig. 1. Initial 2D annotations: a polygon for SEG (green) and an ellipse (red) for SEG0

In addition we evaluated the algorithms on 868 low-dose lung CT-Scans from
the Lung Image Database Consortium image collection (LIDC-IDRI) [1] for a to-
tal of 6804 lesions. LIDC-IDRI contains both screening and diagnostic CT-Scans
collected from 7 academic centers and 8 medical imaging companies. The 3D an-
notations performed by multiple radiologists are available. Our ground truth is
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the mask consisting of the consensus of the radiologists if multiple annotations
were present (a pixel is added to the mask if it belongs to more than half of the
segmentations made by the radiologists). Using this ground truth, we extract a
2D hand contour and a 2D ellipse at the slice where the tumor was largest.

4.2 Results

In-house dataset The comparison was evaluated using Intersection over Union
(IoU), Recall, Precision, and Dice scores to get an overall view of the behavior
of the two methods. These scores are evaluated with respect to the 3D reference
annotation from Gustave Roussy. The results of the two methods on all the scans
are given in Table 1.

Table 1. Performance comparison on Gustave Roussy CT-Scans

Scan Method
Metrics

IoU Precision Recall Dice

1(1)
SEG0 0.5921 0.6484 0.8721 0.7438
SEG 0.6035 0.6533 0.8877 0.7527

2(1)
SEG0 0.7106 0.7275 0.9682 0.8308
SEG 0.7650 0.7878 0.9634 0.8668

3(5)
SEG0 0.6949 0.9627 0.7142 0.8200
SEG 0.7302 0.9698 0.7472 0.8441

4(4)
SEG0 0.5774 0.7859 0.6852 0.7321
SEG 0.7347 0.7870 0.9171 0.8471

5(98)
SEG0 0.6676 0.8653 0.7450 0.8007
SEG 0.7541 0.9163 0.8099 0.8598

6(6)
SEG0 0.5921 0.6484 0.8721 0.7438
SEG 0.7519 0.8767 0.8408 0.8584

Our method seems to perform better than SEG0 on all criteria and seem to
better take into account thin details of the lesions (Fig. 2). The use of a precisely
drawn polygon as input allows for instance to remedy the problem of strong
edges for watershed in the lesions in case of cavities. Nodules with elongated
or flattened shapes, a case notably encountered among subpleural lesions, are
better handled as the algorithm has more input information on the global shape.
Solid lesions surrounded by lung parenchyma are segmented nearly perfectly by
both methods. However, subpleural lesions for which the borders are not well
defined were the most difficult to correctly annotate by either methods.
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Fig. 2. Comparison of SEG and SEG0. Cyan: Reference; Red: SEG0; Yellow: SEG.
Each column displays mask contours on an axial slice of the same lesion. The right-
hand column correspond to the slice of the inital 2D annotation.

SEG differentiates the lesion from vessels, which is not the case here with
SEG0 that includes a vessel on Figure. 2.

LIDC-IDRI The results of the two methods evaluated on the LIDC dataset
are displayed in Table 2.

SEG surpasses SEG0 on average for each metric, coupled with more consis-
tent scores, as the standard deviation is lower for our method. The lesions on the
LIDC dataset are usually small (a few mm wide), with a few on each scanner,
meaning that these algorithms might easily overflow, especially when close to
the pleura. This also implies that small misses might be more impactful on the
computed metrics. Overall, having the exact form of the lesion seems to yield a
more appropriate marker for morphological operations.
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Table 2. Performance comparison on LIDC-IDRI CT-Scans

Metrics
SEG0 SEG

Mean SD Mean SD

IOU 0.3996 0.2250 0.6008 0.1600

Precision 0.6720 0.3227 0.7397 0.2015

Recall 0.5455 0.2652 0.7816 0.1165

DICE 0.5317 0.2482 0.7366 0.1417

5 Conclusion

Our methodology was able to successfully segment in 3D lung lesions on scan-
ners from Gustave Roussy hospital (with multiple lesions in a single scan), and
from a large scale database (LIDC-IDRI). Being able to use precisely drawn 2D
annotations seems to help segment lung lesions in 3D more accurately than an
ellipse. Furthermore, our refinement of the markers seems reliable, and allowed
us to discard the active contour computation from the segmentation pipeline.
Our algorithm works well for a variety of lung lesions: solid, part-solid, necrotic,
sub-pleural or pleural. It also has proven to be reliable on a large scale dataset
such as LIDC-IDRI. However, the methodology requires a precisely hand drawn
contour on the largest axial slice of each lesion, which remains challenging, espe-
cially in routine clinical practice. Moreover, we did not test the capacity of this
method to generalize to other tissues in a CT-Scan. Lung nodule segmentation
remains a relatively easy task due to the high contrast between nodules and pul-
monary tissues. Lastly, evaluating if deep neural networks trained on datasets
generated with both algorithms yield a significant difference in automatic de-
tection remains to be explored. Nevertheless, these methodologies could serve
in creating large scale databases faster, to constitute a bigger learning base for
automatic lung segmentation algorithms.
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