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Online Learning Approach for Survival

Analysis

Camila Fernandez Pierre Gaillard Joseph de Vilmarest

Olivier Wintenberger

Abstract

We introduce an online mathematical framework for survival analysis, allowing

real time adaptation to dynamic environments and censored data. This frame-

work enables the estimation of event time distributions through an optimal second

order online convex optimization algorithm—Online Newton Step (ONS). This ap-

proach, previously unexplored, presents substantial advantages, including explicit

algorithms with non-asymptotic convergence guarantees. Moreover, we analyze

the selection of ONS hyperparameters, which depends on the exp-concavity prop-

erty and has a significant influence on the regret bound. We propose a stochastic

approach that guarantees logarithmic stochastic regret for ONS. Additionally, we

introduce an adaptive aggregation method that ensures robustness in hyperparam-

eter selection while maintaining fast regret bounds. The findings of this paper can

extend beyond the survival analysis field, and are relevant for any case characterized

by poor exp-concavity and unstable ONS. Finally, these assertions are illustrated

by simulation experiments.

Keywords: Online learning, survival analysis, regret bounds, convex optimization,

stochastic risk.
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1 INTRODUCTION

On the one hand the primary objective of survival analysis is to estimate the time until a
critical event occurs, often referred to as survival time or failure time. Examples of such
events include customer churn [21], machine failures [3], and employees’ attrition [23].
Survival analysis is particularly suited for scenarios where the occurrence of the event
may not be observed for all individuals in the dataset. This phenomenon arises when
data collection happened before the event occurred, or individuals left the study before
experiencing the event, and is called right censoring. As neglecting the censored data is
restrictive, it is essential to consider censorship in estimating event time distributions to
avoid bias and underestimation. For each individual i with event time ti, we define the
survival probability function as

Si(t) = P(ti ≥ t), t ≥ 0.

On the other hand convex optimization aims to find the minimum of a convex function
over a convex set. It can be extended to an online approach in which the dataset becomes
available in sequential order and is used to update the estimations of the algorithms
at each step. This setting is suitable when the dataset is rapidly evolving over time,
allowing for efficient processing of large volumes of data. Online convex optimization
is a broad field with diverse applications such as online portfolio selection in finance,
signal processing, communication, and machine learning algorithms; see Hazan [11] and
references therein.

In this paper, we propose the application of online convex optimization algorithms to
survival analysis. The combination of these two approaches has not been explored be-
fore. Our method offers significant advantages, including explicit algorithms with non-
asymptotic convergence guarantees, making it a promising tool for the survival analysis
field.

Specifically, we estimate a parametric survival probability function Si using online convex
optimization algorithms: let Θ be a non-empty, convex, compact set in Rd, and ℓt the
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negative log-likelihood of the individuals at risk during the interval (t− 1, t], t ≥ 1. The
performance of online convex optimization algorithms is measured with the regret

Regretn :=
n∑

t=1

ℓt(θt)−min
θ∈Θ

n∑
t=1

ℓt(θ), n ≥ 1,

which indicates how close the cumulative loss is to the optimal solution. A smaller regret
implies better performance, and our objective is to bound its growth with respect to n

as slowly as possible.

One of the most widely used algorithms in online convex optimization is the Online
Newton Step (ONS) of Hazan et al. [12], renowned for its fast regret convergence rate
for exp-concave loss functions. This second-order algorithm relies on a hyperparame-
ter known as the learning rate, whose optimal selection is directly dependent on the
exp-concavity properties of the loss functions. The exp-concavity constant plays a fun-
damental role in the theoretical regret analysis of ONS.

We give a detailed mathematical framework for online survival analysis data and we
implement the ONS method to optimize the negative log-likelihood of the exponential
model. We note that the ONS algorithm requires a careful selection of the learning
rate to ensure robust performance. However, certain choices, such as the learning rate
proposed by Hazan et al. [12], might lead to an explosive increase in regret, particularly
when applied to the survival losses ℓt. Therefore, proper selection of the learning rate is
essential in our application.

We discuss various strategies for selecting the learning rate hyperparameter. The first
contribution involves applying the stochastic setting from Wintenberger [29] to the sur-
vival case. This setting enhances convex properties by assessing stochastic risks rather
than cumulative losses, allowing us to attain theoretical guarantees for the stochastic
regret that is strongly related to the exp-concavity properties on average. Consequently,
this provides the convergence of the algorithm estimations to the real parameter under
well-specification. Secondly, in the deterministic setting, we propose to apply ONS to
an auxiliary function that recursively adapts the learning rate in response to updates
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in the exp-concavity constant. We introduce the algorithm SurvONS, an aggregation
procedure which ensures a logarithmic regret bound and robustness in hyperparameter
selection over a fixed grid. This provides a new compromise in the context of second-
order algorithms: the algorithm either performs well on average (as in the case of BOA
[28]) or performs well for certain iterations (as in our case with SurvONS). It is impor-
tant to emphasize that this algorithm is applicable not only to the survival case but also
to any case where the exp-concavity properties are poor and the original versio of ONS
is unstable. Finally, we conduct experiments using simulated data to examine our algo-
rithm’s behavior under different constraints. We discuss the choice of the grid, and we
observe that the combination of multiple ONS allows us to use larger grids in SurvONS
than in BOA-ONS [28].

The literature in survival analysis is considerable. The approaches range from non-
parametric methods, such as the one proposed by Kaplan and Meier in 1958 [17], to semi-
parametric methods like Cox proportional hazards [5], and more recent machine learning
applications. For instance, Ishwaran proposed an adapted random forest for censored
data inx [15]. Another example is DeepSurv, which was introduced by Katzman in [18].
DeepSurv utilizes deep learning techniques to estimate the log-risk function in the Cox
model. From a theoretical perspective, Arjas and Haara [1] proposed a dynamic setting
called discrete-time logistic regression. In this model, events are always treated in the
order in which they occurred in real time. The authors provided an asymptotic normality
result for the maximum likelihood estimator of the regression coefficients. The discrete
model is a suitable choice when events are observed at discrete time points; see Tutz
[26]. Building upon Arjas and Haara’s framework, Fahrmeir [9] introduced a state-space
approach for analyzing discrete-time survival data. This approach includes the estimation
of time-varying covariate effects achieved by maximizing posterior densities through the
use of Kalman Filter algorithms. Christoffersen [4] provided a method for discretising
continuous event times when the instantaneous hazard follows an exponential shape. In
a similar setting we provide adaptive estimators with non-asymptotic guarantees for the
first time.
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2 BACKGROUND ON PARAMETRIC INFERENCE

2.1 Notation

We consider a set of N individuals denoted by i ∈ {1, . . . , N}, each associated with an
arrival time τi ≥ 0. Such time could represent when a patient enters the hospital, a client
joins the company, or simply when an individual enrolls in the study. Every individual
has a unique event time ti, which is a positive random variable. By definition, we have
ti ≥ τi almost surely (a.s). We also define ci, which marks the cessation of observation
for the individual i; this time is referred to as the censored time. For instance, this might
be applicable in cases where the observation period has a predetermined ending. In a
more general context, ci can be a positive random variable satisfying ci ≥ τi a.s. Given
that some individuals are censored before the event occurs, and vice versa, it is natural
to define the observed time as ui := min{ti, ci}. We also define the event indicator
δi := 1{ti ≤ ci}, which provides a way to discern whether an event has happened or
if it is censored. For each individual i ∈ {1, . . . , N}, we obseve the random variables
(ui, δi) ∈ R+ × {0, 1}. Furthermore, we suppose that both ti and ci are independent
across all individuals.

Explanatory variables are defined to give context through time to each of the individuals,
and these will be represented by left continuous functions xi : R+ → Rd. The explanatory
variables xi(t) ∈ Rd combine covariates of the individual i ∈ {1, . . . , N} at time t ≥ 0.
It’s important to note that we use the variable t to refer to time in general, while ti

represents the specific event time of individual i. We assume that given xi, a short
notation for (xi(t))t≥0, the times ti and ci are conditionally independent. Additionally,
we suppose ti follows a continuous distribution of density f(t|xi, τi) and ci a continuous
distribution of density g(t|xi, τi). We have g(t|xi, τi) = f(t|xi, τi) = 0 for all t < τi since
ti, ci ≥ τi a.s.

In addition, we suppose that g satisfies the following property:

∀t ≥ ε > 0 : g(t|xi, τi) = g(t− ε|xi, τi − ε) .
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Note that this assumption is also necessary for the density function f . However, as we
will know its specific shape, the property is inherently satisfied. Finally, we denote by
Id the identity matrix of dimension d.

2.2 Survival probability

The objective of survival analysis is to predict the length of time until a specified event
occurs. Consequently, it is necessary to estimate the distribution of these events. We
define the survival probability function of individual i to be the complement of the
cumulative distribution, that is, S(t|xi, τi) = 1 −

∫ t

τi
f(s|xi, τi)ds, which can also be

expressed as the probability of surviving up to time t:

S(t|xi, τi) = P(ti ≥ t|xi, τi) , t ≥ 0 .

To estimate this function, it is common to assume a particular shape for the hazard
function. The hazard function is defined as:

H(t|xi, τi) = − ∂

∂t
log(S(t|xi, τi)) , t ≥ 0 ,

which represents the instantaneous risk of the event occurring at time t. Notably, we
can derive the survival function from the hazard function:

S(t|xi, τi) = exp

(
−
∫ t

0

H(s|xi, τi)ds

)
, t ≥ 0 .

For more details on event times distributions, refer to Cox and Oakes [6].

2.3 Likelihood

In order to estimate the survival probability we suppose the hazard function is a function
of a specified parametric family Θ given the explanatory variables. The parameters
will be determined following the likelihood principle observing (ui, δi) ∈ R+ × {0, 1}
and knowing (xi, τi). As usual we implicitly make the assumption of non-informative
censoring (see Kalbfleisch et al. [16]), which means that the censored distribution does
not involve the parameter θ.
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As mentioned earlier, some models assume a specific shape for the hazard function, such
as additive, exponential, logistic or Weibull (see Cox and Oakes [6]). In this paper, we
assume that the hazard function is exponential, and we detail this assumption below.

Definition 1 (Log-linear regression model for the Hazard function). We assume that
there exist a vector θ ∈ Rd , such that the hazard function satisfies for all t ≥ 0 and all
xi : R+ → Rd,

H(t|xi, τi) := h(θTxi(t))1{t ≥ τi} , t ≥ 0 ,

where h : x ∈ R 7→ exp(x) is the response function.

By using this exponential model we obtain a formula to compute the negative log-
likelihood which is the function that we aim to minimize.

Proposition 1. Under the exponential model from Definition 1 and omitting additional
constants, the negative log-likelihood function ℓ : Θ → R can be written in the following
way:

ℓ(θ) =
N∑
i=1

−δiθ
Txi(ui) +

∫ ui

τi

exp(θTxi(s))ds . (1)

We call this function the complete log-likelihood and the proof of this proposition is
detailed in Appendix A.

2.4 Sequential likelihood optimization

We consider a horizon time n and a time partition (t − 1, t] with discrete time t =

1, 2, . . . that is independent of the observations (ui, δi)1≤i≤N . In many real-life situations,
data continues to evolve; new patients may arrive, some patients may leave, and the
optimization algorithm may need to update its estimation as new information becomes
available. This is the focus of our work: to update online convex optimization algorithms
for sequential survival data.

For individual i we define yit := δi1{t− 1 < ui ≤ t} which indicates whether an event is
observed for individual i during the interval (t− 1, t] or not. Additionally, we denote the

7



risk indicator as rit := 1{τi ≤ t, ui > t− 1} for event i in the interval (t− 1, t]. Then, we
define the log-likelihood on the interval (t− 1, t] by the expression

ℓt(θ) :=
N∑
i=1

−yitθ
Txi(ui) + rit

∫ ui∧t

τi∨(t−1)

exp(θTxi(s))ds , θ ∈ Θ, t = 1, 2, . . . , (2)

where we remind ui∧ t = min{ui, t} and τi∨ (t− 1) = max{τi, t− 1}. Let us notice that,
analogous to Equation (1), the contribution to the log-likelihood of an individual that
experiences an event in the interval (t−1, t] is given by θTxi(ui)+

∫ ui

τi∨(t−1)
exp(θTxi(s))ds,

and the contribution of an individual that is censored in the interval (t − 1, t]—either
by ui = ci or by t—is

∫ ui∧t
τi∨(t−1)

exp(θTxi(s))ds. If an individual is not yet present in the
interval, i.e., τi > t, or its observed time has passed before the beginning of the interval
(ui ≤ t− 1), its contribution to the log-likelihood is zero.

Finally, the log-likelihood up to time n is given by:

ℓn(θ) :=
n∑

t=1

ℓt(θ), θ ∈ Θ.

It is important to notice that if n is sufficiently large, i.e., n ≥ ui for every 1 ≤ i ≤ N , and
all the events have been observed, the complete log-likelihood of Equation (1) corresponds
to the sum of all the interval contributions. Therefore, ℓ(θ) = ℓn(θ), θ ∈ Θ, for n

sufficiently large when N is finite.

3 ONLINE CONVEX OPTIMIZATION

3.1 Setting

A convex optimization problem consists of approximating the minimum of a convex
function over a convex set. This problem can be extended to a recursive setting where,
at each iteration t, a convex optimization algorithm predicts the parameter θt and incurs
a loss of ℓt(θt). This approach is particularly good in situations where the data evolves
over time, requiring fast adaptation and decision making. We apply this methodology to
survival analysis, introducing a novel perspective in a field traditionally dominated by
batch processed data.
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The online convex optimization algorithm aims to minimize its regret at any horizon
time n ≥ 1:

Regretn :=
n∑

t=1

ℓt(θt)−min
θ∈Θ

n∑
t=1

ℓt(θ).

In this paper, we aim to optimize the losses ℓt(θ) from Equation (2). To apply online
convex optimization algorithms, we must first assume that Θ ⊆ Rd is a non-empty,
convex, bounded, and closed set. Subsequently, we verify the convexity of the objective
function. Here the choice of the response function h is crucial. For h(x) = exp(x) the
cost function ℓt(θ) is defined in Equation (2) for every iteration t. We derive its gradient
and Hessian:

∇ℓt(θ) =
N∑
i=1

−yitxi(ui) + rit

∫ ui∧t

τi∨t−1

exp(θTxi(s))xi(s)ds, (3)

and

∇2ℓt(θ) =
N∑
i=1

rit

∫ ui∧t

τi∨t−1

exp(θTxi(s))xi(s)xi(s)
Tds ≽ 0. (4)

The positive semi-definite Hessian confirms the convexity of the losses. Additionally, we
formalize the boundedness assumption.

Assumption 1 (Bounded domain and gradient). There exists D,G > 0 such that for
all t = 1, 2, . . . and θ ∈ Θ, ∥θ∥≤ D and ∥∇ℓt(θ)∥≤ G.

One of the most ancient algorithms for online convex optimization is named "follow the
leader" (FTL), and it consists of choosing, at each iteration t, the point that optimizes
the cumulative loss up to t − 1. This algorithm does not satisfy any non-trivial regret
guarantee for linear losses. However, under some modifications, like the randomized
version proposed by Hannan [10], it can achieve an O(

√
n) regret bound. Additionally,

the approach from Cesa-Bianchi and Lugosi [2], where the losses are strongly convex,
achieves a logarithmic regret in the number of iterations.

In 2003, Zinkevich [31] proposed a sequential version of the gradient descent algorithm
(OGD), which satisfies a uniform regret bound of O(

√
n) for an arbitrary sequence of
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convex cost functions and under the previous conditions (bounded gradients and domain).
Later, Hazan et al. [12] proved that Zinkevich’s algorithm attains a O(log(n)) regret
for an arbitrary sequence of strongly convex functions (with bounded first and second
derivatives). They also introduced an online version of the Newton-Raphson method,
which they named the Online Newton Step (ONS), and demonstrated that it also achieves
logarithmic regret. More algorithms and details can be found in Hazan [11].

We implement the ONS algorithm to minimize the negative log-likelihood and study the
selection of its hyperparameters along with its regret bounds.

3.2 Exp-concavity and directional derivative condition

To ensure a logarithmic regret bound, the loss function must satisfy specific conditions.
First, we review the definition of exp-concavity.

Definition 2. (Exp-concavity) A convex function ℓ : Θ → R is µ-exp-concave iff the
function p(θ) := exp(−µℓ(θ)) is concave.

This property is fundamental in the regret analysis and replaces the strong convexity
condition required by the OGD algorithm. This means that the ONS algorithm requires
a weaker hypothesis on the losses (ℓt)t=1,2,..., to achieve logarithmic regret. Furthermore,
we introduce a study based on this weaker condition, which is essential to derive the
regret bound described by Hazan [11] in survival analysis.

Definition 3. (Directional derivative condition – DDC) We say a function ℓ : Θ → R
satisfy the directional derivative condition for a constant γ > 0 if for any pair θ1, θ2 ∈ Θ

ℓ(θ2) ≥ ℓ(θ1) +∇ℓ(θ1)(θ2 − θ1) +
γ

2
(∇ℓ(θ1)(θ2 − θ1))

2 . (DDC)

To determine the directional derivative constant γ, we must first compute the exp-
concavity constant µ.

Lemma 1. A twice differentiable function ℓ : Θ → R is µ-exp-concave iff

∇2ℓ(θ) ≽ µ∇ℓ(θ)∇ℓ(θ)T , θ ∈ Θ. (5)
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This holds with
µ ≤ min

θ∈Θ

∇ℓ(θ)T∇2ℓ(θ)∇ℓ(θ)

||∇ℓ(θ)||4
.

This lemma provides us a way for calculating the exp-concavity constant µ. The proof
of Lemma 1 can be found in Appendix B. Given a µ-exp-concave function ℓ, we can also
determine its directional derivative constant γ. We have the following bound:

Lemma 2. A µ-exp-concave function ℓ : Θ → R, satisfying Assumption 1, admits a
directional derivative constant γ > 0 satisfying

γ ≤ min
θ∈Θ

− 2
µ
log(1 + µ||∇ℓ(θ)||D) + ||∇ℓ(θ)||D

(||∇ℓ(θ)||D)2
.

We note that this lower bound improves upon the upper bound provided by Hazan [11]:

γ ≤ 1

2
min

{ 1

GD
,µ
}
,

and the proof of Lemma 2 can also be found in Appendix B.

3.3 Online Newton Step

The ONS algorithm is an online analogue of the Newton-Raphson method; see Ypma
[30] for more details. The Newton-Raphson algorithm moves in the direction of the
inverse of the Hessian multiplied by the gradient. For exp-concave loss functions ℓt with
t = 1, 2, . . ., we can replace the Hessian matrix with an approximation of it:

At =
t∑

k=1

∇ℓk(θk)∇ℓk(θk)
T .

At each iteration, the algorithm updates the estimation of the parameter as follows:

θt+1 = θt −
1

γ
A−1

t ∇ℓt(θt) ,

where γ is an algorithm hyperparameter denoting the learning rate and its optimal
selection aligns with the DDC constant. This might lead to a point outside the convex
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set Θ and so we need to project it back. This projection is somewhat different than
the standard projection as it is characterized by the norm defined by At instead of the
Euclidean norm. The iteration step of the algorithm is:

θt+1 = Projt

(
θt −

1

γ
A−1

t ∇ℓt(θt)
)
,

where Projt(θ
∗) ∈ argmin

θ∈Θ
(θ − θ∗)TAt(θ − θ∗).

Let us remark that ONS requires to invert a large matrix At, and in order to avoid
expensive calculations, we consider the Sherman-Morrisson formula [25] which provides
a recursion for A−1

t from A−1
0 := (1/ϵ)Id:

A−1
t = A−1

t−1 −
A−1

t−1∇ℓt(θt)∇ℓt(θt)
TA−1

t−1

1 +∇ℓt(θt)A
−1
t−1∇ℓt(θt)T

, t = 1, 2, . . . .

We formally describe the Online Newton Step algorithm 2 in Appendix B. Hazan [11]
proved the following regret bound of ONS.

Theorem 1 (Hazan [11]). Let us consider the losses ℓt : Θ → R µ-exp-concave and
satisfying Assumption 1. Then, Algorithm 2 with hyperparameters γ = 1

2
min{ 1

GD
, µ}

and ϵ = (γD)−2 satisfies Regretn ≤ γ−1d log(2nG2γ2D2) for any n ≥ 4.

Let us remind that we want to apply ONS algorithm to the losses (ℓt)t=1,2,... described in
Equation (2), where we assume the exponential model defined in 1. The exp-concavity
property is fundamental in the regret analysis of ONS. We first notice that we can work
under (DDC) rather than µ-exp-concavity, focusing our work on the study of the constant
γ which is the hyperparameter of ONS, rather than on µ. Then we see that the choice
of this constant is very sensitive to variations in the gradients, which depend on the
number of people at risk at each time. If µ is small, which can happen when the gradient
of the loss is small, the choice of γ = 1

2
min{ 1

GD
, µ} proposed by Hazan [11] will also be

small, potentially exploding the regret bound and causing issues with the convergence.
Additionally, to properly tune the hyperparameter γ we need to know the exp-concavity
constant in advance, but this constant might depend on the gradient of the losses that
are not known before running the algorithm. Adjusting γ is not trivial and we provide
some insights in the following sections.
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4 STOCHASTIC SETTING

The first solution we propose is to use a stochastic approach to bound the regret of ONS.
We present the general stochastic setting introduced by Wintenberger [29] and apply one
of its results to the survival case. The main difficulty in sequential survival analysis is the
intrinsic time dependence in the loss functions (ℓt)t=1,2,.... Indeed, even if the individuals
are iid, the log-likelihoods ℓt are dependent because of the individuals that are at risk
during consecutive time intervals (t− 1, t] for t = 1, 2, . . ..

4.1 Stochastic Model

We model the arrival times τi ≥ 0 as a homogeneous Poisson process with intensity λ;
see Kingman [20] for a reference textbook on the subject. For each t > 0, we define the
count random variable Nt :=

∑∞
i=1 1{τi ≤ t} which represents the number of individuals

that arrive before t, and τNt represents the arrival time of the last individual arriving
before t. We assume a constant rate λ, such that E[Nt] = λt, indicating the average
number of individuals arriving at time t. Additionally, in this section, we consider the
covariate functions to be constant, i.e., xi(t) = xi for all t > 0, and that they follow,
independently, the distribution of a random variable X. In this stochastic setting we
rewrite the loss function:

ℓt(θ) =
Nt∑
i=1

−yitθ
Txi + rit exp(θ

Txi)((ui ∧ t)− (τi ∨ (t− 1))), (6)

where we replaced N by Nt in Equation (2). It is important to note that the derivation
of this expression is based on the assumption of the exponential model 1. Now, we want
to apply ONS to optimize this loss and study what happens with its stochastic regret.

For each iteration t = 1, 2, . . ., we consider the stochastic loss ℓt and the filtration Ft

of σ-algebras such that the predictions of the online learning algorithm θt and the past
losses (ℓs)

t−1
s=1 are Ft−1-measurable. To simplify notation, we use Et[·] to represent the

conditional expectation given Ft, denoted as E[·|Ft]. In this context, our objective is to
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minimize the stochastic regret at any horizon time n ≥ 1:

Riskn :=
n∑

t=1

Lt(θt)−min
θ∈Θ

n∑
t=1

Lt(θ) ,

where Lt(θt) is the conditional risk, defined as Lt(θt) := Et−1[ℓt(θt)] for t = 1, 2, . . .. Let
us notice that in our case, where the stochastic losses ℓt are defined in Equation (6), the
σ-algebra Ft is generated by yis, xi, τi, and uis = min{ui, s} for all i = 1, . . . , Nt−1 and
s = 1, . . . , t− 1.

The main difference with the setting presented in Section 3 is the use of the conditional
risk Lt instead of the loss functions ℓt in the calculation of regret. This allows us to relax
the convexity conditions imposed on ℓt and instead focus on the convexity properties
of Lt.

4.2 Stochastically Exp-Concavity

It was proved in Wintenberger [29] that the ONS algorithm achieves a O(log(n)) stochas-
tic regret bound under a stochastic exp-concavity condition for ℓt which is described
below.

Definition 4 (Stochastic exp-concavity). A sequence of random functions (ℓt)t=1,2,... is
said to be γ stochastically exp-concave with respect to a filtration Ft if for all θ1, θ2 ∈ Θ

and t = 1, 2, . . .

Lt(θ1) ≤ Lt(θ2) +∇Lt(θ1)
T (θ1 − θ2)−

γ

2
Et−1

[
(∇ℓt(θ1)

T (θ1 − θ2))
2
]
, a.s.

Let us note that this property corresponds to the stochastic counterpart of the directional
derivative condition (DDC). This property plays a crucial role in the proof of Theorem 7
of Wintenberger [29], which establishes the logarithm stochastic regret bound. However,
the losses ℓt defined in (6) do not satisfy this property. Nevertheless, we demonstrate that
the events where this inequality is not fulfilled have a small probability and therefore, we
can still bound the stochastic regret. In addition, we need to make the following design
assumption.
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Assumption 2. There exist A > 0 such that E[xx⊤1{T ≤ C}(1− T )+|τ = 0] ≽ AId.

This assumption is not trivial, and it is not always satisfied; however, when all the
individuals experience an event and T ≤ 1, it corresponds to a classical design. When
t ≥ 1 an alternative analyses is required.

4.3 Stochastic Regret

To apply Theorem 7 from Wintenberger [29], the losses need to satisfy certain hypothesis,
among which are stochastic exp-concavity and a stochastic bound on the gradients of
the losses. We prove that our losses ℓt, whose do not satisfy exactly the conditions of
Theorem 7, still leads ONS algorithm to achieve a logarithmic stochastic regret. We
present the result in the following theorem.

Theorem 2. Given ϱ > 0, n ≥ 1 and the stochastic losses (ℓt)t=1,2,... from Equation (6),
then under Assumption 2, a bounded domain of diameter D and hyperparameter γ, the
stochastic exp-concavity constant, the ONS algorithm has logarithmic stochastic regret
with probability 1− 4ϱ. Specifically, Riskn = O(log(n/ϱ)/γ), n ≥ 1.

The proof of Theorem 2 can be found in Appendix C and the explicit regret bound in
Equation (11). To finish, we prove the following corollary.

Corollary 1. Given ϱ > 0, n ≥ 1 and the stochastic losses (ℓt)t=1,2,... from Equation (6),
we consider θt the ONS prediction at time t and θ̄n the average prediction θ̄n = 1

n

∑n
t=1 θt.

Defining the optimal parameter

θ∗ = argmin
θ∈Θ

n∑
t=1

Lt(θ),

then, under Assumption 2, a bounded domain of diameter D and hyperparameter γ, with
probability 1− 4ϱ we have:

||θ̄n − θ∗||2≤ O
(
log(n/ϱ)

γn

)
, n ≥ 1.
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This corollary ensures the convergence of the algorithm predictions to the real parameter,
which is possible thanks to the strong convexity of the risk functions Lt. It is important
to remark that this does not hold in the deterministic setting. The proof can be found
in Appendix C and the explicit bound in Equation (12).

5 SURVIVAL ONS ALGORITHM

As mentioned earlier, the choice of γ has a significant influence on the algorithm’s perfor-
mance, particularly regarding the regret bound. To avoid convergence issues and address
the challenge posed by the small optimal constant proposed by Hazan [11], we propose
an adaptive setting that allows us to select the most suitable learning rate at each step
while maintaining control over the regret bound. We introduce SurvONS (Algorithm 1),
a survival version of MetaGrad from van Erven et al. [27], that uses Bernstein Online
Aggregation (BOA, introduced in Wintenberger [28]) to aggregate multiple ONS applied
to an adaptive auxiliary function. SurvONS strategically selects larger learning rates to
handle sub-optimal parameters. The key difference between our algorithm and MetaGrad
lies in the approach to updating the adaptive learning rate. We explain this algorithm
in detail throughout this section.

5.1 Recursive adaptation to the constants

We present first the recursive adaptation of the constants µ and γ. Lemma 1 provides a
bound for the exp-concavity constant µ, and Lemma 2 offers a bound for the directional
derivative constant γ based on µ. We aim to apply this approach to ℓ = ℓt for all
t = 1, 2, . . ., and recursively obtain µt and γt(µt) such that they satisfy the bounds of
Lemma 1 and Lemma 2.

In Hazan’s approach, as described in [11], the idea is to select a universal constant µ

that renders all the functions (ℓt)t=1,2,..., µ-exp-concave. The natural choice would be to
take:

µ := min
t∈{1,...,n}

µ∗
t , where µ∗

t := min
θ∈Θ

∇ℓt(θ)
⊤∇2ℓt(θ)∇ℓt(θ)

||∇ℓt(θ)||4
,
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is the bound given by Lemma 1. With this configuration, we guarantee exp-concavity
for every function. However, the challenge of minimizing over the parameter set Θ in the
definition of µ∗

t might be more intricate than minimizing the loss function ℓt. In addition,
we can not know the constant in advance because ℓt is revealed at the t-th iteration only
in our online setting.

To solve this problem, we define at each time t = 1, 2, . . . an adaptive estimation of the
exp-concavity constant:

µt :=
∇ℓt(θt)

⊤∇2ℓt(θt)∇ℓt(θt)

||∇ℓt(θt)||4
,

and, similarly from Lemma 2,

γt(µt) :=
− 2

µt
log(1 + µt||∇ℓt(θt)||D) + 2||∇ℓt(θt)||D

(||∇ℓt(θt)||D)2
,

where θt is the parameter predicted by the algorithm at time t. Let us notice that
this choice of µt ≥ µ and γt(µ) ≥ γ(µ) assures the exp-concavity and the directional
derivative condition for ℓt close to θt at time t. We sometimes refer to γt(µt) as γt when
the specification is not necessary.

5.2 SurvONS

Now, we have an adaptive way to choose µt and γt that preserves the exp-concavity
properties at each iteration. However, this choice might not be optimal, in some iterations
the gradient ∇ℓt can be close to zero due to the lack of individuals at risk, and this might
lead to numeric problems setting µt and γt. Thus we propose an intermediate choice of the
learning rate. Given a user specified constant γ > 0, we define for each time t = 1, 2 . . .:

γ̃t := max{γt(µt)/4, γ} ,

a value that chooses a portion of the optimal directional derivative condition constant
γt/4 when it is not too small, and the user specified constant γ when the quarter of the
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optimal constant decreases under γ. This choice γ̃t is a trade off in between choosing the
optimal directional derivative condition constant and a worse constant when the optimal
one is susceptible to bring convergence problems.

In order to keep the logarithmic regret bound we cannot directly use the adaptive choice
of the constant as the algorithm’s learning rate. Instead, it was proposed by van Erven
et al. [27] to optimize an adaptive auxiliary function. Let us consider θ̂ such that ℓt(θ̂)

and ∇ℓt(θ̂) have been observed and γ > 0, we define the directional derivative function:

ℓ̂t,γ(θ) := ℓt(θ̂) +∇ℓt(θ̂)(θ− θ̂) +
γ

2

(
∇ℓt(θ̂)(θ − θ̂)

)2
, θ ∈ Θ , t = 1, 2, . . . . (7)

We prove that this function satisfies the directional derivative condition for a different
constant γ̂.

Lemma 3. Let γ > 0, Θ ⊆ Rd of diameter D > 0, θ̂ ∈ Θ and ℓt : Θ → R the log-
likelihood defined in Equation (2). Then, the function ℓ̂t,γ from (7) satisfies for every
θ1, θ2 ∈ Θ:

ℓ̂t,γ(θ2) ≥ ℓ̂t,γ(θ1) +∇ℓ̂t,γ(θ1)(θ2 − θ1)

+
γ

2(1 + γ̃∇ℓt(θ̂)(θ1 − θ̂))2

(
∇ℓ̂t,γ(θ1)(θ2 − θ1)

)2
,

and thus, the function ℓ̂t,γ has directional derivative constant γ̂ with γ̂ := γ

2(1+γD||ℓt(θ̂)||)2
.

The proof of Lemma 3 is presented in Appendix D. The idea of the algorithm is to
use ONS routine to optimize the functions ℓ̂t,γ = ℓ̂t,γ̃t , i.e., the auxiliary function with
γ = γ̃t, which adapt at each step according to the current optimal γt and the algorithm
predictions θt.

In addition, to obtain an algorithm that is robust for the choice of the learning rate,
we propose an aggregation procedure which applies ONS and combines it with multiple
choices of the learning rate γ. To formalize this idea, we consider a grid Γ = {γi}i=1,...,K

and E = {ϵi}i=1,...,K such that ϵi =
1

(γiD)2
for all i = 1, · · · , K. Then, at each iteration

t = 1, . . . , n, and for each i = 1, . . . , K, we define γ̃it = max{γt/4, γi} and we aggregate
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ONS applied to (ℓ̂t,γ̃it)t=1,2,.... The aggregation is held by BOA algorithm of Wintenberger
[28], which is a recursive procedure that considers exponential weights with a second order
refinement. The algorithm SurvONS is described in Algorithm 1 and it is important to
notice that the difference between SurvONS and MetaGrad is the choice of the constant γ̃.

Aggregation methods allow us to avoid bad choices of γ and therefore, the convergency
issues. Let us remind that we consider the exponential model 1. We prove that the
regret of Algorithm 1 is bounded.

Theorem 3. Let n ≥ 1, (ℓt)t=1,...,n be the sequence of losses defined in (2), that are
assumed to satisfy Assumption 1 and (DDC) with constants γt ∈ (0, 1/GD). Let K ≥ 1

and Γ ∈ (0, 1/(4GD))K. Then, Algorithm 1 with hyperparameters Γ and E = 1/(ΓD)2,
satisfies the regret upper-bound:

Regretn ≤ min
γ∈Γ

{
2 log(K) + 5d log(n)

γ
+ γG2D2nγ

}
,

where nγ :=
∑n

t=1 1{γt < γ}, γ > 0.

This theorem provides a regret bound that proposes a trade-off between the bad choices
of γ and the frequency with which the algorithm selects γ over γt, thereby compensating
for the regret increment. The proof of Theorem 3 can be found in Appendix D. Let
us notice that this analysis is also valid for MetaGrad algorithm [27], and Theorem 3,
which was developed for the survival losses (2), holds equally true for any loss satisfying
Assumption 1 and (DDC).

5.3 Theoretical regret bounds comparison

We show in Figure 1 the differences between the regret bound orders, in order to illus-
trate the importance of the constant adaptation γ̃t in SurvONS, and the interest of the
stochastic setting. We compare the theoretical regret bound orders of ONS [12] with the
optimal hyperparameter γt, OGD [31], SurvONS 1, and ONS with an average hyperpa-
rameter γ̄t =

∑t
s=1 γs, representing the stochastic approach. The bounds are detailed in

Table 1.
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Table 1: Regret bound order after n iterations (up to logarithmic factors)

OGD ONS SurvONS ONS(γ̄)

Regret bound
√
n 1

min1≤t≤n γt
minγ { 1

γ
+ nγ} 1

γ̄n

Figure 1: Regret bound orders (up to logarithmic factors)

In this comparison, we omit constants and logarithmic terms. We estimate γt with Sur-
vONS, and we use these estimations to construct the bounds. The simulation framework
for this experiment is detailed in Section 6. The graph is presented in log-log scale.

Figure 1 traces the regret behavior of the different algorithms (see Table 1). Without
an explicit calculation of the stochastic constant, we show the interest of considering
an average case through plotting the average constant γ̄t. We observe that although
in theory, the bound of ONS appears better than the bound of OGD (O(log(n)/γ) v/s
O(

√
n)), when γt goes to 0, the bound of ONS is not O(log(n)), but O(log(n)/mint γt).

A similar finding in logistic regression has been made rigorous by Hazan et al. [13]
with the help of lower bounds matching O(log(n)/mint γt). In practical applications,
it is essential to consider more detailed analyses that remain robust in scenarios where
mint γt goes to 0, which is what we propose with SurvONS and the stochastic approach.

6 SIMULATION EXPERIMENTS

In this section we present simulation results of our method. We considered a number
of individuals N = 10 000 and a number of iterations n = 1000. Then we sample a
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multivariate random normal of dimension (N, d − 1) with d = 4 and mean vector and
covariance matrix:

η :=


0

0

0

 , Σ :=


1 0 0

0 1 0

0 0 1

 .

We add an intersect column that transforms the matrix into one of dimension (N, d).
This matrix corresponds to the covariates information {xi}Ni=1, which does not depend
on time. The real parameter θ∗ is set randomly following a N (0, Id) distribution. We
sample the arrival times τi as a uniform between 0 and n and we simulate Ti and Ci

following an exponential distribution of rate exp(θ∗Txi),

Ti ∼ τi + exp(exp(θ∗Txi)), Ci ∼ τi + exp(exp(θ∗Txi)).

For more details on the common use of exponential distributions in survival analysis we
refer to Selvin [24]. We repeat this procedure 100 times, and the results are the average
curves over the 100 data simulations. Additionally, we consider two exponential grids
for the aggregation methods of size K = 10. First, we test a random grid, consider the
SurvONS predictions θt for t = 1, . . . , n , and define:

G := max
t=1,...,n

||∇ℓt(θt)|| .

This process is repeated multiple times to ensure the stability of G estimation. Sec-
ond, we choose 10 equidistant points and then we generate the grids by considering the
exponential of each point, such that:

Γ1 := (1/
√
n, . . . , 1/4GD) , Γ2 := (1/GD, . . . , 10/GD) ,

where D is adjusted a posteriori such as D := 1.1||θ∗||. Throughout this section we
compare the results of the two choices of grid Γ1 and Γ2.

We observe in Figure 2 the distribution of the average γt estimations that we obtained
from SurvONS. The average for Γ1 is 1.24 and 1.64 for Γ2. The similarity between both
estimations elucidates the proximity of the graphs in Figure 1, which is unsurprising
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Figure 2: Density of γt estimation obtained by Algorithm 1, with Γ1 [left] and Γ2 [right]

Figure 3: Cumulative negative log-likelihood with hyperparameters in grid Γ1 [left] and
Γ2 [right]

given that the directional derivative constant is inherent to the loss function and does
not depend on the algorithm or the selected grids.

We compare SurvONS, described in Algorithm 1, with the BOA-ONS proposed by Win-
tenberger [28]. Additionally, we fit several ONS and OGD with constant learning rate
equal to each γ in the grid, and then we select the one that performs better to include in
the comparison. Remark that this procedure overestimates the performances of ONS and
OGD. We show the average cumulative difference between the negative log-likelihood of
the estimations and the real parameters in Figure 3.

In Figure 3, we observe that SurvONS (in purple) does not outperform BOA-ONS (in
black) with the Γ1 grid. However, the scenario changes with the second grid, Γ2, where
SurvONS proves to be more effective than the other methods. This unexpected result
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Figure 4: Average quadratic error with hyperparameters in Γ1 [left] and Γ2 [right]

arises from the fact that the Γ1 grid falls within the theoretical limits. Nevertheless, we
observe a consistent improvement in performance for all algorithms when considering a
larger grid. This discrepancy could arise from either an overestimation of the constant G
or the presence of outlier points exhibiting extremely large gradients. Nonetheless, given
the similarity in the constant γt estimation across the two grids, shown in Figure 2, we
recommend opting for larger grids, ranging from 4 to 40 times the theoretical bound of
1/4GD.

In addition, Figure 4 presents the quadratic error, where we consider the cumulative
average of the estimations. Specifically, given a sequence of algorithm predictions (θs)ts=1,
the cumulative average is defined as θ̄t := t−1

∑t
s=1 θs. Let us remind that the curves

depicted represent the average of 100 instances obtained from simulating 100 datasets.
The figure is in log-log scale.

Figure 4 corroborates the result of Corollary 1, which establishes the convergence of the
estimations θt to the real parameter θ∗ when using the ONS algorithm. The findings of
Wintenberger in [29], which demonstrate the O(log(n)) stochastic regret of BOA-ONS,
together with the insights from Figure 4, suggest the potential to extend a similar corol-
lary to both BOA-ONS and SurvONS. Furthermore, Corollary 1 can be easily extended
to BOA-ONS by replacing the application of Theorem 2 with Theorem 4 from [29].
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7 CONCLUSIONS

In this paper, we presented a detailed mathematical framework for online survival data,
analyzing the regret of Online Newton Step and its sensitivity to the learning rate. No-
tably, we found that tuning this parameter is challenging, and the regret bound is highly
sensitive to its adjustment. Our first contributions is introducing a stochastic setting to
ensure that ONS achieves logarithmic stochastic regret in the survival context. Addition-
ally, we proposed an adaptive method, SurvONS, which aggregates ONS with different
learning rates. Adaptive methods, commonly used in first-order algorithms like Ada-
Grad [8] or Adam [19], offer a promising avenue for enhancing second-order algorithms.
Our approach leverages adaptive strategies to improve efficiency and convergence, ex-
tending its applicability beyond the online survival domain. The regret analysis of Sur-
vONS strategically selects larger learning rates to address sub-optimal parameters. In
conclusion, aggregation methods enhance robustness in selecting algorithm hyperparam-
eters; however, achieving and maintaining fast rates remains a non-trivial task.

Finally, in the simulation experiments, we compared two grid choices. Figure 2 shows
that γt estimations closely align within the grids, and the second grid produces values
that do not approach zero to the same extent as the first grid. Additionally, Figure 3
indicates that choosing larger values for the learning rate grid accelerates convergence,
suggesting the preference for larger grids.
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Algorithm 1 SurvONS
Input: (ℓt)t=1,2,..., D > 0, n ≥ 1, grids Γ, E
Initialization: for each γk in Γ: θ0(γk) ∈ Θ, π0,k =

1
K

, θ̂0 ∈ Θ, A−1
0 = E−11d

for iteration t = 1, . . . , n do

Update: θ̂t =
K∑
k=1

πt,k θt(γk)

Observe: ∇ℓt(θ̂t) =
N∑
i=1

−yitxi(ui) + rit

∫ ui∧t

τi∨t−1

exp(θ̂Tt xi(s))xi(s)ds

∇2ℓt(θ̂t) =
N∑
i=1

rit

∫ ui∧t

τi∨t−1

exp(θ̂Tt xi(s))xi(s)xi(s)
Tds

µt =
∇ℓt(θ̂t)T∇2ℓt(θ̂t)∇ℓt(θ̂t)

||∇ℓt(θ̂t)||4

γt = 2
− 1

µt
log(1+µt||∇ℓt(θ̂t)||D)+||∇ℓt(θ̂t)||D

(||∇ℓt(θ̂t)||D)2

for γk ∈ Γ do

Observe: γ̃t = max{γt/4, γk}
∇ℓ̂t,γ̃t(θt(γk)) = ∇ℓt(θ̂t)(1 + γ̃t∇ℓt(θ̂t)(θt(γk)− θ̂t))

Recursion:

A−1
t = A−1

t−1 −
A−1

t−1∇ℓ̂t,γ̃t(θt(γk))∇ℓ̂t,γ̃t(θt(γk))
TA−1

t−1

1 +∇ℓ̂t,γ̃t(θt(γk))A
−1
t−1∇ℓ̂t,γ̃t(θt(γk))

T

θt+1(γk) = Projt

(
θt(γk)−

1

γk
A−1

t ∇ℓ̂t,γ̃t(θt(γk))

)
end for

Update: πt+1,· = πt exp
(
−Γ∇ℓt(θ̂t)

T (θ̂t − θt(Γ))− Γ2(∇ℓt(θ̂t)(θ̂t − θt(Γ)))
2
)

end for

return θ̂n
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A BACKGROUND ON PARAMETRIC INFERENCE

A.1 Proof of Proposition 1

Proof. We define the equivalent of the survival probability for the censored distribution

G(t|xi, τi) = P(ci ≥ t|xi, τi) .

Given θ ∈ Θ, we write the density of ui distinguishing two cases:

P(ui ∈ [t, t+ h), δi = 1|θ, xi, τi) = P(ti ∈ [t, t+ h), ci ≥ t|xi, τi, θ),

and
P(ui ∈ [t, t+ h), δi = 0|θ, xi, τi) = P(ci ∈ [t, t+ h), ti ≥ t|θ, xi, τi).

By conditional independence we obtain

P(ui ∈ [t, t+ h), δi = 1|θ, xi, τi) = P(ti ∈ [t, t+ h)|θ, xi, τi)P(ci ≥ t+ h|θ, xi, τi),

P(ui ∈ [t, t+ h), δi = 0|θ, xi, τi) = P(ci ∈ [t, t+ h)|θ, xi, τi)S(t+ h|θ, xi, τi).

When h goes to zero, it tends respectively to

G(t|θ, xi, τi)f(t|θ, xi, τi),

and
g(t|θ, xi, τi)P(ti ≥ t|θ, xi, τi).

Therefore, by the independence of the random variables (ti, ci) among the events i ∈
{1, . . . , N} we obtain the density

f(ui,δi)1≤i≤N
((ui, δi)1≤i≤N | θ, xi, τi) =

N∏
i=1

g(ui|θ, xi, τi)
1−δiG(ui|θ, xi, τi)

δi

N∏
i=1

f(ui|θ, xi, τi)
δiS(ui|θ, xi, τi)

1−δi .

Here we use the assumption of non-informative censoring (see Kalbfleisch et al. [16]),
which means that the censored distribution does not involve the parameter θ. Then we
obtain a simplified version of the likelihood, up to a multiplicative constant

ℓ(θ) ∝
N∏
i=1

f(ui|θ, xi, τi)
δiS(ui|θ, xi, τi)

1−δi .
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Omitting an additional constant, we can equivalently write the log-likelihood to be

log(ℓ(θ)) =
N∑
i=1

δi log(f(ui|θ, xi, τi)) + (1− δi) log(S(ui|θ, xi, τi)).

Let us remark that f(t|θ, xi, τi) = H(t|xi, τi)S(t|xi, τi) and from the definition of H(t|xi, τi)

we can write the log-likelihood as

log(ℓ(θ)) =
N∑
i=1

δi log(H(ui|xi, τi))−
∫ ui

τi

H(s|xi, τi)ds.

Following the exponential model of Definition 1 we replace H(t|xi, τi) in the previous
equation to get

log(ℓ(θ)) =
N∑
i=1

δiθ
Txi(ui)−

∫ ui

τi

exp(θTxi(s))ds ,

We write the negative log-likelihood:

ℓ(θ) = − log(ℓ(θ)) =
N∑
i=1

−δiθ
Txi(ui) +

∫ ui

τi

exp(θTxi(s))ds.

B ONLINE CONVEX OPTIMIZATION

B.1 Proof of Lemma 1

Proof. Only the second assertion needs to be proven, the first one being Lemma 4.2.1
from Hazan [11] is already showed. To prove the second assertion we first see that
Equation (5) means that for all θ ∈ Θ

∇2ℓ(θ) ≽ µ∇ℓ(θ)∇ℓ(θ)⊤,

which implies that for all vector ν ∈ Rd

ν⊤∇2ℓ(θ)ν ≥ µ ν⊤∇ℓ(θ)∇ℓ(θ)⊤ν.
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Since ∇ℓ(θ)∇ℓ(θ)⊤ is a rank one matrix and ν = ∇ℓ(θ) is an eigenvector associated to
the unique non-null eigenvalue, we can replace ν in the previous equation to get

∇ℓ(θ)⊤∇2ℓ(θ)∇ℓ(θ) ≥ µ∇ℓ(θ)⊤∇ℓ(θ)∇ℓ(θ)⊤∇ℓ(θ).

When ∇ℓ(θ) ̸= 0 we can write

µ ≤ ∇ℓ(θ)⊤∇2ℓ(θ)∇ℓ(θ)

||∇ℓ(θ)||4
,

and as this is true for every θ ∈ Θ we have

µ ≤ min
θ∈Θ

∇ℓ(θ)⊤∇2ℓ(θ)∇ℓ(θ)

||∇ℓ(θ)||4
.

B.2 Proof of Lemma 2

Proof. The proof starts similarly than the one of Lemma 4.2.2 of Hazan [11]. We consider
the concave function p(θ) = exp(−µℓ(θ)). We derive that for θ1, θ2 ∈ Θ:

ℓ(θ2) ≥ ℓ(θ1)−
1

µ
log(1− µ(∇ℓ(θ1)

T (θ2 − θ1)))

≥ ℓ(θ1) +∇ℓ(θ1)
T (θ2 − θ1)

−
( 1
µ
log(1− µ(∇ℓ(θ1)

T (θ2 − θ1))) +∇ℓ(θ1)
T (θ2 − θ1)

)
.

Using the Cauchy-Schwarz inequality we upper bound |∇ℓ(θ1)
T (θ2 − θ1)|≤ ∥∇ℓ(θ1)∥D

for any θ2 ∈ Θ. Combined with the monotonicity of the function µ−1 log(1 − µz) + z

which is decreasing for any −∥∇ℓ(θ1)∥D ≤ z ≤ ∥∇ℓ(θ1)∥D we obtain:

ℓ(θ2) ≥ ℓ(θ1) +∇ℓ(θ1)
T (θ2 − θ1)−

1

µ
log(1 + µ∥∇ℓ(θ1)∥D) + ∥∇ℓ(θ1)∥D .

By definition of the directional derivative constant, we thus can estimate:

γ ≤ min
θ1,θ2∈Θ

2

− 1

µ
log(1 + µ∥∇ℓ(θ1)∥D) + ∥∇ℓ(θ1)∥D

(∇ℓ(θ1)(θ2 − θ1))2
,

≤ min
θ1∈Θ

2

− 1

µ
log(1 + µ∥∇ℓ(θ1)∥D) + ∥∇ℓ(θ1)∥D

(∥∇ℓ(θ1)∥D)2

by another application of the Cauchy-Schwarz inequality.
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B.3 The Online Newton Step algorithm

Algorithm 2 Online Newton Step [12]
Input: (ℓt)t=1,2,..., γ > 0, n ≥ 1, ϵ > 0

Initialization: θ0 ∈ Θ, A−1
0 = (1/ϵ)1d

for iteration t = 1, . . . , n do

Observe: ∇ℓt(θt)

Recursion:

A−1
t = A−1

t−1 −
A−1

t−1∇ℓt(θt)∇ℓt(θt)
TA−1

t−1

1 +∇ℓt(θt)A
−1
t−1∇ℓt(θt)T

θt+1 = Projt

(
θt −

1

γ
A−1

t ∇ℓt(θt)
)

where Projt(θ
∗) ∈ argmin

θ∈Θ
(θ − θ∗)TAt(θ − θ∗).

end for

return θn

C STOCHASTIC SETTING

In this section we prove Theorem 2, and for this we need to recall the hypothesis of
Theorem 7 from [29].

(H1) The diameter of Θ is D and the loss functions ℓt are continuously differentiable
over Θ a.s. with integrable gradients.

(H2) The random loss functions (ℓt)t=1,2,... are stochastically exp-concave 4 for some
γ ≥ 0.

(H3) The gradients (∇ℓt(θt))t=1,2,..., satisfy for G1, G2 > 0 and all k ≥ 1, t = 1, 2, . . .,
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and θ ∈ Θ:

Et−1[(∇ℓt(θt)
⊤(θt − θ))2k] ≤ k! (G1D)2(k−1)Et−1[(∇ℓt(θt)

⊤(θt − θ))2] a.s.,

Et−1[||∇ℓt(θ)||2k] ≤ k!G
2(k−1)
1 Et−1[||ℓt(θt)||2] a.s.,

Et−1[||∇ℓt(θ)||2] ≤ G2
2 a.s.

Let us notice that condition (H3) is satisfied in the bounded cases
||∇ℓt(θt)||2≤ G2, t = 1, 2, . . . with G1 := G2 := G. Condition (H3) is independent on
the risk Lt(θt) = Et−1[ℓt(θt)], t = 1, 2, . . ., and thus, it does not interfere with condition
(H2). Additionally, we notice that in our setting where we consider the stochastic losses
ℓt defined in (6), the hypothesis (H1) is already satisfied. Now, we recall the stochastic
regret bound theorem.

Theorem 4 (Wintenberger [29]). Under (H1), (H2) with constant γ and (H3), for
ϱ > 0 and n ≥ 1 the ONS algorithm 2 with learning rate γ/3 satisfies with probability
1− 3ϱ the stochastic regret bound:

Riskn ≤ 3

2γ

(
1 + d log

(
1 +

2(γD)2 (nG2
2 +G2

1 log(ϱ
−1))

9

))
+

(
4γ(G1D)2

9
+

18

γ

)
log(ϱ−1) .

In order to simplify notation we refer to the right-hand-side bound as B(n). In addition
we need a proposition presented in [29] that gives us a constant γ that assures the
stochastic exp-concavity of the losses.

Proposition 2 (Wintenberger [29]). If Lt is µ-strongly convex and there exists G > 0

such that

G2Id ≽ Et−1[∇ℓt(θ)∇ℓt(θ)
T ], ∀θ ∈ Θ, a.s., t = 1, 2, . . . ,

then Definition 4 holds with γ := µ/G2.
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In the ideal case, we would like to prove that ℓt satisfies the conditions (H2) and (H3).
To prove (H2) we can use Proposition 2 if we find a constant such that the loss is strongly
convex and a constant that bounds the expectation of the gradients. Unfortunately, we
are not able to find this last constant a.s. but, proving a weaker version of (H3) we can
define an auxiliary loss function that satisfies all the hypothesis and allows us to prove
Theorem 2.

First, we prove that with high probability there is a constant G that upper bounds the
norm of the gradients of (ℓt)t=1,2,..., this corresponds to the weaker (H3). Secondly,
we prove that the conditional risks (Lt)t=1,2,... are strongly convex for some constant µ,
which consists of finding a lower bound of ∇2Lt(θ) that does not depend on θ and t.
This corresponds to only one of the conditions of Proposition 2, necessary to prove (H2).
Finally, we show how to use weak (H3) and half of (H2) to prove Theorem 2.

C.1 Upper bound (H3)

We want to find an upper bound for ||∇ℓt(θ)||2 and for this we first define for all t =
1, 2, . . .

Rt =
Nt∑
i=1

rit where rit = 1{τi ≤ t, ui > t− 1} ,

and where Nt is the count function of the Poisson process defined in Section 4. Following,
we prove that for all t = 1, 2, . . ., Rt is upper bounded with high probability.

Lemma 4. Let ϱ > 0. Then, with probability at least 1− ϱ, for all t = 1, 2, . . ., we have

Rt ≤ 32eDx∞(4λ+ 1 + log(2/ϱ)) .

Proof. Since ui = min{ci, ti} ≤ ti we can upper bound Rt ≤
∞∑
i=1

1{ti ≥ t− 1}1{τi ≤ t}.

Then, we define At = {i : τi ≤ t} and Zt =
∑
i∈At

1{ti ≥ t − 1} and therefore, it will be

enough to find a bound to Zt to conclude. Given a constant z > 0 and m ≥ 1, we fix
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Nt ≤ m and we first upper bound the conditional probability

P(Zt ≥ z|Nt = m) = P

(∑
i∈At

1{ti ≥ t− 1} ≥ z
∣∣∣Nt = m

)
.

Let us notice that Nt = |At|. We would like to apply the concentration inequality
of Chernoff-Hoeffding to the sum of Bernouilli random variables 1{ti ≥ t − 1} (see
Hoeffding [14]), and for this we need to upper bound

P(ti ≥ t− 1|i ∈ At, xi)

=
t∑

s=1

P(ti ≥ t− 1|s− 1 ≤ τi ≤ s, xi)P(s− 1 ≤ τi ≤ s|0 ≤ τi ≤ t)

=
1

t

t∑
s=1

P(ti ≥ t− 1|s− 1 ≤ τi ≤ s, xi) ,

where we use the uniform distribution of the Poisson process points given an interval (for
more details on Poisson processes, see Daley and Vere-Jones [7]). Then, by the definition
of the survival function (see Section 2) we get

P(ti ≥ t− 1|i ∈ At, xi) ≤
1

t

t∑
s=1

S(t− 1|s, xi) ∧ 1

=
1

t

t∑
s=1

exp
(
−(t− 1− s)eθ

∗⊤xi

)
∧ 1

≤ 1

t

t∑
s=1

exp
(
−(t− 1− s)e−Dx∞

)
∧ 1

≤ 1

t

∞∑
s=−1

exp
(
−se−Dx∞

)
∧ 1

=
2− exp(−e−Dx∞)

t (1− exp(−e−Dx∞))

≤ 4 eDx∞

t
.

In the last line we use that 1− exp(−x) ≥ x/2 for 0 ≤ x ≤ 1.
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The Chernoff-Hoeffding’s inequality gives us for any sequence X1, . . . , Xm with E[Xi] ≤ p

and any ε > 0

P

(
m∑
i=1

Xi ≥ pm+ ε

)
≤ exp

(
− ε2

2mp(1− p)

)
≤ exp

(
− ε2

2mp

)
.

Applying this to the sum of the 1{ti ≥ t − 1} with E[1{ti ≥ t − 1}|i ∈ At] ≤ e2+Dx∞

t

given |At|= m and using the conditional independence of the Poisson process points, we
obtain

P
(
Zt ≥

m

t
4eDx∞ + ε

∣∣∣|At|= m
)
≤ exp

(
− ε2t

8meDx∞

)
.

Therefore, replacing |At| by Nt

P
(
Zt ≥

m

t
4eDx∞ + ε

∣∣∣Nt = m
)
≤ exp

(
− ε2t

8meDx∞

)
.

We set z = m
t
4eDx∞ + ε with which we get ε = z − m

t
4eDx∞ and

P
(
Zt ≥ z

∣∣∣Nt = m
)
≤ exp

(
−
(
z − m

t
4eDx∞

)2
t

8meDx∞

)
.

If we suppose n
t
4eDx∞ ≤ z

2
we obtain

P
(
Zt ≥ z

∣∣∣Nt = m
)
≤ exp

(
− z2t

32meDx∞

)
.

With this we found a bound for the conditional probability of Zt being bigger than
a certain constant. The next step is to bound P(Zt ≥ z), and for this we need to
upper bound the probability of Nt being large. Let M > 0, since Nt follows a Poisson
distribution of intensity λt, we can apply a Chernoff bound argument (more details in
Mitzenmacher and Upfal [22]) obtaining

P(Nt > M) ≤
(
eλt

M

)M

e−λt for M > λt ,
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and

P(Nt > M) ≤ e−M−λt when M > e2λt .

Now, we compute

P(Zt ≥ z) =
M∑

m=1

P(Zt ≥ z|Nt = m)P(Nt = m) + P(Zt ≥ z|Nt > M)P(Nt > M)

≤
M∑

m=1

exp

(
− z2t

8me2+Dx∞

)
P(Nt = m)

+ P(Zt ≥ z|Nt > M)P(Nt > M)

≤ exp

(
− z2t

8Me2+Dx∞

)
+ exp(−M − λt) ,

where we use the bounds we previously found for P(Zt ≥ z|Nt = m) and P(Nt > M).
Finally, we need to choose z and M such that P(Zt ≥ z) ≤ ϱ/t2. Reminding the constrain
M > e2λt, we want

exp(−M − λt) ≤ ϱ

2t2
,

which is true if

M ≥ log

(
2t2

ϱ

)
− λt

and then we can choose M = e2λt+ log(2t2/ϱ) that satisfies both conditions. Similarly,
we want

exp

(
− z2t

32MeDx∞

)
≤ ϱ

2t2
,

which is true if

z ≥
√

32MeDx∞

t
log(2t2/ϱ) ,

and reminding the constrain z ≥ 8M
t
eDx∞ we choose z such that

z ≥ 8M

t
eDx∞ + 2

√
8MeDx∞

t
log(2t2/ϱ) .

Due to Young’s inequality a+ 2
√
ab ≤ 2a+ b, we can also choose

z ≥ 16M

t
eDx∞ + log(2t2/ϱ) ,
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which replacing M becomes

16

t
eDx∞(e2λt+ log(2t2/ϱ)) + log(2t2/ϱ)

= 16λeDx∞ +

(
1 +

16

t
eDx∞

)
log(2t2/ϱ)

≤ 32eDx∞(4λ+ 1 + log(1/ϱ)) .

In conclusion, we choose z = 32eDx∞(4λ+ 1 + log(1/ϱ)) and we get

P(Zt ≥ z) = P(Zt ≥ 32eDx∞(4λ+ 1 + log(1/ϱ)))

≤ exp

(
− z2t

32MeDx∞

)
+ exp(−M − λt)

≤ ϱ

2t2
+

ϱ

2t2

=
ϱ

t2
.

Using an upper-bound over t

P(∀t = 1, 2, . . . Zt ≥ 32eDx∞(4λ+ 1 + log(1/ϱ))) ≤
∑

t=1,2,...

ϱ

t2
= ϱ

π2

6
≤ 2ϱ ,

which concludes the proof.

Finally, we are now ready to give the desired upper bound for ||∇ℓt(θ)||2 in the following
proposition

Proposition 3. Let ϱ > 0. Then, with probability 1− ϱ we have

||∇ℓt(θ)||2≤ G2 ∀θ ∈ Θ, t = 1, 2, . . . ,

with G := 32eDx∞(4λ+ 1 + log(2/ϱ))(1 + eDx∞)x∞.

Proof. Let us notice that ∇ℓt(θ) ∈ Rd and recall

∇ℓt(θ) =
Nt∑
i=1

−yitxi + rit exp(θ
⊤xi)xi (ui ∧ t− τi ∨ 0)+ .
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Then, we have

||∇ℓt(θ)||≤
Nt∑
i=1

||yitxi||+||rit exp(θ⊤xi)xi (ui ∧ t− τi ∨ (t− 1))+ || ,

noticing that yit ≤ rit, xi ≤ x∞, exp(θ⊤xi) ≤ exp(Dx∞)

and (ui ∧ t− τi ∨ (t− 1))+ ≤ 1,

||∇ℓt(θ)|| ≤
Nt∑
i=1

||ritx∞||+||rit exp(Dx∞)x∞||

≤
Nt∑
i=1

rit ·
(
1 + exp(Dx∞)

)
x∞

≤ Rt

(
1 + exp(Dx∞)

)
x∞ ,

by definition of Rt =
∑Nt

i=1 rit. In consequence,

||∇ℓt(θ)||2≤ (32eDx∞(4λ+ 1 + log(2/ϱ))(1 + exp(Dx∞))x∞)2 ,

with probability 1− ϱ and where the last inequality is due to Lemma 4. This conclude
the proof.

C.2 Strong convexity (H2)

Before showing the strong convexity let us remark that we can write S(t|xi, τi) =

exp

(
−
∫ t

τi

H(s|xi, τi)ds

)
and because f(t|xi, τi) = H(t|xi, τi)S(t|xi, τi) the density of

ti is given by

f(t|xi, τi) = H(t|xi, τi) exp

(
−
∫ t

τi

H(s|xi, τi)ds

)
.

Given θ∗ ∈ Θ, the real parameter and replacing by our parametric model h(t|xi, θ
∗, τi) =

exp(θ∗Txi) we have

f(t|xi, τi) := exp(θ∗Txi) exp
(
−(t− τi) exp(θ

∗Txi)
)
1{t ≥ τi}. (8)

We also denote

ℓt(θ; s, c, x, τ) :=
(
− 1{t− 1 < s ≤ t ∧ c}θTx+ exp(θTx)((c ∧ s ∧ t)− (τ ∨ (t− 1)))+

)
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and recalling that yit = 1{t− 1 < ti ≤ t∧ ci}, ui = ti ∧ ci and rit = 1{τi < t, ui ≥ t− 1},
we have

ℓt(θ) =
Nt∑
i=1

−yitθ
Txi + rit exp(θ

Txi)((ui ∧ t)− (τi ∨ (t− 1)))

=
Nt∑
i=1

ℓt(θ; ti, ci, xi, τi) .

In addition, as (ti)i≥1 and (ci)i≥1 are i.i.d. we name T and C random variables that are
distributed as ti and ci, respectively. We first prove the following Lemma that gives us
an explicit expression of the risk function Lt(θ) := Et−1[ℓt(θ)], θ ∈ Θ, t = 1, 2, . . ..

Lemma 5. For every t = 1, 2, . . . and every θ ∈ Θ the risk function is given by

Lt(θ) = λE
[
(e(θ−θ∗)T x − θTx)1{T ≤ C}(1− T )+ | τ = 0

]
+

∑
i:{ui>t−1}
i:{τi≤t−1}

(
e(θ−θ∗)⊤xi − θ⊤xi

)
P(1{t− 1 + τi < T ≤ τi + t ∧ C}|xi, τi, τ = 0) .

Proof. The expected value is

Et−1[ℓt(θ)] = Et−1

[
Nt∑
i=1

ℓt(θ; ti, ci, xi, τi)

]
,

which we separate in two terms

Et−1[ℓt(θ)] = E

 Nt∑
i=Nt−1

ℓt(θ; ti, ci, xi, τi)

+

Nt−1∑
i=1

Et−1 [ℓt(θ; ti, ci, xi, τi)|xi, τi] . (9)

Now, recalling that g and f respectively denote the conditional densities of ti and ci

given (τi, xi) and, because ci and ti are independent given (τi, xi), we first calculate the
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first term

E

 Nt∑
i=Nt−1

ℓt(θ; ti, ci, xi, τi)


= E

 Nt∑
i=Nt−1

E [ℓt(θ; ti, ci, xi, τi)|xi, τi]


= E

 Nt∑
i=Nt−1

∫ ∞

−∞

∫ ∞

−∞
ℓt(θ; s, c, xi, τi)g(c|xi, τi)f(s|xi, τi)dsdc

 .

Now because xi are i.i.d. and independent from τi and ci, denoting by x a random
variable with the same distribution we have

E

 Nt∑
i=Nt−1

ℓt(θ; ti, ci, xi, τi)


= E

 Nt∑
i=Nt−1

∫ ∞

−∞

∫ ∞

−∞
ℓt(θ; s, c, x, τi)g(c|x, τi)f(s|x, τi)dsdc


which can be written as the stochastic integral

E

 Nt∑
i=Nt−1

ℓt(θ; ti, ci, xi, τi)


= E

[∫ t

t−1

∫ ∞

−∞

∫ ∞

−∞
ℓt(θ; s, c, x, v)g(c|x, v)f(s|x, v)dsdcdN(v)

]
= λE

[∫ t

t−1

∫ ∞

−∞

∫ ∞

−∞
ℓt(θ; s, c, x, v)g(c|x, v)f(s|x, v)ds dc dv

]
= λE

[∫ t

t−1

∫ ∞

−∞

∫ ∞

−∞
ℓt(θ; s+ v, c+ v, x, v)g(c+ v|x, v)f(s+ v|x, v)ds dc dv

]
= λE

[∫ t

t−1

∫ ∞

−∞

∫ ∞

−∞
ℓt(θ; s+ v, c+ v, x, v)g(c|x, 0)f(s|x, 0)ds dc dv

]
= λE

[∫ ∞

−∞

∫ t

t−1

∫ ∞

−∞
ℓt(θ; s+ v, c+ v, x, v) f(s|x, 0) ds dv g(c|x, 0)dc

]
.
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We do not know g(c|x, v) but we know that g(c|x, v) = g(c− ϵ|x, v− ϵ) for all ϵ ∈ R. For
instance, g(c|x, v) = g(c − v|x, 0) and, the same is satisfied for f . Then, we change the
variable v ∈ [0, t] in w = v − (t− 1):∫ t

t−1

ℓt(θ; s+ v, c+ v, x, v) dv =

∫ 1

0

ℓ1(θ; s+ w, c+ w, x, w) dw .

We obtain

E

 Nt∑
i=Nt−1

ℓt(θ; ti, ci, xi, τi)


= λE

[∫ ∞

−∞

∫ 1

0

∫ ∞

−∞
ℓ1(θ; s+ w, c+ w, x, w)f(s|x, 0)ds dw g(c|x, 0)dc

]
.

Considering the integral on the time s∫ ∞

−∞
ℓ1(θ; s+ w, c+ w, x, w)f(s|x, 0)ds

=

∫ ∞

0

ℓ1(θ; s+ w, c+ w, x, w)eθ
∗T x exp(−seθ

∗T x)ds ,

we obtain

−
∫ (1−w)∧c

(−w)+

θTxeθ
∗T x exp(−seθ

∗T x)ds

= −θTxP((−w)+ < T ≤ (1− w) ∧ c|τ = 0) ,

and ∫ ∞

(1−w)∧c
((c+ w) ∧ (s+ w) ∧ 1− w+)+e

θT xeθ
∗T x exp(−seθ

∗T x)ds

= eθ
T x((c+ w) ∧ 1− w+)+P(T ≥ (1− w) ∧ c|τ = 0) ,

and ∫ (1−w)∧c

(−w)+

((s+ w)− w+)e
θT xeθ

∗T x exp(−seθ
∗T x)ds

= eθ
T x
(
− ((s+ w)− w+) exp(−seθ

∗T x) |(1−w)∧c
(−w)+

+

∫ (1−w)∧c

(−w)+

exp(−seθ
∗T x)ds

)
= −eθ

T x((c+ w) ∧ 1− w+)+P(T ≥ (1− w) ∧ c|τ = 0)

+ exp((θ − θ∗)Tx)P((−w)+ < T ≤ (1− w) ∧ c|τ = 0) .
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All in all we obtain∫ ∞

0

ℓ1(θ; s+ w, c+ w, x, w)eθ
∗T x exp(−seθ

∗T x)ds

= (e(θ−θ∗)T x − θTx)P((−w)+ < T ≤ (1− w) ∧ c|τ = 0) ,

thus we have

E

 Nt∑
i=Nt−1

ℓt(θ; ti, ci, xi, τi)


= λE

[
(e(θ−θ∗)T x − θTx)

∫ ∞

−∞

∫ 1

0

P((−w)+ < T ≤ (1− w) ∧ c|τ = 0)dw g(c|x, 0)dc
]

= λE
[
(e(θ−θ∗)T x − θTx)E

[ ∫ 1

0

1{(−w)+ < T ≤ (1− w) ∧ C}dw
∣∣∣x, τ = 0

]]
= λE

[
(e(θ−θ∗)T x − θTx)E

[ ∫ 1−T

0∨−T

1{T ≤ C}dw
∣∣∣x, τ = 0

]]
= λE

[
(e(θ−θ∗)T x − θTx)E

[
1{T ≤ C}((1− T )− 0 ∨ −T )+

∣∣∣x, τ = 0
]]

= λE
[
(e(θ−θ∗)T x − θTx)E

[
1{T ≤ C}(1− T )+

∣∣∣x, τ = 0
]]
.

Replacing in Equation (9) we have

Et−1[ℓt(θ)] = λE
[
(e(θ−θ∗)T x − θTx)E

[
1{T ≤ C}(1− T )+

∣∣∣x, τ = 0
]]

+

Nt−1∑
i=1

Et−1 [ℓt(θ; ti, ci, xi, τi)|xi, τi] .

To calculate the second term, we note that we know ui if ui ≤ t − 1 and in this case
ℓt(θ; ti, ci, xi, τi) = 0, therefore, we consider only the individuals i such that ui > t − 1.
The sum becomes

Nt−1∑
i=1

Et−1 [ℓt(θ; ti, ci, xi, τi)|xi, τi]

=
∑

i:{ui>t−1}
i:{τi≤t−1}

∫ ∞

−∞

∫ ∞

−∞
ℓt(θ; s, c, xi, τi)g(c|xi, τi)f(s|xi, τi)dsdc ,
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which, following the calculations of the first term we obtain
Nt−1∑
i=1

Et−1 [ℓt(θ; ti, ci, xi, τi)|xi, τi]

=
∑

i:{ui>t−1}
i:{τi≤t−1}

(
e(θ−θ∗)⊤xi − θ⊤xi

)
P(t− 1 + τi < T ≤ τi + t ∧ C|x = xi, τi, τ = 0) ,

where (T,C, x, τ) is independent of (ti, ci, xi, τi) for every i ≥ 1. Let us notice that τi

and xi, which we suppose are observed at the same time as τi, are known at time t− 1.
Replacing this term in Equation (9) leads to

Et−1[ℓt(θ)]

= λE
[
(e(θ−θ∗)T x − θTx)1{T ≤ C}(1− T )+ | τ = 0

]
+

∑
i:{ui>t−1}
i:{τi≤t−1}

(
e(θ−θ∗)⊤xi − θ⊤xi

)
P(t− 1 + τi < T ≤ τi + t ∧ C|xi, τi, τ = 0),

that finalizes the proof.

We define
J(θ) := λE

[
(e(θ−θ∗)⊤x − θTx)1{T ≤ C}(1− T )+

∣∣∣x, τ = 0
]
, (10)

and we are ready to show the strong convexity of the risk function that we give in the
following proposition.

Proposition 4. The risk function satisfies

∇2Lt(θ) ≽ λe−Dx∞E[xx⊤1{T ≤ C}(1− T )+|τ = 0], ∀θ ∈ Θ, t = 1, . . . , n .

Therefore, under Assumption 2 Lt is µ-strongly convex for µ = λe−Dx∞A.

Proof. Lemma 5 gives us an expression of the risk Lt =: J + Rt with Rt some random
convex function. By convexity ∇2Lt(θ) ≽ ∇2J(θ), θ ∈ Θ, and therefore, it is enough to
bound the hessian of the first term J . We calculate

∇J(θ) = λE
[
(e(θ−θ∗)⊤x − 1)x1{T ≤ C}(1− T )+|x, τ = 0

]
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and

∇2J(θ) = λE
[
e(θ−θ∗)⊤xxx⊤1{T ≤ C}(1− T )+|x, τ = 0

]
.

Let us notice that e(θ−θ∗)⊤x ≥ e−Dx∞ and then

∇2J(θ) ≽ λe−Dx∞E[xx⊤1{T ≤ C}(1− T )+|x, τ = 0] ,

which due to Assumption 2 concludes the proof.

C.3 Proof of Theorem 2

Proof. First of all, we remind that Proposition 3 implies (H3) with G = G1 = G2, but
this bound for the gradients is satisfied with probability 1−ϱ instead of almost surely and
therefore we cannot claim that (H3) is always fulfilled. But there is a problem with this
definition because (H3) considers all t = 1, 2, . . . and, in order to have a Ft-measurable
function we need to define a time dependent (H3)t:

(H3)t For t + 1 ≥ s ≥ 1 the gradients ∇ℓs(θs), satisfy for G > 0 and all k ≥ 1, and
θ ∈ Θ:

Es−1[(∇ℓs(θs)
⊤(θs − θ))2k] ≤ k! (GD)2(k−1)Es−1[(∇ℓs(θs)

⊤(θs − θ))2] ,

Es−1[||∇ℓs(θ)||2k] ≤ k!G2(k−1)Es−1[||ℓs(θs)||2] ,

Es−1[||∇ℓt(θ)||2] ≤ G2 .

We define Ωt = {(yis, xi, τi, ui)s≤t such that (H3)t is satisfied} for all t = 1, 2, . . . sand
we check that Ωt is Ft-measurable. Next, for all t = 1, 2, . . . we define the auxiliary loss
function

ℓ̂t(θ) = ℓt(θ)1{Ωt−1} ,

which is Ft-measurable. Let us notice that we need to define Ωt using (H3)t instead of
the inequality of Proposition 3 to preserve the past dependency and the measurability.
We prove that the function ℓ̂t satisfies the conditions (H1), (H2) and (H3).
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First of all, (H1) is still verified because the indicator function does not depend on θ.
Secondly, if (H3)t is not realized then the function ℓ̂t is zero and all the bounds hold.
Thirdly, if (H3)t is realized, ℓt satisfies the inequalities of (H3) and ℓ̂t = ℓt by definition.
Then the bounds in (H3) are also true for ℓ̂t, concluding that ℓ̂t satisfies the inequalities
of (H3) for all t = 1, 2, . . .. Finally, it remains to prove (H2).

By Ft−1-measurability of Ωt−1 we calculate for θ ∈ Θ:

Et−1[∇ℓ̂t(θ)∇ℓ̂t(θ)
⊤] = 1{Ωt−1}Et−1[∇ℓt(θ)∇ℓt(θ)

⊤] .

If (H3)t is not realized, 1{Ωt−1} = 0 and so (4) is true for any constant γ ≥ 0. If (H3)t
is realized, 1{Ωt−1} = 1 and there exist G > 0 such that:

Et−1[∇ℓ̂t(θ)∇ℓ̂t(θ)
⊤] = Et−1[∇ℓt(θ)∇ℓt(θ)

⊤] ≼ G2Id .

This, together with the strong convexity of Proposition 4 give us the hypothesis of Propo-
sition 2 assuring the stochastic exp-concavity for γ = λe−Dx∞A/G2 and concluding (H2).
Now, we have that ℓ̂t satisfies all the conditions of Theorem 4 assuring the logarithmic
stochastic regret bound of ONS.

To study the stochastic regret bound we need also to define for all t = 1, 2, . . . the risk
function L̂t(θ) = Et−1[ℓ̂t(θ)] and we notice that as 1{Ωt−1} is Ft−1-measurable:

L̂t(θ) = 1{Ωt−1}Et−1[ℓt(θ)] = 1{Ωt−1}Lt(θ) , θ ∈ Θ.

Now, it remains to prove that ONS has logarithmic stochastic regret also for Lt and
therefore, we calculate for every n ≥ 1, t = 1, . . . , n,
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θ∗ ∈ argminθ∈Θ
∑n

t=1 Lt(θ) and θt the prediction of ONS at time t:

P

[
n∑

t=1

Lt(θt)− Lt(θ) > B(n)

]
= P

[
n∑

t=1

Lt(θt)− Lt(θ
∗) > B(n),

⋂
t≥2

Ωt−1

]

+ P

[
n∑

t=1

Lt(θt)− Lt(θ
∗) > B(n),

(⋂
t≥2

Ωt−1

)c]

≤ P

[
n∑

t=1

(Lt(θt)− Lt(θ
∗))1{Ωt−1} > B(n)

]

+ P

[(⋂
t≥2

Ωt−1

)c]
,

where B(n) is the stochastic regret bound for L̂(θ) of Theorem 4 which we remind:

B(n) = 3

2γ

(
1 + d log

(
1 +

2(γD)2G2 (n+ log(ϱ−1))

9

))
+

(
4γ(GD)2

9
+

18

γ

)
log(ϱ−1) .

Plugging in B(n) the specific values of γ, G and µ found in Propositions 2, 3, and 4,
respectively,

γ =
µ

G2
=

λe−Dx∞A

(32eDx∞(4λ+ 1 + log(2/ϱ))(1 + eDx∞)x∞)2
,

we obtain the regret bound

Riskn ≤ 3G2eDx∞

2λA

(
1 + d log

(
1 +

2(λAD)2 (n+ log(ϱ−1))

9G2e2Dx∞

))
+

(
4λAD2

9eDx∞
+

18GeDx∞

λA

)
log(ϱ−1) . (11)

Then, because of Theorem 4, this bound holds with probability 3ϱ and as

P

[(⋂
t≥2

Ωt−1

)c]
≤ ϱ ,
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we have:

P

[
n∑

t=1

Lt(θt)− Lt(θ) > O(log(n/ϱ))

]
≤ 4ϱ ,

and thus, with probability 1− 4ϱ, ONS algorithm has logarithmic stochastic regret.

C.4 Proof of Corollary 1

Proof. Due to the µ-strong convexity of Lt(θ) proved in Proposition 4 we have for all
t = 1, 2, . . .:

µ||θt − θ∗||2≤ ∇Lt(θ
∗)⊤(θt − θ∗) + µ||θt − θ∗||2≤ Lt(θt)− Lt(θ

∗) ,

where the first inequality is true because ∇Lt(θ
∗)⊤(θt − θ∗) ≥ 0. Then, because of

Theorem 2:
n∑

t=1

||θt − θ∗||2≤ 1

µ

n∑
t=1

Lt(θt)− Lt(θ
∗) ≤ 1

µ
B(n) ,

and remembering that µ = λe−Dx∞A, the bound is:
1

µ
B(n) = 3G2e2Dx∞

2λ2A2

(
1 + d log

(
1 +

2(λAD)2 (n+ log(ϱ−1))

9G2e2Dx∞

))
+

(
4λAD2

9eDx∞
+

18GeDx∞

λA

)
log(ϱ−1) , (12)

which is O(log(n/ϱ)). We conclude the convergency of θt to θ∗ and then:

||θ̄n − θ∗||2≤ 1

n

n∑
t=1

||θt − θ∗||2− 1

n

n∑
t=1

||θt − θ̄n||2≤
1

µ
O(log(n/ϱ)/n) ,

concluding the convergency of θ̄n to θ∗.

D SURVONS

D.1 Proof of Lemma 3

Proof. We first compute

∇ℓ̂t,γ(θ1) = ∇ℓt(θ̂) + γ
(
∇ℓt(θ̂)(θ1 − θ̂)

)
∇ℓt(θ̂)

=
(
1 + γ∇ℓt(θ̂)(θ1 − θ̂)

)
∇ℓt(θ̂) .
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We need to show that there exists γ̂ > 0 such that

ℓ̂t,γ(θ2) ≥ ℓ̂t,γ(θ1) +∇ℓ̂t,γ(θ1)(θ2 − θ1) +
γ̂

2

(
∇ℓ̂t,γ(θ1)(θ2 − θ1)

)2
and if we replace ℓ̂t,γ this inequality is equivalent to

ℓt(θ̂) +∇ℓt(θ̂)(θ2 − θ̂) +
γ

2

(
∇ℓt(θ̂)(θ2 − θ̂)

)2
≥ ℓt(θ̂) +∇ℓt(θ̂)(θ1 − θ̂) +

γ

2

(
∇ℓt(θ̂)(θ1 − θ̂)

)2
+
(
1 + γ∇ℓt(θ̂)(θ1 − θ̂)

)
∇ℓt(θ̂)(θ2 − θ1)

+
γ̂

2

(
(1 + γ∇ℓt(θ̂)(θ1 − θ̂))∇ℓt(θ̂)(θ2 − θ1)

)2
.

Grouping, this requirement becomes

γ

2

(
∇ℓt(θ̂)(θ2 − θ̂)

)2
≥ γ

2

(
∇ℓt(θ̂)(θ1 − θ̂)

)2
+ γ∇ℓt(θ̂)(θ1 − θ̂)∇ℓt(θ̂)(θ2 − θ1)

+
γ̂

2

(
(1 + γ∇ℓt(θ̂)(θ1 − θ̂))∇ℓt(θ̂)(θ2 − θ1)

)2
,

which is
0 ≥

(
γ̂

2
(1 + γ∇ℓt(θ̂)(θ1 − θ̂))2 +

γ

2

)(
∇ℓt(θ̂)(θ2 − θ1)

)2
.

To satisfy this inequality we need

γ̂ ≤ γ

(1 + γ∇ℓt(θ̂)(θ1 − θ̂))2
,

which is true for the choice γ̂ = γ

(1+γD||∇ℓt(θ̂)||)2
and this concludes the proof.

D.2 Proof of Theorem 3

Proof. At each iteration t we consider θ̂t the prediction of SurvONS and θt(γ) the pre-
diction of ONS with γ ∈ Γ. We define the directional derivative lower bound function as
in Equation (7)

ℓ̂t,γt(θ) = ℓt(θ̂t) +∇ℓt(θ̂t)(θ − θ̂t) +
γt
2

(
∇ℓt(θ̂t)(θ − θ̂t)

)2
.
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Let us notice that γ ≤ 1
4GD

and ℓ̂t,γt(θ) ≤ ℓt(θ) for all θ.

We take θ∗ ∈ argminθ∈Θ
∑n

t=1 ℓt(θ) and we can upper-bound the regret for any γ ∈ Γ

Regretn =
n∑

t=1

ℓt(θ̂t)− ℓt(θ
∗)

≤
n∑

t=1

ℓ̂t,γt(θ̂t)− ℓ̂t,γt(θ
∗)

=
n∑

t=1

ℓ̂t,γt(θ̂t)− ℓ̂t,γt(θt(γ)) + ℓ̂t,γt(θt(γ))− ℓ̂t,γt(θ
∗)

=
n∑

t=1

∇ℓt(θ̂t)(θ̂t − θt(γ))−
n∑

t=1

γt
2

(
∇ℓt(θ̂t)(θ̂t − θt(γ))

)2
+

n∑
t=1

ℓ̂t,γt(θt(γ))− ℓ̂t,γt(θ
∗) .

We upper-bound the first term using the regret-bound of BOA [28] which works for
γ ≤ 1

4GD

n∑
t=1

∇ℓt(θ̂t)(θ̂t − θt(γ)) ≤
log(K)

γ
+ 2γ

n∑
t=1

(
∇ℓ(θ̂t)(θ̂t − θt(γ))

)2
.

Therefore, the regret is bounded by

Regretn ≤ log(K)

γ
+

n∑
t=1

(
4γ − γt

2

)(
∇ℓ(θ̂t)(θ̂t − θt(γ))

)2
+

n∑
t=1

ℓ̂t,γt(θt(γ))− ℓ̂t,γt(θ
∗).

We consider the surrogate losses ℓ̂t,γ̂t for t = 1, 2, . . . and γ̂t = 4max{γ, γt/4}

ℓ̂t,γ̂t(θ) = ℓt(θ̂t) +∇ℓt(θ̂t)(θ − θ̂t) + 2max{γ, γt
4
}
(
∇ℓt(θ̂t)(θ − θ̂t)

)2
,
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and we write the last term of the regret bound

n∑
t=1

ℓ̂t,γt(θt(γ))− ℓ̂t,γt(θ
∗)

=
n∑

t=1

(
ℓ̂t(θt(γ); γ)− ℓ̂t(θ

∗; γ)
)
+

n∑
t=1

(
ℓ̂(θt(γ))− ℓ̂t(θt(γ); γ)

)
−

n∑
t=1

(
ℓ̂t(θ

∗)− ℓ̂t(θ
∗; γ)

)
=

n∑
t=1

(
ℓ̂t(θt(γ); γ)− ℓ̂t(θ

∗; γ)
)

−
n∑

t=1

(4γ − γt)+
2

(
∇ℓt(θ̂t)(θ̂t − θt(γ))

)2
+

n∑
t=1

(4γ − γt)+
2

(
∇ℓt(θ̂t)(θ̂t − θ∗)

)2
.

We substitute this expression in the regret bound

Regretn ≤ log(K)

γ
+

n∑
t=1

(
ℓ̂t(θt(γ); γ)− ℓ̂t(θ

∗; γ)
)

−
n∑

t=1

(γt − 4γ)+
2

(
∇ℓt(θ̂t)(θ̂t − θt(γ))

)2
+

n∑
t=1

(4γ − γt)+
2

(
∇ℓt(θ̂t)(θ̂t − θ∗)

)2
.

Now, we note that by Lemma 3 we have

ℓ̂t(θt(γ); γ)− ℓ̂t(θ
∗; γ) ≤ ∇ℓ̂t(θt(γ); γ)(θt(γ)− θ∗)

− γ̂t
2

(
∇ℓ̂t(θt(γ); γ)(θt(γ)− θ∗)

)2
,

where we can write max{γ, γt/4} = γ + (γt/4− γ)+ and get

γ̂t =
4(γ + (γt/4− γ)+)

(1 + 4(γ + (γt/4− γ)+)(∇ℓt(θ̂t)(θt(γ)− θ̂t)))2
≥ γ .
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Therefore, we can apply the regret bound of ONS which yields to

n∑
t=1

ℓ̂t(θt(γ); γ)− ℓ̂t(θ
∗; γ) ≤ 5d log(n)

γ
+

γ

2

n∑
t=1

(
∇ℓ̂t(θt(γ); γ)(θt(γ)− θ∗)

)2
−

n∑
t=1

γ̂t
2

(
∇ℓ̂t(θt(γ); γ)(θt(γ)− θ∗)

)2
. (13)

But, since

∇ℓ̂t(θt(γ); γ) =
(
1 + 4(γ + (γt/4− γ)+)∇ℓt(θ̂t)(θt(γ)− θ̂t)

)
∇ℓt(θ̂t) ,

we can write(
∇ℓ̂t(θt(γ); γ)(θt(γ)− θ∗)

)2
=
(
1 + 4(γ + (γt/4− γ)+)∇ℓt(θ̂t)(θt(γ)− θ̂t)

)2 (
∇ℓt(θ̂t)(θt(γ)− θ∗)

)2
,

which yields to

γ̂t

(
∇ℓ̂t(θt(γ); γ)(θt(γ)− θ∗)

)2
= 4(γ + (γt/4− γ)+)

(
∇ℓt(θ̂t)(θt(γ)− θ∗)

)2
. (14)

Using the assumption 4(γ + (γt/4− γ)+) ≤ 1/GD we can also get(
∇ℓ̂t(θt(γ); γ)(θt(γ)− θ∗)

)2
≤ 4

(
∇ℓt(θ̂t)(θt(γ)− θ∗)

)2
. (15)

Therefore, plugging (14) and (15) in (13) we get

n∑
t=1

ℓ̂t(θt(γ); γ)− ℓ̂t(θ
∗; γ) ≤ 5d log(n)

γ
+

4γ

2

n∑
t=1

(
∇ℓt(θ̂t)(θt(γ)− θ∗)

)2
− 2

n∑
t=1

(γ + (γt/4− γ)+)
(
∇ℓt(θ̂t)(θt(γ)− θ∗)

)2
=

5d log(n)

γ

− 2
n∑

t=1

(γt/4− γ)+

(
∇ℓt(θ̂t)(θt(γ)− θ∗)

)2
.
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Thus, the regret bound becomes

Regretn ≤ 2 log(K) + 5d log(n)

γ

− 2
n∑

t=1

(γt/4− γ)+

(
(∇ℓt(θ̂t)(θt(γ)− θ∗))2 + (∇ℓt(θ̂t)(θ̂t − θt(γ)))

2
)

+
n∑

t=1

(4γ − γt)+
2

(∇ℓt(θ̂t)(θ̂t − θ∗))2,

and as (4γ − γt)+ = 4γ + 4(γt/4− γ)+ − γt, we can regroup and get

Regretn ≤2 log(K) + 5d log(n)

γ

+ 2
n∑

t=1

(γt/4− γ)+

(
(∇ℓt(θ̂t)(θ̂t − θ∗))2 − (∇ℓt(θ̂t)(θt(γ)− θ∗))2

− (∇ℓt(θ̂t)(θ̂t − θt(γ)))
2
)

+
n∑

t=1

4γ − γt
2

(∇ℓt(θ̂t)(θ̂t − θ∗))2

=
2 log(K) + 5d log(n)

γ

− 4
n∑

t=1

(γt/4− γ)+

(
(∇ℓt(θ̂t)(θt(γ)− θ∗))(∇ℓt(θ̂t)(θt(γ)− θ̂t))

)
+

n∑
t=1

4γ − γt
2

(∇ℓt(θ̂t)(θ̂t − θ∗))2
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