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ON BACKWARD SMOOTHING ALGORITHMS

HAI-DANG DAU & NICOLAS CHOPIN

Abstract. In the context of state-space models, skeleton-based smoothing algorithms rely on a back-
ward sampling step which by default has a O(N2) complexity (where N is the number of particles).

Existing improvements in the literature are unsatisfactory: a popular rejection sampling– based ap-

proach, as we shall show, might lead to badly behaved execution time; another rejection sampler with
stopping lacks complexity analysis; yet another MCMC-inspired algorithm comes with no stability guar-

antee. We provide several results that close these gaps. In particular, we prove a novel non-asymptotic

stability theorem, thus enabling smoothing with truly linear complexity and adequate theoretical jus-
tification. We propose a general framework which unites most skeleton-based smoothing algorithms in

the literature and allows to simultaneously prove their convergence and stability, both in online and

offline contexts. Furthermore, we derive, as a special case of that framework, a new coupling-based
smoothing algorithm applicable to models with intractable transition densities. We elaborate practical

recommendations and confirm those with numerical experiments.

1. Introduction

1.1. Background. A state-space model is composed of an unobserved Markov process X0, . . . , XT and
observed data Y0, . . . , YT . Given X0, . . . , XT , the data Y0, . . . , YT are independent and generated through
some specified emission distribution Yt|Xt ∼ f t(dyt|xt). These models have wide-ranging applications
(e.g. in biology, economics and engineering). Two important inference tasks related to state-space models
are filtering (computing the distribution of Xt given Y0, . . . , Yt) and smoothing (computing the distribu-
tion of the whole trajectory (X0, . . . , Xt), again given all data until time t). Filtering is usually carried
out through a particle filter, that is, a sequential Monte Carlo algorithm that propagates N weighted
particles (realisations) through Markov and importance sampling steps; see Chopin and Papaspiliopoulos
(2020) for a general introduction to state-space models (Chapter 2) and particle filters (Chapter 10).

This paper is concerned with skeleton-based smoothing algorithms, i.e. algorithms that approximate
the smoothing distributions with empirical distributions based on the output of a particle filter (i.e. the
locations and weights of the N particles at each time step). A simple example is genealogy tracking
(empirically proposed in Kitagawa, 1996 and theoretically analysed in Del Moral and Miclo, 2001) which
keeps track of the ancestry (past states) of each particles. This smoother suffers from degeneracy: for t
large enough, all the particles have the same ancestor at time 0.

The forward filtering backward smoothing (FFBS) algorithm (Godsill et al., 2004) has been proposed as
a solution to this problem. Starting from the filtering approximation at time t, the algorithm samples
successively particles at times t − 1, t − 2, etc. using backward kernels. Its theoretical properties, in
particular the stability as t→∞, have been studied by Del Moral et al. (2010); Douc et al. (2011).

In many applications, one is mainly interested in approximating smoothing expectations of additive
functions of the form

E [ψ0(X0) + ψ1(X0, X1) + · · ·+ ψt(Xt−1, Xt)|Y0, . . . , Yt]

for some functions ψ0, . . . , ψt. Such expectations can be approximated in an online fashion by a procedure
described in Del Moral et al. (2010). Inspired by this, the particle-based, rapid incremental smoother
(PaRIS) algorithm of Olsson and Westerborn (2017) replaces some of the calculations with an additional
layer of Monte Carlo approximation.

The backward sampling operation is central to both the FFBS and the PaRIS algorithms. The naive
implementation has an O(N2) cost. There have been numerous attempts at alleviating this problem
in the literature, but, to our knowledge, they all lack formal support in terms of either computation
complexity or stability as T →∞.
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In the following five paragraphs, we elaborate on this limitation for each of the three major contenders,
and we point out two related challenges with current backward sampling algorithms that we try to resolve
in this article.

1.2. State of the art. First, Douc et al. (2011) proposed to use rejection sampling for the generation of
backward indices in FFBS, and Olsson and Westerborn (2017) extended this technique to PaRIS. If the
model has upper-and-lower bounded transition densities, this sampler has an O(N) expected execution
time (Douc et al. 2011, Proposition 2 and Olsson and Westerborn 2017, Theorem 10). Unfortunately, most
practical state space models (including linear Gaussian ones) violate this assumption, and the behaviour
of the algorithm in this case is unclear. Empirically, it has been observed (Taghavi et al. 2013; Bunch
and Godsill 2013; Olsson and Westerborn 2017, Section 4.3) that in real examples, FFBS-reject and
PaRIS-reject frequently suffer from low acceptance rates, in contrary to what users would expect from an
algorithm with linear complexity. To cite Bunch and Godsill (2013), “[a]lthough theoretically elegant, the
[...] algorithm has been found to suffer from such high rejection rates as to render it consistently slower
than direct sampling implementation on problems with more than one state dimension”. To the best of
our knowledge, no theoretical result has been put forward to formalise or quantify this bad behaviour.

Second, Taghavi et al. (2013) and Olsson and Westerborn (2017, Section 4.3) suggest putting a threshold
on the number of rejection sampling trials to get more stable execution times. The thresholds are either
chosen adaptively using a Kalman filter in Taghavi et al. (2013) or fixed at

√
N in Olsson and Westerborn

(2017, Section 4.3). Although improvements are empirically observed, to the best of our knowledge, no
theoretical analysis of the complexity of the resulting algorithm or formal justification of the proposed
threshold is available.

Third, Bunch and Godsill (2013) use MCMC moves starting from the filtering ancestor instead of a
full backward sampling step. Empirically, this algorithm seems to prevent the degeneracy associated
with the genealogy tracking smoother using a very small number of MCMC steps (e.g. less than five).
Unfortunately, as far as we know, this stability property is not proved anywhere in the literature, which
deters the adoption of the algorithm. Using MCMC moves provides a procedure with truly linear and
deterministic run time, and a stability result is the only missing piece of the puzzle to completely resolve
the O(N2) problem. We believe one reason for the current state of affair is that the stability proof
techniques employed by Douc et al. (2011) and Olsson and Westerborn (2017) are difficult to extend to
the MCMC case.

Fourth, and this is related to the third point, the stability of the PaRIS algorithm has only been proved
in the asymptotic regime. More specifically, Olsson and Westerborn (2017) established a central limit
theorem as N → ∞ in Corollary 5, then showed that the corresponding asymptotic error remains con-
trolled as T → ∞ in Theorem 8 and Theorem 9. While non-asymptotic stability bounds for the FFBS
algorithm are already available in Del Moral et al. (2010); Douc et al. (2011); Dubarry and Le Corff
(2013), we do not think that they can be extended straightforwardly to PaRIS and we are not aware of
any such attempt in the literature.

Fifth, all backward samplers mentioned thus far require access to the transition density. Many models
have dynamics that can be simulated from but transition densities that are not explicitly calculable. En-
abling backward sampling in this scenario is challenging and will certainly require some kind of problem-
specific knowledge to extract information from the transition densities, despite not being able to evaluate
them exactly.

1.3. Structure and contribution. Section 2 presents a general framework which admits as particular
cases a wide variety of existing algorithms (e.g. FFBS, forward-additive smoothing, PaRIS) as well as the
novel ones considered later in the paper. It allows to simultaneously prove the consistency as N → ∞
and the stability as T →∞ for all of them. The main ingredient is the discrete backward kernels, which
are essentially random N × N matrices employed differently in the offline and the online settings. On
the technical side, the stability result is proved using a new technique, yielding a non-asymptotic bound
that addresses the fourth point in subsection 1.2.

Next, we closely look at the use of rejection sampling and realise that in many models, the resulting
execution time may be significantly heavy-tailed; see Section 3. For instance, the run time of PaRIS
may have infinite expectation, whereas the run time of FFBS may have infinite variance. (Since it is



ON BACKWARD SMOOTHING ALGORITHMS 3

technically more involved, the material for the FFBS algorithm is delegated to Supplement B.) These
results address the first point in subsection 1.2 and we discuss their severe practical implications.

We then derive and analyse hybrid rejection sampling schemes (i.e. schemes that use rejection sampling
only up to a certain number of attempts, and then switch to the standard method). We show that they
lead to a nearly O(N) algorithm (up to some log factor) in Gaussian models; again see Section 3. This
stems from the subtle interaction between the tail of Gaussian densities and the finite Feynman-Kac
approximation. Outside this class of model, the hybrid algorithm can still escape the O(N2) complexity,
although it might not reach the ideal linear run time target. These results shed some light on the second
issue mentioned in subsection 1.2.

In Section 4, we look at backward kernels that are more efficient to simulate than the FFBS and the PaRIS
ones. Section 4.1 describes backward kernels based on MCMC (Markov chain Monte Carlo) following
Bunch and Godsill (2013) and extends them to the online scenario. We cast this family of algorithms as a
particular case of the general framework developed in Section 2, which allows convergence and stability to
follow immediately. This solves the long-standing problem described in the third point of subsection 1.2.

MCMC methods require evaluation of the likelihood and thus cannot be applied to models with intractable
transition densities. In Section 4.2, we show how the use of forward coupling can replace the role of
backward MCMC steps in these scenarios. This makes it possible to obtain stable performance in both
on-line and off-line scenarios (with intractable transition densities) and provides a possible solution to
the fifth challenge describe in subsection 1.2.

Section 5 illustrates the aforementioned algorithms in both on-line and off-line uses. We highlight how
hybrid and MCMC samplers lead to a more user-friendly (i.e. smaller, less random and less model-
dependent) execution time than the pure rejection sampler. We also apply our smoother for intractable
densities to a continuous-time diffusion process with discretization. We observe that our procedure can
indeed prevent degeneracy as T → ∞, provided that some care is taken to build couplings with good
performance. Section 6 concludes the paper with final practical recommendations and further research
directions. Table 1 gives an overview of existing and novel algorithms as well as our contributions for
each.

1.4. Related work. Proposition 1 of Douc et al. (2011) states that under certain assumptions, the
FFBS-reject algorithm has an asymptotic OP(N) complexity. This does not contradict our results, which
point out the undesirable properties of the non-asymptotic execution time. Clearly, non-asymptotic
behaviours are what users really observe in practice. From a technical point of view, the proof of Douc
et al. (2011, Prop. 1) is a simple application of Theorem 5 of the same paper. In contrast, non-asymptotic
results such as Theorem B.1 and Theorem B.2 require more delicate finite sample analyses.

Figure 1 of Olsson and Westerborn (2017) and the accompanying discussion provide an excellent intuition
on the stability of smoothing algorithms based on the support size of the backward kernels. We formalise
this support size condition for the first time by the inequality (13) and construct a novel non-asymptotic
stability result based on it. In contrast, Olsson and Westerborn (2017) depart from their initial intuition
and use an entirely different technique to establish stability. Their result is asymptotic in nature.

Gloaguen et al. (2022) briefly mention the use of MCMC in PaRIS algorithm, but their algorithm is
fundamentally different to and less efficient than Bunch and Godsill (2013). Indeed, they do not start
the MCMC chains at the ancestors previously obtained during the filtering step. They are thus obliged
to perform a large number of MCMC iterations for decorrelation, whereas the algorithms described in
our Proposition 4, built upon the ideas of Bunch and Godsill (2013), only require a single MCMC step to
guarantee stability. However, we would like to stress again that Bunch and Godsill (2013) did not prove
this important fact.

Another way to reduce the computation time is to perform the expensive backward sampling steps at
certain times t only. For other values of t, the naive genealogy tracking smoother is used instead. This
idea has been recently proposed by Mastrototaro et al. (2021), who also provided a practical recipe
for deciding at which values of t the backward sampling should take place and derived corresponding
theoretical results.
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Mode \ Kernel FFBS kernel PaRIS kernel MCMC kernels Intract.

Offline
(*) FFBS
(+) Thm. B.1, Thm. B.2
(+) Thm. B.3, Cor. 2

(*) FFBS-MCMC
(+) Prop. 4

(**)

Online (*) Forward-additive
(*) PaRIS
(+) Thm. 2.2, Prop. 2
(+) Thm. 3.1, Thm. 3.2

(**) (**)

Table 1. Summary of smoothing algorithms considered in this paper (classified by the
backward kernel and the execution mode) and our contributions. (*) means an existing
algorithm, (+) means a novel theoretical result and (**) means a novel algorithm

Smoothing in models with intractable transition densities is very challenging. If these densities can be
estimated accurately, the algorithms proposed by Gloaguen et al. (2022) permit to attack this problem. A
case of particular interest is diffusion models, where unbiased transition density estimators are provided
in Beskos et al. (2006); Fearnhead et al. (2008). More recently, Yonekura and Beskos (2022) use a special
bridge path-space construction to overcome the unavailability of transition densities when the diffusion
(possibly with jumps) must be discretised.

Our smoother for intractable models are based on a general coupling principle that is not specific to
diffusions. We only require users to be able to simulate their dynamics (e.g. using discretisation in the
case of diffusions) and to manipulate random numbers in their simulations so that dynamics starting from
two different points can meet with some probability. Our method does not directly provide an estimator
for the gradient of the transition density with respect to model parameters and thus cannot be used in
its current form to perform maximum likelihood estimation (MLE) in intractable models; whereas the
aforementioned work have been able to do so in the case of diffusions. However, the main advantage
of our approach lies in its generality beyond the diffusion case. Furthermore, modifications allowing to
perform MLE are possible and might be explored in further work specifically dedicated to the parameter
estimation problem.

The idea of coupling has been incorporated in the smoothing problem in a different manner by Jacob et al.
(2019). There, the goal is to provide offline unbiased estimates of the expectation under the smoothing
distribution. Coupling and more generally ideas based on correlated random numbers are also useful in
the context of partially observed diffusions via the multilevel approach (Jasra et al., 2017).

In this work, we consider smoothing algorithms that are based on a unique pass of the particle filter.
Offline smoothing can be done using repeated iterations of the conditional particle filter (Andrieu et al.,
2010). Full trajectories can also be constructed in an online manner if one is willing to accept some
lag approximations (Duffield and Singh, 2022). Another approach to smoothing consists of using an
additional information filter (Fearnhead et al., 2010), but it is limited to functions depending on one
state only. Each of these algorithmic families has their own advantages and disadvantages, of which a
detailed discussion is out of the scope of this article (see however Nordh and Antonsson, 2015).

2. General structure of smoothing algorithms

In this section, we decompose each smoothing algorithm into two separate parts: the backward kernel
(which determines its theoretical properties such as the convergence and the stability) and the execution
mode (which is either online or offline and determines its implementation). This has two advantages:
first, it induces an easy-to-navigate categorization of algorithms (see Table 1); and second, it allows to
prove the convergence and the stability for each of them by verifying sufficient conditions on the backward
kernel component only.

2.1. Notations. Measure-kernel-function notations. Let X and Y be two measurable spaces with re-
spective σ-algebras B(X ) and B(Y). The following definitions involve integrals and only make sense when
they are well-defined. For a measure µ on X and a function f : X → R, the notations µf and µ(f) refer
to
∫
f(x)µ(dx). A kernel (resp. Markov kernel) K is a mapping from X × B(Y) to R (resp. [0, 1]) such

that, for B ∈ B(Y) fixed, x 7→ K(x,B) is a measurable function on X ; and for x fixed, B 7→ K(x,B) is a
measure (resp. probability measure) on Y. For a real-valued function g defined on Y, let Kg : X → R be
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the function Kg(x) :=
∫
g(y)K(x,dy). We sometimes write K(x, g) for the same expression. The product

of the measure µ on X and the kernel K is a measure on Y, defined by µK(B) :=
∫
K(x,B)µ(dx). Other

notations. • The notation X0:t is a shorthand for (X0, . . . , Xt) • We denote by M(W 1:N ) the multino-
mial distribution supported on {1, 2, . . . , N}. The respective probabilities are W1, . . . ,WN . If they do
not sum to 1, we implicitly refer to the normalised version obtained by multiplication of the weights with

the appropriate constant • The symbol
P→ means convergence in probability and ⇒ means convergence

in distribution • The geometric distribution with parameter λ is supported on Z≥1, has probability mass
function f(n) = λ(1−λ)n−1 and is noted by Geo(λ) • Let X and Y be two measurable spaces. Let µ and
ν be two probability measures on X and Y respectively. The o-times product measure µ ⊗ ν is defined
via (µ ⊗ ν)(h) :=

∫∫
h(x, y)µ(dx)ν(dy) for bounded functions h : X × Y → R. If X ∼ µ and Y ∼ ν, we

sometimes note µ⊗ ν by X ⊗ Y .

2.2. Feynman-Kac formalism and the bootstrap particle filter. Let X0:T be a sequence of mea-
surable spaces and M1:T be a sequence of Markov kernels such that Mt is a kernel from Xt−1 to Xt.
Let X0:T be an unobserved inhomogeneous Markov chain with starting distribution X0 ∼ M0(dx0)
and Markov kernels M1:T ; i.e. Xt|Xt−1 ∼ Mt(Xt−1,dxt) for t ≥ 1. We aim to study the distribu-
tion of X0:T given observed data Y0:T . Conditioned on X0:T , the data Y0, . . . , YT are independent and
Yt|X0:T ≡ Yt|Xt ∼ f t(·|Xt) for a certain emission distribution f t(dyt|xt). Assume that there exists

dominating measures λ̃t not depending on xt such that

f t(dyt|xt) = ft(yt|xt)λ̃t(dyt).
The distribution of X0:t|Y0:t is then given by

(1) Qt(dx0:t) =
1

Lt
M0(dx0)

t∏
s=1

Ms(xs−1,dxs)Gs(xs)

where Gs(xs) := f(ys|xs) and Lt > 0 is the normalising constant. Moreover, Q−1 := M0 and L−1 := 1
by convention. Equation (1) defines a Feynman-Kac model (Del Moral, 2004). It does not require Mt to
admit a transition density, although herein we only consider models where this assumption holds. Let λt
be a dominating measure on Xt in the sense that there exists a function mt (not necessarily tractable)
such that

(2) Mt(xt−1,dxt) = mt(xt−1, xt)λt(dxt).

A special case of the current framework are linear Gaussian state space models. They will serve as a
running example for the article, and some of the results will be specifically demonstrated for models of
this class. The rationale is that many real-world dynamics are partly, or close to, Gaussian. The notations
for linear Gaussian models are given in Supplement A.1 and we will refer to them whenever this model
class is discussed.

Particle filters are algorithms that sample from Qt(dxt) in an on-line manner. In this article, we only
consider the bootstrap particle filter (Gordon et al., 1993) and we detail its notations in Algorithm 1.
Many results in the following do apply to the auxiliary filter (Pitt and Shephard, 1999) as well, and we
shall as a rule indicate explicitly when it is not the case.

We end this subsection with the definition of two sigma-algebras that will be referred to throughout the
paper. Using the notations of Algorithm 1, let

Ft := σ(X1:N
0:t , A

1:N
1:t ),

F−t := σ(X1:N
0:t ).

(3)

2.3. Backward kernels and off-line smoothing. In this subsection, we first describe three examples
of backward kernels, in which we emphasise both the random measure and the random matrix viewpoints.
We then formalise their use by stating a generic off-line smoothing algorithm.

Example 1 (FFBS algorithm, Godsill et al., 2004). Once Algorithm 1 has been run, the FFBS procedure
generates a trajectory approximating the smoothing distribution in a backward manner. More precisely,
it starts by simulating index IT ∼M(W 1:N

T ) at time T . Then, recursively for t = T, . . . , 1, given indices
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Algorithm 1: Bootstrap particle filter

Input: Feynman-Kac model (1)

Simulate X1:N
0

i.i.d.∼ M0

Set ωn0 ← G0(Xn
0 ) for n = 1, . . . , N

Set `N0 ←
∑N
n=1 ω

n
0 /N

Set Wn
0 ← ωn0 /N`

N
0 for n = 1, . . . , N

for t← 1 to T do

Resample. Simulate A1:N
t

i.i.d.∼ M(W 1:N
t−1 )

Move. Simulate Xn
t ∼Mt(X

An
t

t−1,dxt) for n = 1, . . . , N

Reweight. Set ωnt ← Gt(X
n
t ) for n = 1, 2, . . . , N

Set `Nt ←
∑N
n=1 ω

n
t /N

Set Wn
t ← ωnt /N`

N
t for n = 1, 2, . . . , N

Output: For all t ≥ 0 and function ϕ : Xt → R, the quantity
∑N
n=1W

n
t ϕ(Xn

t ) approximates∫
Qt(dx0:t)ϕ(xt) and the quantity `Nt approximates Lt/Lt−1

It:T , it generates It−1 ∈ {1, . . . , N} with probability proportional to Wn
t−1mt(X

n
t−1, X

It
t ). The smoothing

trajectory is returned as (XI00 , . . . , XITT ). Formally, given FT , the indices I0:T are generated according
to the distribution

M(W 1:N
t )(diT )

[
BN,FFBS
T (iT ,diT−1)BN,FFBS

T−1 (iT−1,diT−2) . . . BN,FFBS
1 (i1,di0)

]
where the (random) backward kernels BN,FFBS

t are defined by

(4) BN,FFBS
t (it,dit−1) :=

N∑
n=1

Wn
t−1mt(X

n
t−1, X

it
t )∑N

k=1W
k
t−1mt(Xk

t−1, X
it
t )
δn(dit−1).

More simply, we can also look at these random kernels as random N ×N matrices of which entries are
given by

(5) B̂N,FFBS
t [it, it−1] :=

W
it−1

t−1 mt(X
it−1

t−1 , X
it
t )∑N

k=1W
k
t−1mt(Xk

t−1, X
it
t )
.

We will need both the kernel viewpoint (4) and the matrix viewpoint (5) in this paper as the better
choice depends on the context.

Example 2 (Genealogy tracking, Kitagawa, 1996; Del Moral and Miclo, 2001). It is well known that Algo-
rithm 1 already gives as a by-product an approximation of the smoothing distribution. This information
can be extracted from the genealogy, by first simulating index IT ∼ M(W 1:N

T ) at time T , then succes-

sively appending ancestors until time 0 (i.e. setting sequentially It−1 ← AItt ). The smoothed trajectory

is returned as (XI00 , . . . , XITT ). More formally, conditioned on FT , we simulate the indices I0:T according
to

M(W 1:N
t )(diT )

[
BN,GT
T (iT ,diT−1)BN,GT

T−1 (iT−1,diT−2) . . . BN,GT
1 (i1,di0)

]
where GT stands for “genealogy tracking” and the kernels BN,GT

t are simply

(6) BN,GT
t (it,dit−1) := δ

A
it
t

(dit−1).

Again, it may be more intuitive to view this random kernel as a random N ×N matrix, the elements of
which are given by

B̂N,GT
t [it, it−1] := 1

{
it−1 = Aitt

}
.

Example 3 (MCMC backward samplers, Bunch and Godsill, 2013). In Example 2, the backward variable

It−1 is simply set to AItt . On the contrary, in Example 1, we need to launch a simulator for the

discrete measure Wn
t−1mt(X

n
t−1, X

It
t ). Interestingly, the current value of AItt is not taken into account

in that simulator. Therefore, a natural idea to combine the two previous examples is to apply one (or
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several) MCMC steps to AItt and assign the result to It−1. The MCMC algorithm operates on the space

{1, 2, . . . , N} and targets the invariant measure Wn
t−1mt(X

n
t−1, X

It
t ). If only one independent Metropolis-

Hastings (MH) step is used and the proposal isM(W 1:N
t−1 ), the corresponding random matrix B̂N,IMH

t has
values

B̂N,IMH
t [it, it−1] = W

it−1

t−1 min

(
1,mt(X

it−1

t−1 , X
it
t )/mt(X

A
it
t

t−1, X
it
t )

)
if it−1 6= Aitt , and

B̂N,IMH
t [it, A

it
t ] = 1−

∑
n 6=Ait

t

B̂N,IMH
t [it, n].

This third example shows that some elements of the matrix B̂N,IMH
t might be expensive to calculate.

If several MCMC steps are performed, all elements of B̂N,IMH
t will have non-trivial expressions. Still,

simulating from BN,IMH
t (it,dit−1) is easy as it amounts to running a standard MCMC algorithm. MCMC

backward samples are studied in more details in Section 4.1.

We formalise how off-line smoothing can be done given random matrices B̂N1:T ; see Algorithm 2. Note

that in the above examples, our matrices B̂Nt are Ft-measurable (i.e. they depend on particles and indices
up to time t), but this is not necessarily the case in general (i.e. they may also depend on additional
random variables, see Section 2.5). Furthermore, Algorithm 2 describes how to perform smoothing using

the matrices B̂N1:T , but does not say where they come from. At this point, it is useful to keep in mind the

above three examples. In Section 2.4, we will give a general recipe for constructing valid matrices B̂Nt
(i.e. those that give a consistent algorithm).

Algorithm 2: Generic off-line smoother

Input: Filtering results X1:N
0:T , W 1:N

0:T , and A1:N
1:T from Algorithm 1; random matrices B̂N1:T (see

Section 2.3 for two examples of such matrices and Section 2.4 for a general recipe to
construct them)

for n← 1 to N do
Simulate InT ∼M(W 1:N

T )

for t← T to 1 do
Simulate Int−1 ∼ BNt (Int ,dit−1) (the kernel BNt (It, ·) is defined by the It-th row of the input

matrix B̂Nt )

Output: The N smoothed trajectories (X
In0
0 , . . . , X

InT
T ) for n = 1, . . . , N

Algorithm 2 simulates, given FT and B̂N1:T , N i.i.d. index sequences In0:T , each distributed according to

M(W 1:N
T )(diT )

1∏
t=T

BNt (it,dit−1).

Once the indices I1:N
0:T are simulated, the N smoothed trajectories are returned as (X

In0
0 , . . . , X

InT
T ). Given

FT and B̂N1:T , they are thus conditionally i.i.d. and their conditional distribution is described by the x0:T

component of the joint distribution

(7) Q̄NT (dx0:T ,di0:T ) :=M(W 1:N
T )(diT )

[
1∏

t=T

BNt (it,dit−1)

][
0∏

t=T

δ
X

it
t

(dxt)

]
.

Throughout the paper, the symbol Q̄NT will refer to this joint distribution, while the symbol QNT will refer
to the x0:T -marginal of Q̄NT only. This allows the notation QNT ϕ to make sense, where ϕ = ϕ(x0, . . . , xT )
is a real-valued function defined on the hidden states.
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X1:N
t−1 Ant

Xn
t

B̂Nt (n, ·) Jnt

Figure 1. Relation between variables described in Theorem 2.1.

2.4. Validity and convergence. The kernels BN,FFBS
t and BN,GT

t are both valid backward kernels to
generate convergent approximation of the smoothing distribution (Del Moral, 2004; Douc et al., 2011).
This subsection shows that they are not the only ones and gives a sufficient condition for a backward
kernel to be valid. It will prove a necessary tool to build more efficient BNt later in the paper.

Recall that Algorithm 1 outputs particles X1:N
0:T , weights W 1:N

0:T and ancestor variables A1:N
1:T . Imagine that

the A1:N
1:T were discarded after filtering has been done and we wish to simulate them back. We note that,

since the X1:N
0:T are given, the T × N variables A1:N

1:T are conditionally i.i.d. We can thus simulate them
back from

p(ant |x1:N
0:T ) = p(ant |x1:N

t−1, x
n
t ) ∝ wa

n
t
t−1mt(x

ant
t−1, x

n
t ).

This is precisely the distribution of BN,FFBS
t (n, ·). It turns out that any other invariant kernel that

can be used for simulating back the discarded A1:N
1:T will lead to a convergent algorithm as well. For

instance, BN,GT
t (n, ·) (Example 2) simply returns back the old Ant , unlike BN,FFBS

t (n, ·) which creates a

new version. The kernel BN,IMH
t (n, ·) (Example 3) is somewhat an intermediate between the two. We

formalise these intuitions in the following theorem. It is stated for the bootstrap particle filter, but as a
matter of fact, the proof can be extended straightforwardly to auxiliary particle filters as well.

Assumption 1. For all 0 ≤ t ≤ T , Gt(xt) > 0 and ‖Gt‖∞ <∞.

Theorem 2.1. We use the same notations as in Algorithms 1 and 2 (in particular, B̂Nt denotes the
transition matrix that corresponds to the considered kernel BNt ). Assume that for any 1 ≤ t ≤ T , the

random matrix B̂Nt satisfies the following conditions:

• given Ft−1 and B̂N1:t−1, the variables (Xn
t , A

n
t , B̂

N
t (n, ·)) for n = 1, . . . , N are i.i.d. and their

distribution only depends on X1:N
t−1 , where B̂Nt (n, ·) is the n-th row of matrix B̂Nt ;

• if Jnt is a random variable such that

Jnt | X1:N
t−1 , X

n
t , B̂

N
t (n, ·) ∼ BNt (n, ·)

, then (Jnt , X
n
t ) has the same distribution as (Ant , X

n
t ) given X1:N

t−1 .

Then under Assumption 1, there exists constants CT > 0 and ST < ∞ such that, for any δ > 0 and
function ϕ = ϕ(x0, . . . , xT ):

(8) P

(∣∣QNT ϕ− QTϕ
∣∣ ≥ √−2 log(δ/2CT )ST ‖ϕ‖∞√

N

)
≤ δ

where QNT is defined by (7).

A typical relation between variables defined in the statement of the theorem is illustrated by a graphical
model in Figure 1. (See Bishop 2006, Chapter 8 for the formal definition of graphical models and how to
use them.) By “typical”, we mean that Theorem 2.1 technically allows for more complicated relations,
but the aforementioned figure captures the most essential cases.

Theorem 2.1 is a generalisation of Douc et al. (2011, Theorem 5). Its proof thus follows the same lines
(Supplement E.1). However, in our case the measure QNT (dx0:T ) is no longer Markovian. This is because

the backward kernel BNt (it,dit−1) does not depend on Xit
t alone, but also possibly on its ancestor and
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extra random variables. This small difference has a big consequence: compared to Douc et al. (2011,
Theorem 5), Theorem 2.1 has a much broader applicability and encompasses, for instance, the MCMC-
based algorithms presented in Section 4.1 and novel kernels presented in Section 4.2 for intractable
densities.

As we have seen in (7), QNT is fundamentally a discrete measure of which the support contains NT+1

elements. As such, QNT ϕ cannot be computed exactly in general and must be approximated using N

trajectories (X
In0
0 , . . . , X

InT
T ) simulated via Algorithm 2. Theorem 2.1 is thus completed by the following

corollary, which is an immediate consequence of Hoeffding inequality (Supplement E.13).

Corollary 1. Under the same setting as Theorem 2.1, we have

P


∣∣∣∣∣ 1

N

∑
n

ϕ(X
In0
0 , . . . , X

InT
T )− QTϕ

∣∣∣∣∣ ≥
√
−2 log

(
δ

2(CT +1)

)
(ST + 1) ‖ϕ‖∞

√
N

 ≤ δ.
2.5. Generic on-line smoother. As we have seen in Section 2.3 and Section 2.4, in general, the ex-
pectation QNT ϕ, for a real-valued function ϕ = ϕ(x0, . . . , xT ) of the hidden states, cannot be computed
exactly due to the large support (NT+1 elements) of QNT . Moreover, in certain settings we are interested
in the quantities QNt ϕt for different functions ϕt. They cannot be approximated in an on-line manner
without more assumptions on the connection between ϕt−1 and ϕt. If the family (ϕt) is additive, i.e.
there exists functions ψt such that

(9) ϕt(x0:t) := ψ0(x0) + ψ1(x0, x1) + · · ·+ ψt(xt−1, xt)

then we can calculate QNt ϕt both exactly and on-line. The procedure was first described in Del Moral

et al. (2010) for the kernel QN,FFBS
t (i.e. the measure defined by (7) and the random kernels BN,FFBS

t ),
but we will use the idea for other kernels as well. In this subsection, we first explain the principle of
the method, then discuss its computational complexity and the link to the PaRIS algorithm (Olsson and
Westerborn, 2017).

Principle. For simplicity, we start with the special case ϕt(x0:t) = ψ0(x0). Equation (7) and the matrix
viewpoint of Markov kernels then give

QNt ϕt =
[
W 1
t . . .W

N
t

]
B̂Nt B̂

N
t−1 . . . B̂

N
1

ψ0(X1
0 )

...
ψ0(XN

0 )

 .
This naturally suggests the following recursion formula to compute QNt ϕt:

QNt ϕt =
[
W 1
t . . .W

N
t

]
ŜNt

with ŜN0 = [ψ0(X1
0 ) . . . ψ0(XN

0 )]> and

(10) ŜNt := B̂Nt Ŝ
N
t−1.

In the general case where functions ϕt are given by (9), simple calculations (Supplement E.2) show that
(10) is replaced by

(11) ŜNt := B̂Nt Ŝ
N
t−1 + diag(B̂Nt ψ̂

N
t )

where the N ×N matrix ψ̂Nt is defined by

ψ̂Nt [it−1, it] := ψt(X
it−1

t−1 , X
it
t )

and the operator diag : RN×N → RN extracts the diagonal of a matrix. This is exactly what is done in
Algorithm 3.
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Algorithm 3: Generic on-line smoother for additive functions (one step)

Input: Particles X1:N
t−1 and weights W 1:N

t−1 at time t− 1; the N × 1 vector ŜNt−1 (see text); additive
function (9)

Generate X1:N
t and W 1:N

t according to the particle filter (Algorithm 1)

Calculate the random matrix B̂Nt (see Section 2.3 and Section 2.4)

Create the N × 1 vector ŜNt according to (11). More precisely:

for it ← 1 to N do

ŜNt [it]←
∑
it−1

B̂Nt [it, it−1]
(
ŜNt−1[it−1] + ψt(X

it−1

t−1 , X
it
t )
)

Output: Quantity
∑
nW

n
t Ŝ

N
t [n] which is equal to QNt ϕt and is an esimate of Qt(ϕt); particles

X1:N
t , weights W 1:N

t and vector SNt for the next step

Computational complexity and the PaRIS algorithm. Equations (10) and (11) involve a matrix-vector

multiplication and thus require, in general, O(N2) operations to be evaluated. When B̂Nt ≡ B̂N,FFBS
t ,

Algorithm 3 becomes the O(N2) on-line smoothing algorithm of Del Moral et al. (2010). The O(N2)

complexity can however be lowered to O(N) if the matrices B̂Nt are sparse. This is the idea behind the

PaRIS algorithm (Olsson and Westerborn, 2017), where the full matrix B̂N,FFBS
t is unbiasedly estimated

by a sparse matrix B̂N,PaRIS
t . More specifically, for any integer Ñ > 1, for any n ∈ 1, . . . , N , let

Jn,1t , . . . , Jn,Ñt be conditionally i.i.d. random variables simulated from BN,FFBS
t (n, ·). The random matrix

B̂N,PaRIS
t is then defined as

B̂N,PaRIS
t [n,m] :=

1

Ñ

Ñ∑
ñ=1

1

{
Jn,ñt = m

}
and the corresponding random kernel is

(12) BN,PaRIS
t (n,dm) =

1

Ñ

Ñ∑
ñ=1

δJn,ñ
t

(dm).

The following straightforward proposition establishes the validity of the BN,PaRIS
t kernel. Together with

Theorem 2.1, it can be thought of as a reformulation of the consistency of the PaRIS algorithm (Olsson
and Westerborn, 2017, Corollary 2) in the language of our framework.

Proposition 1. The matrix B̂N,PaRIS
t has only O(NÑ) non-zero elements out of N2. It is an unbiased

estimate of B̂N,FFBS
t in the sense that

E
[
B̂N,PaRIS
t

∣∣∣Ft] = B̂N,FFBS
t .

Moreover, the sequence of matrices BN,PaRIS
1:T satisfies the two conditions of Theorem 2.1.

The proposition also justifies the O(N) complexity of (10) and (11), as long as Ñ is fixed as N →∞. But
it is important to remark that the preceding O(N) complexity does not include the cost of generating

the matrices B̂N,PaRIS
t themselves, i.e., the operations required to simulate the indices Jn,ñt . In Olsson

and Westerborn (2017) it is argued that such simulations have an O(N) cost using the rejection sampling
method whenever the transition density is both upper and lower bounded. Section 3 investigates the
claim when this hypothesis is violated.

2.6. Stability. When B̂Nt ≡ B̂N,GT
t , Algorithms 2 and 3 reduce to the genealogy tracking smoother

(Kitagawa, 1996). The matrix B̂N,GT
t is indeed sparse, leading to the well-known O(N) complexity of

this on-line procedure. As per Theorem 2.1, smoothing via genealogy tracking is convergent at rate
O(N−1/2) if T is fixed. When T → ∞ however, all particles will eventually share the same ancestor
at time 0 (or any fixed time t). Mathematically, this phenomenon is manifested in two ways: (a) for
fixed t and function φt : Xt → R, the error of estimating E[φt(Xt)|Y0:T ] grows linearly with T ; and

(b) the error of estimating E
[∑T

t=0 ψt(xt−1, xt)
∣∣∣Y0:T

]
grows quadratically with T . These correspond

respectively to the degeneracy for the fixed marginal smoothing and the additive smoothing problems;
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see also the introductory section of Olsson and Westerborn (2017) for a discussion. The random matrices

B̂N,GT
t are therefore said to be unstable as T →∞, which is not the case for B̂N,FFBS

t or B̂N,PaRIS
t . This

subsection gives sufficient conditions to ensure the stability of a general B̂Nt .

The essential point behind smoothing stability is simple: the support of BN,FFBS
t (n, ·) or BN,PaRIS

t (n, ·)
for Ñ ≥ 2 contains more than one element, contrary to that of BN,GT

t (n, ·). This property is formalised
by (13). To explain the intuitions, we use the notations of Algorithm 2 and consider the estimate

N−1
(
ψ0(X

I10
0 ) + · · ·+ ψ0(X

IN0
0 )

)
of E [ψ0(X0)|Y0:T ] when T →∞. The variance of the quantity above is a sum of Cov(ψ0(X

Ii0
0 ), ψ0(X

Ij0
0 ))

terms. It can therefore be understood by looking at a pair of trajectories simulated using Algorithm 2.

At final time t = T , I1
T and I2

T both follow theM(W 1:N
T ) distribution. Under regularity conditions (e.g.

no extreme weights), they are likely to be different, i.e., P(I1
T = I2

T ) = O(1/N). This property can be
propagated backward: as long as I1

t 6= I2
t , the two variables I1

t−1 and I2
t−1 are also likely to be different,

with however a small O(1/N) chance of being equal. Moreover, as long as the two trajectories have not
met, they can be simulated independently given F−T (the sigma algebra defined in (3)). In mathematical

terms, under the two hypotheses of Theorem 2.1, given F−T and I1,2
t:T , it can be proved that the two

variables I1
t−1 and I2

t−1 are independent if I1
t 6= I2

t (Lemma E.1, Supplement E.3).

Since there is an O(1/N) chance of meeting at each time step, if T � N , it is likely that the two paths will
meet at some point t � 0. When I1

t = I2
t , the two indices It−1 and It−2 are both simulated according

to BNt (I1
t , ·). In the genealogy tracking algorithm, BN,GT

t (i, ·) is a Dirac measure, leading to I1
t−1 = I2

t−1

almost surely. This spreads until time 0, so Corr(ψ0(X
I10
0 ), ψ0(X

I20
0 )) is almost 1 if T � N .

Other kernels like BN,FFBS
t or BN,PaRIS

t do not suffer from the same problem. For these, the support size
of BNt (I1

t , ·) is greater than one and thus there is some real chance that I1
t−1 6= I2

t−1. If that does happen,
we are again back to the regime where the next states of the two paths can be simulated independently.
Note also that the support of BNt (I1

t , ·) does not need to be large and can contain as few as 2 elements.
Even if I1

t−1 might still be equal to I2
t−1 with some probability, the two paths will have new chances

to diverge at times t − 2, t − 3 and so on. Overall, this makes Corr(ψ0(X
I10
0 ), ψ0(X

I20
0 )) quite small

(Lemma E.3, Supplement E.3).

We formalise these arguments in the following theorem, whose proof (Supplement E.3) follows them very
closely. The price for proof intuitiveness is that the theorem is specific to the bootstrap filter, although
numerical evidence (Section 5) suggests that other filters are stable as well.

Assumption 2. The transition densities mt are upper and lower bounded:

M̄` ≤ mt(xt−1, xt) ≤ M̄h

for constants 0 < M̄` < M̄h <∞.

Assumption 3. The potential functions Gt are upper and lower bounded:

Ḡ` ≤ Gt(xt) ≤ Ḡh
for constants 0 < Ḡ` < Ḡh <∞.

Remark. Since Assumption 2 implies that the Xt’s are compact, Assumption 1 automatically implies
Assumption 3 as soon as the Gt’s’ are continuous functions.

Theorem 2.2. We use the notations of Algorithms 1 and 2. Suppose that Assumptions 2 and 3 hold and
the random kernels BN1:T satisfy the conditions of Theorem 2.1. If, in addition, for the pair of random

variables (Jn,1t , Jn,2t ) whose distribution given X1:N
t−1 , Xn

t and B̂Nt (n, ·) is defined by BNt (n, ·)⊗BNt (n, ·),
we have

(13) P
(
Jn,1t 6= Jn,2t

∣∣∣X1:N
t−1 , X

n
t

)
≥ εS

for some εS > 0 and all t, n; then there exists a constant C not depending on T such that:
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• fixed marginal smoothing is stable, i.e. for s ∈ {0, . . . , T} and a real-valued function φs : Xs → R
of the hidden state Xs, we have

(14) E

[(∫
QNT (dxs)φs(xs)− E [φs(Xs)|Y0:T ]

)2
]
≤
C ‖φs‖2∞

N
;

• additive smoothing is stable, i.e. for T ≥ 2 and the function ϕT defined in (9), we have

(15) E
[(

QNT (ϕT )− QT (ϕT )
)2] ≤ C

∑T
t=0 ‖ψt‖

2
∞

N

(
1 +

√
T

N

)2

.

In particular, when BNt is the PaRIS kernel with Ñ ≥ 2, Theorem 2.2 implies a novel non-asymptotic
bound for the PaRIS algorithm. Olsson and Westerborn (2017) first established a central limit theorem
as N →∞ and T fixed, then showed that the asymptotic variance is controlled as T →∞. In contrast,
we follow an original approach (whose intuition is explained at the beginning of this subsection) in order
to derive a finite sample size bound.

The main technical difficulty is to prove the fast mixing of the Markov kernel product BNt B
N
t−1 . . . B

N
t′ in

terms of t−t′. For the original FFBS kernel, the stability proof by Douc et al. (2011) relies on the uniform
Doeblin property of each of the term BN,FFBS

s (page 2136, towards the end of their proof of Lemma 10)
and from there, deduces the exponentially fast mixing of the product. When BN,FFBS

s is approximated by
a sparse matrix BNs (which is the case for PaRIS, but also for certain MCMC-based and coupling-based
smoothers that we shall see later), the aforementioned property no longer holds for each individual term

BNs . Interestingly however, the good mixing of BN,FFBS
t . . . BN,FFBS

t′ is still conserved in the product
BNt . . . BNt′ . In Lemma E.3, we show that two trajectories generated via the latter kernel have such a
small correlation that they are virtually indistinguishable from two independent trajectories generated
via the former one.

Theorem 2.2 is stated under strong assumptions (similar to those used in Chopin and Papaspiliopoulos
2020, Chapter 11.4, and slightly stronger than Douc et al. 2011, Assumption 4). On the other hand, it
applies to a large class of backward kernels (rather than only FFBS), including the new ones introduced
in the forthcoming sections.

In the proof of this theorem, we proceed in two steps: first, we apply existing bounds (Dubarry and

Le Corff, 2013, Theorem 3.1 and Del Moral, 2013, Chapter 17) for the error between the BN,FFBS
t -induced

distribution and the true target; and second, we use our own techniques to control the error when BN,FFBS
t

is replaced by any other kernel Bnt satisfying (13). The (1 +
√
T/N)2 term in (15) comes from the first

part and we do not know whether it can be dropped. However, it does not affect the scaling of the
algorithm. Indeed, with or without it, the inequality implies that in order to have a constant error in the
additive smoothing problem, one only has to take N = O(T ) (instead of N = O(T 2) without backward
sampling). Moreover, from an asymptotic point of view, we always have σ2(T ) = O(T ) regardless of the

presence of the (1 +
√
T/N)2 term, where σ2(T ) := limN→∞NE

[(
QNT (ϕT )− QT (ϕT )

)2]
.

3. Sampling from the FFBS Backward Kernels

Sampling from the FFBS backward kernel lies at the heart of both the FFBS algorithm (Example 1)
and the PaRIS one (Section 2.5). Indeed, at time t, they require generating random variables distributed

according to BN,FFBS
t (it,dit−1) for it running from 1 to N . Since sampling from a discrete measure on

N elements requires O(N) operations (e.g. via CDF inversion), the total computational cost becomes
O(N2). To reduce this, we start by considering the subclass of models satisfying the following assumption,
which is much weaker than Assumption 2.

Assumption 4. The transition density mt(xt−1, xt) is strictly positive and upper bounded, i.e. there exists
M̄h > 0 such that 0 < mt(xt−1, xt) ≤ M̄h,∀ (xt−1, xt).

The motivation for the first condition 0 < mt(xt−1, xt) will be clear after Assumption 5 is defined. For

now, we see that it is possible to sample from BN,FFBS
t (it,dit−1) using rejection sampling via the proposal
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distributionM(W 1:N
t−1 ). After an O(N)-cost initialisation, new draws can be simulated from the proposal

in amortisedO(1) time; see Chopin and Papaspiliopoulos (2020, Python Corner, Chapter 9), see also Douc
et al. (2011, Appendix B.1) for an alternative algorithm with an O(logN) cost per draw. The resulting
procedure is summarised in Algorithm 4. Compared to traditional FFBS or PaRIS implementations,
these rejection–based variants have a random execution time that is more difficult to analyse. Under
Assumption 2, Douc et al. (2011) and Olsson and Westerborn (2017) derive an O(NM̄h/M̄`) expected
complexity. However, the general picture, where the state space is not compact and only Assumption 4
holds, is less clear.

Algorithm 4: Pure rejection sampler for simulating from BN,FFBS
t (it,dit−1)

Input: Particles X1:N
t−1 and weights W 1:N

t−1 at time t− 1; particle Xit
t at time t; constant M̄h;

pre-initialised O(1) sampler for M(W 1:N
t−1 )

repeat
It−1 ∼M(W 1:N

t−1 ) using the pre-initialised O(1) sampler

U ∼ Unif[0, 1]

until U ≤ mt(X
It−1

t−1 , X
it
t )/M̄h

Output: It−1, which is distributed according to BN,FFBS
t (it,dit−1).

The present subsection intends to fill this gap. Our main focus is the PaRIS algorithm of which the
presentation is simpler. Results for the FFBS algorithm can be found in Supplement B. We restrict
ourselves to the case where Xt = Rdt , although extensions to other non compact state spaces are possible.
Only the bootstrap particle filter is considered, and results from this section do not extend trivially to
other filtering algorithms. In Section 5, we shall employ different types of particle filters and see that the
performance could change from one type to another, which is an additional weak point of rejection-based
algorithms.

Assumption 5. The hidden state Xt is defined on the space Xt = Rdt . The measure λt(dxt) with respect
to which the transition density mt(xt−1, xt) is defined (cf. (2)) is the Lebesgue measure on Rdt .

This assumption together with the condition mt(xt−1, xt) > 0 of Assumption 4 ensures that the state
space model is “truly non-compact”. Indeed, if mt(xt−1, xt) is zero whenever xt−1 /∈ Ct−1 or xt /∈ Ct,
where Ct−1 and Ct are respectively two compact subsets of Rdt−1 and Rdt , then we are basically reduced
to a state space model where Xt−1 = Ct−1 and Xt = Ct.

3.1. Complexity of PaRIS algorithm with pure rejection sampling. We consider the PaRIS

algorithm (i.e. Algorithm 3 using the BN,PaRIS
t kernels). Algorithm 5 provides a concrete description of

the resulting procedure, using the bootstrap particle filter. At each time t, let τn,PaRIS
t be the number of

rejection trials required to sample from BN,FFBS
t (n, dm). We then have

(16) τn,PaRIS
t | Ft−1, X

n
t ∼ Geo

(∑
iW

i
t−1mt(X

i
t−1, X

n
t )

M̄h

)
with M̄h defined in Assumption 4.

By exchangeability of particles, the expected cost of the PaRIS algorithm at step t is proportional to

NÑE[τ1,PaRIS
t ], where Ñ is a fixed user-chosen parameter. Occasionally, X1

t falls into an unlikely region of

Rd and the acceptance rate becomes low. In other words, τ1,PaRIS
t is a mixture of geometric distribution,

some components of which might have a large expectation. Unfortunately, these inefficiencies add up and
produce an unbounded execution time in expectation, as shown in the following proposition.

Proposition 2. Under Assumptions 4 and 5, the version of Algorithm 5 using the pure rejection sampler

satisfies E[τ1,PaRIS
t ] =∞, where τ1,PaRIS

t is defined in (16).
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Algorithm 5: Concrete implementation of PaRIS algorithm (i.e. Algorithm 3 with the BN,PaRIS
t

backward kernel) using the bootstrap particle filter

Input: Particles X1:N
t−1 ; weights W 1:N

t−1 ; vector SNt−1 in RN ; pre-initialised sampler for M(W 1:N
t−1 );

function ψt (cf. (9)); user-specified parameter Ñ
for n← 1 to N do

Ant ∼M(W 1:N
t−1 ) (?)

Xn
t ∼Mt(X

An
t

t−1,dxt)

Simulate Jn,1:Ñ
t

i.i.d.∼ BN,FFBS
t (n, dn′) using either the pure rejection sampler (Algorithm 4) or

the hybrid rejection sampler (Algorithm 6)

SNt [n]← Ñ−1
∑Ñ
ñ=1

{
SNt−1[Jn,ñt ] + ψt(X

Jn,ñ
t
t−1 , X

n
t )
}

for n← 1 to N do
Wn
t ← Gt(X

n
t )/

∑
iGt(X

i
t)

µNt ←
∑N
n=1W

n
t S

N
t (n)

Initialise a sampler for M(W 1:N
t )

Output: Estimate µNt of E [ϕ(X0:t)|Y0:t]; particles X1:N
t ; weights W 1:N

t ; vector SNt in RN and
pre-initialised sampler M(W 1:N

t ) for the next iteration

Proof. We have

E[τ1,PaRIS
t ] = M̄hE

[
1∑

nmt(Xn
t−1, X

1
t )Wn

t−1

]
via (16)

= M̄hE

[
E

[
1∑

nmt(Xn
t−1, X

1
t )Wn

t−1

∣∣∣∣Ft−1

]]
= M̄hE

[∫
Xt

1∑
nmt(Xn

t−1, x)Wn
t−1

(∑
mt(X

n
t−1, x)Wn

t−1

)
λt(dx)

]
= M̄hE

[∫
Xt

1× λt(dx)

]
=∞ by Assumption 5.

�

In highly parallel computing architectures, each processor only handles one or a small number of particles.
As such, the heavy-tailed nature of the execution time means that a few machines might prevent the whole
system from moving forward. In all computing architectures, an execution time without expectation is
essentially unpredictable. A common practice to estimate execution time is to run a certain algorithm
with a small number N of particles, then “extrapolate” to the Nfinal of the definitive run. However, as

E[τ1,PaRIS
t ] is infinite for any N , it is unclear what kind of information we might get from preliminary

runs. In Supplement B, besides studying the execution time of rejection-based implementations of the
FFBS algorithm, we will delve deeper into the difference between the non-parallel and parallel settings.

From the proof of Proposition 2, it is clear that the quantity
∑
nW

n
t−1mt(X

n
t−1, xt) will play a key role

in the upcoming developments. We thus define it formally.

Definition 1. The true predictive density function rt and its approximation rNt are defined as

rt(xt) :=
(Qt−1Mt)(dxt)

λt(dxt)

rNt (xt) :=
∑

Wn
t−1mt(X

n
t−1, xt)

where the first equation is understood in the sense of the Radon-Nikodym derivative and the density
mt−1(xt−1, xt) is defined with respect to the dominating measure λt(dxt) on Xt (cf. (2)).

3.2. Hybrid rejection sampling. To solve the aforementioned issues of the pure rejection sampling
procedure, we propose a hybrid rejection sampling scheme. The basic observation is that, for a single

m, direct simulation (e.g. via CDF inversion) of BN,FFBS
t (it,dit−1) costs O(N). Thus, once K = O(N)
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rejection sampling trials have been attempted, one should instead switch to a direct simulation method.
In other words, it does not make sense (at least asymptotically) to switch to direct sampling after K trials
if K � O(N) or K � O(N). The validity of this method is established in the following proposition,
where we actually allow K to depend on trials drawn so far. The proof, which is not an immediate
consequence of the validity of ordinary rejection sampling, is given in Supplement E.4.

Proposition 3. Let µ0(x) and µ1(x) be two probability densities defined on some measurable space X
with respect to a dominating measure λ(dx). Suppose that there exists C > 0 such that µ1(x) ≤ Cµ0(x).
Let (X1, U1), (X2, U2), . . . be a sequence of i.i.d. random variables distributed according to µ0 ⊗Unif[0, 1]
and let X∗ ∼ µ1 be independent of that sequence. Put

K∗ := inf

{
n ∈ Z≥1 such that Un ≤

µ1(Xn)

Cµ0(Xn)

}
and let K be any stopping time with respect to the natural filtration associated with the sequence {(Xn, Un)}∞n=1.
Let Z be defined as XK∗ if K∗ ≤ K and X∗ otherwise. Then Z is µ1-distributed.

Proposition 3 thus allows users to pick K = αN , where α > 0 might be chosen somehow adaptively from
earlier trials. In the following, we only consider the simple rule K = N , which does not induce any loss
of generality in terms of the asymptotic behaviour and is easy to implement. The resulting iteration is
described in Algorithm 6.

Algorithm 6: Hybrid rejection sampler for simulating from BN,FFBS
t (it,dit−1)

Input: Particles X1:N
t−1 and weights W 1:N

t−1 at time t− 1; particle Xit
t at time t; constant M̄h;

pre-initialised O(1) sampler for M(W 1:N
t−1 )

accepted← False

for i← 1 to N do
It−1 ∼M(W 1:N

t−1 ) using the pre-initialised O(1) sampler

U ∼ Unif[0, 1]

if U ≤ mt(X
It−1

t−1 , X
it
t )/M̄h then

accepted← True

break

if not accepted then

It−1 ∼M(Wn
t−1m(Xn

t−1, X
it
t ))

Output: It−1, which is distributed according to BN,FFBS
t (it,dit−1).

When applied in the context of Algorithm 5, Algorithm 6 gives a smoother of expected complexity
proportional to

NÑE[min(τ1,PaRIS
t , N)]

at time t, where τ1,PaRIS
t is defined in (16)). This quantity is no longer infinite, but its growth when

N →∞ might depend on the model. Still, in all cases, it remains strictly larger than O(N) and strictly
smaller than O(N2). Perhaps more surprisingly, in linear Gaussian models (see Supplement A.1 for
detailed notations), the smoother is of near-linear complexity (up to log factors). The following two
theorems formalise these claims.

Assumption 6. The predictive density rt of Xt given Y0:t−1 and the potential function Gt are continuous
functions on Rdt . The transition density mt(xt−1, xt) is a continuous function on Rdt−1 × Rdt .

Theorem 3.1. Under Assumptions 1, 4, 5 and 6, the version of Algorithm 5 using the hybrid rejection

sampler (Algorithm 6) satisfies limN→∞ E[min(τ1,PaRIS
t , N)] =∞ and limN→∞ E[min(τ1,PaRIS

t , N)]/N =

0, where τ1,PaRIS
t is defined in (16).
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Theorem 3.2. We assume the same setting as Theorem 3.1. In linear Gaussian state space models

(Supplement A.1), we have E[min(τ1,PaRIS
t , N)] = O((logN)dt/2).

While Proposition 2 shows that τ1,PaRIS
t has infinite expectation, Theorem 3.2 implies that its N -

thresholded version only displays a slowly increasing mean. To give a very rough intuition on the
phenomenon, consider X ∼ N (0, 1). Then

E
[
eX

2/2
]

=

∫
R
ex

2/2 e
−x2/2

√
2π

= +∞

whereas

E
[
min(eX

2/2, N)
]

=

∫
R

min(ex
2/2, N)

1√
2π
e−x

2/2dx

=

∫
|x|≤
√

2 logN

1√
2π

dx+N

∫
|x|>
√

2 logN

1√
2π
e−x

2/2dx

≤
√

4 logN

π
+

1√
π logN

(17)

using the bound P(X > x) ≤ e−x2/2

x
√

2π
for x > 0. The main technical difficulty of the proof of Theorem 3.2

(see Supplement E.6) is to perform this kind of argument under the error induced by the finite sample
size particle approximation. In the language of this oversimplified example, we want (17) to hold when
X does not follow N (0, 1) any more, but only an N -dependent approximation of it.

4. Efficient backward kernels

4.1. MCMC Backward Kernels. This subsection analyses and extends the MCMC backward kernel

defined in Example 3. As we remarked there, the matrix B̂N,IMH
t is not sparse and even has some

expensive-to-evaluate entries. We thus reserve it for use in the off-line smoother (Algorithm 2) whereas
in the on-line scenario (Algorithm 3), we use its PaRIS-like counterpart

(18) B̂N,IMHP
t [it, it−1] :=

1

Ñ

Ñ∑
ñ=1

1

{
it−1 = J̃ it,ñt

}
where J̃ it,1:Ñ

t is an independent Metropolis-Hastings chain started at J it,1t := Aitt , targeting the measure

BN,FFBS
t (it,dit−1) and using the proposal distribution M(W 1:N

t−1 ). Thus, the parameter Ñ signifies that

Ñ − 1 MCMC steps are applied to Aitt , and we shall use the same convention for the kernel BN,IMH
t .

In both cases, the complexity of the corresponding algorithms are O((Ñ − 1)N) which is equivalent to

O(N) as long as Ñ remains fixed when N →∞.

The validity and the stability of B̂N,IMH
t and B̂N,IMHP

t are established in the following proposition (proved

in Supplement E.9). For simplicity, only the case Ñ = 2 is examined, but as a matter of fact, the

proposition remains true for Ñ ≥ 2.

Proposition 4. The kernels BN,IMH
t and BN,IMHP

t with Ñ = 2 satisfy the hypotheses of Theorem 2.1
and, under Assumptions 2 and 3, those of Theorem 2.2. Hence, their respective uses in Algorithms 2
and 3 guarantee a convergent and stable smoother.

From a theoretical viewpoint, Proposition 4 is the first result establishing the stability for the use of
MCMC moves inside backward sampling. It relies on technical innovations that we have explained in
Section 2.6, in particular after the statement of Theorem 2.2.

From a practical viewpoint, the advantages of independent Metropolis-Hastings MCMC kernels com-
pared to the rejection samplers of Section 3 are the dispensability of specifying an explicit M̄h and the
deterministic O(N) nature of the execution time. In practice, we observe that the MCMC smoothers
are usually 10-20 times faster than the rejection sampling–based counterparts (see e.g. Figure 4) while
producing essentially the same sample quality. Finally, it is not hard to imagine situations where some
proposal smarter than M(W 1:N

t−1 ) would be beneficial. However, we only consider that one here, mainly
because it already performs satisfactorily in our numerical examples.
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4.2. Dealing with intractable transition densities.

4.2.1. Intuition and formulation. The purpose of backward sampling is to re-generate, for each particle,
a new ancestor that is different from that of the filtering step. However, backward sampling is infeasible
if the transition density mt(xt−1, xt) cannot be calculated. To get around this, we modify the particle
filter so that each particle might, in some sense, have two ancestors right from the forward pass.

Consider the standard PF (Algorithm 1). Among the N resampled particles X
A1:N

t
t−1 , let us track two of

them, say xt−1 and x′t−1 for simplicity. The move step of Algorithm 1 will push them through Mt using
independent noises, resulting in xt and x′t (that is, given xt−1 and x′t−1, we have xt ∼ Mt(xt−1, ·) and
x′t ∼ Mt(x

′
t−1, ·) such that xt and x′t are independent). Thus, for e.g. linear Gaussian models, we have

P(xt = x′t) = 0. However, if the two simulations xt ∼ Mt(xt−1, ·) and x′t ∼ Mt(x
′
t−1, ·) are done with

specifically correlated noises, it can happen that P(xt = x′t) > 0. The joint distribution (xt, x
′
t) given

(xt−1, x
′
t−1) is called a coupling of Mt(xt−1, ·) and Mt(x

′
t−1, ·); the event xt = x′t is called the meeting

event and we say that the coupling is successful when it occurs. In that case, the particle xt automatically
has two ancestors xt−1 and x′t−1 at time t− 1 without needing any backward sampling.

The precise formulation of the modified forward pass is detailed in Algorithm 7. It consists of building in

an on-line manner the backward kernels BN,ITR
t (where ITR stands for “intractable”). The main interest

of this algorithm lies in the fact that while the function mt may prove impossible to evaluate, it is usually
possible to make xt and x′t meet by correlating somehow the random numbers used in their simulations.
One typical example which this article focuses on is the coupling of continuous-time processes, but it is
useful to keep in mind that Algorithm 7 is conceptually more general than that.

Algorithm 7: Modified forward pass for smoothing of intractable models (one time step)

Input: Feynman-Kac model (1), particles X1:N
t−1 and weights W 1:N

t−1

that approximate the filtering distribution at time t− 1

for n← 1 to N do

Resample. Simulate (An,1t , An,2t ) such that marginally each component is distributed according

to M(W 1:N
t−1 )

Move. Simulate (Xn,1
t , Xn,2

t ) such that marginally the two components are distributed

respectively according to Mt(X
An,1

t
t−1 ,dxt) and Mt(X

An,2
t

t−1 ,dxt)

Choose L ∼ Uniform({1, 2})
Set Xn

t ← Xn,L
t

Calculate backward kernel.

if Xn,1
t = Xn,2

t then

BN,ITR
t (n,dit−1)←

(
δ
{
An,1t

}
+ δ

{
An,2t

})
/2

else

BN,ITR
t (n,dit−1)← δ

{
An,Lt

}
Reweight. Set ωnt ← Gt(X

n
t ) for n = 1, 2, . . . , N

Set `Nt ←
∑N
n=1 ω

n
t /N

Set Wn
t ← ωnt /N`

N
t for n = 1, 2, . . . , N

Output: Particles X1:N
t and weights W 1:N

t that approximate the filtering distribution at time t;

backward kernel BN,ITR
t that can be used in either Algorithm 2 or 3

4.2.2. Validity and stability. The consistency of Algorithm 7 follows straightforwardly from Theorem 2.1.
To produce a stable routine however, some conditions must be imposed on the couplings (An,1t , An,2t )

and (Xn,1
t , Xn,2

t ). We want An,1t to be different from An,2t as frequently as possible. On the contrary, we

aim for a coupling of the two distributions Mt(X
An,1

t
t−1 , ·) and Mt(X

An,2
t

t−1 , ·) with high success rate so as to

maximise the probability that Xn,1
t = Xn,2

t .
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Assumption 7. There exists an εA > 0 such that P(An,1t 6= An,2t |X1:N
t−1 ) ≥ εA.

Assumption 8. There exists an εD > 0 such that

P(Xn,2
t = Xn,1

t |X1:N
t−1 , A

n,1
t , An,2t , Xn,1

t ) ≥ εD

1 ∧
mt(X

An,2
t

t−1 , X
n,1
t )

mt(X
An,1

t
t−1 , X

n,1
t )

 .

The letters A and D in εA and εD stand for “ancestors” and “dynamics”. Assumption 8 means that

the user-chosen coupling of Mt(X
An,1

t
t−1 , ·) and Mt(X

An,2
t

t−1 , ·) must be at least as εD times as efficient as
their maximal couplings. For details on this interpretation, see Proposition 10 in the Supplement. In
Lemma E.12, we also show that in spite of its appearance, Assumption 8 is actually symmetric with
regards to Xn,1

t and Xn,2
t .

We are now ready to state the main theorem of this subsection (see Supplement E.11 for a proof).

Theorem 4.1. The kernels BN,ITR
t generated by Algorithm 7 satisfy the hypotheses of Theorem 2.1.

Thus, under Assumption 1, Algorithm 7 provides a consistent smoothing estimate. If, in addition, the
Feynman-Kac model (1) satisfies Assumptions 2 and 3 and the user-chosen couplings satisfy Assump-

tions 7 and 8, the kernels BN,ITR
t also fulfil (13) and the smoothing estimates generated by Algorithm 7

are stable.

4.2.3. Good ancestor couplings. It is notable that Assumption 7 only considers the event An,1t 6= An,2t ,

which is a pure index condition that does not take into account the underlying particles X
An,1

t
t−1 and

X
An,2

t
t−1 . Indeed, if smoothing algorithms prevent degeneracy by creating multiple ancestors for a particle,

we would expect that their separation (i.e. that they are far away in the state space Xt−1, e.g. Rd) is
critical to the performance. Surprisingly, it is unnecessary: two very close particles (in Rd) at time t− 1
may have ancestors far away at time t− 2 thanks to the mixing of the model.

We advise choosing an ancestor coupling (An,1t , An,2t ) such that the distance between X
An,1

t
t−1 and X

An,2
t

t−1 is

small. It will then be easier to design a dynamic coupling of Mt(X
An,1

t
t−1 , ·) and Mt(X

An,2
t

t−1 , ·) with a high
success rate. Furthermore, simulating the dynamic coupling with two close rather than far away starting
points can also take less time when, for instance, the dynamic involves multiple intermediate steps, but
the two processes couple early. One way to achieve an ancestor coupling with the aforementioned property
is to first simulate An,1t ∼M(W 1:N

t−1 ), then move An,1t through an MCMC algorithm which keeps invariant

M(W 1:N
t−1 ) and set the result to An,2t . It suffices to use a proposal looking at indices whose underlying

particles are close (in Rd) to X
An,1

t
t−1 . Finding nearby particles are efficient if they are first sorted using

the Hilbert curve, hashed using locality-sensitive hashing or put in a KD-tree (see Samet, 2006, for a
comprehensive review). In the context of particle filters, such techniques have been studied for different
purposes in Gerber and Chopin (2015), Jacob et al. (2019) and Sen et al. (2018).

4.2.4. Conditionally-correlated version. In Algorithm 7, the ancestor pairs (An,1t , An,2t )Nn=1 are condition-
ally independent given F−t and the same holds for the particles (Xn

t )Nn=1. These conditional indepen-
dences allow easier theoretical analysis, in particular, the casting of Algorithm 7 in the framework of
Theorems 2.1 and 2.2. However, they are not optimal for performance in two important ways: (a) they

do not allow keeping both Xn,1
t and Xn,2

t when the two are not equal, and (b) the set of ancestor variables

(An,1t )Nn=1 is multinomially resampled from {1, 2, . . . , N} with weights W 1:N
t−1 . We know that multinomial

resampling is not the ideal scheme, see Supplement C.1 for discussion.

Consequently, in practice, we shall allow ourselves to break free from conditional independence. The
resulting procedure is described in Algorithm 9 (Supplement C). Despite a lack of rigorous theoretical
support, this is the algorithm that we will use in Section 5 since it enjoys better performance and it
constitutes a fair comparison with practical implementations of the standard particle filter, which are
mostly based on alternative resampling schemes.
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5. Numerical experiments

5.1. Linear Gaussian state-space models. Linear Gaussian models constitute a particular class of
state space models. They are characterised by Markov dynamics that are Gaussian and observations
that are projection of hidden states plus some Gaussian noises. Supplement A.1 defines, for different
components of these models, the notations that we shall use here. In this section, we consider an instance
described in Guarniero et al. (2017), where the matrix FX satisfies FX [i, j] = α1+|i−j| for some α. We
consider the problem with dimX = dimY = 2 and the observations are noisy versions of the hidden states
with CY being σ2

Y times the identity matrix of size 2. Unless otherwise specified, we take α = 0.4 and
σ2
Y = 0.5.

In this section, we focus on the performance of different online smoothers based on either genealogy
tracking, pure/hybrid rejection sampling or MCMC. Rejection-based online smoothing amounts to the

PaRIS algorithm, for which we use Ñ = 2 for the BN,PaRIS
t kernel. We take T = 3000 and simulate

the data from the model. The benchmark additive function is simply ϕt(x0:t) =
∑t
s=0 xs(0) where xs(0)

is the first coordinate of the R2 vector xs = [xs(0), xs(1)]. For a study of offline smoothers (including
FFBS), see Supplement D.1. In all programs here and there, we choose N = 1000 and use systematic
resampling for the forward particle filters (see section C.1). Regarding MCMC smoothers, we employ the

kernels BN,IMH
t or BN,IMHP

t consisting of only one MCMC step. All results are based on 150 independent
runs.

Although our theoretical results are only proved for the bootstrap filter, we stress throughout that some
of them extend to other filters as well. Therefore, we will also consider guided particle filters in the
simulations. An introduction to this topic can be found in Chopin and Papaspiliopoulos (2020, Chapter
10.3.2), where the expression for the optimal proposal is also provided. In linear Gaussian models, this
proposal is fully tractable and is the one we use.

To present efficiently the combination of two different filters (bootstrap and guided) and four different
algorithms (naive genealogy tracking, pure/hybrid rejection and MCMC) we use the following abbre-
viations: “B” for bootstrap, “G” for guided, “N” for naive genealogy tracking, “P” for pure rejection,
“H” for hybrid rejection and “M” for MCMC. For instance, the algorithm referred to as “BM” uses the
bootstrap filter for the forward pass and the MCMC backward kernels to perform smoothing. Further-
more, the letter “R” will refer to the rejection kernel whenever the distinction between pure rejection
and hybrid rejection is not necessary. (Recall that the two rejection methods produce estimators with
the same distribution.)

Figure 2 shows the squared interquartile range for the online smoothing estimates Qt(ϕt) with respect to
t. It verifies the rates of Theorem 2.2, although linear Gaussian models are not strongly mixing in the
sense of Assumptions 2 and 3: the grid lines hint at a variance growth rate of O(T ) for the MCMC and
reject-based smoothers and of O(T 2) for the genealogy tracking ones. Unsurprisingly guided filters have
better performance than bootstrap.

Figure 3 show box-plots of the execution time (divided by NT ) for different algorithms over 150 runs.
By execution time, we mean the number of Markov kernel transition density evaluations. We see that
the bootstrap particle filter coupled with pure rejection sampling has a very heavy-tailed execution time.
This behaviour is expected as per Proposition 2. Using the guided particle filter seems to fare better, but
Figure 4 (for the same model but with σ2

Y = 2) makes it clear that this cannot be relied on either. Overall,
these results highlight two fundamental problems with pure rejection sampling: the computational time
has heavy tails and depends on the type of forward particle filter being used.

On the other hand, hybrid rejection sampling, despite having random execution time in principle, displays
a very consistent number of transition density evaluations over different independent runs. Thus it is
safe to say that the algorithm has a virtually deterministic execution time. The catch is that the average
computational load (which is around 16 in Figure 3) cannot be easily calculated beforehand. In any case,
it is much larger than the value 1 of MCMC smoothers (since only 1 MCMC step is performed in the

kernel BN,IMHP
t ); whereas the performance (Figure 2) is comparable.

The bottom line is that MCMC smoothers should be the default option, and one MCMC step seems to
be enough. If for some reason one would like to use rejection-based methods, using hybrid rejection is a
must.
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Figure 2. Squared interquartile range of the estimators Qt(ϕt) with respect to t, for
different online smoothing algorithms. The model is linear Gaussian with parameters
specified in section 5.1. See text for full explanation of the legend. For readability, the
curves are down-sampled to 50 points before being drawn.
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Figure 3. Box plots (based on 150 runs) of averaged execution times (numbers of tran-
sition density evaluations divided by NT ) for different algorithms on the linear Gaussian
model of section 5.1. Left: original figure, right: zoomed-in version.
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Figure 4. Same as Figure 3, but for the modified model where σ2
Y = 2.
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5.2. Lotka-Volterra SDE. Lotka-Voleterra models (originated in Lotka, 1925 and Volterra, 1928) de-
scribe the population fluctuation of species due to natural birth and death as well as the consumption
of one species by others. The emblematic case of two species is also known as the predator-prey model.
In this subsection, we study the stochastic differential equation (SDE) version that appears in Hening
and Nguyen (2018). Let Xt = (Xt(0), Xt(1)) represent respectively the populations of the prey and the
predator at time t and let us consider the dynamics

(19)

dXt(0) =
[
β0Xt(0)− 1

2
τ0[Xt(0)]2 − τ1Xt(0)Xt(1)

]
dt+Xt(0)dEt(0)

dXt(1) =
[

−β1Xt(1) + τ1Xt(0)Xt(1)
]
dt+Xt(1)dEt(1)

where Et = ΓWt with Wt being the standard Brownian motion in R2 and Γ being some 2 × 2 matrix.
The parameters β0 and β1 are the natural birth rate of the prey and death rate of the predator. The
predator interacts with (eats) the prey at rate τ1. The quantity τ0 encodes intra-species competition in
the prey population. The 1

2 in its parametrisation is to line up with the Lotka Volterra jump process in

Z2 where the population sizes are integers and the interaction term becomes τ0Xt(0)[Xt(0)− 1]/2.

The state space model is comprised of the process Xt and its noisy observations Yt recorded at integer
times. The Markov dynamics cannot be simulated exactly, but can be approximated through (Euler)
discretisation. Nevertheless, the Euler transition density mE

t (xt−1, xt) remains intractable (unless the
step size is exactly 1). Thus, the algorithms presented in Subsection 4.2 are useful. The missing bit is a
method to efficiently couple mE

t (xt−1, ·) and mE
t (x′t−1, ·), which we carefully describe in Supplement D.2.1.

We consider the model with τ0 = 1/800, τ1 = 1/400, β0 = 0.3125 and β1 = 0.25. The matrix Γ is such

that the covariance matrix of E1 is

[
1/100 1/200
1/200 1/100

]
. The observations are recorded on the log scale with

Gaussian error of covariance matrix

[
0.04 0.02
0.02 0.04

]
. The distribution of X0 is two-dimensional normal

with mean [100, 100] and covariance matrix

[
100 50
50 100

]
. This choice is motivated by the fact that the

preceding parameters give the stationary population vector [100, 100]. According to Hening and Nguyen
(2018), they also guarantee that neither animal goes extinct almost surely as t→∞.

By discretising (19) with time step δ = 1, one can get some very rough intuition on the dynamics. For
instance, per second there are about 31 preys born. Approximately the same number die (to maintain
equilibrium), of which 6 die due to internal competition and 25 are eaten by the predator. The duration
between two recorded observations corresponds more or less to one-third generation of the prey and one-
fourth generation of the predator. The standard deviation of the variation due to environmental noise is
about 10 individuals per observation period, for each animal.

Again, these intuitions are highly approximate. For readers wishing to get more familiar with the model,
Supplement D.2.2 contains real plots of the states and the observations; as well as data on the performance
of different smoothing algorithms for moderate values of T . We now showcase the results obtained in a
large scale problem where T = 3000 and the data is simulated from the model.

We consider the additive function ϕt(x0:t) :=
∑t
s=0 [xs(0)− 100]. Figure 5 represents using box plots the

distributions of the estimators for QT (ϕT ) using either the genealogy tracking smoother (with systematic
resampling; see Supplement C.1) or Algorithm 9. Our proposed smoother greatly reduces the variance,
at a computational cost which is empirically 1.5 to 2 times greater than the naive method. Since we used
Hilbert curve to design good ancestor couplings (see Section 4.2.3), coupling of the dynamics succeeds
80% of the time. As discussed in the aforementioned section, starting two diffusion dynamics from nearby
points make them couple earlier, which reduces the computational load afterwards.

Figure 6 plots with respect to t the squared interquartile range of the two methods for the estimation of
Qt(ϕt). Grid lines hint at a quadratic growth for the genealogy tracking smoother (as analysed in Olsson

and Westerborn, 2017, Sect. 1) and a linear growth for the kernel BN,ITRC
t (as described in Theorem 2.2).

Finally, Figure 20 (Supplement D.2.2) shows properties of the effective sample size (ESS) ratio for this
model. In a nutshell, while being globally stable (between 40% and 70%), it has a tendency to drift
towards near 0 from time to time due to unusual data points. At these moments, resampling kills most
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Figure 5. Box plot of estimators (over 50 independent runs with N = 1000 particles)
for QT (ϕT ) in the Lotka-Volterra SDE model with T = 3000. They are calculated using
either the naive genealogy tracking smoother or our smoother developed for intractable
models (Algorithm 9).
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Figure 6. Squared interquartile range for the genealogy tracking smoother and our
proposed one. Same context as in Figure 5

of the particles and aggravates the degeneracy problem for the naive smoother. As we have seen in the
above figures, systematic resampling is not enough to mitigate this in the long run.

6. Conclusion

6.1. Practical recommendations. Our first recommendation does not concern the smoothing algo-
rithm per se. It is of paramount importance that the particle filter used in in the preliminary filtering
step performs reasonably well, since its output defines the support of the approximations generated by
the subsequent smoothing algorithm. (Standard recommendations to obtain good performance from a
particle filter are to increase N , or to use better proposal distributions, or both.)

When the transition density is tractable, we recommend the MCMC smoother by default (rather than
even the standard, O(N2) approach). It has a deterministic, O(N) complexity, it does not require the
transition density to be bounded, and it seems to perform well even with one or two MCMC steps. If
one still wants to use the rejection smoother instead, it is safe to say that there is no reason not to use
the hybrid method.

Although the assumptions under which we prove the stability of the smoothing estimates are strong, the
general message still holds. The Markov kernel and the potential functions must make the model forget
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its past in some ways. Otherwise, we get an unstable model for which no smoothing methods can work.
The rejection sampling – based smoothing algorithms can therefore serve as the ultimate test. Since they
simulate exactly independent trajectories given the skeleton, there is no hope to perform better, unless
one switches to another family of smoothing algorithms.

For intractable models, the key issue is to design couplings with high meeting probability. Fortunately, the
inherent chaos of the model makes it possible to choose two very close starting points for the dynamics and
thus easy to obtain a reasonable meeting probability. If further difficulties persist, there is a practical (and
very heuristic) recipe to test whether one coupling of Mt(x, ·) and Mt(x

′, ·) is close to optimal. It consists
in approximating Mt(x, ·) and Mt(x

′, ·) by Gaussian distributions and deduce the optimal coupling rate
from their total variation distance. There is no closed formula for the total variation distance between
two Gaussian distributions in high dimensions. However, it can be reliably estimated using the geometric
interpretation of the total variation distance being one minus the area of the intersection created by the
corresponding density graphs. In this way, one can get a very rough idea of to what extent a certain
coupling realises the meeting potential that the two distributions have. If the coupling seems good and
the trajectories still look degenerate, it can very well be that the model is unstable.

6.2. Further directions. The major limitation of our work is the exclusive theoretical analysis under
the bootstrap particle filter. Moreover, we require that the N new particles generated at step t are
conditionally independent given previous particles at time t − 1. This excludes practical optimisations
like systematic resampling and Algorithm 9. Finally, the backward sampling step is also used in other
algorithms (in particular Particle Markov Chain Monte Carlo, see Andrieu et al., 2010) and it would be
interesting to see to what extent our techniques can be applied there.

6.3. Data and code. The code used to run numerical experiments is available at https://github.

com/hai-dang-dau/backward-samplers-code. Some of the algorithms are already available in an ex-
perimental branch of the particles Python package at https://github.com/nchopin/particles.
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Appendix A. Additional notations

This section defines new notations that do not appear in the main text (except notations for linear
Gaussian models) but are used in the Supplement.

A.1. Linear Gaussian models. Let dimX and dimY be two strictly positive integers and FX and
FY be two full-rank matrices of sizes dimX ×dimX and dimY ×dimX respectively. Let CX and CY be
two symmetric positive definite matrices of respective sizes dimX ×dimX and dimY ×dimY . A linear
Gaussian state space model has the underlying Markov process defined by

Xt|X0:t−1 ∼ N (FXXt−1, CX),

where X0 also follows a Gaussian distribution; and admits the observation process

Yt|Xt ∼ N (FYXt, CY ).

The predictive (Xt given Y0:t−1), filtering (Xt given Y0:t) and smoothing (Xt given Y0:T ) distributions
are all Gaussian and their parameters can be explicitly calculated via recurrence formulas (Kalman,
1960; Kalman and Bucy, 1961). We shall denote their respective mean vectors and covariance ma-

trices by (µpred
t ,Σpred

t ), (µfilt
t ,Σfilt

t ) and (µsmth
t ,Σsmth

t ). In particular, the starting distribution X0 is

N (µpred
0 ,Σpred

0 ).

A.2. Total variation distance. Let µ and ν be two probability measures on X . The total variation dis-
tance between µ and ν, sometimes also denoted TV(µ, ν), is defined as ‖µ− ν‖TV := supf :X→[0,1] |µ(f)− ν(f)|.
The definition remains valid if f is restricted to the class of indicator functions on measurable subsets of
X . It implies in particular that |µ(f)− ν(f)| ≤ ‖f‖osc TV(µ, ν).

Next, we state a lemma summarising basic properties of the total variation distance and defining coupling-
related notions (see, e.g. Proposition 3 and formula (13) of Roberts and Rosenthal (2004)). While the
last property (covariance bound) is not in the aforementioned reference and does not seem popular in the
literature, its proof is straightforward and therefore omitted.

Lemma A.1. The total variation distance has the following properties:

• (Alternative expressions.) If µ and ν admit densities f(x) and g(x) respectively with reference to
a dominating measure λ, we have

TV(µ, ν) =
1

2

∫
|f(x)− g(x)|λ(dx) = 1−

∫
min(f(x), g(x))λ(dx).

• (Coupling inequality & maximal coupling.) For any pair of random variables (M,N) such that
M ∼ µ and N ∼ ν, we have

P(M 6= N) ≥ TV(µ, ν).

There exist pairs (M∗, N∗) for which equality holds. They are called maximal couplings of µ and
ν.

• (Contraction property.) Let (Xn) be a Markov chain with invariant measure µ?. Then

TV(Xn, µ
∗) ≥ TV(Xn+1, µ

∗).

• (Covariance bound.) For any pair of random variables (M,N) such that M ∼ µ and N ∼ ν and
real-valued functions h1 and h2, we have

|Cov(h1(M), h2(N))| ≤ 2 ‖h1‖∞ ‖h2‖∞ TV ((M,N), µ⊗ ν) .

A.3. Cost-to-go function. In the context of the Feynman-Kac model (1), define the associated cost-
to-go function Ht:T as (see e.g. Chopin and Papaspiliopoulos (2020, Chapter 5))

(20) Ht:T (xt) :=

T∏
s=t+1

Ms−1(xs−1,dxs)Gs(xs).

This function bridges Qt(dxt) and QT (dxt), since QT (dxt) ∝ Qt(dxt)Ht:T (xt).
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A.4. The projection kernel. Let X and Y be two measurable spaces. The projection kernel Π
(X ,Y)
X is

defined by

Π
(X ,Y)
X ((x, y),dx∗) := δx(dx∗).

In particular, for any function g : X → R and measure µ(dx,dy) defined on X × Y, we have

(Π
(X ,Y)
X g)(x, y) = g(x)

(µΠ
(X ,Y)
X )(g) =

∫∫
g(x)µ(dx, dy) =

∫
g(x)µ(dx)

where the second identity shows the marginalising action of Π
(X ,Y)
X on µ. In the context of state space

models, we define the shorthand

Π0:T
t := Π

(X0,...,XT )
Xt

.

A.5. Other notations. For a real number x, let bxc be the largest integer not exceeding x. The mapping
x 7→ bxc is called the floor function • The Gamma function Γ(a) is defined for a > 0 and is given by
Γ(a) :=

∫
R+
e−xxa−1dx • Let X and Y be two measurable spaces. Let K(x,dy) be a (not necessarily

probability) kernel from X to Y. The norm of K is defined by ‖K‖∞ := supf :X→Y,f 6=0 ‖Kf‖∞ / ‖f‖∞.
In particular, for any function f : X → Y, we have ‖Kf‖∞ ≤ ‖K‖∞ ‖f‖∞ • Let Xn be a sequence of
random variables. We say that Xn = OP(1) if for any ε > 0, there exists M > 0 and N0, both depending
on ε, such that P(|Xn| ≥M) ≤ ε for all n ≥ N0. For a strictly positive deterministic sequence an, we say
that Xn = OP(an) if Xn/an = OP(1). See Janson (2011) for discussions • We use the notation N (x|µ,Σ)
to refer to the value at x of the density function of the normal distribution N (µ,Σ) • Let f : U → V be
a function from some space U to another space V . Let S be a subset of U . The restriction of f to S,
written f |S , is the function from S to V defined by f |S(x) = f(x), ∀x ∈ S.

Appendix B. FFBS complexity for different rejection schemes

B.1. Framework and notations. The FFBS algorithm is a particular instance of Algorithm 2 where

BN,FFBS
t kernels are used. If backward simulation is done using pure rejection sampling (Algorithm 4),

the computational cost to simulate the t− 1-th index of the n-th trajectory has conditional distribution

(21) τn,FFBS
t | FT , Int:T ∼ Geo

(∑
iW

i
t−1mt(X

i
t−1, X

Int
t )

M̄h

)
.

At this point, it would be useful to compare this formula with (16) of the PaRIS algorithm. The difference
is subtle but will drive interesting changes to the way rejection-based FFBS behaves.

If hybrid rejection sampling (Algorithm 6) is to be used instead, we are interested in the distribution of

min(τn,FFBS
t , N), for reasons discussed in Subsection 3.2. In a highly parallel setting, it is preferable

that the distribution of individual execution times, i.e. τn,FFBS
t or min(τn,FFBS

t , N), are not heavy-

tailed. In contrast, for non-parallel hardware, only cumulative execution times, i.e.
∑N
n=1 τ

n,FFBS
t or∑N

n=1 min(τn,FFBS
t , N), matter. Even though the individual times might behave badly, the cumulative

times could be much more regular thanks to effect of the central limit theorem, whenever applicable. Nev-

ertheless, studying the finiteness of the k-th order moment of τ1,FFBS
t is still a good way to get information

about both types of execution times, since it automatically implies k-th order moment (in)finiteness for
both of them.

B.2. Execution time for pure rejection sampling. We show that under certain circumstances, the
execution time of the pure rejection procedure has infinite expectation. Proposition 1 in Douc et al. (2011)
hints that the cost per trajectory for FFBS-reject might tend to infinity when N → ∞. In contrast, we
show that infinite expectation might very well happen for finite sample sizes. We first give the statement
for general state space models, then focus on their implications for Gaussian ones. In particular, while
infinite expectations occur only under certain configurations, infinite higher moments happen in all linear
Gaussian models with non-degenerate dynamics.
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Theorem B.1. Using the setting and notations of Supplement B.1, under Assumptions 1 and 4 , we

have E[τ1,FFBS
t ] =∞ whenever ∫

Xt

Gt(xt)Ht:T (xt)λt(dxt) =∞

where the cost-to-go function Ht:T is defined in (20) and the measure λt is defined in (2).

Theorem B.2. Using the setting and notations of Supplement B.1, we consider linear Gaussian models

and their notations defined in Supplement A.1. Then we have E[(τ1,FFBS
t )k] = ∞ whenever k is greater

than a certain k0 being the smallest eigenvalue of the matrix Id +C
1/2
X

(
(Σsmth

t )
−1 − (Σpred

t )
−1
)
C

1/2
X .

The proofs of the two assertions are given in Supplement E.7. We now look at how they are manifested
in concrete examples. The first remark is that for technical reasons, Theorem B.2 gives no information

on the finiteness of E[(τ1,FFBS
t )k] for k = 1 (since k0 is already greater than or equal to 1 by definition).

To study the finiteness of E[τ1,FFBS
t ], we thus turn to Theorem B.1.

Example 4. In linear Gaussian models, the integral of Theorem B.1 is equal to∫
N (yt|FY xt, CY )

T∏
s=t+1

N (xs|FXxs−1, CX)N (ys|FY xs, CY )dxt:T

where the notation N (µ,Σ) refers to the density of the normal distribution. The integrand is proportional
to exp[−0.5(Q(xt:T ) − R(xt:T ))] for some quadratic form Q(xt:T ) and linear form R(xt:T ). The integral
is finite if and only if Q is positive definite. In our case, this means that there is no non-trivial root for
the equation Q(xt:T ) = 0, which is equivalent to{

FY xs = 0,∀s = t, . . . T

FXxs−1 = xs,∀s = t+ 1, . . . , T.

Put another way, E[τ1,FFBS
t ] is infinite whenever the intersection

T−t⋂
k=0

Ker(FY F
k
X) =

T−t⋂
k=0

F−kX (Ker(FY ))

contains other things than the zero vector. A common and particularly troublesome situation is when
FX = c Id for some c > 0 (but CX can be arbitrary) and the dimension of the states (dimX) is greater
than that of the observations (dimY ). Then the above intersection remains non-trivial no matter how

big T − t is. Thus, E[τ1,FFBS
t ] has no expectation for any t. In general, the problem is less severe as

successive intersections will shrink the space quickly to {0}. Consequently, Theorem B.1 only points out

infiniteness of E[τ1,FFBS
t ] for t close to T . The bad news however will come from higher moments, as seen

in the below example.

We will now focus on a simple but particularly striking example. Our purpose here is to illustrate the
concepts as well as to show that their implications are relevant even in small, familiar settings. More
advanced scenarios are presented in Section 5 devoted to numerical experiments.

Example 5. We consider two one-dimensional Gaussian state-space models: they both have FX = 0.5,
CX = 1, X0 ∼ N (0, C2

X/(1 − F 2
X)) and T = 3. The only difference between them is that one has

σ2
y := CY = 0.52 and another has σ2

y = 32. We are interested in the execution times τn,FFBS
1 at time

t = 1 (i.e. the rejection-based simulation of indices In0 at time t = 0). Theorem B.2 then gives k0 ≈ 1.14

for σy = 3 and k0 ≈ 5 for σy = 0.5. The first implication is that in both cases, τn,FFBS
1 is a heavy-tailed

random variable and therefore FFBS-reject is not a viable option in a highly parallel setting. But an
interesting phenomenon happens in the sequential hardware scenario where one is rather interested in

the cumulative execution time, i.e.
∑N
n=1 τ

n,FFBS
1 , or equivalently, the mean number of trials per particle.

In the σy = 3 case, non-existence of second moment prevents the cumulative regularisation effect of the
central limit theorem. This is not the case for σy = 0.5, in which the cumulative execution time actually
behaves nicely (Figures 7 and 8). However, the most valuable message from this example is perhaps that
the performance of FFBS-reject depends in a non-trivial (hard to predict) way on the model parameters.
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Figure 7. Box plots for the mean number of trials per particles to simulate indices at
time 0, for models described in Example 5 and for FFBS algorithms based on pure and
hybrid rejection sampling. The figure is obtained by running bootstrap particle filters
with N = 500 over 1500 independent executions.
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Figure 8. Zoom of Figure 7 to 0 ≤ y ≤ 8

B.3. Execution time for hybrid rejection sampling. Formula (21) suggests defining the limit dis-

tribution τ∞,FFBS
t as

τ∞,FFBS
t | X∞,FFBS

t ∼ Geo

(
rt(X

∞,FFBS
t )

M̄h

)
where X∞,FFBS

t ∼ QT (dxt) and rt given in Definition 1. These quantities provide the following charac-
terisation of the cumulative execution time for the hybrid FFBS algorithm (proved in Section E.8).

Theorem B.3. Under Assumptions 1 and 4 and the setting of Section B.1, we have∑N
n=1 min(τn,FFBS

t , N)

N
= OP

(
E[min(τ∞,FFBS

t , N)]
)

where the notation OP is defined in Supplement A.

This theorem admits the following corollary for linear Gaussian models (also proved in Section E.8).

Corollary 2. For linear Gaussian models (Supplement A.1), if smoothing is performed using the hy-
brid rejection version of the FFBS algorithm, the mean execution time per particle at time step t is

OP(logdt/2N) where dt is the dimension of Xt.
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The bound OP(logdt/2N) is actually quite conservative. For instance, with either σy = 0.5 or σy = 3,

the model considered in Example 5 admits E[τ∞,FFBS
t ] <∞. (Gaussian dynamics can be handled using

exact analytic calculations and enables to verify the claim straightforwardly.) Theorem B.3 then gives
an execution time per particle of order OP(1) for hybrid FFBS, which is better than the OP(

√
logN)

predicted by Corollary 2. Yet another unsatisfactory point of the result is its failure to make sense of
the spectacular improvement brought by hybrid rejection sampling over the ordinary procedure in the

σy = 3 case (see Figure 7). As explained in Example 5, this is connected to the variance of E[τ1,FFBS
t ]

and not merely the expectation; so a study of second order properties of N−1
∑
n min(τn,FFBS

t , N) would
be desirable.

Appendix C. Conditionally-correlated versions of particle algorithms

C.1. Alternative resampling schemes. In Algorithm 1, the indices A1:N
t are drawn conditionally i.i.d.

from the multinomial distribution M(W 1:N
t−1 ). They satisfy

E

 N∑
j=1

1Aj
t=i

∣∣∣∣∣∣Ft−1

 = NW i
t−1

for any i = 1, . . . , N . There are other ways to generate A1:N
t from W 1:N

t−1 that still verify this identity. We
call them unbiased resampling schemes, and the natural one used in Algorithm 1 multinomial resampling.

The main motivation for alternative resampling schemes is performance. We refer to Chopin (2004);
Douc et al. (2005); Gerber et al. (2019) for more details, but would like to mention that the theoretical
studies of particle algorithms using other resampling schemes are more complicated since X1:N

t are no
longer i.i.d. given Ft−1. We use systematic resampling (Carpenter et al., 1999) in our experiments. See
Algorithm 8 for a succinct description and Chopin and Papaspiliopoulos (2020, Chapter 9) for efficient
implementations in O(N) running time.

Algorithm 8: Systematic resampling

Input: Weights W 1:N
t−1 summing to 1

Generate U ∼ Uniform[0, 1]

for n← 1 to N do
Set Ant to the unique index k satisfying

W1 + · · ·+Wk−1 ≤
n− 1 + u

N
< W1 + · · ·+Wk

Output: Resampled indices A1:N
t

C.2. Conditionally-correlated version of Algorithm 7. In this part, we present an alternative
version of Algorithm 7 that does not create conditionally i.i.d. particles at each time step. The procedure

is detailed in Algorithm 9. It creates on the fly backward kernels BN,ITRC
t (for “intractable, conditionally

correlated”). It involves a resampling step which can be done in principle using any unbiased resampling
scheme. Following the intuitions of Subsection 4.2.3 and the notations of Algorithm 9, we want a scheme

such that in most cases, A2k−1
t 6= A2k

t but the Euclidean distance between X
A2k−1

t
t−1 and X

A2k
t

t−1 is small.
Algorithm 10 proposes such a method (which we name the Adjacent Resampler). It can run in O(N)
time using a suitably implemented linked list.

Appendix D. Additional information on numerical experiments

D.1. Offline smoothing in linear Gaussian models. In this section, we study offline smoothing for
the linear Gaussian model specified in Section 5.1. Since offline processing requires storing particles at
all times t in the memory, we use T = 500 here instead of T = 3000. Apart from that, the algorithmic
and benchmark settings remain the same.
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Algorithm 9: Conditionally-correlated version of Algorithm 7

Input: Feynman-Kac model (1), particles X1:N
t−1 and weights W 1:N

t−1 that approximate Qt−1(dxt−1)

Resample A1:N
t from {1, 2, . . . , N} with weights W 1:N

t−1 using any resampling scheme (such as the

Adjacent Resampler in Algorithm 10)

for k ← 1 to N/2 do

Move. Simulate X2k−1
t and X2k

t such that marginally, X2k−1
t ∼Mt(X

A2k−1
t

t−1 , ·) and

X2k
t ∼Mt(X

A2k
t

t−1 , ·)
Calculate backward kernel.

if X2k−1
t = X2k

t then

Set BN,ITRC
t (2k − 1, ·)←

(
δ
{
A2k−1
t

}
+ δ

{
A2k
t

})
/2

Set BN,ITRC
t (2k, ·)←

(
δ
{
A2k−1
t

}
+ δ

{
A2k
t

})
/2

else

Set BN,ITRC
t (2k − 1, ·)← δ

{
A2k−1
t

}
Set BN,ITRC

t (2k, ·)← δ
{
A2k
t

}
Reweight. Set ωnt ← Gt(X

n
t ) for n = 1, 2, . . . , N

Set `Nt ←
∑N
n=1 ω

n
t /N

Set Wn
t ← ωnt /N`

N
t for n = 1, 2, . . . , N

Output: Particles X1:N
t and weights W 1:N

t that approximate Qt(dxt); backward kernel BN,ITRC
t for

use in Algorithms 2 and 3

Algorithm 10: The Adjacent Resampler

Input: Particles X1:N
t−1 , weights W 1:N

t−1

Sort the particles X1:N
t−1 using the Hilbert curve. Let s← [s1 . . . sN ] be the corresponding indices

Resample from {1, . . . , N} with weights W 1:N
t−1 using systematic resampling (Carpenter et al., 1999;

Gerber et al., 2019), then let f : {1, . . . , N} → Z be the function defined by f(i) being the number

of times the index si was resampled. Obviously
∑N
i=1 f(i) = N

Initialise i← 1

for n← 1 to N do
Set Ant ← si
Update f(i)← f(i)− 1
Let Ω1 be the set {min {` > i | f` > 0}} (which has one element if the minimum is well-defined
and zero element otherwise)

Let Ω2 be the set {max {` < i | f` > 0}} (which has one element if the maximum is well-defined
and zero element otherwise)

If Ω1 ∪Ω2 is not empty, update i← argmax f |Ω1∪Ω2
(see section A.5 for the restriction notation).

If there is more than one argmax, pick one randomly

Output: Resampled indices A1:N
t

Figure 9 plots the squared interquartile range of the estimators QT (ϕt) with respect to t, for different
algorithms. For small t, the function ϕt only looks at states close to time 0, whereas for bigger t, recent
states less affected by degeneracy are also taken into account. In all cases though, we see that MCMC
and rejection-based smoothers have superior performance.

Figure 10 shows box plots of the averaged execution times (per particle N per time t) based on 150 runs.
The observations are comparable to those in Section 5.1. We see a performance difference between the
rejection-based smoothers using the bootstrap and the guided filters. Both have an execution time that
is much more variable than hybrid rejection algorithms. The latter still need around 10 times more CPU
load than MCMC smoothers, for essentially the same precision.

We now take a closer look at the reason behind the performance difference between the bootstrap filter
and the guided one when pure rejection sampling is used. Figure 11 shows the effective sample size
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Figure 9. Squared interquartile range of the estimators of QT (ϕt) with respect to t, for
different algorithms applied to the model of Section D.1. See Section 5.1 for the meaning
of the acronyms in the legend.
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Figure 10. Box plots of the number of transition density evaluations divided by NT
for different algorithms in the offline linear Gaussian model of Section D.1.

(ESS) of both filters as a function of time. We can see that there is an outlier in the data around time
t = 40. Figure 12 box-plots the execution times divided by N at t = 40 for the pure rejection sampling
algorithm, whereas Figures 13 and 14 do the same for t = 38 and t = 42. The root of the problem is
now clear: at most times t there is very few difference between the execution times of the bootstrap and
the guided filters. However, if an outlier is present in the data, the guided filter suddenly requires a very
high number of transition density evaluation in the rejection sampler. This gives yet another reason to
avoid using pure rejection sampling.

D.2. Lotka-Volterra SDE.

D.2.1. Coupling of Euler discretisations. Consider the SDE

(22) dXt = b(Xt)dt+ σ(Xt)dWt

and two starting points XA
0 and XB

0 in Rd. We wish to simulate XA
1 and XB

1 such that the transitions from
XA

0 to XA
1 and XB

0 to XB
1 both follow the Euler-discretised version of the equation, but XA

1 and XB
1 are

correlated in a way that increases, as much as we can, the probability that they are equal. Algorithm 11
makes it clear that it all boils down to the coupling of two Gaussian distributions.
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Figure 11. Evolution of the ESS for the linear Gaussian model of Section D.1.

Bootstrap Guided

0

10000

20000

30000

40000

50000

60000

70000

80000

No
. e

va
ls 

pe
r p

ar
tic

le
 a

t t
=

40

Figure 12. Box plots of the average execution time per particle for the pure rejection
algorithm at time t = 40. Figure produced based on 150 independent runs of the model
described in Section D.1.
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Figure 13. Same as Figure 12, but for t = 38.
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Figure 14. Same as Figure 12, but for t = 42.

Algorithm 11: Coupling of two Euler discretisations

Input: Functions b : Rd → Rd and σ : Rd → Rd×d, two starting points XA
0 and XB

0 at time 0,
number of discretisation step Ndist

Initialise XA ← XA
0

Initialise XB ← XB
0

Set δ ← 1/Ndist

for i← 1 to Ndist do

Simulate (X̃A, X̃B) from a coupling of

N (XA + δb(XA), δσ(XA)σ(XA)>)

and
N (XB + δb(XB), δσ(XB)σ(XB)>),

such as Algorithm 14

Update (XA, XB)← (X̃A, X̃B)

Set (XA
1 , X

B
1 )← (XA, XB)

Output: Two endpoints XA
1 and XB

1 at time 1, obtained by passing XA
0 and XB

0 in a correlated
manner through a discretised version of (22)

Lindvall and Rogers (1986) propose the following construction: if two diffusions XA
t and XB

t both follow
the dynamics of (22), that is,

dXA
t = b(XA

t )dt+ σ(XA
t )dWA

t

dXB
t = b(XB

t )dt+ σ(XB
t )dWB

t

and the two Brownian motions are correlated via

(23) dWB
t = [Id−2u(XA, XB)u(XA, XB)>]dWA

t

where Id is the identity matrix and the vector u is defined by

u(x, x′) =
σ(x′)−1(x− x′)
‖σ(x′)−1(x− x′)‖2

,

then under some regularity conditions, the two diffusions meet almost surely. (Note two special features
of (23): it is valid because the term in the square bracket is an orthogonal matrix; and it ceases to be
well-defined once the two trajectories have met.) Simulating the meeting time τ turns out to be very
challenging. The Euler discretisation (Algorithm 11 + Algorithm 12) has a fixed step size δ, and there is
zero probability that τ is of the form kδ for some integer k. Since the coupling transform is deterministic,
the two Euler-simulated trajectories will never meet. Figure 15 depicts this difficulty in the special case
of two Brownian motions in dimension 1 (i.e. b(x) ≡ 0 and σ ≡ 1). Under this setting, (23) means that
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Figure 15. Coupling of two Brownian motions in R starting from 0 and 4 respectively.
The true Lindvall-Rogers coupling (23) is represented by the continuous grey lines. The
dicretised simulation (Algorithm 11 + Algorithm 12) is shown by the dashed lines. The
discretised trajectories not only miss the true meeting point τ but also never meet after-
wards (see text).

the two Brownian increments are symmetric with respect to the midpoint of the segment connecting their
initial states. Note that the two dashed lines do cross at two points, but using them as meeting points is
invalid: since they are not part of the discretisation but the result of some heuristic “linear interpolation”,
it would change the distribution of the trajectories.

Algorithm 12: Lindvall-Rogers coupling of two Gaussian distributions

Input: Two vectors µA, µB in Rd and two d× d matrices σA and σB

Calculate u← (σB)−1(µA − µB)

Normalise u← u/ ‖u‖2
Simulate WA ∼ N (0, Id)

Set WB ← (Id−2uu>)WA

Set XA ← µA + σAWA

Set XB ← µB + σBWB

Output: Two correlated points XA and XB marginally distributed according to N (µA, σA(σA)>)
and N (µB, σB(σB)>) respectively

We therefore need some coupling that has a non-zero meeting probability at each δ-step. This can be
achieved by the rejection maximal coupling (Algorithm 13, see also, e.g. Roberts and Rosenthal, 2004)
as well as the recently proposed coupled rejection sampler (Corenflos and Särkkä, 2022). However, they
all make use of rejection sampling in one way or another, which renders the execution time random. We
wish to avoid this if possible. The reflection-maximal coupling (Bou-Rabee et al., 2020; Jacob et al.,
2020) has deterministic cost and optimal meeting probability, but is only applicable for two Gaussian
distributions of the same covariance matrix, which is not our case.

As suggested by Figure 15, the discretised Lindvall-Rogers coupling (Algorithm 12) is actually great for
bringing together two faraway trajectories. Only when they start getting closer that it misses out. At
that moment, the two distributions corresponding to the next δ-step have non-negligible overlap and
would preferably be coupled in the style of Algorithm 13. We propose a modified coupling scheme that
acts like Algorithm 12 when the two trajectories are at a large distance and behaves as Algorithm 13
otherwise.
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Algorithm 13: Rejection maximal coupler for two distributions

Input: Two probability distributions fA and fB

Simulate XA ∼ fA

Simulate UA ∼ Uniform[0, fA(XA)]

if UA ≤ fB(XA) then
Set XB ← XA

else
repeat

Simulate XB ∼ fB

Simulate UB ∼ Uniform[0, fB(XB)]

until UB > fA(XB)

Output: Two maximally-coupled realisations XA and XB, marginally fA-distributed and
fB-distributed respectively

The idea is to preliminarily generate a uniform draw in the “overlapping zone” of the two distributions
(if they are close enough to make that easy). Next, we perform Algorithm 12 and then, any of the
two simulations belonging to the overlapping zone will be replaced by the aforementioned preliminary
draw (if it is available). The precise mathematical formulation is given in Algorithm 14 and the proof in
Supplement E.12.

Algorithm 14: Modified Lindvall-Rogers (MLR) coupler of two Gaussian distributions

Input: Two vectors µA and µB in Rd, two d× d matrices σA and σB

Let fA and fB be respectively the probability densities of N (µA, σA(σA)>) and N (µB, σB(σB)>)

Simulate XA and XB from Algorithm 12

Simulate U ∼ Uniform[0, 1]

Set UA ← UfA(XA) and UB ← UfB(XB)

Simulate Y ∼ fA and V ∼ Uniform[0, fA(Y )]

if V ≤ fB(Y ) then
if UA ≤ fB(XA) then update (XA, UA)← (Y, V )

if UB ≤ fA(XB) then update (XB, UB)← (Y, V )

Output: Two correlated random vectors XA and XB, distributed marginally according to
N (µA, σA(σA)>) and N (µB, σB(σB)>)

Algorithm 14 has a deterministic execution time, but it does not attain the optimal coupling rate. Yet,
as δ → 0, we see empirically that it still recovers the oracle coupling time defined by (23) (although we
did not try to prove this formally). In Figure 16, we couple two standard Brownian motions starting from
a = 0 and b = 1.5 using Algorithm 14 with different values of δ. It is known, by a simple application of
the reflection principle (Lévy, 1940; see also Chapter 2.2 of Mörters and Peres, 2010), that the reflection
coupling (23) succeeds after a Levy(0, (b − a)2/4)-distributed time. We therefore have to deal with a
heavy-tailed distribution and restrict ourselves to the interval [0, 5]. We see that the law of the meeting
time is stable and convergent as δ → 0. Thus, at least empirically, Algorithm 14 does not suffer from the
instability problem as δ → 0, contrary to a naive path space augmentation approach (see Yonekura and
Beskos, 2022 for a discussion).

D.2.2. Supplementary figures. Figure 17 plots a realisation of the states and data with parameters given
in Subsection 5.2, for a relatively small scale dataset (T = 50). While the periodic trait seen in classical
deterministic Lotka-Volterra equations is still visible (with a period of around 20), it is clear that here
random perturbations have added considerable chaos to the system. Figures 18 and 19 show respectively
the performances of the naive genealogy tracking smoother and ours (Algorithm 9) on the dataset of
Figure 17. Our smoother has successfully prevented the degeneracy phenomenon, particularly for times
close to 0. Figure 20 shows, in two different ways, the properties of effective sample sizes (ESS) in the
T = 3000 scenario (see Section 5.2).
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Figure 16. Densities of the meeting times restricted to [0, 5] for two Brownian motions
started from 0 and 1.5. The curves are drawn using 20 000 simulations from either
a Levy distribution (for the “True distribution” curve) or Algorithm 14 (for the MLR
ones). The boundary effect of kernel density estimators causes spills beyond 0 and 5.
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Figure 17. A realisation of the Lotka-Volterra SDE with parameters described in Sec-
tion 5.2. The stationary point of the system is [100, 100].

Appendix E. Proofs

E.1. Proof of Theorem 2.1 (general convergence theorem). In line with (7), we define the distri-
bution QNt (dx0:t) for t < T as the x0:t marginal of the joint distribution

(24) Q̄Nt (dx0:t,di0:t) :=M(W 1:N
t )(dit)

[
1∏
s=t

BNs (is,dis−1)

][
0∏
s=t

δXis
s

(dxs)

]
.

The proof builds up on an inductive argument which links QNt with QNt−1 through new innovations at time

t. More precisely, we have the following fundamental proposition, where F+
t is defined as the smallest

σ-algebra containing Ft and B̂N1:t.

Proposition 5. QNt is a mixture distribution that admits the representation

(25) QNt (dx0:t) = (`Nt )−1N−1
∑
n

Gt(xt)K
N
t (n, dx0:t)

where `Nt is defined in Algorithm 1 and KN
t (n,dx0:t) is a certain probability measure satisfying

(26) E
[
KN
t (n, dx0:t)

∣∣F+
t−1

]
= QNt−1(dx0:t−1)Mt(xt−1,dxt).
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Figure 18. Smoothing trajectories for the dataset of Figure 17 using the naive genealogy

tracking smoother (BN,GT
t kernels) with systematic resampling (see Section C.1). We

took N = 100 and randomly plotted 30 smoothing trajectories.
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Figure 19. Same as Figure 18, but smoothing was done using Algorithm 9 instead.

In other words, for any (possibly random) function ϕNt : X0 × · · · × Xt → R such that ϕNt (x0:t) is F+
t−1-

measurable, we have

E

[∫
KN
t (n,dx0:t)ϕ

N
t (x0:t)

∣∣∣∣F+
t−1

]
=

∫
QNt−1(dx0:t−1)Mt(xt−1,dxt)ϕ

N
t (x0:t).

Moreover,
∫
KN
t (n, dx0:t)ϕ

N
t (x0:t), for n = 1, . . . , N are i.i.d. given F+

t−1.

The proof is postponed until the end of this subsection. This proposition gives the expression (25) for
QNt , which is easier to manipulate than (24) and which highlights, through (26), its connection to QNt−1.
To further simplify the notations, let us define, following Douc et al. (2011), the kernel Lt1:t2 , for t1 ≤ t2,
as

(27) Lt1:t2(x?0:t1 ,dx0:t2) := δx?
0:t1

(dx0:t1)

t2∏
s=t1+1

Ms(xs−1,dxs)Gs(xs).

In other words, for real-valued functions ϕt2 = ϕt2(x0, . . . , xt2), we have

Lt1:t2(x?0:t1 , ϕt2) =

∫
ϕt2(x?0, . . . , x

?
t1 , xt1+1, . . . , xt2)

t2∏
s=t1+1

Ms(xs−1,dxs)Gs(xs).
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Figure 20. Effective sample size (ESS) for the Lotka-Voltterra SDE model with T =
3000 (Section 5.2). The left pane draws the box plot of the collection of all estimated
ESS for t = 0, . . . , 3000. The right pane plots the evolution of ESS with time. The
quantity changes so chaotically that the curve only plots one value every 20 time steps
for readability.

The usefulness of these kernels will come from the simple remark Qt2 ∝ Qt1Lt1:t2 . We also see that

‖Lt1:t2ϕt2‖∞ ≤ ‖ϕt2‖∞
t2∏

s=t1+1

‖Gs‖∞ ,

which gives ‖Lt1:t2‖∞ < ∞, where the norm of a kernel is defined in Subsection A. We are now in a
position to state an importance sampling-like representation of QNt .

Corollary 3. Let ϕNt : X0 × · · · × Xt → R be a (possibly random) function such that ϕNt (x0:t) is
F+
t−1-measurable. Suppose that ϕNt is either uniformly non-negative (i.e. ϕNt (x0:t) ≥ 0 almost surely) or

uniformly bounded (i.e. there exists a deterministic C such that |ϕNt (x0:t)| ≤ C almost surely). Then

QNt ϕ
N
t =

N−1
∑
n K̃

N
t (n, ϕNt )

N−1
∑
n K̃

N
t (n,1)

,

where K̃N
t (n, ·) is a certain random kernel such that

• E
[
K̃N
t (n, ϕNt )

∣∣∣F+
t−1

]
= (QNt−1Lt−1:t)ϕ

N
t ;

• N−1
∑
n K̃

N
t (n,1) = `Nt ;

•
(
K̃N
t (n, ϕNt )

)
n=1,...,N

are i.i.d. given F+
t−1;

• almost surely,
∣∣∣K̃N

t (n, ϕNt )
∣∣∣ ≤ ∥∥ϕNt ∥∥∞ ‖Gt‖∞ if ϕNt is uniformly bounded and K̃N

t (n, ϕNt ) ≥ 0 if

ϕNt is uniformly non-negative.

These statements are valid for t = 0 under the convention QN−1L−1:0 = Q−1L−1:0 = M0 and F−1 being
the trivial σ-algebra.

Proof. Put K̃N
t (n, ϕNt ) :=

∫
Gt(xt)K

N
t (n,dx0:t)ϕ

N
t (x0:t) where KN

t is defined in Proposition 5. Then

QNt (ϕNt ) =
N−1

∑
n

∫
Gt(xt)K

N
t (n, dx0:t)ϕ

N
t (x0:t)

`Nt

=
N−1

∑
n K̃

N
t (n, ϕNt )

`Nt
.
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Since QNt is a probability measure, applying this identity twice yields

QNt (ϕNt ) =
QNt (ϕNt )

QNt (1)
=
N−1

∑
n K̃

N
t (n, ϕNt )

N−1
∑
n K̃

N
t (n,1)

.

The remaining points are simple consequences of the definition of K̃N
t and Lt−1:t. �

The corollary hints at a natural induction proof for Theorem 2.1.

Proof of Theorem 2.1. The following calculations are valid for all T ≥ 0, under the convention defined at
the end of Corollary 3. They will prove (8) for T = 0 and, at the same time, prove it for any T ≥ 1 under
the hypothesis that it already holds true for T − 1. Let ϕT = ϕT (x0, . . . , xT ) be a real-valued function
on X0 × · · · × XT . Write

(28)
√
N(QNT ϕT − QTϕT ) =

√
N

(
N−1

∑
n K̃

N
T (n, ϕT )

N−1
∑
n K̃

N
T (n,1)

− QT−1LT−1:TϕT
QT−1LT−1:T1

)
where the rewriting of QTϕT is a consequence of QT ∝ QT−1LT−1:T . We will bound this difference by
Hoeffding’s inequalities for ratios (see Supplement E.13 for notations, including the definition of sub-
Gaussian variables that we shall use below). We have

• that
√
N(N−1

∑
K̃N
T (n, ϕT )− QNT−1LT−1:TϕT ) is (1, ‖ϕT ‖∞ ‖GT ‖∞)-sub-Gaussian conditioned

on F+
t−1 because of Theorem E.15 (and thus unconditionally, by the law of total expectation);

• and that
√
N(N−1QNT−1LT−1:TϕT − QT−1LT−1:TϕT ) is sub-Gaussian with parameters

(CT−1, ST−1 ‖LT−1:T ‖∞ ‖ϕT ‖∞)

if T ≥ 1 by induction hypothesis. The quantity is equal to 0 if T = 0.

This permits to apply Lemma E.16, which results in the sub-Gaussian properties of

• the quantity
√
N(N−1

∑
K̃N
T (n, ϕT )−QT−1LT−1:TϕT ), with parameters (1+CT−1, S

′
T−1 ‖ϕT ‖∞),

for a certain constant S′T−1;

• and the quantity
√
N(N−1

∑
K̃N
T (n,1) − QT−1LT−1:T1), which is a special case of the former

one, with parameters (1 + CT−1, S
′
T−1).

Finally, we invoke Proposition 11 and deduce the sub-Gaussian property of (28) with parameters(
2 + 2CT−1, 2

S′T−1 ‖ϕT ‖∞
QT−1LT−1:T1

)
which finishes the proof. �

Proof of Proposition 5. From (24), we have

QNt (dx0:t) =
∑
it

Q̄Nt (dit)Q̄
N
t (dx0:t|it)

= (`Nt )−1N−1
∑
it

Gt(X
it
t )Q̄Nt (dx0:t|it)

= (`Nt )−1N−1
∑
it

Gt(xt)Q̄
N
t (dx0:t|it)

since Q̄Nt (dx0:t|it) has a δ
X

it
t

(dxt) term. In fact, the identity

Q̄Nt (dx0:t,dit−1|it) = δ
X

it
t

(dxt)B
N
t (it,dit−1)Q̄Nt−1(dx0:t−1|it−1)

follows directly from the backward recursive nature of Algorithm 2, and thus

(29) Q̄Nt (dx0:t|it) = δ
X

it
t

(dxt)

∫
it−1

BNt (it,dit−1)Q̄Nt−1(dx0:t−1|it−1).
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The QNt−1(dx0:t−1|it−1) term is F+
t−1-measurable. We shall calculate the expectation of δ

X
it
t

(dxt)B
N
t (it,dit−1)

given F+
t−1. The following arguments are necessary for formal verification, but the result (30) is natural

in light of the ancestor regeneration intuition explained in Section 2.4.

Let fNt : {1, . . . , N}×Xt → R be a (possibly random) function such that fNt (it−1, xt) is F+
t−1-measurable.

Let J itt be a random variable such that given F+
t−1, Xit

t and B̂Nt (it, ·), J itt is BNt (it,dit−1)-distributed.

This automatically makes J itt satisfy the second hypothesis of Theorem 2.1. Additionally, by virtue of its

first hypothesis, the distribution of (J itt , A
it
t ) is the same given either F+

t−1 or X1:N
t−1 (see also Figure 1).

We can now write

E

[∫
fNt (it−1, xt)δXit

t
(dxt)B

N
t (it,dit−1)

∣∣∣∣F+
t−1

]
=E

[∫
fNt (it−1, X

it
t )BNt (it,dit−1)

∣∣∣∣F+
t−1

]
=E
[

E
[
fNt (J itt , X

it
t )
∣∣F+

t−1, X
it
t , B̂

N
t (it, ·)

]∣∣∣F+
t−1

]
=E
[
fNt (J itt , X

it
t )
∣∣F+

t−1

]
by the law of total expectation

=E
[
fNt (Aitt , X

it
t )
∣∣F+

t−1

]
by the second hypothesis of Theorem 2.1

=

∫
fNt (it−1, xt)M(W 1:N

t−1 )(dit−1)Mt(X
it−1

t−1 ,dxt).

This equality means that

(30) E
[
δ
X

it
t

(dxt)B
N
t (it,dit−1)

∣∣∣F+
t−1

]
=M(W 1:N

t−1 )(dit−1)Mt(X
it−1

t−1 ,dxt),

Now, put

KN (it,dx0:t) := Q̄Nt (dx0:t|it).
From (29) and (30), we have

E
[
KN (it,dx0:t)

∣∣F+
t−1

]
=

∫
it−1

M(W 1:N
t−1 )(dit−1)Mt(X

it−1

t−1 ,dxt)Q̄
N
t−1(dx0:t−1|it−1)

= Mt(xt−1,dxt)

∫
it−1

M(W 1:N
t−1 )(dit−1)Q̄Nt−1(dx0:t−1|it−1)

since Q̄Nt−1(dx0:t−1|it−1) has a δ
X

it−1
t−1 (dxt−1)

term

= Mt(xt−1,dxt)Q
N
t−1(dx0:t−1)

which finishes the proof. �

E.2. Proof of Equation (11) (online smoothing recursion).

Proof. Using (7) and the matrix notations, the distribution Q̄Nt (dis) can be represented by the 1 × N
vector

q̂Ns|t := [W 1
t . . .W

N
t ]B̂Nt . . . B̂Ns+1.

Defining the N ×N matrix ψ̂Ns as

ψ̂Ns [is−1, is] := ψs(X
is−1

s−1 , X
is
s ),

we have

EQN
t

[ψs(Xs−1, Xs)] =
∑
is,is−1

q̂Ns|t[1, is]B̂
N
s [is, is−1]ψ̂Ns [is−1, is]

=
∑
is

q̂Ns|t[1, is](B̂
N
s ψ̂

N
s )[is, is]

= q̂Ns|t diag(B̂Ns ψ̂
N
s ).
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x1:N
t−2

x1:N
t−1

x1:N
t

x1:N
t+1

. . .

x1:N
T

. . .

b̃1:N
t−1

b̃1:N
t

b̃1:N
t+1

. . .

b̃1:N
T

i1:2
T

. . .

i1:2
t−2

i1:2
t−1

i1:2
t

. . .

i1:2
T−1

Figure 21. Directed graph representing the relations between variables generated in
Algorithm 2. Only those necessary for the proof of Lemma E.1 are included.

Therefore,

QNt ϕt =

t∑
s=0

[W 1
t . . .W

N
t ]B̂Nt . . . B̂Ns+1 diag(B̂Ns ψ̂

N
s )

from which follows the recursion {
QNt ϕt = [W 1

t . . .W
N
t ]ŜNt ,

ŜNt := B̂Nt Ŝ
N
t−1 + diag(B̂Nt ψ̂

N
t ).

This is exactly (11). �

E.3. Proof of Theorem 2.2 (general stability theorem). The following lemma describes the simul-
taneous backward construction of two trajectories I1

0:T and I2
0:T given F−T .

Lemma E.1. We use the same notations as in Algorithms 1 and 2. Suppose that the hypotheses of
Theorem 2.1 are satisfied. Then, given I1

t:T , I2
t:T and F−T ,

• if I1
t 6= I2

t , the two variables I1
t−1 and I2

t−1 are conditionally independent and their marginal

distributions are respectively BN,FFBS
t (I1

t , ·) and BN,FFBS
t (I2

t , ·);

• if I1
t = I2

t , under the aforementioned conditioning, the two variables I1
t−1 and I2

t−1 are both

marginally distributed according to BN,FFBS
t (I1

t , ·). Moreover, if (13) holds, we have

(31) P
(
I1
t−1 6= I2

t−1

∣∣ I1,2
t:T ,F

−
T

)
1I1t =I2t ≥ εS 1I1t =I2t .

In particular, the sequence of variables (I1
T−s, I2

T−s)
T
s=0 is a Markov chain given F−T .

Proof. To simplify the notations, let b̃nt denote the Rn vector B̂Nt (n, ·). The relation between variables
generated by Algorithm 2 is depicted as a graphical model in Figure 21. We consider
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p(b̃1:N
t , i1:2

t−1|F−T , i
1:2
t:T ) = p(b̃1:N

t |F−T , i
1:2
t:T ) p(i1:2

t−1|b̃1:N
t ,F−T , i

1,2
t:T )

= p(b̃1:N
t |x1:N

t−1, x
1:N
t ) p(i1:2

t−1|b̃1:N
t , i1:2

t )

(by properties of graphical models, see Figure 21)

=

[∏
n

p(b̃nt |x1:N
t−1, x

n
t )

]
b̃
i1t
t (i1t−1)b̃

i2t
t (i2t−1).

(32)

The distribution of i1t−1 given F−T and i1:2
t:T is thus the i1t−1-marginal of

(33) p(b̃
i1t
t |x1:N

t−1, x
i1t
t )b̃

i1t
t (i1t−1),

which is exactly the distribution of p(j
i1t
t |x1:N

t−1, x
i1t
t ) where the J ’s are defined in the statement of The-

orem 2.1. By the second hypothesis of that theorem, the aforementioned distribution is equal to

p(a
i1t
t |x1:N

t−1, x
i1t
t ), which is in turn no other than BN,FFBS

t (i1t , ·). Moreover, if i1t 6= i2t , (32) straightfor-
wardly implies the conditional independence of i1t−1 and i2t−1. When i1t = i2t , the distribution of i1:2

t−1

given F−T and i1:2
t:T is the i1:2

t−1-marginal of

p(b̃
i1t
t |x1:N

t−1, x
i1t
t )b̃

i1t
t (i1t−1)b̃

i1t
t (i2t−1).

Thus, we can apply (13) for n = i1t , where i1:2
t−1 here plays the role of J1:2

t there. Equation (31) is now
proved. �

As Lemma E.1 describes the distribution of two trajectories, it immediately gives the distribution of a
single trajectory.

Corollary 4. Under the same settings as in Lemma E.1, given F−T , the distribution of I1
0:T is

M(W 1:N
T )(diT )BN,FFBS

T (iT ,diT−1) . . . BN,FFBS
1 (i1,di0).

Note that the corollary applies even if the backward kernel used in Algorithm 2 is not the FFBS one.
This is due to the conditioning on F−T and the second hypothesis of Theorem 2.1.

Proof of Theorem 2.2. First of all, we remark that as per Algorithm 2, using index variables I1:N
0:T adds

a level of Monte Carlo approximation to QNT (dx0:T ). Therefore

E
[
(QNT (ϕT )− QT (ϕT ))2

]
= E

( 1

N

N∑
n=1

ϕT (X
In0
0 , . . . , X

InT
T )− QT (ϕT )

)2


= E
[
(QN,FFBS
T (ϕT )− QT (ϕT ))2

]
+(34)

+ E

[
Var

(
1

N

N∑
n=1

ϕT (X
In0
0 , . . . , X

InT
T )

∣∣∣∣∣F−T
)]

where the ultimate inequality is justified by the law of total expectation and Corollary 4. (Note that
(In0:T )Nn=1 are identically distributed but not necessarily independent given F−T .) Using Lemma E.3
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(stated and proved below) and putting ρ := 1− M̄`/M̄h, we have

(35)

Var

(
1

N

N∑
n=1

ϕT (X
In0
0 , . . . , X

InT
T )

∣∣∣∣∣F−T
)

= Var

(
1

N

N∑
n=1

T∑
t=0

ψt(X
Int−1

t−1 , X
Int
t )

∣∣∣∣∣F−T
)

=
1

N2

∑
n,m≤N

∑
s,t≤T

Cov
(
ψt(X

Int−1

t−1 , X
Int
t ), ψs(X

Ims−1

s−1 , X
Ims
s )

∣∣∣F−T )
≤ 2

N2

∑
n,m≤N
n=m

∑
s,t≤T

‖ψt‖∞ ‖ψs‖∞ ρ|t−s|−1+

+
4

N2

∑
n,m≤N
n 6=m

∑
s,t≤T

C̃

N
‖ψt‖∞ ‖ψs‖∞ ρ|t−s|−1

=

∑
s,t≤T

2 ‖ψt‖∞ ‖ψs‖∞ ρ|t−s|−1

 (2C̃ + 1)N − 2C̃

N2

≤

 ∑
s,t≤T

(
‖ψt‖2∞ + ‖ψs‖2∞

)
ρ|t−s|−1

 2C̃ + 1

N
≤ 4(2C̃ + 1)

Nρ(1− ρ)

∑
‖ψt‖2∞ .

We now look at the first term of (34). In the fixed marginal smoothing case, for any s ∈ Z+, s ≤ T and
any function φs : Xs → R, Douc et al. (2011) proved that

P
(∣∣∣QN,FFBS

T (ϕT )− QT (ϕT )
∣∣∣ ≥ ε) ≤ B′e−C′Nε2/‖φs‖2∞

for ϕT (x0:T ) = φs(xs) and constants B′ and C ′ not depending on T . Using E[∆2] =
∫∞

0
P(∆2 ≥ t)dt,

the inequality implies

(36) E

[∣∣∣QN,FFBS
T (ϕT )− QT (ϕT )

∣∣∣2] ≤ B′ ‖φs‖2∞
C ′N

for ϕT (x0:T ) = φs(xs). In the additive smoothing case, Dubarry and Le Corff (2013) proved that, for
T ≥ 2,

(37) E

[∣∣∣QN,FFBS
T (ϕT )− QT (ϕT )

∣∣∣2] ≤ C ′

N

(
T∑
t=0

‖ψt‖2∞

)(
1 +

√
T

N

)2

.

Equations (36), (37), (35) and (34) conclude the proof. �

The following lemma quantifies the backward mixing property induced by Assumption 2.

Lemma E.2. Under the same setting as Theorem 2.2, we have

TV
(
BN,FFBS
t (m, ·), BN,FFBS

t (n, ·)
)
≤ 1− M̄`

M̄h

for all m,n ∈ {1, . . . , N} and t ∈ {1, . . . , T}.
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Proof. We have

1− TV
(
BN,FFBS
t (m, ·), BN,FFBS

t (n, ·)
)

=

[
N∑
i=1

min

(
Gt−1(Xi

t−1)mt(X
i
t−1, X

m
t )∑N

j=1Gt−1(Xj
t−1)mt(X

j
t−1, X

m
t )

,

Gt−1(Xi
t−1)mt(X

i
t−1, X

n
t )∑N

j=1Gt−1(Xj
t−1)mt(X

j
t−1, X

n
t )

)]
by Lemma A.1 (Supplement A.2)

≥

[
N∑
i=1

Gt(X
i
t−1)M̄`∑N

j=1Gt(X
j
t−1)M̄h

]
by Assumption 2

= (M̄`/M̄h).

�

Lemma E.3. Under the same settings as in Theorem 2.2, for any m,n ∈ {1, . . . , N} and s, s′ ∈
{0, . . . , T}, we have

(38) Cov
(
ψs(X

Ims−1

s−1 , X
Ims
s ), ψs′(X

In
s′−1

s′−1 , X
In
s′

s′ )
∣∣∣F−T )

≤ 2

(
1− M̄`

M̄h

)|s−s′|−1

‖ψs‖∞ ‖ψs′‖∞ ×

{
2C̃/N if m 6= n

1 if m = n

where C̃ = C̃(M̄`, M̄h, Ḡ`, Ḡh, εS) is a constant that does not depend on T (and which arises in the
formulation of Lemma E.4). If s or s′ is equal to 0, we adopt the natural convention ψ0(x−1, x0) :=
ψ0(x0).

Proof. We first handle the case m 6= n. Without loss of generality, assume that m = 1, n = 2 and s ≥ s′.
The covariance bound of Lemma A.1 yields

(39) Cov

(
ψs(X

I1s−1

s−1 , X
I1s
s ), ψs′(X

I2
s′−1

s′−1 , X
I2
s′

s′ )

∣∣∣∣F−T )
≤ 2 ‖ψs‖∞ ‖ψs′‖∞ TV

(
(I1
s−1:s, I2

s′−1:s′)|F−T , (I
1
s−1:s|F−T )⊗ (I2

s′−1:s′ |F−T )
)
.

We shall bound this total variation distance via the coupling inequality of Lemma A.1 (Supplement A.2).
The idea is to construct, in addition to I1

0:T and I2
0:T , two trajectories I∗10:T and I∗20:T i.i.d. given F−T such

that each of them is conditionally distributed according to I1
0:T (cf. Corollary 4). To make the coupling

inequality efficient, it is desirable to make I1
0:T and I∗10:T as similar as possible (same thing for I2

0:T and
I∗20:T ).

The detailed construction of the four trajectories I1
0:T , I2

0:T , I∗10:T and I∗20:T given F−T is described in
Algorithm 15. In particular, we ensure that ∀t ≥ s − 1, we have I1

t = I∗1t . For t ≤ s − 1, if I2
t = I∗2t ,

it is guaranteed that I2
` = I∗2` holds ∀` ≤ t. The rationale for different coupling behaviours between the

times t ≥ s − 1 and t ≤ s − 1 will become clear in the proof: the former aim to control the correlation
between two different trajectories m = 1 and n = 2 and result in the C̃/N term of (38); the latter are

for bounding the correlation between two times s and s′ and result in the (1 − M̄`/M̄h)|s−s
′|−1 term of

the same equation.

The correctness of Algorithm 15 is asserted by Lemma E.1. Step (?) is valid because that lemma states

that the distribution of Ikt−1 given F−T , I1,2
t:T and I∗1,2t:T is BN,FFBS

t (Ikt , ·). Furthermore, we note that

(RT−t)
T
t=0 where

Rt := (I1
t , I2

t , I∗1t , I∗2t ),

is a Markov chain given F−T .
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Algorithm 15: Sampler for the variables I1
0:T , I2

0:T , I∗10:T and I∗20:T (see proof of Lemma E.3)

Input: Feynman-Kac model (1), variables X1:N
0:T from the output of Algorithm 1, integer s ≥ 0 (see

statement of Lemma E.3)

Sample I1
T , I2

T
i.i.d.∼ M(W 1:N

T )

Set I∗1T ← I1
T and I∗2T ← I2

T

for t← T to 1 do
if I1

t 6= I2
t then

for k ∈ {1, 2} do

Sample (Ikt−1, I∗kt−1) from any maximal coupling of BN,FFBS
t (Ikt , ·) and BN,FFBS

t (I∗kt , ·)
(cf. Lemma A.1)

else

Sample the RN vector B̂Nt (I1
t , ·) from p(b̂Nt (i1t , ·)|x1:N

t−1, x
i1t
t )

Sample I1
t−1, I2

t−1
i.i.d.∼ B̂Nt (I1

t , ·)
Set k ← 1, `← 2 if t ≥ s and k ← 2, `← 1 otherwise

Sample I∗kt−1 ∼ B
N,FFBS
t (I∗kt , ·) such that (I∗kt−1, Ikt−1) is any maximal coupling of

BN,FFBS
t (I∗kt , ·) and BN,FFBS

t (Ikt , ·) given I1:2
t:T , I∗1:2

t:T and F−T ((?) - see text for validity of
this step)

Sample I∗`t−1 ∼ B
N,FFBS
t (I∗`t , ·)

Output: Four trajectories I1
0:T , I2

0:T , I∗10:T , I∗20:T to be used in the proof of Lemma E.3

From (39), applying the coupling inequality of Lemma A.1 gives

(40) Cov

(
ψs(X

I1s−1

s−1 , X
I1s
s ), ψs′(X

I2
s′−1

s′−1 , X
I2
s′

s′ )

∣∣∣∣F−T )
≤ 2 ‖ψs‖∞ ‖ψs′‖∞ P

(
(I1
s−1:s, I2

s′−1:s′) 6= (I∗1s−1:s, I∗2s′−1:s′)
∣∣F−T )

= 2 ‖ψs‖∞ ‖ψs′‖∞ P
(
I2
s′−1:s′ 6= I∗2s′−1:s′

∣∣F−T )
where the last equality results from the construction of Algorithm 15. The sub-case s = s′ following
directly from Lemma E.4, we now focus on the sub-case s ≥ s′ + 1. For all t ≤ s− 1,

(41)

P
(
I2
t−1 6= I∗2t−1

∣∣F−T )
= P

(
I2
t−1 6= I∗2t−1, I2

t 6= I∗2t
∣∣F−T )

by construction of Algorithm 15

= E
[
P
(
I2
t−1 6= I∗2t−1, I2

t 6= I∗2t
∣∣Rt,F−T )∣∣F−T ]

by the law of total expectation

= E
[

TV
(
BN,FFBS
t (I2

t , ·), B
N,FFBS
t (I∗2t , ·)

)
1
{
I2
t 6= I∗2t

}∣∣∣F−T ]
≤
(

1− M̄`

M̄h

)
P
(
I2
t 6= I∗2t

∣∣F−T ) by Lemma E.2.

Thus

P
(
I2
s′−1:s′ 6= I∗2s′−1:s′

∣∣F−T )
= P

(
I2
s′ 6= I∗2s′

∣∣F−T ) by construction of Algorithm 15

≤
(

1− M̄`

M̄h

)s−s′−1

P
(
I2
s−1 6= I∗2s−1

∣∣F−T ) by applying (41) recursively

≤
(

1− M̄`

M̄h

)s−s′−1
C̃

N
by Lemma E.4,

which, combined with (40) finishes the proof for the current sub-case s ≥ s′ + 1. It remains to show (38)
when m = n. The proof follows the same lines as in the case m 6= n, although we shall briefly outline
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some arguments to show how the factor C̃/N disappeared. The case s = s′ being trivial, suppose that
s ≥ s′ + 1 and without loss of generality that m = n = 3. To use the coupling tools of Lemma A.1, we
construct trajectories I3

0:T , I∗30:T and I∗40:T via Algorithm 16 and write, in the spirit of (40):

Algorithm 16: Sampler for the variables I3
0:T , I∗30:T and I∗40:T (see proof of Lemma E.3)

Input: Feynman-Kac model (1), variables X1:N
0:T from the output of Algorithm 1, integer s ≥ 0 (see

statement of Lemma E.3)

Sample I∗3T , I∗4T
i.i.d.∼ M(W 1:N

T )

Set I3
T ← I∗3T

for t← T to 1 do
if t ≥ s then

Sample I∗3t−1 ∼ B
N,FFBS
t (I∗3t , ·) and I∗4t−1 ∼ B

N,FFBS
t (I∗4t , ·)

Set I3
t−1 ← I∗3t−1

else

Sample (I3
t−1, I∗4t−1) from a maximal coupling of BN,FFBS

t (I3
t , ·) and BN,FFBS

t (I∗4t , ·)
Sample I∗3t−1 ∼ B

N,FFBS
t (I∗3t , ·)

Output: Three trajectories I3
0:T , I∗30:T and I∗40:T to be used in the proof of Lemma E.3

(42) Cov

(
ψs(X

I3s−1

s−1 , X
I3s
s ), ψs′(X

I3s−1

s′−1 , X
I3
s′

s′ )

∣∣∣∣F−T )
≤ 2 ‖ψs‖∞ ‖ψs′‖∞ P

(
(I3
s−1:s, I3

s′−1:s′) 6= (I∗3s−1:s, I∗4s′−1:s′)
∣∣F−T )

= 2 ‖ψs‖∞ ‖ψs′‖∞ P
(
I3
s′ 6= I∗4s′

∣∣F−T )
where the last equality follows from the construction of Algorithm 16 and the hypothesis s ≥ s′ + 1. For
all t ≤ s− 1, the inequality

(43) P
(
I3
t−1 6= I∗4t−1

∣∣F−T ) ≤ (1− M̄`

M̄h

)
P
(
I3
t 6= I∗4t

∣∣F−T )
can be proved using the same techniques as those used to prove (41): applying Lemma E.2 given
(I3
t , I∗3t , I∗4t ) then invoking the law of total expectation. Repeatedly instantiating (43) gives

P
(
I3
s′ 6= I∗4s′

∣∣F−T ) ≤ (1− M̄`

M̄h

)s−s′−1

P
(
I3
s−1 6= I∗4s−1

∣∣F−T )
≤
(

1− M̄`

M̄h

)s−s′−1

which, when plugged into (42), finishes the proof. �

Lemma E.4. For I2
s and I2∗

s defined by the output of Algorithm 15, we have

P
(
I2
s 6= I∗2s |F−T

)
≤ C̃/N, and

P
(
I2
s−1 6= I∗2s−1

∣∣F−T ) ≤ C̃/N, if s ≥ 1,

for some constant C̃ = C̃(M̄`, M̄h, Ḡ`, Ḡh, εS).

Proof. DefineAt := 1
{
I1
t 6= I2

t

}
, Bt := 1

{
I2
t = I∗2t

}
and Γt := AtBt and recall thatRt := (I1

t , I2
t , I∗1t , I∗2t ).

The sequence (RT−`)
T
`=0 is a Markov chain given F−T , but this is not necessarily the case for the sequence

(ΓT−`)
T
`=0 of Bernoulli random variables. Nevertheless, Lemma E.5 below shows that one can get bounds

on two-step “transition probabilities” for (ΓT−`), i.e. the probabilities under F−T that Γt−2 = 1 given Γt
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and Rt. This motivates our following construction of actual Markov chains approximating the dynamic
of Γt. Let Γ∗T and Γ∗T−1 be two independent Bernoulli random variables given F−T such that

(44)
P
(

Γ∗T = 1| F−T
)

= P
(

ΓT = 1| F−T
)

P
(

Γ∗T−1 = 1
∣∣F−T ) = P

(
ΓT−1 = 1| F−T

)
.

Let Γ∗T ,Γ
∗
T−2,Γ

∗
T−4, . . . and Γ∗T−1,Γ

∗
T−3, . . . be two homogeneous Markov chains given F−T with the same

transition kernel
←−
C2 defined by

(45)

PF−T (Γ∗t−2 = 1|Γ∗t = 1) = 1− 2

N

(
ḠhM̄h

Ḡ`M̄`

)2

=:
←−
C2

11

PF−T (Γ∗t−2 = 1|Γ∗t = 0) =
M̄`εS

2M̄h
=:
←−
C2

01

where for two events E1, E2, the notation PF−T (E1|E2) is the ratio between P
(
E1, E2| F−T

)
and P

(
E2| F−T

)
.

We shall now prove by backward induction the following statement:

(46) P
(

Γt = 1| F−T
)
≥ P

(
Γ∗t = 1| F−T

)
,∀t ≥ s− 1.

Firstly, (46) holds for t = T and t = T − 1. Now suppose that it holds for some t ≥ s+ 1 and we wish to
justify it for t− 2. By Lemma E.5,

P
(

Γt−2 = 1|Rt,F−T
)

1Γt=1 ≥
←−
C2

111Γt=1

P
(

Γt−2 = 1|Rt,F−T
)

1Γt=0 ≥
←−
C2

011Γt=0.

Applying the law of total expectation gives

P
(

Γt−2 = 1| F−T
)
≥
←−
C2

11P
(

Γt = 1| F−T
)

+
←−
C2

01P
(

Γt = 0| F−T
)

=
(←−
C2

11 −
←−
C2

01

)
P
(

Γt = 1| F−T
)

+
←−
C2

01

≥
(←−
C2

11 −
←−
C2

01

)
P
(

Γ∗t = 1| F−T
)

+
←−
C2

01

if N is large enough, by induction hypothesis

= P
(

Γ∗t−2 = 1
∣∣F−T )

and (46) is now proved. To finish the proof of the lemma, it is necessary to lower bound its right hand
side. We start by controlling the distribution Γ∗t for t = T and t = T − 1. We have

(47)

P
(

Γ∗T = 1| F−T
)

= P
(

ΓT = 1| F−T
)

by (44)

= 1− P
(
AT = 0| F−T

)
as BT = 1 by Algorithm 15

= 1−
N∑
i=1

P
(
I1
T = I2

T = i
∣∣F−T )

= 1−
N∑
i=1

(
G(Xi

T )∑N
j=1G(Xj

T )

)2

≥ 1− 1

N

(
Ḡh
Ḡ`

)2

by Assumption 3
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and

(48)

P
(

Γ∗T−1 = 1
∣∣F−T ) ≥ P

(
ΓT = 1,ΓT−1 = 1| F−T

)
= E

[
P
(

ΓT = 1,ΓT−1 = 1|RT ,F−T
)∣∣F−T ]

by the law of total expectation

= E
[
P
(

ΓT−1 = 1|RT ,F−T
)

1ΓT =1

∣∣F−T ]
≥

[
1− 1

N

(
ḠhM̄h

Ḡ`M̄`

)2
]

P
(

ΓT = 1| F−T
)

via (53)

≥

[
1− 1

N

(
ḠhM̄h

Ḡ`M̄`

)2
][

1− 1

N

(
Ḡh
Ḡ`

)2
]
.

The contraction property of Lemma A.1 makes it possible to relate the intermediate distributions Γ∗t |F−T
to the end point ones Γ∗T−1|F

−
T and Γ∗T |F

−
T . More specifically, (45) and Lemma A.1 lead to

(49) TV(Γ∗t |F−T , µ
∗) ≤ max

(
TV(Γ∗T |F−T , µ

∗),TV(Γ∗T−1|F−T , µ
∗)
)

where µ∗ is the invariant distribution of a Markov chain with transition matrix
←−
C2, namely

(50)

µ∗({0}) =
←−
C2

10←−
C2

01+
←−
C2

10

µ∗({1}) = 1− µ∗({0}).

Furthermore, an alternative expression of the total variation distance given in Lemma A.1 implies that the
total variation distance between two Bernoulli distributions of parameters p and q is |p− q|. Combining
this with (49), the triangle inequality and the rough estimate max(a, b) ≤ a+ b ∀a, b ≥ 0, we get

P
(

Γ∗t = 0| F−T
)
≤ 3µ∗({0}) + P

(
Γ∗T = 0| F−T

)
+ P

(
Γ∗T−1 = 0

∣∣F−T ) ≤ C̃/N
where C̃ = C̃(M̄`, M̄h, Ḡ`, Ḡh, εS). The last inequality is straightforwardly derived by plugging respec-
tively (50), (47) and (48) into the three terms of the preceding sum. This combined with (46) finishes
the proof. �

Lemma E.5. For s defined in the statement of Lemma E.3; At, Bt and Rt defined in the proof of
Lemma E.4 and all t ≥ s+ 1, we have

P
(
At−2Bt−2 = 1|Rt,F−T

)
1AtBt=1 ≥

(
1− 2

N

(
ḠhM̄h

Ḡ`M̄`

)2
)

1AtBt=1;

P
(
At−2Bt−2 = 1|Rt,F−T

)
≥ M̄`εS

2M̄h

where the inequalities hold for N large enough, i.e., N ≥ N0 = N0(M̄`, M̄h, Ḡ`, Ḡh, εS).

Proof. We start by showing the following three inequalities for all t ≥ s and N sufficiently large:

P
(
At−1 = 1|Rt,F−T

)
≥ εS;(51)

P
(
At−1Bt−1 = 1|Rt,F−T

)
1At=1 ≥ (M̄`/2M̄h)1At=1;(52)

P
(
At−1Bt−1 = 1|Rt,F−T

)
1AtBt=1 ≥

[
1− 1

N

(
ḠhM̄h

Ḡ`M̄`

)2
]

1AtBt=1.(53)

For (51), we have

(54) P
(
At−1 = 1|Rt,F−T

)
1At 6=1 = P

(
I1
t−1 6= I2

t−1

∣∣Rt,F−T ) 1I1t =I2t ≥ εS1At 6=1



50 HAI-DANG DAU & NICOLAS CHOPIN

by Lemma E.1. Next,

(55)

P
(
At−1 = 1|Rt,F−T

)
1At=1

= P
(
I1
t−1 6= I2

t−1

∣∣Rt,F−T ) 1I1t 6=I2t

=

[
1−

∑
i

P
(
I1
t−1 = I2

t−1 = i
∣∣Rt,F−T )

]
1I1t 6=I2t

=

1−
N∑
i=1

2∏
k=1

Gt−1(Xi
t−1)mt(X

i
t−1, X

Ikt
t )∑N

j=1Gt−1(Xj
t−1)mt(X

j
t−1, X

Ikt
t )

1I1t 6=I2t by Lemma E.1

≥

[
1− 1

N

(
ḠhM̄h

Ḡ`M̄`

)2
]

1At=1 by Assumptions 2 and 3.

Combining (54) and (55) yields (51) for N large enough. To prove (52), we write

(56)

P
(
At−1Bt−1 = 1|Rt,F−T

)
1At=1

=
[
1− P

(
At−1Bt−1 = 0|Rt,F−T

)]
1At=1

≥
[
1− P

(
At−1 = 0|Rt,F−T

)
− P

(
Bt−1 = 0|Rt,F−T

)]
1At=1

=
[
P
(
At−1 = 1|Rt,F−T

)
+ P

(
Bt−1 = 1|Rt,F−T

)
− 1
]

1At=1.

We analyse the second term in the above expression. We have

(57)

P
(
Bt−1 = 1|Rt,F−T

)
1At=1

= P
(
I2
t−1 = I∗2t−1

∣∣Rt,F−T ) 1I1t 6=I2t

=
[
1− TV

(
BN,FFBS
t (I2

t , ·), B
N,FFBS
t (I∗2t , ·)

)]
1At=1

by construction of Algorithm 15

≥ (M̄`/M̄h)1At=1 by Lemma E.2.

Plugging (55) and (57) into (56) yields

P
(
At−1Bt−1 = 1|Rt,F−T

)
1At=1 ≥

(
− 1

N

(
ḠhM̄h

Ḡ`M̄`

)2

+
M̄`

M̄h

)
1At=1

and thus (52) follows if N is large enough. The inequality (53) is justified by combining (55), the simple
decomposition 1AtBt=1 = 1At=11Bt=1 and the fact that Algorithm 15 guarantees Bt−1 = 1 if At = Bt = 1.

We can now deduce the two inequalities in the statement of the Lemma. The first one is a straightforward
double application of (53):

P
(
At−2Bt−2 = 1|Rt,F−T

)
1AtBt=1

≥ P
(
At−2Bt−2 = 1, At−1Bt−1 = 1|Rt,F−T

)
1AtBt=1

= E
[
P
(
At−2Bt−2 = 1, At−1Bt−1 = 1|Rt−1, Rt,F−T

)∣∣Rt,F−T ] 1AtBt=1

by the law of total expectation

= E
[
P
(
At−2Bt−2 = 1|Rt−1,F−T

)
1At−1Bt−1=1

∣∣Rt,F−T ] 1AtBt=1

since (RT−`)
T
`=0 is Markov given F−T

≥ E

[(
1− 1

N

(
ḠhM̄h

Ḡ`M̄`

)2
)

1At−1Bt−1=1

∣∣∣∣∣Rt,F−T
]

1AtBt=1

≥

[
1− 1

N

(
ḠhM̄h

Ḡ`M̄`

)2
]2

1AtBt=1 ≥

(
1− 2

N

(
ḠhM̄h

Ḡ`M̄`

)2
)

1AtBt=1.
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Finally, we have

P
(
At−2Bt−2 = 1|Rt,F−T

)
≥ P

(
At−2Bt−2 = 1, At−1 = 1|Rt,F−T

)
= E

[
P
(
At−2Bt−2 = 1|Rt−1,F−T

)
1At−1=1

∣∣Rt,F−T ]
using law of total expectation and the Markov property as above

≥ M̄`

2M̄h
P
(
At−1 = 1|Rt,F−T

)
by (52)

≥ M̄`

2M̄h
εS by (51)

and the second inequality is proved. �

E.4. Proof of Proposition 3 (hybrid rejection validity).

Proof. Put Zn := (Xn, UnCµ0(Xn)). Then Zn is uniformly distributed on

G0 := {(x, y) ∈ X × R+, y ≤ Cµ0(x)} .

The proof would be done if one could show that, given K∗ ≤ K, the variable ZK∗ is uniformly distributed
on

G1 := {(x, y) ∈ X × R+, y ≤ µ1(x)} .

Note that K∗ is, by definition, the first time index where the sequence (Zn) touches G1. Let B be any
subset of G1. We have

(58)

P (ZK∗ ∈ B|K∗ ≤ K) ∝ P(ZK∗ ∈ B,K∗ ≤ K)

=

∞∑
k∗=1

P (Zk∗ ∈ B,K∗ = k∗,K ≥ k∗)

=

∞∑
k∗=1

P (Zk∗ ∈ B,Z1:k∗−1 /∈ G1,K > k∗ − 1)

=

∞∑
k∗=1

P(Zk∗ ∈ B)P (Z1:k∗−1 /∈ G1,K > k∗ − 1) since K stopping time

= P(Z1 ∈ B)

∞∑
k∗=1

P (Z1:k∗−1 /∈ G1,K > k∗ − 1)

∝ P(Z1 ∈ B) ∝ P (Z1 ∈ B|Z1 ∈ G1) .

By considering the special case B = G1, we see that the constant of proportionality between the first and
the last terms of (58) must be 1, from which the proof follows. �

E.5. Proof of Theorem 3.1 (hybrid algorithm’s intermediate complexity). From (16), one may

have the correct intuition that as N →∞, τ1,PaRIS
t tends in distribution to that of the variable τ∞,PaRIS

t

defined as

(59) τ∞,PaRIS
t | X∞,PaRIS

t ∼ Geo

(
rt(X

∞,PaRIS
t )

M̄h

)

where X∞,PaRIS
t ∼ Qt−1Mt(dxt) is distributed according to the predictive distribution of Xt given Y0:t−1

and rt is the density of X∞,PaRIS
t with respect to the Lebesgue measure (cf. Definition 1). The following

proposition formalises the connection between τ1,PaRIS
t and τ∞,PaRIS

t .

Proposition 6. We have τ1,PaRIS
t ⇒ τ∞,PaRIS

t as N →∞.
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Proof. From (16) and Definition 1 one has

(60) τ1,PaRIS
t | X1

t ,Ft−1 ∼ Geo

(
rNt (X1

t )

M̄h

)
.

In light of (59), it suffices to establish that

(61)
rNt (X1

t )

M̄h
⇒ rt(X

∞,PaRIS
t )

M̄h
.

Indeed, this would mean that for any continuous bounded function ψ, we have

E[ψ(τ1,PaRIS
t )] = E

[
(Geo? ψ)

(
rNt (X1

t )

M̄h

)]
→ E

[
(Geo? ψ)

(
rt(X

∞,PaRIS
t )

M̄h

)]
= E[ψ(τ∞,PaRIS

t )]

where Geo? is the geometric Markov kernel that sends each λ to the geometric distribution of parameter
λ, i.e. Geo?(λ, dx) = Geo(λ). To this end, write

rNt (X1
t )− rt(X1

t ) =

∑
nGt−1(Xn

t−1)mt(X
n
t−1, X

1
t )∑

nGt−1(Xn
t−1)

− rt(X1
t )

=

∑
nN

−1Gt−1(Xn
t−1)

[
mt(X

n
t−1, X

1
t )− rt(X1

t )
]

N−1
∑
nGt−1(Xn

t−1)
.

(62)

We study the mean squared error of the numerator:

E

{
1

N

∑
n

Gt−1(Xn
t−1)

[
mt(X

n
t−1, X

1
t )− rt(X1

t )
]}2

=
1

N
E
{
Gt−1(X1

t−1)2
[
mt(X

1
t−1, X

1
t )− rt(X1

t )
]2}

+
N(N − 1)

N2
E
{
Gt−1(X1

t−1)Gt−1(X2
t−1)

[
mt(X

1
t−1, X

1
t )− rt(X1

t )
]

×
[
mt(X

2
t−1, X

1
t )− rt(X1

t )
] }

where we have again used the exchangeability induced by step (?) of Algorithm 5. The first term obviously
tends to 0 as N →∞ by Assumptions 4 and 1. The second term also vanishes asymptotically thanks to
Lemma E.6 below and Assumption 6. Assumption 1 also implies that the denominator of (62) converges
in probability to some constant, via the consistency of particle approximations, see e.g. Del Moral (2004)
or Chopin and Papaspiliopoulos (2020). Thus, rNt (X1

t ) − rt(X1
t ) ⇒ 0 by Slutsky’s theorem. Moreover,

rt(X
1
t ) ⇒ rt(X

∞,PaRIS
t ) by the continuity of rt and the consistency of particle approximations. Using

again Slutsky’s theorem yields (61). �

The following lemma is needed to complete the proof of Proposition 6 and is related to the propagation
of chaos property, see Del Moral (2004, Chapter 8).

Lemma E.6. We have (X1
t−1, X

2
t−1, X

1
t )⇒ Qt−2Mt−1 ⊗ Qt−2Mt−1 ⊗Qt−1Mt.

Proof. For vectors u, v, and w, we have, by the symmetry of the distribution of particles:

E
[
exp

(
iuX1

t−1 + ivX2
t−1 + iwX1

t

)]
= E

[(
1

N

∑
eiuX

n
t−1

)(
1

N

∑
eivX

n
t−1

)(
1

N

∑
eiwX

n
t

)]
− N

N2
E

[
eiuX

1
t−1eivX

1
t−1

(
1

N

∑
eiwX

n
t

)]
+

N

N2
E

[
eiuX

1
t−1eivX

2
t−1

(
1

N

∑
eiwX

n
t

)]
.

Note that
1

N

∑
eiuX

n
t−1

a.s.−→ Qt−2Mt−1 (exp(iu•))
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and
1

N

∑
eiwX

n
t

a.s.−→ Qt−1Mt (exp(iw•)) .

The dominated convergence theorem, applicable since
∣∣eiu∣∣ ≤ 1 for u ∈ R, finishes the proof. �

Proof of Theorem 3.1. First of all,

(63) E[τ∞,PaRIS
t ] = E

[
M̄h

rt(X
∞,PaRIS
t )

]
=

∫
Xt

M̄h

rt(xt)
rt(xt)dxt =∞

by Assumption 5. Next, for any x ∈ R \ Z and N > x,

P
(

min(τ1,PaRIS
t , N) ≤ x

)
= P

(
τ1,PaRIS
t ≤ x

)
→ P

(
τ∞,PaRIS
t ≤ x

)
by Proposition 6. Thus, by Portmanteau theorem,

(64) min(τ1,PaRIS
t , N)⇒ τ∞,PaRIS

t .

Altogether, we have

lim inf
N→∞

E
[
min(τ1,PaRIS

t , N)
]

= lim inf
N→∞

∑
kP
(

min(τ1,PaRIS
t , N) = k

)
≥
∑

lim inf
N→∞

kP
(

min(τ1,PaRIS
t , N) = k

)
by Fatou’s lemma

=
∑

kP
(
τ∞,PaRIS
t = k

)
by (64)

=∞ by (63)

and

lim
N→∞

1

N
E
[
min(τ1,PaRIS

t , N)
]

= lim
N→∞

E

[
min

(
τ1,PaRIS
t

N
, 1

)]
→ 0

since τ1,PaRIS
t ⇒ τ∞,PaRIS

t implies that the sequence of random variables

min

(
τ1,PaRIS
t

N
, 1

)
converges to 0 in distribution while being bounded between 0 and 1. �

E.6. Proof of Theorem 3.2 (hybrid PaRIS near-linear complexity). The following proposition
shows that the real execution time for the hybrid algorithm is asymptotically at most of the same order
as the “oracle” hybrid execution time.

Proposition 7. We have

lim sup
N→∞

E
[
min(τ1,PaRIS

t , N)
]

E
[
min(τ∞,PaRIS

t , N)
] <∞.

Proof. Put

(65) zN (λ) :=
1− (1− λ)N

λ
=

N−1∑
n=0

(1− λ)n.

One can quickly verify (using the memorylessness of the geometric distribution for example) that zN (λ) =
E [min(G,N)|G ∼ Geo(λ)]. It will be useful to keep in mind the elementary estimate zN (λ) ≤ min(N,λ−1).
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We can now write

E
[
min(τ1,PaRIS

t , N)
]

= E

[
zN
(
rNt (X1

t )

M̄h

)]
(by (60)) = E

[
E

[
zN
(
rNt (X1

t )

M̄h

)∣∣∣∣Ft−1

]]
= E

[∫
Xt

zN
(
rNt (xt)

M̄h

)
rNt (xt)λt(dxt)

]
≤ ct

(∫
Xt

zN
(
rt(xt)

M̄h

)
rt(xt)λt(dxt) + bt

)
by Lemma E.7

= ct

(
E[min(τ∞,PaRIS

t , N)] + bt

)
from which the proposition is immediate. �

Lemma E.7. In addition to notations of Algorithm 1, let the function zN be defined as in (65) and
the functions rt and rNt be defined as in Definition 1. Let φt : Xt → R>0 be a bounded non-negative
deterministic function. Then, under Assumptions 1 and 4, there exist constants bt and ct depending only
on the model such that

E

[∫
Xt

zN
(
rNt (xt)

M̄h

)
rNt φt

]
≤ ct

(∫
Xt

zN
(
rt(xt)

M̄h

)
rtφt + bt ‖φt‖∞

)
where for brevity, we shortened the integration notation (e.g. dropping λt(dxt), dropping xt from φ(xt),
etc.) whenever there is no ambiguity.

Proof. We have

(66) E

[∫
Xt

zN
(
rNt (xt)

M̄h

)
rNt φt

]
≤
∫
Xt

zN
(

E

[
rNt (xt)

M̄h

])
E
[
rNt (xt)

]
φt

using Fubini’s theorem and the concavity of λ 7→ λzN (λ) on [0, 1]. By a well-known result on the bias of
a particle filter (which is in fact the propagation of chaos in the special case of q = 1 particle), we have:∣∣E [rNt (xt)

]
− rt(xt)

∣∣ =
∣∣∣E [∑Wn

t−1mt(X
n
t−1, xt)

]
− rt(xt)

∣∣∣
=
∣∣∣E [mt

(
X
A1

t
t−1, xt

)]
− Qt−1 (mt (•, xt))

∣∣∣
≤ btM̄h

N

for some constant bt. We next show that such a bias does not change the asymptotic behavior of zN .
More precisely,

(67)

zN
(

E

[
rNt (xt)

M̄h

])
≤ zN

(
rt(xt)

M̄h
− bt
N

)
=

N−1∑
n=0

(
1− rt(xt)/M̄h + bt/N

1− rt(xt)/M̄h

)n(
1− rt(xt)

M̄h

)n

≤
N−1∑
n=0

(
1 +

bt

N
(
1− rt(xt)/M̄h

))N (1− rt(xt)

M̄h

)n
≤ exp

(
bt

1− rt(xt)/M̄h

)
zN
(
rt(xt)

M̄h

)
≤ e2btzN

(
rt(xt)

M̄h

)
if xt is such that rt(xt)/M̄h ≤ 1/2. In contrast, if rt(xt)/M̄h ≥ 1/2, then provided that N ≥ 6bt, we have

(68) zN
(

E

[
rNt (xt)

M̄h

])
≤ zN

(
rt(xt)

M̄h
− bt
N

)
≤ zN

(
1

3

)
≤ 3zN

(
rt(xt)

M̄h

)
.
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Putting together (67) and (68), we have, for N ≥ 6bt,

zN
(

E

[
rNt (xt)

M̄h

])
≤
(
e2bt + 3

)
zN
(
rt(xt)

M̄h

)
and so, by (66),

E

[∫
Xt

zN
(
rNt (xt)

M̄h

)
rNt φt

]
≤
(
e2bt + 3

) ∫
Xt

zN
(
rt(xt)

M̄h

)
E
[
rNt (xt)

]
φt

=
(
e2bt + 3

)
E

[
zN
(
rt(X

1
t )

M̄h

)
φt(X

1
t )

]
.

Again, using the result on the bias of a particle filter,∣∣∣∣E [zN (rt(X1
t )

M̄h

)
φt(X

1
t )

]
−
∫
Xt

zN
(
rt(xt)

M̄h

)
rtφt

∣∣∣∣ ≤ bt
∥∥zN∥∥∞ ‖φt‖∞

N
= bt ‖φt‖∞

which, together with the previous inequality, implies the desired result. �

Proposition 8. In linear Gaussian state space models, we have

E
[
min(τ∞,PaRIS

t , N)
]

= O
(

(logN)dt/2
)
.

Proof. Let µt and Σt be such that X∞,PaRIS
t ∼ N (µt,Σt). Then

log(rt(X
∞,PaRIS
t )/M̄h) = b′t −Wt

where b′t is some constant and

Wt :=
(X∞,PaRIS

t − µt)>Σ−1
t (X∞,PaRIS

t − µt)
2

∼ Gamma

(
dt
2
, 1

)
.

We have

E
[
min(τ∞,PaRIS

t , N)
]

= E

[
zN

(
rt(X

∞,PaRIS
t )

M̄h

)]
= E

[
zN (eb

′
t−Wt)

]
=

∫ ∞
0

zN (eb
′
t−w)

wdt/2−1e−w

Γ(dt/2)
dw

≤
∫ logN

0

ew−b
′
t
wdt/2−1e−w

Γ(dt/2)
dw +

∫ ∞
logN

N
wdt/2−1e−w

Γ(dt/2)
dw

using the bound zN (λ) ≤ min(N, 1/λ). The first term is of order O(logdt/2N) by elementary calculus,

while the second term is of order O(logdt/2−1N) using asymptotic properties of the incomplete Gamma
function, see Olver et al. (2010, Section 8.11). �

Proof of Theorem 3.2. The theorem is a straightforward consequence of Proposition 7 and Proposition 8.
�

E.7. Proof of Theorems B.1 and B.2 (pure rejection FFBS complexity). We start with a useful
remark linking the projection kernels Π and the cost-to-go functions defined in Supplement A with the
L-kernels formulated in (27). The proof is simple and therefore omitted.

Lemma E.8. We have Lt:T (x0:t,1) = Ht:T (xt) for all x0:t. Moreover, for any function φt : Xt → R, we
have

Lt:TΠ0:T
t φt = Π0:t

t (φt ×Ht:T ).

Theorems B.1 and B.2 both rely on an induction argument wrapped up in the following proposition.

Proposition 9. We use the notations of Algorithm 2. Let QNt be defined as in (24), where the BNs kernels
can be BN,FFBS

s or any other kernels satisfying the hypotheses of Theorem 2.1. Suppose that Assumption 1
holds. Let fNt : Xt → R≥0 be a (possibly random) function such that fNt (xt) is Ft−1-measurable. Then
the following assertions are true:
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(a) Suppose that E
[∫
Xt

{
rNt × fNt ×Gt ×Ht:T

}
(xt)λt(dxt)

]
= ∞, where rNt and λt are defined in

Definition 1. Then

E

[∫
QNT (dxt)f

N
t (xt)

]
=∞.

(b) Suppose that
∫
Xt

{
rNt × fNt ×Gt ×Ht:T

}
(xt)λt(dxt)

P→ 0. Then∫
QNT (dxt)f

N
t (xt)

P→ 0.

Proof. Part (a). We shall prove by induction the statement

E
[
QNs Ls:TΠ0:T

t fNt
]

=∞,∀ t− 1 ≤ s ≤ T.

For s = t− 1, it follows from part (a)’s hypothesis and Lemma E.8. Indeed,

QNt−1Lt−1:TΠ0:T
t fNt

= QNt−1Lt−1:tLt:TΠ0:T
t fNt = QNt−1Lt−1:tΠ

0:t
t (fNt ×Ht:T )

=

∫∫
Xt−1×Xt

QNt−1(dxt−1)mt(xt−1, xt)λt(dxt)Gt(xt)(f
N
t ×Ht:T )(xt)

=

∫
Xt

{
rNt × fNt ×Gt ×Ht:T

}
(xt)λt(dxt).

For s ≥ t, we have

E
[
QNs Ls:TΠ0:T

t fNt
]

= E

[
N−1

∑
K̃N
s (n,Ls:TΠ0:T

t fNt )

`Ns

]
by Corollary 3

≥ 1

‖Gs‖∞
E
[
N−1

∑
K̃N
s (n,Ls:TΠ0:T

t fNt )
]

by Assumption 1 and definition of `Ns (see Algorithm 1)

≥ 1

‖Gs‖∞
E
[
QNs−1Ls−1:sLs:TΠ0:T

t fNt
]

by Corollary 3 and law of total expectation

= E
[
QNs−1Ls−1:TΠ0:T

t fNt
]

=∞ (induction hypothesis).

Part (b). Similar to part (a), we shall prove by induction the statement

QNs Ls:TΠ0:T
t fNt

P→ 0,∀ t− 1 ≤ s ≤ T.

Again, by Corollary 3, this quantity is equal to

N−1
∑
K̃N
s (n,Ls:TΠ0:T

t fNt )

`Ns
,

and the expectation of the numerator given Fs−1 is QNs−1Ls−1:TΠ0:T
t fNt , which tends to 0 in probability

by induction hypothesis. Lemma E.11 (see below at the end of the section), the classical result `Ns
P→

`s := Qs−1Ms(Gs) and Stutsky’s theorem concludes the proof. �

Proof of Theorem B.1. By (21), we have E[τ1,FFBS
t ] = E[

∫
QN,FFBS
T (dxt)f

N
t (xt)] where

fNt (xt) =
M̄h∑

Wn
t−1mt(Xn

t−1, xt)
=
M̄h

rNt

with rNt given in Definition 1. Proposition 9(a) gives a sufficient condition for E[τ1,FFBS
t ] = ∞ to hold,

namely ∫
Xt

(rNt × fNt ×Gt ×Ht:T )(xt)λt(dxt) =∞,

which is equivalent to the hypothesis of the theorem. �
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Proof of Theorem B.2. We use notations from Definition 1 and Supplement A.1. We note N (x|µ,Σ) the
density of the specified normal distribution at point x. Using Lemma E.9, Proposition 9 and (21), we
have

E[(τ1,FFBS
t )] =∞⇔ E

[
1

rNt (X
I1t
t )k

]
=∞

⇔ E

[∫
QNT (dxt)

1

rNt (xt)k

]
=∞

⇐ E

[∫
Xt

rNt GtHt:T

(rNt )k
(xt)λt(dxt)

]
=∞

⇐
∫
Xt

rtGtHt:T

(rNt )k−1rt
(xt)λt(dxt) =∞ almost surely

⇔
∫
Xt

N (xt|µsmth
t ,Σsmth

t )

rNt (xt)k−1N (xt|µpred
t ,Σpred

t )
λt(dxt) =∞ a.s.

The theorem then follows from elementary arguments, by noting that rNt is a mixture of N Gaussian
distributions with covariance matrix CX . �

Lemma E.9. Let L be a ]0, 1]-valued random variable. Suppose X is another random variable such that
X|L ∼ Geo(L). Then for any real number k > 0,

E[Xk] =∞⇔ E[L−k] =∞.

Proof. By the definition of X, we have

E[Xk] = E

[ ∞∑
x=1

xk(1− L)x−1L

]
.

A natural idea is then to approximate the sum by the integral
∫∞

0
xk(1−L)x−1Ldx, from which one easily

extracts the L−k factor. This is however technically laborious, since the function x 7→ xk(1− L)x−1L is
not monotone on the whole real line. It is only so starting from a certain x0 which itself depends on L.
We would therefore rather write

E[Xk] =

∫ ∞
0

P(Xk ≥ x)dx =

∫ ∞
0

P(X ≥ x1/k)dx

=

∫ ∞
0

E
[
(1− L)bx

1/kc
]

dx

where the two integrands are equal Lebesgue–almost-everywhere

= E

[∫ ∞
0

exp
(
− |log(1− L)| bx1/kc

)
dx

]
with the natural interpretation of expressions when L = 1. Using u ∼ v as a shorthand for “u and v are
either both finite or both infinite”, we have

E[Xk] ∼ E

[∫ ∞
0

exp
(
− |log(1− L)|x1/k

)
dx

]
by Lemma E.10

= k Γ(k) E

[
1

|log(1− L)|k

]
∼ E

[
1

Lk

]
by Lemma E.10 again.

�

The following lemma is elementary. Its proof is therefore omitted.

Lemma E.10. Let L be a ]0, 1]-valued random variable and let f1 and f2 be two continuous functions
from ]0, 1] to R. Suppose that lim sup`→0+ f1(`)/f2(`) and lim sup`→0+ f2(`)/f1(`) are both finite. Then
E[f1(L)] is finite if and only if E[f2(L)] is so.
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Lemma E.11. Let Z1, Z2, . . . be non-negative random variables. Suppose that there exist σ-algebras

F1,F2, . . . such that E[Zn|Fn]
P→ 0. Then Zn

P→ 0.

Proof. Fix ε > 0. By Markov’s inequality, P(Zn ≥ ε|Fn) ≤ ε−1E[Zn|Fn]. Therefore, the [0, 1]−bounded
random variable P(Zn ≥ ε|Fn) tends to 0 in probability, hence also in expectation. The law of total
expectation then gives P(Zn ≥ ε) → 0, which, by varying ε, establishes the convergence of Zn to 0 in
probability. �

E.8. Proof of Theorem B.3 and Corollary 2 (hybrid FFBS complexity).

Proof of Theorem B.3. According to Janson (2011, Lemma 3), it is sufficient to show that∑
n min(τn,FFBS

t , N)

NαN

P→ 0

for any deterministic sequence αN such that αN/E[min(τ∞,FFBS
t , N)] → ∞. By Lemma E.11, we can

take expectation with respect to FT to derive a sufficient condition, namely∫
Xt

αN
−1zN

(
rNt (xt)

M̄h

)
QNT (dxt)

P→ 0 with zN defined in (65)

⇐
∫
Xt

αN
−1zN

(
rNt (xt)

M̄h

)
rNt ×Gt ×Ht:T dλt

P→ 0 by Proposition 9(b)

⇐ E

[∫
Xt

αN
−1zN

(
rNt (xt)

M̄h

)
rNt ×Gt ×Ht:T dλt

]
→ 0

⇐
∫
Xt

αN
−1zN

(
rt(xt)

M̄h

)
rt ×Gt ×Ht:T dλt → 0 by Lemma E.7

⇔ E[min(τ∞,FFBS
t , N)]

αN
→ 0.

The proof is now complete. �

Proof of Corollary 2. We have, using the cost-to-go, the zN functions and the τ∞,PaRIS
t distribution

defined respectively in (20), (65) and (59):

E[min(τ∞,FFBS
t , N)] =

∫
Xt

zN
(
rt(xt)

M̄h

)
QT (dxt)

= [(Qt−1Mt)(GtHt:T )]
−1
∫
Xt

zN
(
rt(xt)

M̄h

)
(GtHt:T )(xt)(Qt−1Mt)(dxt)

≤‖GtHt:T ‖∞ [(Qt−1Mt)(GtHt:T )]
−1
∫
Xt

zN
(
rt(xt)

M̄h

)
(Qt−1Mt)(dxt)

= ‖GtHt:T ‖∞ [(Qt−1Mt)(GtHt:T )]
−1 E[min(τ∞,PaRIS

t , N)].

Proposition 8 then finishes the proof. �

E.9. Proof of Proposition 4 (MCMC kernel properties).

Proof. Let Jnt be such that Jnt |X1:N
t−1 , X

n
t , B̂

N,IMH
t (n, ·) ∼ BN,IMH

t (n, ·). Moreover, let Kn
t be such that

Kn
t |X1:N

t−1 , X
n
t , A

n
t , B̂

N,IMH
t (n, ·) ∼ BN,IMH

t (n, ·).

Given X1:N
t−1 , Xn

t and Ant , the kernel BN,IMH
t (n, ·) applies to Ant one or more several MCMC steps

keeping invariant BN,FFBS
t (n, ·). Since Ant |X1:N

t−1 , X
n
t ∼ BN,FFBS

t (n, ·), it follows that Kn
t |X1:N

t−1 , X
n
t ∼

BN,FFBS
t (n, ·) too. On the other hand, Jnt and Kn

t share the same distribution given X1:N
t−1 , Xn

t and

B̂N,IMH
t (n, ·). Hence they also do, givenX1:N

t−1 andXn
t only. This implies that Jnt |X1:N

t−1 , X
n
t ∼ B

N,FFBS
t (n, ·),

which is the same as Ant |X1:N
t−1 , X

n
t . Thus (Jnt , X

n
t ) have the same distribution as (Ant , X

n
t ) given X1:N

t−1 ,

as required by Theorem 2.1. The arguments for the kernel BN,IMHP
t are similar.



ON BACKWARD SMOOTHING ALGORITHMS 59

To show that a certain kernel BNt satisfies (13), we look at two conditionally i.i.d. simulations Jn,1t and

Jn,2t from BNt (n, ·) and lower bound the probability that they are different. For the kernel BN,IMH
t , the

variables Jn,1t and Jn,2t both result from one step of MH applied to Ant . Let Jn,1∗t and Jn,2∗t be the

corresponding MH proposals. A sufficient condition for Jn,1t 6= Jn,2t is that Jn,1∗t 6= Jn,2∗t and the two
proposals are both accepted. The acceptance rate is at least M̄`/M̄h by Assumption 2 and the probability

that Jn,1∗t 6= Jn,2∗t is

1−
N∑
n=1

(Wn
t−1)2 ≥ 1− 1

N

(
Ḡh
Ḡ`

)2

by Assumption 3. Thus (13) is satisfied for εS = M̄`/2M̄h for N large enough. Similarly, the probability

that Jn,1t 6= Jn,2t for the BN,IMHP
t kernel with Ñ = 2 can be lower-bounded via the probability that

J̃n,1t 6= J̃n,2t (where J̃n,1t and J̃n,2t are defined in (18)). Thus using the same arguments, (13) is satisfied
here for εS = M̄`/4M̄h. �

E.10. Conditional probability of maximal couplings. In general, there exist multiple maximal
couplings of two random distributions (i.e. couplings that maximise the probability of equality of the two
variables). However, they all satisfy a certain conditional probability property stated in the following
lemma. It is closely related to results on the coupling density on the diagonal (see e.g. Wang et al.,
2021, Lemma 2 or Douc et al., 2018, Theorem 19.1.6). Its statement, which we were unable to find in
the literature in the exact form we need, is obvious in the discrete case but requires lengthier arguments
in the continuous one.

Proposition 10. Let X1 and X2 be two random variables with densities f1 and f2 with respect to some
dominating measure defined on a space X . Then, the following inequality holds almost surely:

(69) P(X2 = X1|X1) ≤ 1 ∧ f2(X1)

f1(X1)
.

Moreover, the equality occurs almost surely if and only if X1 and X2 form a maximal coupling.

Proof. Let h be any non-negative test function from X to R. Putting

A1 := {x ∈ X | f1(x) ≥ f2(x)}
A2 := {x ∈ X | f2(x) ≥ f1(x)} ,

we have

E[P(X2 = X1|X1)h(X1)] = E[1X2=X1
h(X1)]

= E[1X2=X1
1X1∈A1

h(X1)] + E[1X2=X1
1X1∈A2

h(X1)]

= E[1X2=X11X2∈A1h(X2)] + E[1X2=X11X1∈A2h(X1)]

≤ E[1X2∈A1
h(X2)] + E[1X1∈A2

h(X1)]

=

∫
h(x)f2 ∧ f1(x)dx = E

[(
1 ∧ f2(X1)

f1(X1)

)
h(X1)

]
.

The inequality (69) is now proved almost-surely. As a result, almost-sure equality occurs if and only if
the expectation of the two sides of (69) are equal, which means, via Lemma A.1, that the two variables
are maximally coupled. �

The following lemma establishes the symmetry of Assumption 8. Again, its statement is obvious in the
discrete case, though some work is needed to rigorously justify the continuous one.

Lemma E.12. Let X1 and X2 be two random variables of densities f1 and f2 w.r.t. some dominating
measure defined on some space X . Suppose that almost-surely

P(X2 = X1|X1) ≥ ε
(

1 ∧ f2(X1)

f1(X1)

)
for some ε > 0. Then almost-surely,

P(X1 = X2|X2) ≥ ε
(

1 ∧ f1(X2)

f2(X2)

)
.
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Proof. We introduce a non-negative test function h2 : X → R and write

E[P(X1 = X2|X2)h(X2)] = E[1X1=X2h(X2)] = E[1X2=X1h(X1)]

= E[P(X2 = X1|X1)h(X1)]

≥ E

[
ε

(
1 ∧ f2(X1)

f1(X1)

)
h(X1)

]
=

∫
εf1 ∧ f2(x)h(x)dx

= E

[
ε

(
1 ∧ f1(X2)

f1(X2)

)
h(X2)

]
which implies the desired result. �

E.11. Proof of Theorem 4.1 (intractable kernel properties).

Proof. Let Jnt be a random variable such that

Jnt |X1:N
t−1 , X

n
t , B̂

N,ITR
t (n, ·) ∼ BN,ITR

t (n, ·).

By construction of Algorithm 7, givenX1:N
t−1 , the couple (Jnt , X

n
t ) has the same distribution as (An,Lt , Xn,L

t ).

Thus, BN,ITR
t satisfies the hypotheses of Theorem 2.1. To verify (13), we define the variables Jn,1:2

t ac-
cordingly and write:

P
(
Jn,1t 6= Jn,2t

∣∣∣Xn
t = xt, X

1:N
t−1 = x1:N

t−1

)
=

1

2
P
(
Xn,1
t = Xn,2

t , An,1t 6= An,2t

∣∣∣Xn
t = xt, X

1:N
t−1 = x1:N

t−1

)
= P

(
Xn,1
t = Xn,2

t , An,1t 6= An,2t , L = 1
∣∣∣Xn

t = xt, X
1:N
t−1 = x1:N

t−1

)
=

1

2
P
(
Xn,1
t = Xn,2

t , An,1t 6= An,2t

∣∣∣L = 1, Xn
t = xt, X

1:N
t−1 = x1:N

t−1

)
(by symmetry)

=
1

2
P
(
Xn,1
t = Xn,2

t , An,1t 6= An,2t

∣∣∣Xn,1
t = xt, X

1:N
t−1 = x1:N

t−1

)
=

1

2

∑
an,1
t 6=an,2

t

P
(
Xn,2
t = xt

∣∣∣An,1t = an,1t , An,2t = an,2t , Xn,1
t = xt, X

1:N
t−1 = x1:N

t−1

)
×

× P
(
An,1t = an,1t , An,2t = an,2t

∣∣∣Xn,1
t = xt, X

1:N
t−1 = x1:N

t−1

)
≥ 1

2
εD

M̄`

M̄h

∑
an,1
t 6=an,2

t

P
(
An,1t = an,1t , An,2t = an,2t

∣∣∣Xn,1
t = xt, X

1:N
t−1 = x1:N

t−1

)
(by Assumptions 8 and 2)

≥ 1

2
εD

(
M̄`

M̄h

)2

εA by Lemma E.13.

The proof is complete. �

Lemma E.13. We use the notations of Algorithm 7. Under Assumptions 2 and 7, we have

P
(
An,1t 6= An,2t

∣∣∣Xn,1
t , X1:N

t−1

)
≥ M̄`

M̄h
εA.

Proof. We write (and define new notations along the way):

π(an,1t , an,2t ) := p(an,1t , an,2t |X
n,1
t , X1:N

t−1 )

∝ p(an,1t , an,2t |X1:N
t−1 )mt(X

an,1
t
t−1 , X

n,1
t )

=: p(an,1t , an,2t |X1:N
t−1 )φ(an,1t )

=: π0(an,1t , an,2t )φ(an,1t ).
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Thus

P
(
An,1t 6= An,2t

∣∣∣Xn,1
t , X1:N

t−1

)
=

∫
1

{
an,1t 6= an,2t

}
π(an,1t , an,2t )

=

∫
1

{
an,1t 6= an,2t

}
π0(an,1t , an,2t )φ(an,1t )∫

π0(an,1t , an,2t )φ(an,1t )

≥
∫
1

{
an,1t 6= an,2t

}
π0(an,1t , an,2t )

M̄`

M̄h

by the boundedness of the function φ between M̄` and M̄h. From this, we get the desired result by virtue
of Assumption 7. �

E.12. Validity of Algorithm 14 (modified Lindvall-Rogers coupler). Recall that generating a
random variable is equivalent to uniformly simulating under the graph of its density (see e.g. Robert and
Casella, 2004, The Fundamental Theorem of Simulation, chapter 2.3.1). Algorithm 14’s correctness is
thus a direct corollary of the following intuitive lemma.

Lemma E.14. Let SA and SB be two subsets of Rd with finite Lebesgue measures. Let A and B be two
not necessarily independent random variables distributed according to Uniform(SA) and Uniform(SB)
respectively. Denote by S0 the intersection of SA and SB; and by C a certain Uniform(SA)-distributed
random variable that is independent from (A,B). Define A? and B? as

A? =

{
C if (A,C) ∈ S0 × S0

A otherwise

and

B? =

{
C if (B,C) ∈ S0 × S0

B otherwise

Then A? ∼ Uniform(SA) and B? ∼ Uniform(SB).

Proof. Given (A,C) ∈ S0 × S0, the two variables A and C have the same distribution (which is
Uniform(S0)). Thus, the definition of A? implies that A and A? have the same (unconditional) dis-
tribution. The same argument applies to B and B? notwithstanding the asymmetry in the definition of
C. �

E.13. Hoeffding inequalities. This section proves a Hoeffding inequality for ratios, which helps us to
bound (28). It is essentially a reformulation of Douc et al. (2011, Lemma 4) in a slightly more general
manner.

Definition 2. A real-valued random variable X is called (C, S)-sub-Gaussian if

P

(
|X|
S

> t

)
≤ 2Ce−t

2/2,∀ t ≥ 0.

This definition is close to other sub-Gaussian definitions in the literature, see e.g. Vershynin (2018,
Chapter 2.5). It basically means that the tails of X decreases at least as fast as the tails of the N (0, S2)
distribution, which is itself (1, S)-sub-Gaussian. The following result is classic.

Theorem E.15 (Hoeffding’s inequality). Let X1, . . . , XN be N i.i.d. random variables with mean µ and
almost surely contained between a and b. Then N1/2(

∑
Xi/N − µ) is (1, (b− a)/2)-sub-Gaussian.

The following lemma is elementary from Definition 2. The proof is omitted.

Lemma E.16. Let X and Y be two (not necessarily independent) random variables. If X is (C1, S1)-
sub-Gaussian and Y is (C2, S2)-sub-Gaussian, then X + Y is (C1 + C2, S1 + S2)-sub-Gaussian.

We are ready to state the main result of this section.
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Proposition 11 (Hoeffding’s inequality for ratios). Let aN , bN , a∗, b∗ be random variables such that√
N(aN−a∗) is (Ca, Sa)-sub-Gaussian and

√
N(bN−b∗) is (Cb, Sb)-sub-Gaussian. Then

√
N (aN/bN − a∗/b∗)

is sub-Gaussian with parameters (C∗, S∗) where{
C∗ = Ca + Cb

S∗ =
∥∥ 1
b∗

∥∥
∞ (Sa + Sb

∥∥∥aNbN ∥∥∥∞).

The terms with inf-norm can be infinite if the corresponding random variables are unbounded.

Proof. We have ∣∣∣∣√N (aNbN − a∗

b∗

)∣∣∣∣ ≤ ∣∣∣∣√N (aNbN − aN
b∗

)∣∣∣∣+

∣∣∣∣√N (aNb∗ − a∗

b∗

)∣∣∣∣
=

∣∣∣∣aNbN
∣∣∣∣ ∣∣∣∣ 1

b∗

∣∣∣∣ ∣∣∣√N(bN − b∗)
∣∣∣+

∣∣∣∣ 1

b∗

∣∣∣∣ ∣∣∣√N(aN − a∗)
∣∣∣

by which the proposition follows from Lemma E.16. �
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