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Designing mathematical tasks to promote preservice teachers’ 
algebraic reasoning and argumentation 

Konstantina Kaloutsi, Jorunn Reinhardtsen and Martin Carlsen 

University of Agder, Norway; konstantina.kaloutsi@uia.no 

The aim of this study is to shed light on one group of preservice teachers’ engagement with designed 
mathematical tasks and in what ways these tasks promote the preservice teachers’ argumentation 
and reasoning. The study took place within a university course on argumentation and reasoning and 
on how to draw on these mathematical processes within mathematics teaching in upper secondary 
school. We analyse the preservice teachers’ written solutions to the given tasks unfolding within 
small-group work. The analyses reveal that they used predicted approaches, such as deductive proof 
and geometrical representation. However, they also used unique approaches, such as manipulating 
one side of the equation to look like the other, using functions to generalize, proving by example, and 
using drawings instead of variables. 

Keywords: Argumentation, designing tasks, preservice teachers, reasoning. 

Introduction 
For several years, the mathematical processes of argumentation and reasoning have been emphasized 
as crucial to learn mathematics (NCTM, 2000). In recent years, these processes have been advocated 
in the Norwegian curriculum for school mathematics, through its identification of ‘core elements’, 
one of which is called ‘reasoning and argumentation’. Thus, it is highly relevant to educate preservice 
mathematics teachers (PSMTs) to make them ready to teach mathematics emphasizing reasoning and 
argumentation. The aim of this study is to shed light on one group of PSMTs’ engagement with 
designed mathematical tasks and in what ways these promote their reasoning and argumentation.  

Kempen and Biehler (2019) investigated preservice mathematics teachers’ (PSMTs’) proof 
validation. They found that 3 out of 10 first year PSMTs saw testing of examples as valid proof and 
failed to recognize algebraic errors in proofs. Ko and Rose (2022) studied 14 preservice mathematics 
teachers’ considerations with respect to self-productions to tasks comprising algebra and number 
theory, as proofs. They found that the students made a variety of arguments. Some students relied on 
what they call empirical arguments, i.e. what Balacheff (1988) would call naïve empiricism (see 
below). Other students relied on unstructured as well as structured arguments. The latter may be 
aligned with Balacheff’s thought experiment (see below). 

According to Martinez and Pedemonte (2014), the context of number theory facilitates deductive 
argumentation, and it provides a paradigmatic exposure to mathematical thinking (Mason, 2006). 
Since teachers’ argumentation in mathematics teaching is important (e.g. Ayalon & Even, 2014; 
Bersch, 2019), it is relevant to study PSMTs and their engagement with reasoning and argumentation 
in mathematics. Therefore, we have formulated the following research question: In what ways do 
designed mathematical tasks promote PSMTs’ algebraic reasoning and argumentation? 

Algebraic reasoning and argumentation in number theory 
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As argued above, reasoning and argumentation are seen as vital processes within mathematics 
teaching and learning. It may even be argued that argumentation is inherent in mathematical activities. 
It is defined as the process that “produces a logically connected (but not necessarily deductive) 
discourse about a given subject” (Douek, 1999, p. 127) and as a verbal, social and rational activity 
aimed at convincing another person about the validity of the arguer’s standpoint (van Eemeren & 
Grootendorst, 2003). Argumentation consists of one or more arguments that can have various forms 
(verbal, numerical, etc.) (Douek, 1999). 

Douek’s (1999) definition of argumentation aligns with how we see reasoning as a process. Even 
though the construct of mathematical reasoning, according to Jeannotte and Kieran, lacks consensus 
with respect to its consistencies, we nevertheless adopt these authors’ definition, that mathematical 
reasoning is “a process of communication with others or with oneself that allows for inferring 
mathematical utterances from other mathematical utterances” (2017, p. 7). Aligning the definition of 
argumentation (cf. Douek, 1999) and this definition of reasoning (cf. Jeannotte & Kieran, 2017), we 
coin a stipulated definition and view reasoning and argumentation in mathematics as an intertwined 
mediating process of communication with others that produces a logically connected discourse about 
a given subject through the inferring of mathematical utterances from other mathematical utterances.  

We agree with O’Halloran (2005) that reasoning and argumentation in mathematics is a mediating 
activity in which three semiotic resources are functioning together. These three resources are 
language (both oral and written), symbolism (mathematical symbols and other symbols), and visual 
imagery (drawings). Symbols and drawings are included in what we call inscriptions. Inscriptions are 
“understood as artifacts such as graphs, drawings, and mathematical symbols used for cognitive, 
communicative, mathematical, and problem-solving purposes in interactional settings” (Carlsen, 
2009, p. 54). As will be seen later, the PSMTs’ written solutions to a designed mathematical task, 
exemplify in what ways these semiotic resources may function together.  

Several aspects of algebraic reasoning set it apart from other forms of mathematical reasoning 
(Radford, 2012; Reinhardtsen & Carlsen, 2022). For the purposes of this study, we limit our 
discussion to what we identify as three central aspects when PSMTs engage with problems in number 
theory. The first is a structural view of numbers, signs and operations that allow for the identification 
of general properties, as well as the syntactically guided manipulation of symbolic expressions in 
solving and proving activities. The structural view also involves a recognition of expressions as 
general solutions to specific problems and as objects in themselves that can be operated on, 
substituted or classified (Kieran, 2018). The second aspect is an awareness of generality in 
mathematical activity (Mason, 1996). It involves a flexible movement between looking at and looking 
through one object or problem situation, noticing, and expressing what is general and what is 
particular about it in relation to other relevant objects or situations. The third aspect of algebraic 
reasoning is a deductive way of arguing for general results, as well as their possibilities and 
constraints (Mason, 1996). Rather than drawing conclusions from examples, or referencing rules, a 
deductive argument is founded on what is known to be true (axioms, definitions), or characteristic 
properties of classes of objects identified while exploring open problems (Yopp & Ely, 2015). 
Elaborating Radford’s (2012) three steps of a deductive argument in pattern generalization to other 
open problems such as what can be said about the sum of consecutive numbers, or the sum of odd 



 

 

and even numbers, we include the following steps: 1) identifying commonalities across the objects 
p₁, p₂, p₃, …, pₖ, regarding operations on and transformations of these objects; 2) extending these 
commonalities beyond the perceptual field to objects pₖ₊₁, pₖ₊₂, pₖ₊₃, …; 3) using the commonalities 
to formulate general expressions, equalities or inequalities concerning the objects and their 
transformations; 4) manipulating expressions and formulating arguments in a logical sequence. 

Open problems in number theory invite students to use arithmetic and algebra interchangeably as they 
explore conjectures and engage in processes of refutation and validation. Martinez and Pedemonte 
(2014) argued that there are two complexities involved when engaging in this activity. The first 
concerns the syntactic difference between arithmetic and algebra. The study of Lee and Wheeler 
(1989) highlight students’ difficulty in aligning these two domains. They found that Grade 10 students 
tended to explain results by referring to rules rather than known behaviour of numbers, particularly 
concerning familiar generalities such as the commutative and the distributive laws. The second 
complexity concerns the different modes of reasoning involved when generalizing and when arguing 
for the validity of the generalization. The first mode involves inductive reasoning as one works with 
and studies examples often using numbers, while the second mode involves deductive reasoning using 
algebraic symbols. Martinez and Pedemonte (2014) showed that high school students’ use of 
algebraic symbols in the exploration and generalization phase, when working with pattern 
generalization, provided them with the means to construct a deductive proof, thus providing a bridge 
between the two modes of reasoning.  

Methods 
The design of the tasks followed the principles described in Healy and Hoyles (2000), an investigation 
of the characteristics of the arguments that middle school students recognised as proofs, the reasons 
behind their judgements and the ways they constructed proofs for themselves. Healy and Hoyles 
coined three types of tasks: 1) tasks that required students’ written descriptions of what they 
considered to be a proof and its purpose; 2) tasks presenting mathematical conjectures and associated 
arguments of which students were asked to choose the one that was closest to their own approach, as 
well as the one that would be graded higher by their professor; and 3) tasks that included a specific, 
empirical argument which required no further elaboration, an argument relying on common properties 
or a generic case, a narrative argument, and a deductive proof written formally, presenting a logical 
argument with explicit links between data and conclusion. Designing the tasks for this study, we 
chose tasks on number theory and algebra from Mason et al. (2005) and designed them in accordance 
with the second and third types of tasks described by Healy and Hoyles (2000). The tasks that were 
created can be separated into three categories seen in Table 1. 

In the first phase of the analytical process, we looked through all PSMTs’ responses. In the second 
phase, we identified two answers that encompassed a variety of their responses. Thirdly, the two 
PSMTs’ responses were categorised according to Balacheff’s four categories of students’ attempts to 
prove a mathematical statement, naïve empiricism – “asserting the truth of a result after verifying 
several cases” (1988, p. 218), crucial experiment – “verifying a proposition on an instance which 
‘doesn’t come for free’, asserting that ‘if it works here, it will always work’” (1988, p. 219), the 
generic example - verifying a statement through a characteristic example that makes explicit the 



 

 

reasons for why the statement is true, and thought experiment – verifying a statement by a statement 
that detaches “itself from a particular representation” (1988, p. 219).  

Table 1: Examples of the different categories of tasks 

Category Tasks 

Review of 
students’ 

arguments 

Task 1: Tim claims that 2(x + 1) = 2x +1 and Charlie claims that 2(x+1)=2x+2. 
a) Which student is correct? 

b) Provide two mathematical arguments (for example symbolic, diagrammatic, etc) to explain 
why the student you chose in the previous question is correct. 

c) Provide one mathematical argument to explain why the other student’s answer is incorrect. 

Exploration  Task 2: The following is a sequence of arithmetic statements: 
(3 + 2) · (3 − 2) = 32 – 4,  (4 + 2) · (4 − 2) = 42 – 4,  (5 + 2) · (5 − 2) = 52 – 4,  (6... 

a) Provide a general mathematical expression for this sequence. 
b) Explain how you came up with the expression in question a by using two different arguments 

(for example symbolic, diagrammatic, etc). 

Production of 
their own 
argument 

Task 7:  a) Can the number 23・32・5・7 be divided by 105? Provide an argument to explain 

why or why not. 

b) Is the number 105 divisible by 15? Provide an argument to explain why or why not. 

Results 
We will present and analyse the solutions for Task 1 (see Table 1), provided by two participants: Eric 
and Gavin. Based on our analysis of all the PSMTs’ responses, these two stood out as being typical 
and illustrative, documenting the PSMTs’ responses to one of the designed tasks. Their answers can 
be seen in Table 2 and Table 3 below. 

Eric used several forms of argumentation in his response to Task 1. Regarding question a, he referred 
to a rule to explain his choice in a narrative argument. When asked to provide two arguments for why 
the transformation is correct, question b, Eric first provided an argument by performing the same 
transformation on a more general expression. According to Eric, the transformation of the more 
general expression (with a cloud instead of 1) showed that 2x+2 is correct as it is a special case of 
the more general expression. Although the argumentation is deductive in nature, it used the 
transformation to be validated as a foundation for the argument and thus it failed in proving it.  

Eric’s second argument involved specializing, or in other words naïve empiricism, as he evaluated 
both sides of the equal sign for multiple values of x, skilfully choosing different numbers (zero, 
negative numbers, fraction), recognizable strategies for exploring patterns used in the course. 
However, using these did not bring Eric closer to proving that the transformation is correct. In order 
to show that the transformation 2(x+1) = 2x+1 is incorrect, question c, he provided an argument that 
exhausts all possible values for x, by using a graphical representation, as the two expressions form 
two parallel lines (see Table 2), not considering the simple solution of providing one counterexample.  



 

 

Table 2: Eric’s responses to Task 1 

Eric’s response Interpretative explanation 

 

 

a) Eric chose the student he agrees with and explained 
his choice. He explained that the transformation 
2(x+1)=2x+2 is correct by referring to rules of 

operations concerning multiplication and parenthesis. 
He rejected the transformation 2(x+1)=2x+1, 

explaining that the second part of the expression in the 
parenthesis was not multiplied by 2. For Erik, a 

calculational rule was sufficient to explain his choice.  

b) Eric provided two arguments. In the first, he 
changed the expression replacing 1 with a sign (a 

cloud) and transformed the expression. Then he wrote 
that the result corresponds to 2x+2 (we interpret that 
Eric by this statement see 2x+2 as a special case of 

2x+2(cloud). The second argument comprises 
functional representations. 

c) Eric did the same with the transformation he rejected 
and created a graph of the two functions. 

Gavin used various representations in his arguments. His approaches included algebraic and 
geometrical arguments and throughout his response, he mostly maintained a generalized approach 
and used deductive reasoning. In question a, he used symbolic representations to explain why Charlie 
gave the correct answer, seemingly basing his argument on the distributive law. 

However, his argument does not reveal why the distributive law works. For question b, Gavin 
provided a deductive argument that falls in the category of a thought experiment. By visualizing the 
expression as an area, he was able to separate it into two different parts and show how the expression 
can be transformed. This argument was explanatory of the connections between the elements in the 
operation and followed the same logical steps as his argument in question a.  

For his second argument, he used deductive proof recognizing a connection between the operations. 
He was able to move from the structure of multiplication to that of addition and he proved the 
statement using properties. For question c, he used a different approach. He used a formal 
representation as well, without following deductive reasoning. He interpreted the equivalence sign to 
mean that the two sides of the equation should be equal to be written in the same way. While he used 
algebra to show that the two sides cannot be written in the same way, he did not realize that he used 
the distributive law in his calculations rendering his argument incorrect. At the same time, even 
though he was comfortable with working in generalized expressions throughout his response, he 
could not go into specification to prove that the expression is incorrect. However, he was able to 
generalize and think in an algebraic way and did not resort to the use of examples in his answer. 



 

 

Table 3: Gavin’s responses to Task 1 

Gavin’s response Interpretative explanation 

 

Gavin used arrows to emphasize that the number 
outside the parenthesis had to be multiplied with 

both elements inside the parenthesis.  

For his first argument, he drew a rectangle and 
wrote “the expression as an area”. He proceeded 

to show that it can be split in two smaller 
rectangles.  

He wrote “factorizing 2x+1 with 2 outside of the 
parenthesis” and shows that it cannot be written as 

2x+1. Therefore, he reached the conclusion that 
Tim’s answer is not correct. 

Discussion 
We set out in this study to come up with answers to the research question: In what ways do designed 
mathematical tasks promote PSMTS’ algebraic reasoning and argumentation? As revealed in the 
analyses, we observe that the PSMTs use several argumentations in their engagement with the 
designed task. These argumentations were indeed promoted by the designed task, due to its 
formulation and the context in which it occurred.  

The designed tasks elicited various arguments including referencing rules, naïve empiricism, 
deduction and thought experiment (cf. Balacheff, 1988), as well as the use of narratives, geometric, 
functional, and algebraic representations. Thus, the PSMTs took advantage of these semiotic 
resources to make them function together (O’Halloran, 2005). These arguments provide some 
evidence of PSMTs’ algebraic reasoning or lack thereof (cf. Jeannotte & Kieran, 2017). Eric showed 
a structural view in that he went from considering an equality to considering the expressions as equal 
functions. However, the transformation under consideration is founded on properties of operations he 
does not recognize. In contrast, Gavin manages to make a connection between a multiplicative and 
an additive structure. Both PSMTs stayed within the algebraic domain and did not resort to arithmetic 
although that would be a more efficient approach for refuting the incorrect transformation. However, 
Gavin and Eric’s approaches agree with the results of Lee and Wheeler (1989), who also found that 
students quoted a rule while trying to explain why an algebraic statement was true. 

Through this task, Eric’s difficulty crossing from arithmetic to algebra became evident. He realizes 
the need for generality, but uses an unorthodox way to pursue it, raising the question if he perceives 
algebraic proof as generalized arithmetic (cf. Martinez & Pedemonte, 2014). In both PSMTs’ cases, 
it becomes clear that they do not explicitly question the mathematical rules. On the contrary, they use 



 

 

them in place of a deductive argument (cf. Mason, 1996; Radford, 2012) as a way of validation. This 
result is different from what Martinez and Pedemonte (2014) found in their study. The high school 
students in their study used algebraic symbols as means to construct a deductive proof, thus providing 
a bridge between the arithmetic and the algebraic modes of reasoning. As revealed in the analyses, 
the bridging between these modes of reasoning was blurry in the preservice students’ responses.  

The students used approaches that were predicted, such as deductive proof and geometrical 
representation. However, they used unique approaches as well, such as manipulating one side of the 
equation to look like the other, using functions as a way to generalize using inscriptions instead of 
variables and proving by example. The latter was also prevalent in the findings of both Ko and Rose 
(2021) and Kempen and Biehler (2019). In terms of aspects of algebraic reasoning, steps 2, 3 and 4 
are evident in the students’ answers. Eric used examples to identify commonalities and generalize. 
They both try to manipulate the expressions provided in order to formulate logical arguments.  
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