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Typhoid Fever

Typhoid fever
Typhoid fever is a bacterial infection that is caused by the bacterium
Salmonella typhi.

I Symptoms

• Fever that starts low and increases daily
• Headache, weakness and fatigue, muscle aches
• Stomach pain, diarrhea or constipation
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Typhoid Fever

I Incubation
• 1 to 3 weeks

I Transmission
• direct : Fecal-oral transmission by ingestion of bacteria from

contaminated stool (dirty hands)
• indirect : by ingestion of water or food eaten raw (vegetables,

seafood ...) and soiled by infected human stool (sewers,
rainwater evacuation systems, etc.)
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Typhoid Fever in Mayotte

I Endemic disease in Mayotte: Annual incidence varies between 35
cases (observed in 2017) and 100 cases (observed in 2022)

I Notifiable disease
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Figure: Weekly cumulative number of new reported cases of typhoid fever between
2018 and 2022 in Mayotte. (source: ARS Mayotte)
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Objective

I Propose a mathematical model to describe the transmission
dynamics of typhoid in Mayotte

I Estimate its parameters from a dataset of hospitalizations
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Model

• Population characteristics :
I Large population of Susceptibles: ∼ 300 000 inhabitants
I Small population of Infected: ∼ 60 cases per year on average

⇒ Stochastic model of the counting process type

• Disease dynamics:

⇒ Two-dimensional pure jump Markov process (Et , It )t≥0
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Model

• Two-compartment model : Exposed-Infected

I λ : Rate of contamination from person to person
I ν : Rate of exogenous contamination
I α : Rate of individual incubation
I µ : Rate of isolation

⇒ Estimate the rates describing the dynamics of typhoid fever
transmission (λ, ν, α and µ)
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Observations

I Number of exposed and infected: non-observed
I Available observations On: Daily cumulative number of new

reported (isolated) cases = cumulated number of −1 jumps in
the process It during a day
I Mathematically complex and original
I Classic in epidemiology

Figure: Example of a trajectory: exposed-infected

IWAP23 Ibrahim BOUZALMAT 8 / 22



Challenges

I Multiple trajectories can generate the same observations

I Continuous-time model with discrete-time observations

I The numbers of exposed Et and infected It individuals are hidden,
only the daily cumulative counts are observed

I No direct analytical/numerical expression for the likelihood of
observations
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Strategy

I Consider the tridimensional process (Et , It ,On)

Step 1 : Solve the estimation problem from complete discrete-time
observations (En, In, and On)

Step 2 : Utilize a Hidden Markov Model (HMM) framework to solve the
estimation problem from hidden discrete observations (On)
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Step 1: Complete Discrete Observations

Theorem: Analytical Expression of Parameters (BOUZALMAT et.al )

If λ < µ,

λ =
N?
(

R∗
E∗I∗ − 1

)
(E∗ + I∗)

I∗
(
1 +

( R∗
E∗I∗ − 1

)
(E∗ + I∗)

) ,
µ =

N?

I∗
, α =

N?

E∗
, ν = I∗ (µ− λ) ,

where

N? = lim
n→+∞

E(e0,i0,n0)[Nn]

n
, E∗ = lim

n→+∞
E(e0,i0,n0)[En], I∗ = lim

n→+∞
E(e0,i0,n0)[In],

and
R∗ = lim

n→+∞
E(e0,i0,n0)[EnIn].

Nn :=
∑n

k=0 Ok : the cumulative number of new isolated cases from 0 to time n

I Proof idea: Kolmogorov equation
I An estimator of N? is observed, but E∗, I∗, and R∗ are hidden
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Approach

I Estimate, via an HMM, the transition matrix of the hidden chain
(En, In)n∈N, denoted p(e,i),(e′,i ′), which is not analytically reachable

I Estimate moments E∗, I∗,R∗ from p̂(e,i),(e′,i ′) using Monte Carlo
simulations

I Construct estimators for λ, µ, α, and ν from the analytical
relationship in the first step
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Estimation Strategy

I Hidden multi-chain Markov model (HMCMM)

Figure: HMCMM emission scheme.

I (Zn)n∈N∗ = (En−1, In−1, In)n∈N∗ ⇒ (Zn,On) is a three-dimensional
HMM with a standard observation scheme whose characteristics are
given by the triple M = (Q, ψ, ρ)
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Adapted Baum-Welch Algorithm

Theorem (BOUZALMAT et.al )
Given the parameters Mn = (Qn, ψn, ρn) and observations (o1, . . . , oT ), the
re-estimations of the HMM are given, for e, i , j , o ∈ N, by

Qn+1
(e,i,j),(e′,i′,j′) =

∑T−1
t=1 ξn

(e,i,j),(e′,i′,j′)(t)∑T
t=1 γ

n
(e,i,j)(t)

δi′=j

ψn+1
(e,i,j)(o) =

∑T
t=1 1ot=oγn

(e,i,j)(t)∑T
t=1 γ

n
(e,i,j)(t)

, ρn+1
e,i,j = γn

(e,i,j)(1),

pn+1
(e,i),(e′,i′) =

∑
j′∈N Qn+1

(e,i,j),(e′,j,j′)ρ
n+1
e,i,j∑

j∈N ρ
n+1
e,i,j

,

ξn
(e,i,j),(e′,i′,j′)(t) =

αn
(e,i,j)(t)p

n
(e′,i′),(�,j′)p

n
(e,i),(e′,i′)ψ

n
(e′,i′,j′)(ot+1)β

n
(e′,i′,j′)(t + 1)

pn
(e,i),(�,j)

∑
(e,i,j)∈N3 αn

(e,i,j)(t)β
n
(e,i,j)(t)

,

γn
(e,i,j)(t) =

αn
(e,i,j)(t)β

n
(e,i,j)(t)∑

(e,i,j)∈N3 αn
(e,i,j)(t)β

n
(e,i,j)(t)

.
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Numerical Study : Complete observations
I We run a 10000 parallelized simulation of the process (Et , It ) starting from
(E0, i0) = (0, 0) with λ = 0.05, µ = 0.2, α = 0.1 and ν = 0.015
• Fixed time step ∆t = 1day ⇒ (En, In) and the observations On

Figure: Parameter estimates and their CI for different n

⇒ The accuracy of the estimates depends on the number of simulated trajectories
and the number of observations

IWAP23 Ibrahim BOUZALMAT 15 / 22



Implementation of the HMM

I Hidden State Truncation N

� Choice of initial parameters: For each value of the
quadruplet (λ

(0)
i , µ

(0)
i , α

(0)
i , ν

(0)
i ) for i = 1, . . . ,15 :

• Estimate initial matrices p(0) and ψ(0) through Monte Carlo
simulations

• Execute the adapted Baum-Welch algorithm

� Choose p̂m = maxp̂n P(O|Mn)
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Numerical Study: Hidden Framework

I Number of observations: n = 10000

Figure: Impact of truncation N on parameter estimates
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Discussion:

Positive Aspects:
Truncating the state space does not have a significant impact on
the estimation.
The quality of parameter estimation primarily depends on the
quantity of available data:
• Improves local convergence of EM
• Enhances the estimation of N?, which crucially depends on the

number of observations.
Limitations:

Tuning of parameters.
The algorithm’s complexity may result in longer execution times.
The dataset provided by the ARS of Mayotte proved insufficient for
obtaining precise estimates of the model parameters.
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Simplified model

• Linear birth-death-immigration (LBDI) model

⇒ Aim: Estimate the contamination and isolation rates (λ, ν and µ)
from hospitalization data for Mayotte

I Kolmogorov equation: Explicit expression of λ, ν and µ as functions
of P0,0(∆t),P0,1(∆t) and P1,0(∆t)

(λ, ν, µ) = f (P0,0(∆t),P0,1(∆t),P1,0(∆t))
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Results on Hospitalization Data in Mayotte

IWe have 1816 observations (299 reported cases over 5 years)

Table: Number of new reported cases in Mayotte between 2018 and 2022

Observation Value 0 1 2 3 4
Number of Observations 1596 167 34 12 7

Table: Transitions between States

Transition 0→ 0 0→ 1 1→ 0 1→ 1 1→ 2
(%) 79.62 7.05 7.60 1.15 0.33

I Initialization: λ(0) ∈ [0.05, 0.08], µ(0) ∈ [0.11, 0.25], and ν(0) ∈ [0.015, 0.03]

⇒ The estimated parameters are

λ̂ = 0.054, µ̂ = 0.132 and ν̂ = 0.017

I λ̂ < µ̂: consistent with observations
• The average isolation duration is 7.5 days
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Perspective

I Deepen our understanding of the impact of variations in rainfall
levels on the development of typhoid fever
I Get additional data: date of first clinical signs, date of notification,
date of hospitalisation, etc.
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