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A community of inquiry consisting of seven high-school teachers chose a challenging long-term goal of designing teaching situations to foster students' mathematical flexibility across the curriculum. In this context, we explored the teachers' design products. Based on the data from the teachers' portfolios and recordings of the community meetings during a year, we identified three types of situations that the teachers designed: multiple-solution situations, "find a better strategy" situations, and dead-end situations. We argue that our findings can inform the future design motivated by challenging didactical goals and that the community of inquiry is an appropriate setting for the development of mathematics teachers' task knowledge and design skills.

Introduction

Mathematics teacher interaction with curricular resources has been the focus of many studies (e.g., [START_REF] Adler | Conceptualising resources as a theme for teacher education[END_REF][START_REF] Gueudet | Towards new documentation systems for mathematics teachers[END_REF]. While previously, task design was mainly in the hands of experts, and teachers were normally expected to implement the ready-made tasks, recently, various studies indicate the importance of the involvement of teachers in the design of tasks and instructional materials [START_REF] Jones | Research on mathematics teachers as partners in task design[END_REF]. This involvement is deemed important because many teachers are in a position to contribute to the creation of resources that are well-suited to classroom conditions and because task design is rich with valuable opportunities for teacher learning. [START_REF] Pepin | Mathematics teachers as curriculum designers: an international perspective to develop a deeper understanding of the concept[END_REF] described two modes of teacher involvement in the design of curricular resources. In the first mode, teachers act as participatory designers in multiple-expert teams. In this mode, teachers contribute their experience and professionalism to developing resources in various topics. However, they usually do not determine the design goals or lead the design process. In the second mode, teachers' design work is conducted individually or in small groups in their local environments and for their own teaching needs. In this (local) mode, the design usually results in a single task, lesson, or instructional sequence aimed at teaching or assessing a specific content unit chosen by the teachers.

However, little is known about situations in which teachers are the ones who determine a goal of broadly recognised importance and serve as the main design actors. In the study presented in this paper, we aspired to learn about this mode of teacher design work, namely, the mode where teachers can choose a challenging didactical goal and collaborate for a long time towards designing situations that foster the achievement of the chosen goal not locally but across many curriculum topics.

Theoretical background

For Pepin et al. (2017, p. 801), teacher design is "the creation of 'something new' (e.g., combining existing and novel elements) as a deliberate/conscious act in order to reach a certain (didactical) aim." It is broadly acknowledged that teacher design includes not only developing completely new tasks but also adapting existing tasks to the local context of the teacher [START_REF] Pepin | Mathematics teachers as curriculum designers: an international perspective to develop a deeper understanding of the concept[END_REF]. In addition, [START_REF] Crespo | Learning to pose mathematical problems: Exploring changes in preservice teachers' practices[END_REF] found that sometimes the lesson design is based on selecting an appropriate task and using it for teaching purposes. However, whether the teacher creates a new task, modifies an existing task, or even selects a prepared one while inventing a new way of its use in a lesson, the particular didactical goal to achieve drives his or her design decisions.

Due to their personal interests and preferences, the goal chosen by the teacher-participants in our study was to create mathematical-didactical means that have the potential to foster students' mathematical flexibility. In the professional literature, mathematical flexibility refers to switching between problem-solving strategies [START_REF] Verschaffel | Conceptualizing, investigating, and enhancing adaptive expertise in elementary mathematics education[END_REF] and between multiple representations [START_REF] Even | Factors involved in linking representations of functions[END_REF][START_REF] Nistal | Conceptualising, investigating and stimulating representational flexibility in mathematical problem solving and learning: a critical review[END_REF]. The importance of fostering mathematical flexibility for both problem-solving [START_REF] Schoenfeld | What is Mathematical Proficiency and How Can It Be Assessed?[END_REF] and the construction of new mathematical knowledge [START_REF] Spiro | Cognitive Flexibility Theory: Advanced knowledge acquisition in ill-structured domains[END_REF] is broadly agreed upon. As a general goal, cultivating mathematical flexibility is a valuable venue to explore the teacher task design where it is not constrained by a single mathematical topic, as is frequently the case [START_REF] Pepin | Mathematics teachers as curriculum designers: an international perspective to develop a deeper understanding of the concept[END_REF].

Coming back to Pepin et al.'s (2017) conceptualisation of teacher design, we will now discuss a possible meaning of the words "something new" to be created. Indeed, designing teaching activities is not limited to creating tasks only. [START_REF] Christiansen | Task and activity[END_REF] distinguished between a taskwhat the student is asked to do -and an activity -working with the task, including interactions with other students, other sources, and the teacher. Similarly, in their discussion of "good" mathematical tasks for different purposes, [START_REF] Liljedahl | Interweaving mathematics and pedagogy in task design: A tale of one task[END_REF] distinguished between the skilful design of tasks and the skilful use of them in classrooms. While skilful design requires understanding the mathematical affordances inherent in it, which they named task knowledge, skilful use requires the ability to bring those possibilities to fruition, which they termed pedagogical task knowledge (PTK). In considering both mathematical and pedagogical aspects of design, we prefer to talk about the design of a teaching situation (TS) as the design of a task aimed at achieving a certain goal and of the appropriate pedagogical context for the enactment of the task.

Let us now focus on the chosen didactical goal. To design a TS to foster students' mathematical flexibility, one must first choose or create a task based on his or her task knowledge about the potential for mathematical flexibility embedded in it (e.g., can it be solved using different strategies?). Once a task that may call for flexibility has been chosen or created, the pedagogical context -a set of pedagogical guidelines for the activity accompanying the task -must also be designed. This design calls for the designer's PTK about how to enact the task in ways that would make students manifest flexibility while working on the task (e.g., which tasks should be presented to the students prior to the designed task?). Therefore, when we talk about designing a TS to promote mathematical flexibility, we refer to the design of a task aimed at promoting the mathematical flexibility of students alongside the design of the pedagogical context suitable for this goal.

To reiterate, this study aims to deepen our understanding of teacher design of such TSs in different mathematical topics and focuses on the characterisation of TSs designed by teachers in order to foster students' flexibility. Specifically, our research question is, what kind of TSs can experienced mathematics teachers design, aiming at fostering mathematical flexibility in high-school students?

Method

The study was conducted in a community of inquiry [START_REF] Jaworski | Learning communities in mathematics: Creating an inquiry community between teachers and didacticians[END_REF] operated within a long-term program named Teacher-Researcher Alliance for Investigating Learning or TRAIL (see [START_REF] Koichu | Developing education research competencies in mathematics teachers through TRAIL: Teacher-Researcher Alliance for Investigating Learning[END_REF][START_REF] Pinto | Implementation of mathematics education research as crossing the boundary between disciplined inquiry and teacher inquiry[END_REF]. In TRAIL communities, teachers and researchers collaboratively investigate pedagogical topics of mutual interest, following the steps of the research cycle. Teachers in these communities take an active and central role in selecting the research topic, formulating research goals and questions, and designing data-collection tools. Later, teachers collect data in their classrooms that are analysed collaboratively by community members.

The TRAIL community described here worked during the 2018-2019 school year in a 60-hour professional development (PD). Within the community, seven mathematics teachers teaching at different high schools in the Northern part of Israel collaborated with a three-person TRAIL team, including the authors of this paper. The teachers' teaching experience ranged from six to 34 years; all but one were teaching over a decade, so they all can considered experienced teachers. The team organised and supported the activities of the community. Still, the researchers did not act as mentors in relation to the design processes. The teachers were the ones who decided on the directions of the community work. In particular, they had full agency in the design and implementation of the TSs. On the occasions when a TRAIL team member entered the discourse about a particular TS design, his or her opinion was considered of the same status as the opinions of any other community member.

The work of the community was documented based on several data sources. First, the teachers produced many written artefacts that were organised in portfolios consisting of design products and reflections on the design processes. Submitting such a portfolio was an official requirement for getting professional credit from the Ministry of Education for participation in the community. When organising the portfolio, every teacher described in detail the designed TSs and explained the design process and rationale. Based on the student evidence collected by the teachers when enacting the TSs, the teachers elaborated on what had happened in the classrooms. Special emphasis was put on contemplating what has been tagged in the community as "moments of flexibility". The teachers described such moments in detail and made observations about them. Second, posters made by the teachers for presenting their inquiry activities at the teacher conference of all TRAIL communities in the summer of 2019 were collected. Third, 10 meetings of the community were video and audio recorded, and relevant sections from these recordings were transcribed. Fourth, e-mail and WhatsApp correspondence related to the community activity was stored. Fifth, a field diary of the first author of this paper was kept for documenting the community meetings.

In the initial review of the data, we collected all tasks suggested by teachers as potentially useful for fostering mathematical flexibility. Each such task formed a core around which a TS was designed. These TS became the units of analysis. Since the design of each TS was an ongoing process, and sometimes the same TS was discussed and modified repeatedly on different occasions, an additional review of all the data was performed to identify all parts and modifications of each TS. In this way, a data cluster was created for each TS related to task wording, the considerations that led to selecting the task as potentially conducive to flexibility, the pedagogical context, and the design methods.

In accordance with the research question, the data analysis was conducted using the general inductive approach [START_REF] Thomas | A general inductive approach for analyzing qualitative evaluation data[END_REF] and focused on the identification of significant characteristics of the TSs. Some of these characteristics were identified in discussion with and among the teacher-participants when we tried to contemplate together how mathematics flexibility can be defined operationally. Describing the process that led the community to a particular definition is beyond the scope of this paper. Eventually, mathematical flexibility was defined as the switch from one problem-solving strategy to another, and a moment of flexibility was defined as a moment when such a switch occurs. Of note is that this definition does not require the problem being solved in any way; the definition is met when the solvers attempt to solve the problem by means of one strategy and then employ-for whatever reasonanother strategy. Based on this definition, the teachers reflected in their design work on the following question: How can students be encouraged to approach the problem with one strategy, and how can they be encouraged to switch to another? Thus, each TS was characterised by how it addresses this question. The variety of answers helped us to complete the inductive analysis of the TSs.

Findings

The teachers designed nine TSs, and three of them were tried in classrooms. The mathematical tasks of the TSs were related to diverse mathematical topics: four in differential calculus, two in geometry and trigonometry, one in integrals and areas, one in analytical geometry, and one in mathematical literacy. Three tasks were selected from textbooks and official tests and identified as having the potential to encourage flexibility, five tasks were modifications of problems of the same sources, and only one task was created as apparently new.

The TSs were classified into three types, according to how they were expected to invoke mathematical flexibility by means of making students switch among several problem-solving strategies: (1) multiple-solution situations, (2) "find a better strategy" situations, and (3) dead-end situations. In this section, we present and exemplify each type and discuss some of its characteristics.

Multiple-solution situations

Two of the TSs were based on multiple-solution tasks. These tasks were selected by Vicky (all teachers' names are pseudonyms), who designed them to link geometry and trigonometry. Vicky modified a task she found in a textbook to require adding an auxiliary construction to solve it (see Figure 1) and noticed that various productive auxiliary constructions can be used. Vicki found nine productive auxiliary constructions. She treated this diversity as an opportunity to foster flexibility if and when the students are asked to solve the task in more than one way.

Nira joined Vicky when designing a pedagogical context for this TS, and they both implemented it in their classes. In both cases, students were explicitly required to solve the task in several ways. However, while Vicky chose to design instructions that created competition among the students, Nira avoided this. She told the students that she had found many ways to solve the task and asked them to join her in finding as many ways as they could. As in the multiple-solution type, in "find a better strategy" situations, each task can be solved in more than one way. However, tasks in this category have a special feature: the most accessible or intuitively appealing solution strategy leads to a relatively long and not particularly elegant solution, but there is also a less accessible or less intuitive strategy that results in a shorter and more elegant alternative solution. Five TSs of this type were designed by the community teachers, and all the tasks were received with enthusiasm. A task designed by Ayelet for 11 th grade class attended to a family of continuous odd functions of the form 𝑓(𝑥) = 𝑎𝑥 3 +2𝑎𝑥 √𝑥 4 +4𝑥 2 +4 (𝑎 > 0). Given that the area enclosed between the graph of the function, the x-axis, and the lines 𝑥 = 1 and 𝑥 = -1 equals 4, the question was to find parameter 𝑎. Ayelet was convinced that most of her students would try to calculate the area using an integral applied to the formula of the function as given in the task formulation. This solution would be correct but lengthy and time-consuming. Instead, she noted, one can reduce the fraction, get a linear function, and calculate the area of a right-angled triangle without using integrals.

In a rich discussion, several community members suggested alternative approaches for pedagogical contexts for this task. Following this discussion, Ayelet decided to let the students solve the task (by calculating the integral) and then tell them the following story: "There was a 9 th grade student who easily solved this task", and ask: "How could she do it?". The reference to the ninth grade in the story was designed as a cue for encouraging 11 th grade students to think of how the task can be solved without integrals, as the students knew that this knowledge was not yet accessible to them when in the 9 th grade. Ayelet also hoped that the cue would make the students look carefully at the task in order to discover that it could be solved by means of geometry.

When designing a pedagogical context of another TS, Liat chose a different cue to motivate the students to look for an alternative strategy. Liat designed a task that required to analyse two similarly looking quotient functions, the second of which was obtained by flipping the numerator and denominator of the first one. She expected that most of her students would devote as much time to the analysis of the second function as to the first one without applying the results of the first analysis to the second one. As a cue, Liat decided to limit the time allocated for the second analysis to five minutes, hoping the students would look for a shortcut and, therefore, manifest flexibility. In this case, there was no explicit requirement to solve the task in an additional way but only a situational cue, hopefully suggesting that there is another way. Liat explained in the community meeting that she values flexibility out of necessity over flexibility out of a request.

Dead-end situations

Dead-end situations are prominent venues for manifesting flexibility out of necessity. In these TSs, the first strategy turns out ineffective, leading the solver to get stuck for a while. To escape this unfortunate position, the solver must intend a new strategy and thus, by the community definition, manifest flexibility. Two of the designed TSs were of this type. One was created by Amnon based on the task: "How many positive solutions does the equation 𝑥 3 3 + 4𝑥 2 + 12𝑥 -10 = 0 have?". Amnon assumed that students would try to solve the equation by factorisation. Such a strategy would most likely fail. In this case, to act flexibly, one can move from thinking algebraically to thinking analytically and think of the left part of the equation as a function that can be analysed in terms of derivatives. Such an analysis would lead to identifying the number of positive zero points of the function and, therefore, to the number of positive solutions of the equation.

As before, the pedagogical context for this task was shaped by a vivid discussion in the community. The discussion developed around the timing of offering the task to students. Some teachers argued that if the task is presented as part of a lesson on analysing polynomial functions, then (good) students would not begin from factorisation and, therefore, would not get stuck, even though the task formulation does not explicitly mention functions. Then, the appropriate pedagogical context was constructed as follows: the above equation is to be presented as one of the items in a task when the question "How many positive solutions are there?" concerns several cubic equations, all of which but the one can be readily solved by factorisation. A student who would answer the above question by factorisation for two or three equations in a row would probably get stuck when approaching the equation in question in the same way. Then, the student would have no choice but to look for an alternative solution strategy, thus having a chance to manifest flexibility.

Concluding remarks

The present study helped us learn about affordances of the teacher design work when motivated by self-imposed ambitious didactical goals. The chosen goal of fostering flexibility led the teachers to design teaching situations that require inventing multiple solution methods in various mathematical topics. Levav-Waynberg and Leikin (2012) argued that despite the rarity of integrating multiplesolution tasks in regular teaching, teachers are more willing to implement such activities in geometry than in any other mathematical topic. Therefore, we find it interesting that the teachers in our study considered not only the classic geometry contexts but also analysis of functions, calculus of integrals, trigonometry, and analytical geometry.

Concerning the three types of teaching situations identified in the datamultiple-solutions situations, "find a better strategy" situations, and dead-end situationswe find it important to note that these types are reasonably general and thus can serve as tools in the future design or as design principles for fostering mathematical flexibility. Indeed, after the three types were established in the community discourse, the teachers began suggesting new situations of these types quite fluently. It was truly encouraging for us that when the community terminated its official activity at the end of the school year, the teachers continued to share new tasks, all of which were of one of the three identified types. Therefore, we can relatively safely conclude that teacher task design knowledge and skills can be developed in a professional development setting organised as a community of inquiry.

Our next remark concerns the three design practices of creating, adapting, and selecting tasks mentioned above. Although the teachers mostly selected or adapted existing tasks in our study, and this is in line with past research (e.g., [START_REF] Crespo | Learning to pose mathematical problems: Exploring changes in preservice teachers' practices[END_REF][START_REF] Pepin | Mathematics teachers as curriculum designers: an international perspective to develop a deeper understanding of the concept[END_REF], their designs differed from the local teacher task designs aimed at teaching a specific content unit. Indeed, when teachers select or adapt tasks for teaching a particular curriculum topic, they usually use collections of tasks which are related to the chosen topic. Thus they can find the tasks attuned to their needs or slightly modify the tasks to fit their classes (cf. [START_REF] Crespo | Learning to pose mathematical problems: Exploring changes in preservice teachers' practices[END_REF]. However, when teacher design aims at a more general teaching goal, it looks like they cannot use such a practice. In our study, the teachers began task design to foster flexibility without having collections of tasks to borrow from. They rather learned to openly consider many different tasks for their potential for flexibility development and introduce adaptations when needed while having in mind a general idea of switching between different strategies, thus developing their noticing skills in relation to the chosen goal.

In sum, we conclude that teacher-participants in our study seemed to advance pedagogical task knowledge in designing contexts in which their tasks could be enacted. As shown, the question of what can encourage students to look for a new strategy "out of necessity" rather than per request empowered the teachers to make non-trivial design decisions that can be seen as instantiations of their pedagogical inventiveness and creativity. Needless to say, more research is needed in order to substantiate thisvery tentative given the small scope of our studyconclusion.
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  Figure 1: Vicki's Task