
HAL Id: hal-04416966
https://hal.science/hal-04416966

Submitted on 25 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Differentiable Optimisation: Theory and Algorithms –
Part II: Algorithms

Andrea Simonetto

To cite this version:
Andrea Simonetto. Differentiable Optimisation: Theory and Algorithms – Part II: Algorithms. En-
gineering school. ENSTA Paris, France. 2024. �hal-04416966�

https://hal.science/hal-04416966
https://hal.archives-ouvertes.fr

c
O

P
T

20
2

—
L

ec
tu

re
N

ot
es

,
A

A
20

23
/

20
24

Differentiable Optimisation:
Theory and Algorithms

Part II: Algorithms

Lecture notes, version at December 1, 2023

Andrea Simonetto

Forewords

Context and Aim

This course follows naturally OPT201, which covers the theory part of continuous optimisation.
OPT201 focuses on optimality conditions, convexity, and duality. In OPT202, we will look at
how to use these notions to build algorithms that solve the problems.

In particular, the aim of the course is to be able to answer the questions,

1. Given an optimisation problem, which algorithm do I use to solve it?

2. Which properties and theoretical guarantees does the algorithm that I have chosen have?

3. Conversely, if I want to use a certain algorithm, which characteristics does the optimisation
problem need to have?

In order to answer to these three questions, we will need to build a theory of algorithms, and
ultimately understand what we really mean by solving an optimisation problem.

Note: The sections or subsections marked with ‹ contain optional advanced material, which is
not covered in class.

References

We will use standard references in convex optimisation and algorithms, which you can refer to.

[YN] Y. Nesterov, Introductory Lectures on Convex Programming, Kluiver, 2004

[BV] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge, 2004

I will also point out a few other ones, chapter by chapter.

Palaiseau, December 1, 2023.

2

Contents

1 First lecture 5
1.1 Introduction . 5
1.2 Oracles, algorithms, and an impossibility theorem 5
1.3 Unconstrained optimisation . 7

1.3.1 Setting . 7
1.3.2 Lipschitz conditions . 8

1.4 The gradient method . 9
1.5 Newton’s method . 12
1.6 Damped Newton’s method . 14
1.7 Gradient vs. Newton’s . 15
1.8 Least-squares problems . 15
1.9 References . 15
1.10 Exercises . 15

2 Second lecture 17
2.1 The convex problem class . 17

2.1.1 Some necessary definitions . 17
2.2 Standard gradient methods . 19

2.2.1 Case I: Gradient for f P S1,1
m,L . 19

2.2.2 Case II: Gradient for f P S1,1
0,L . 20

2.3 Nesterov’s accelerated gradient . 21
2.3.1 Nesterov’s alternative formulations* . 22

2.4 The subgradient method . 23
2.4.1 Adding strong convexity‹ . 24

2.5 Damped Newton’s method in the convex case . 25
2.6 Main messages . 25
2.7 References . 25
2.8 Exercises . 27

3 Third lecture 29
3.1 Setting . 29

3.1.1 Setting: simplified . 29
3.2 Splitting methods . 30

3.2.1 Forward-backward splitting . 30
3.3 The proximal gradient method . 32

3.3.1 Prox-friendly functions . 32
3.3.2 Proximal properties . 33
3.3.3 Convergence of the proximal gradient method 33
3.3.4 Interpretation of the results . 34
3.3.5 Numerical example . 35

3.4 Duality . 35
3.4.1 Equality constrained problems . 35
3.4.2 The dual ascent method . 36
3.4.3 Inequality and equality constrained problems 40
3.4.4 A primal-dual method . 40
3.4.5 Convergence: an example . 41

3

3.4.6 Summarising . 42
3.5 References . 42
3.6 Exercises . 42

4 Fourth lecture 44
4.1 The full picture . 44

4.1.1 Barrier functions and penalised problems 44
4.1.2 Interpretation of the penalised problem 45

4.2 A Newton’s step for the penalised problem . 46
4.2.1 Damping and the full method . 46

4.3 Self concordance . 47
4.3.1 Examples and properties . 47
4.3.2 Matrix extensions . 47
4.3.3 Newton’s method for self-concordant functions 48

4.4 The interior-point method . 49
4.4.1 Computational complexity analysis: outer 49
4.4.2 Computational complexity analysis: inner 49
4.4.3 Computational complexity analysis: complete 50

4.5 Classes of easy problems . 50
4.5.1 Linear programs . 51
4.5.2 Quadratic Programs: QPs . 51
4.5.3 Second-Order Conic Programs: SOCPs 51
4.5.4 Semi-Definite Programs: SDPs . 52

4.6 Summary . 52
4.7 References . 52
4.8 Exercises . 53

A Recap from OPT201 55
A.1 Optimality conditions: sets . 55
A.2 Optimality conditions: equality constraints . 55
A.3 Optimality conditions: complete case . 56
A.4 Extension to matrix decisions . 56
A.5 Useful reformulations: epigraph and Schur’s complement 56
A.6 (Lagrangian) Duality . 57
A.7 Determining the dual problem: examples . 58
A.8 Conjugate function . 59

4

Chapter 1

First lecture
Introduction and unconstrained optimisation (I)

1.1 Introduction

In this course, we look at generic optimisation problems of the form

(P) minimise
xPXĎRn

fpxq (1.1)

subject to gpxq ď 0 (1.2)

hpxq “ 0, (1.3)

where the functions fpxq : Rn Ñ R, gpxq : Rn Ñ Rp, hpxq : Rn Ñ Rq. In addition, X
represents a generic closed set. As it appears, we look at continuous optimisation problems
for which x P Rn. We indicate with x˚ a (global) optimizer of the original problem, and by
f˚ “ fpx˚q the unique (global) minimum. We also indicate the Euclidean inner product as
xv, uy “ vJu “ uJv for two vectors u, v P Rn.

As we go along, we will answer the following questions:

• How do we solve the above? And what do we mean by solving?

• Can we set up algorithms to solve the above?

• Can we distinguish easy and hard problems in the algorithmic perspective, beyond the
general divide between convex and nonconvex problems?

It is very non trivial to ask oneself the question: what do we mean by solving optimisation
problems?. Surely, on one side, you may remember that continuous optimisation problems may
come with conditions that optimal points need to verify. These are the so-called KKT conditions.
We will recall what they are in due course, but for now think of them as a system of non-linear
equations and inequalities.

On the other side, even equipped with these KKT, how can we solve for the optimal points when
we have thousands, or millions variables? What is the computational complexity associated with
this solution?

As we can already see, we need to build some theory around the notion of algorithm to be able
to characterise its complexity and the its inner workings. This is what we will do next.

1.2 Oracles, algorithms, and an impossibility theorem

We start by defining the main players of our new theory of algorithms. For a given optimisation
problem, we denote its class as F . The class is the collection of properties that that problem
has. For example, F can represent the class of convex problems.

We then define an oracle, denoted by O, as a computational entity that can generate answers to
our questions. An example is a gradient oracle, which can generate the value of the gradient of
a function ∇xfpxq, whenever we give it x.

5

And finally, we denote by M the method, that is the algorithm that we are going to employ to
solve our optimisation problem.

Definition 1.1 (Performance) We call performance or analytical complexity of a method M
for problem class F using the oracle O, the number of calls to the oracle to find an approximate
solution to F with an accuracy ε ą 0.

The definition may be not very formal, but it will give us a clear direction for our theory. In
particular we are interested in knowing how many iterations (i.e., how long do we have to wait)
to obtain an approximate solution for a given optimisation problem. This question is both
extremely pragmatic and practical: you want to know if you have to wait one minute, or three
days. But the question is also very theoretical: we want to find theoretical results that are valid
for whole problem classes.

So, how does a typical method look like? Well, a typical method is an iterative algorithm, which
start with an initial guess x0, and for all subsequent times k P N, does:

1. Calls the oracle O at xk;

2. Applies the method M to the information up to time k and form the new test point xk`1;

3. Stops if a stopping criterion is verified (the accuracy is reached), otherwise k Ð k ` 1.

Let’s give some examples to fix the ideas on these new notions.

Example 1.1 The quadratic problem

minimise
xPRn

1

2
xTQx` cTx, (1.4)

has optimality conditions: Qx “ ´c. If Q is positive semidefinite, these conditions are necessary
and sufficient. Otherwise just necessary.

Suppose Q is positive semidefinite. Then to find an optimal point x˚, we could use a linear
system solver. In this case we need an O that delivers gradient and Hessian information, and we
use the linear solver as a method M. Which linear solvers do you know and which performance
do they have?

Example 1.2 The generic differentiable problem

minimise
xPRn

fpxq, (1.5)

has necessary optimality conditions: ∇xfpxq “ 0.

We could use the gradient method with stepsize αk ą 0

xk`1 “ xk ´ αk∇xfpxkq, (1.6)

as a method M, with a gradient oracle O, and a stopping criterion }∇xfpxq} ď ε.

Let’s get back to the development of our theory. We remind that the only information available
for the method M are the answers of the oracle O. We distinguish, zero-order oracles, if they
only answer the value of the cost fpxq; first-order oracle, if they only answer the value fpxq
and the gradient ∇xfpxq; and second-order oracles, if they answer the value fpxq, the gradient
∇xfpxq and the Hessian ∇2

xxfpxq.

In this context, the oracle of the first example was a second-order oracle, while the one of the
second example was a first-order oracle.

Let us consider now a concrete optimisation problem and let us try to apply the formal language
that we have introduced. Consider,

(P’) minimise
xPr0,1sn

fpxq. (1.7)

6

If fpxq is defined by a complicated procedure, you may have only access to a zero-order oracle
O. This is typically the case if fpxq is generated by a simulation.

Suppose fpxq is of a particular Lipschitz class, for which there exists a scalar L ą 0 that:

@x,y P r0, 1sn : |fpxq ´ fpyq| ď L}x´ y}8.

Lipschitz classes will play a big role in the following, but for now just accept the definition.

Remember that an accuracy ε means finding a point x̄ for which,

|fpx̄q ´ fpx˚q| ď ε,

or, since we know that by optimality fpx̄q ´ fpx˚q ě 0, then we can also just focus on fpx̄q ´
fpx˚q ď ε.

So, let’s try a zero-order oracle O on problem (P’) with functional class above.

The only method M to obtain the accuracy we require is a gridding of the feasible space. In
particular, a uniform gridding. It obtains an accuracy ε if }x´ y}8 ď

ε
L , since

fpx̄q ´ fpx˚q “ |fpx̄q ´ fpx˚q| ď L}x´ y}8,

which implies that we need rLε s
n grid points. This brings us to the first key message of this

course.

Theorem 1.1 (Informal, adapted from Nesterov) General optimisation problems are un-
solvable.

Proof. The problem we just saw is an embodiment of a generic optimisation problem.

To reach an accuracy ε, you need rLε s
n grid points.

For a very simple problem L “ 4, n “ 10, ε “ 0.01, you need ą 1026 calls of the oracle. Even
with very performant machines you can do 1014 calls per second. Then you need 1012 seconds
and therefore 32000 years. ♣

This is important, most of the problem you will write, they will be unsolvable. optimisation
is hard.

In this course, we will see how to we solve problems with n „ 103 ´ 106 and ε „ 10´6. These
problems will not be the most general ones, but they will cover a good portion of the relevant
problems for society. We will see how the structure and class of the problem will play an essential
role, and not just its convexity.

We start by looking at unconstrained optimisation.

1.3 Unconstrained optimisation

1.3.1 Setting

We consider now the unconstrained problem

(PU) minimise
xPRn

fpxq, (1.8)

where the cost function f : Rn Ñ R is not necessarily convex or differentiable, unless specified.
We indicate by CkpRnq the class of functions in Rn that are at least k-times differentiable.

For Problem (PU), we already know that,

• If f P C1pRnq, then ∇xfpxq “ 0 is a necessary condition for optimality;

• If f P C1pRnq and f is convex, then ∇xfpxq “ 0 is a necessary and sufficient condition for
optimality.

7

These two points are very important. Convexity defines the landscape but it does not necessarily
says how hard is to solve for x˚. In particular, when we have convexity, we have conditions that,
if we are able to solve, deliver the optimal points. When we don’t have convexity, we don’t have
even that!

In general, for nonconvex problems, we are happy to find stationary points.

1.3.2 Lipschitz conditions

It turns out that convexity is not the only important element for the theory of algorithms.
Lipschitz continuity plays an equal (or even bigger) role too. Let us define it properly.

Definition 1.2 We label with Ck,pL pRnq, p ď k, a k-differentiable function which has its p deriva-
tive L-Lipschitz continuous, i.e.,

@x,y : }∇pfpxq ´∇pfpyq} ď L}x´ y}.

Lipschitz continuity has a very intuitive geometric interpretation as a condition on growth, as
we will see shortly.

An important class for us will be the class C1,1
L , that is the functions that are at least once

differentiable and whose gradient is Lipschitz continuous. For these, we have the following
result.

Lemma 1.2 (YN, Lemma 1.2.3) Let f P C1,1
L . Then for any x,y P Rn we have:

|fpyq ´ fpxq ´ x∇fpxq,y ´ xy| ď L

2
}y ´ x}2.

Proof. For all x,y P Rn, we have,

fpyq “ fpxq `

ż 1

0

x∇fpx` τpy ´ xqq,y ´ xydτ.

Hence, we can obtain the following chain of relations,

|fpyq ´ fpxq ´ x∇fpxq,y ´ xy| “

ˇ

ˇ

ˇ

ˇ

ż 1

0

x∇fpx` τpy ´ xqq ´∇fpxq,y ´ xy dτ

ˇ

ˇ

ˇ

ˇ

ď

ż 1

0

|x∇fpx` τpy ´ xqq ´∇fpxq,y ´ xy| dτ

by Cauchy–Schwarz ď

ż 1

0

}∇fpx` τpy ´ xqq ´∇fpxq}}y ´ x}dτ

by Lipschitz ď

ż 1

0

τdτL}y ´ x}2 “
L

2
}y ´ x}2,

from which the thesis follows. ♣

Geometrically, Lemma 1.2 means the following. Consider a function f P C1,1
L . Let us fix some

x0 P Rn and form two quadratic functions

ϕ1pxq “ fpx0q ` x∇fpx0q,x´ x0y `
L

2
}x´ x0}

2 (1.9)

ϕ2pxq “ fpx0q ` x∇fpx0q,x´ x0y ´
L

2
}x´ x0}

2 (1.10)

Then, the graph of the function f is located between the graphs of ϕ1pxq and ϕ2pxq.

ϕ1pxq ě fpxq ě ϕ2pxq, @x P Rn.

This is exactly the condition of growth that we were talking about, which will make the algorithms
easier or more difficult: we know upper and lower bounds on how the function changes. And
these bounds are easy quadratic functions. This will be very handy.

8

Let’s dig a bit deeper in Lipschitz conditions, since we are on the right track. We now look at the
Hessian of a function f P C2,1

L pRnq, which we indicated with ∇2fpxq. For real-valued symmetric
matrices like the Hessian, we can defined an induced Euclidean norm, for which we know that,

}∇2fpxq} ď L ðñ max
i
|eigp∇2fpxqq| ď L ðñ ´LIn ĺ ∇2fpxq ĺ LIn.

This chain of relations needs some explanations. Imposing a bound on the norm (left-side) is
equivalent to impose bounds on the absolute values of the eigenvalues (eig) of the matrix (middle),
which is equivalent to say that the matrix is bounded with conic inequalities ĺ (right-side).

In particular, we say that A ľ B for two squared symmetric matrices, if and only if A´B ľ 0,
that is, the matrix A´B is positive semidefinite.

We now have the following result.

Lemma 1.3 Function f belongs to C2,1
L pRnq if and only if

}∇2fpxq} ď L, @x P Rn,

where ∇2fpxq is the Hessian of f .

Proof. Homework. (Try also the generic Cp`1,p
L pRnq). ♣

Lemma 1.3 is not very surprising and it is quite intuitive, given the quadratic growth condition
we have established just before in Lemma 1.2.

1.4 The gradient method

We are ready to formulate and analyse our first algorithm: the gradient method. We recall that
the gradient of a function is an ascent direction, so taking the opposite will bring us towards
lower function values.

The simplest gradient descent method would use a stepsize αk ą 0, and,

Gradient descent method

• Start with x0 P Rn

• Iterate xk`1 “ xk ´ αk∇fpxkq, k “ 0, 1,

There are different methods to choose the stepsize αk (either a priori or online):

• Constant: αk “ α

• Vanishing, for example: αk “
α?
k`1

• Fully optimised: αk “ arg minαě0 fpxk ´ α∇fpxkqq

• Backtracking: set αk “ 1, τ P p0, 1q, β P p0, 1{2q:

While fpxk ´ αk∇fpxkqq ą fpxkq ´ βαk}∇fpxkq}2, set: αk Ð ταk.

Different choices of stepsize will give rise to different properties of the gradient method. Some will
not work in general, and some (like the fully optimised one) will be too expensive computationally.
One that works well in most scenarios is the backtracking strategy. In this solution, we start
with a large α and we refine it, so to guarantee at least a βαk}∇fpxkq}2 reduction in cost.

What about convergence? And what is convergence anyway?

Now that we have defined an algorithm, it is important to talk about convergence, convergence
rate, and ultimately performance. We know that performance means how many iterations we
need to reach a certain accuracy. But what about convergence? An algorithm, like the gradient
method, will deliver a sequence of points txkukPN, and it is natural to ask whether this sequence

9

will converge to a limit point x̄ (possibly an optimal point). Then, it is also natural to ask about
how fast this convergence goes (at least asymptotically), meaning evaluating the ratio,

}xk ´ x̄}

}xk´1 ´ x̄}
,

or related metrics.

Let’s characterise these notions for the gradient method.

Theorem 1.4 Assuming f bounded below, the gradient descent method M on unconstrained
problems with cost f P C1pRnq with fully optimized αk will generate a sequence txku that con-
verges to a stationary point x̄, so that ∇fpx̄q “ 0.

Proof. We have fpxk`1q “ fpxk ´ αk∇fpxkqq ă fpxkq, with equality only if ∇fpxkq “ 0, and
since f is bounded below fpxkq reaches a limit point for which ∇fpxkq “ 0. So the sequence
txku Ñ x̄. ♣

This is hardly satisfactory: typically the stepsize will vanish, i.e., αk Ñ 0, which makes the
overall method very slow. Also it seems we don’t have a notion of performance readily available,
and not even a convergence rate result.

This is of course the worst scenario. You don’t want to be in this scenario. However, in a
lot of cases, for example, when dealing with training neural networks with non-differentiable
activation functions (like ReLu), then you are in this case. Take it as warning: when training
non-smooth machine learning models, you can wait for a long time for the result, and it can be
just a stationary point, which may be quite bad.

Can we do something much better? Let’s consider Lipschitz functions.

Theorem 1.5 Assuming f bounded below, the gradient descent method M on unconstrained
problems with cost f P C1,1

L pRnq with backtracking αk will generate a sequence txku that converges
to a stationary point as

min
k“0,...,t

}∇fpxkq} ď
1

?
t` 1

d

L

τβ
pfpx0q ´ f˚q . (1.11)

Proof. Use Lipschitz and the fact that xk`1 ´ xk “ ´αk∇fpxkq:

fpxk`1q ď fpxkq ` x∇fpxkq,xk`1 ´ xky `
L

2
}xk`1 ´ xk}

2 (1.12)

ď fpxkq ´ αk

´

1´
αk
2
L
¯

}∇fpxkq}2, (1.13)

for which we know we need αk ă 2{L. Which guarantees convergence to f˚.

We could stop here, but we want the rate. For backtracking line search, we have,

fpxk`1q ď fpxkq ´ αkβ}∇fpxkq}2. (1.14)

Furthermore αk “ 1{L ď 1 is a valid choice since β ă 1{2, so at least αk ě
τ
L .

As such,

fpxk`1q ď fpxkq ´ αkβ}∇fpxkq}2 ď fpxkq ´
τ

L
β}∇fpxkq}2. (1.15)

Now, summing over k “ 0, . . . , t:

t
ÿ

k“0

τ

L
β}∇fpxkq}2 ď

t
ÿ

k“0

fpxkq ´ fpxk`1q “ fpx0q ´ fpxt`1q ď fpx0q ´ f
˚, (1.16)

and finally, since mink }∇fpxkq}2 ď 1
t`1

řt
k“0 }∇fpxkq}2, the thesis follows. ♣

10

What is the meaning of this result? We have obtained a global (starting from any point x0)
convergence in terms of }∇fpxq}. The result implies that the sequence tmin }∇fpxq}u converges
to 0 with a certain rate.

In general for nonconvex problems it is hard to obtain global convergence in terms of objective
fpxkq ´ f

˚, or distance }xk ´ x
˚}.

In addition, by using an first-order oracle O on method M (gradient), for problem (PU) of class
C1,1
L , we have obtain a convergence rate estimate of Op 1?

t`1
q.

This means that to obtain an accuracy }∇fpxq} ď ε, we need

t ě pfpx0q ´ f
˚q

L

τβε2
“ O

ˆ

1

ε2

˙

(1.17)

calls to our oracle. This is the result we wanted, a performance result, sometimes referred to
as a performance certificate. This is also good: it does not depend on the problem dimension
n. Look back at Theorem 1.1 and the impossibility result: that one depended on the problem
dimension.

Before continuing, it is good to introduce some general notation and definitions. In general, we
call results as in Eq. (1.11) as convergence certificates.

Formally, we define,

Definition 1.3 (Convergence certificate) A convergence certificate is an inequality that up-
per bounds a convergence metric as a function of the number of iterations.

Definition 1.4 (Local and global convergence) A convergence is local if it is achieved start-
ing close enough to the limit point. A convergence is global if it is achieved starting from any
point.

Definition 1.5 (Big-O, little-o notation) Informally, the notation Op¨q indicates the asymp-
totical behaviour (for big t’s) up to irrelevant constants. Formally, for two functions f, g : R Ñ R

with gptq ą 0 for all t, we say f “ Opgq iff, limtÑ8
|fptq|
gptq “ const.

Similarly, we define the notation op¨q, and we say that f “ opgq, if g grows much faster than f
asymptotically, so that, for two functions f, g : R Ñ R with gptq ą 0 for all t, we say f “ opgq

iff, limtÑ8
fptq
gptq “ 0.

So, in Eq. (1.11), the metric is mink }∇fpxkq}, the number of iterations is t, and the upper bound
is Op1{

?
t` 1q.

Let us get back to the convergence certificate of Eq. (1.11). In general a rate of Op 1?
t
q is not

great. We can do better if we look at functions, for which around an optimal point, the following
extra property is verified,

mIn ĺ ∇2fpxq ĺ LIn, @x : }x´ x˚} ď R, (1.18)

for a given R ą 0.

Note that the left inequality is true for strongly convex functions for all x. The right inequality
follows from f P C2,1

L pRnq, so redundant. Here however we do not talk about convex functions,
but only locally strongly convex ones.

We now have the result we wanted.

Theorem 1.6 The gradient descent method M on unconstrained problems, with constant step-
size α ă 2{L, for cost functions f P C2,1

L pRnq verifying the property (1.18) above has a local
(starting at }x0 ´ x

˚} ď R) convergence certificate of

}xt ´ x
˚} ď ρt}x0 ´ x

˚} ď ρtR.

for ρ “ maxt|1´ αm|, |1´ αL|u ă 1, and t iterations.

11

Proof. Local means starting close enough to a local minimizer, so pick }x0´x
˚} ď R. For this,

}xk`1 ´ x
˚} “ }xk ´ α∇fpxkq ´ x˚} (1.19)

“ }xk ´ α∇fpxkq ´ x˚ ´ α∇fpx˚q} (1.20)

Set gpxq :“ x´ α∇fpxq, for }xk ´ x
˚} ď R property (1.18) is valid and }∇gpxq} ď ρ.

In fact,

}∇gpxq} “ }I ´ α∇2fpxq} “ max |eigpI ´ α∇2fpxqq| “

“ max |1´ αeigp∇2fpxqq| ď maxt|1´ αm|, |1´ αL|u. (1.21)

For Lemma 1.3 we have also that,

}gpxq ´ gpyq} ď ρ}x´ y},

for which, }xk`1 ´ x
˚} ď ρ}xk ´ x

˚}. The choice α ă 2{L guarantees that ρ ă 1 and therefore,
once in Rpxq :“ tx|}x´x˚} ď Ru we stay in Rpxq. So then, we can iterate the above inequality
for t iterations, and obtain the claim. ♣

Let us analyse the result. We have a local convergence for special functions in terms of }xk´x
˚}

with constant stepsize. The convergence rate is exponential, or as we say in optimisation: it is
a linear convergence. This nomenclature is due to the fact that in this case,

lim
kÑ8

}xk ´ x
˚}

}xk´1 ´ x˚}
“ ρ,

so the ratio is constant.

In addition, for an accuracy }xt ´ x
˚} ď ε, we need

t ě
logR` logp1{εq

logp1{ρq
“ O

ˆ

log

ˆ

1

ε

˙˙

calls of the oracle.

We can pick the best α “ 2{pm` Lq, leading to the best ρ “ L´m
L`m “ κ´1

κ`1 . The number κ is the
condition number κ :“ L{m, and for badly conditioned functions (κ large), the gradient will not
work well, since ρ « 1, and tÑ8.

A linear convergence is much better than a Op1{
?
tq convergence. And it also turns out this is

the fastest convergence result we can expect for gradient methods (we will look at these type of
claims in the second class).

However, if we allow ourself the chance to use second-order oracles, we may do better.

1.5 Newton’s method

We introduce now the Newton’s method for functions at least in C2pRnq, which is a second-order
(oracle) method.

Newton’s method

• Start with x0 P Rn

• Iterate: solve the linear system ∇2fpxkqdk “ ∇fpxkq, xk`1 “ xk´dk, k “ 0, 1,

The method involves solving a linear system of equations

∇2fpxkqdk “ ∇fpxkq,

where the unknown is the Newton’s step dk. Different methods will be generated by different
choices of how you solve the linear system. We recall that the worst-case complexity of solving
a quadratic linear system of n dimension is Opn3q.

12

In the most naive (just in theory) version, we can set,

xk`1 “ xk ´ r∇2fpxkqs
´1∇fpxkq.

The Newton’s method is more computationally complex per iteration than the gradient method,
which performs only vector additions, but what can we say in terms of convergence, and perfor-
mance?

Consider functions f P C2,2
M pRnq with the additional property that

∇2fpxq ľ mIn, @x : }x´ x˚} ď R, (1.22)

for a local region R ą 0. Then we have the following theorem.

Theorem 1.7 The Newton method applied to unconstrained problems, for cost functions
f P C2,2

M pRnq verifying property (1.22) above, for any R ą 2m{M , and starting in }x0 ´ x
˚} ă

mint1, 2m{Mu has a local convergence certificate of

M

2m
}xt ´ x

˚} ď

ˆ

M

2m
}x0 ´ x

˚}

˙2t

ď C2t ,

when run for t iterations.

Proof. Consider the update,

rk`1 :“ }xk`1 ´ x
˚} “ }xk ´ x

˚ ´ r∇2fpxkqs
´1∇fpxkq}

“ }xk ´ x
˚ ´ r∇2fpxkqs

´1

ż 1

0

∇2fpx˚ ` τpxk ´ x
˚qqpxk ´ x

˚qdτ}

“ }r∇2fpxkqs
´1 ˆ

ż 1

0

r∇2fpxkq ´∇2fpx˚ ` τpxk ´ x
˚qqsdτ pxk ´ x

˚q}

The first line is due to:

∇fpxkq “ ∇fpx˚q `
ż 1

0

∇2fpx˚ ` τpxk ´ x
˚qqpxk ´ x

˚qdτ.

The second line is due to:

xk ´ x
˚ “ r∇2fpxkqs

´1r∇2fpxkqspxk ´ x
˚q.

Use now Cauchy–Schwarz, the property f P C2,2
M pRnq, and the local property ∇2fpxq ľ mIn to

say,

rk`1 ď }r∇2fpxkqs
´1 ˆ

ż 1

0

r∇2fpxkq ´∇2fpx˚ ` τpxk ´ x
˚qqsdτ pxk ´ x

˚q}

ď
M

m

ż 1

0

p1´ τqdτ }xk ´ x
˚}2 ď

M

2m
r2k.

If r0 ă 2m{M ă R, then M{2mr0 ă 1 and r1 ă r0 ă 1, so recursively rk`1 ă rk. The thesis
follows considering the metric M

2mrk ă 1:

M

2m
rk`1 ď

ˆ

M

2m
rk

˙2

ď ¨ ¨ ¨ ď

ˆ

M

2m
r0

˙2k`1

.

♣

Let us, once again, analyse this result. First, the theorem offers a local convergence for special
functions in terms of distance to the optimiser: }xk´x

˚}. The convergence is doubly exponential,

13

or as we say in optimisation: it is a quadratic convergence. In particular, to obtain an accuracy
of }xt ´ x

˚} ď ε, we need,

t Á log log
1

ε
.

calls to the oracle.

In practice this is very fast: to reach a very good accuracy ε „ 10´20, typically 5-6 steps of
Newton are enough; and this is basically independently of the problem conditioning κ. So the
Newton’s method works also for problems that are very badly conditioned. We will see how this
is an essential feature for obtaining solvers to a large variety of problems.

As a corollary, for quadratic functions, the constant M “ 0, so convergence is global, i.e., starting
from anywhere, and it is achieved in exactly one iteration.

As for the disadvantages of the Newton’s method we can cite two things. The first item is that
the computational complexity per iteration is typically high. Solving a linear system involves
Opn3q operations, and it may be not affordable in large-scale machine learning problem, or (in
general) for any optimisation problems of reasonable size n ą 103. This can be tackled in part
by employing quasi-Newton’s methods, which approximate the solution of the linear system or
the Hessian. We will not discuss them here, but it is good to know that they exist.

An important message to remember here is that Newton’s method is not the answer to all our
problems, since it may be too computational complex, so we may need to use only first-order
methods.

The second disadvantage of the Newton’s method is that it is not a descent method, even in the
convex case, and you have local convergence only. This is to say that, the method may diverge
if not initalised properly, even in the convex case. This is however not very difficult to fix, as we
see next.

1.6 Damped Newton’s method

A way to fix the non-descending nature of the Newton’s method is to add a stepsize to it, or as
we say, we add damping. The method looks like the following,

Damped Newton’s method

• Start with x0 P Rn

• Iterate:
˝ Solve the linear system: ∇2fpxkqdk “ ∇fpxkq,
˝ Backtracking: set αk “ 1, τ P p0, 1q, β P p0, 1{2q:

While fpxk ´ αkdkqq ą fpxkq ´ βαkx∇fpxkq,dky, set: αk Ð ταk.
˝ xk`1 “ xk ´ αkdk.

The backtracking step chooses a stepsize αk to guarantee that the cost decreases of at least
certain amount. In fact, when the backtracking condition is verified, then,

fpxk ´ αkdkqq ď fpxkq ´ βαkx∇fpxkq,dky.

With this new relationship in place, and asking also for a Lipschitz gradient, we can establish
convergence of the scheme and the fact that, after a few steps, αk “ 1 and we get back to the
standard Newton’s method. This latter fact is important, and it means that damping does not
alter the local quadratic convergence of the method.

By using damping, we render the Newton’s method globally convergent (in the convex case we
will show it in the next lesson), but it is still local in the nonconvex case and yet eventually
quadratic.

While we will get back to these points in a few lessons, we close this lesson with some comparisons
between gradient and Newton’s.

14

1.7 Gradient vs. Newton’s

We can summarise the methods as follows.

• For the gradient method we have derived sub-linear convergence rates Op1{
?
tq and linear

ones Opρtq for different problem classes; for gradients the latter is the best you get, but
you need only a first-order oracle: less computations per iteration!

• For the Newton’s method we have derived quadratic convergence rates! Which is extremely
fast. However Newton’s require a second-order oracle and it is only a local method. We
have shown how to overcome some of its drawbacks with damping.

For Newton’s method, we have also seen that its convergence is nearly independent on the condi-
tion numbering κ, reaching good accuracy with a number of steps that is virtually independent
from the problem. A way to peek into this property is to understand that Newton’s method is
affine invariant.

Let T be a non-singular squared matrix and define the change of coordinates f̃pyq “ fpTyq,
x “ Ty. Then,

∇f̃pyq “ TT∇fpxq, ∇2f̃pyq “ TT∇2fpxqT.

and the Newton’s direction,

Tdy “ T r∇2f̃pyqs´1∇f̃pyq “ dx,

so T pyk ´ dyq “ xk ´ dx, meaning that “reconditioning” of the problem does not affect how
Newton’s behaves.

1.8 Least-squares problems

We close this lecture with an example of unconstrained problem which you will encounter over
and over. For instance, when training a neural network.

Suppose you have some data that tells you the label yi P R of some feature xi P Rn. You can
imagine you have m of such data points pxi, yiq. You then build an neural network architecture,
which is nothing but a series of interconnections and functions. At the end, the network is a
map hipx;wq : xi ÞÑ yi, with some weights w P Rp to train. The training problem is then,

minimise
wPRp

1

2

m
ÿ

i“1

}yi ´ hipx;wq}22,

and depending on the nature of hi, the problem is easier or more complex. Typically, hi is highly
nonconvex and you have many local minima. Also, when the weights become big, your landscape
can become very flat, making the progress of any method challenging.

The problem above is an example of a least-squares problem, first introduced by Gauss (aged
18) and then used by him to determine the position of the moon Ceres in „1800.

1.9 References

• YN: Introduction and Chapter 1;

• BV: Chapter 9.

˛ ˛ ˛

1.10 Exercises

Exercise 1.1 (Exam 2023) Consider the unconstrained problem,

min
xPRn

fpxq

15

for a function f : Rn Ñ R, which is C1pRnq and its gradient is L-Lipschitz continuous. Note
that the function is not convex.

1. Consider the gradient method with variable stepsize αk ą 0 to find the minimum f˚ of f .
Which convergence certificates can one expect (that is: which quantity converges and with
which convergence rate)?

2. Let f now have the additional property that,

1

2
}∇fpxq}2 ě ηpfpxq ´ f˚q, @x P Rn,

for L ą η ą 0.

(a) Prove that all the stationary points of fpxq, say x̄, are global minimizers, i.e., fpx̄q “
f˚.

(b) Prove that the gradient method with constant stepsize α “ 1
L offers a convergence

certificate of the form,
fpxkq ´ f

˚ ď ρkpfpx0q ´ f
˚q,

for ρ “ p1´ η{Lq ă 1, and sequence txkukPN generated by said gradient method.

(c) How is this convergence called?

Exercise 1.2 Consider the problem
min
xPRn

fpxq,

for f P C1,1
L pRnq. Consider the gradient method to find a local minimum.

Theorem. Assuming f bounded below, the gradient method on problem with f P C1,1
L pRnq with

constant α ă 2{L will converge to a stationary point as

min
k“0,...,t

}∇fpxkq} ď
1

?
t` 1

d

1

αp1´ αL{2q
pfpx0q ´ f˚q .

˝

Prove the theorem.

Exercise 1.3 Consider the problem
min
xPRn

fpxq.

We study the convergence of Newton’s method in the decrement,

λpxq “ p∇Jfpxq∇2fpxq´1∇fpxqq1{2

for special strongly convex functions f such that for v “ ´∇2fpxq´1∇fpxq, t ě 0:

p1´ tλpxqq2∇2fpxq ĺ ∇2fpx` tvq ĺ
1

p1´ tλpxqq2
∇2fpxq.

(These functions are self-concordant, and they will be important in Class 4).

Suppose λpxkq ă 1, and define xk`1 “ xk ´∇2fpxkq
´1∇fpxkq “ xk ´ vk. Prove that

λpxk`1q ď
λ2pxkq

p1´ λpxkqq2
.

Furthermore if λpx0q ă 1{4, prove that we can achieve quadratic convergence, with,

2λpxk`1q ď p2λpxkqq
2.

Hint: in both cases, assume without loss of generality that ∇2fpxkq “ In.

16

Chapter 2

Second lecture
Unconstrained optimisation (II): convex case

2.1 The convex problem class

We now look at convex problems to understand whether they help to design algorithms that are
better in terms of convergence, convergence rates, and generally computational complexity. In
the interest of time, we only look here at simple methods, like the gradient (and small variations
thereof), but our findings can be extended to fancier methods you will encounter in machine
learning or in other fields.

We will see that convexity per se is not the only ingredient to obtain “better” results. Lipschitz
continuity plays a hugely important part as well. Even though convexity will help in obtaining
global optimality certificates, rather than stationarity.

Before starting, I recall that whenever we talk about convergence, we will need to be careful in
saying what is converging to what exactly. In optimisation problems, we will distinguish at least
three types of convergence results. The first being the fixed point residual, typically }∇xfpxkq}
converging to 0. The second it the objective convergence, |fpxkq ´ f˚| Ñ 0, and the third is
the distance to the optimiser }xk ´ x

˚} Ñ 0. The former is weaker (it needs typically less
assumptions and it is not a strong result), the latter is a stronger result, but harder to prove in
general.

In fact, the convergence }xk ´ x
˚} Ñ 0 implies |fpxkq ´ f˚| Ñ 0, which in turn implies

}∇xfpxkq} Ñ 0. But the converse is not true. For instance you may have multiple optimis-
ers x˚ and, even though |fpxkq ´ f˚| Ñ 0, the sequence xk may not have a limit point. Also,
you may have }∇xfpxkq} Ñ 0, but you are at a stationary point, not an optimiser, so |fpxkq´f

˚|

does not converge to 0.

We are now ready to start.

2.1.1 Some necessary definitions

Definition 2.1 (Convex function) A function f : X Ď Rn Ñ R is convex iff X is convex
and

pC1q @x,y P X,λ P r0, 1s : fpλx` p1´ λqyq ď λfpxq ` p1´ λqfpyq.

Multiple definitions exist if we have additional properties, for example:

(C1)` f P C1pXq ðñ @x,y P X, fpxq ě fpyq ` x∇fpyq,x´ yy; (2.1)

(C1)` f P C2pXq ðñ @x,y P X, ∇2fpxq ľ 0. (2.2)

A proof of the relations above can be found in YN, by combining his Definition 2.1.1, with his
Theorems 2.1.2 and 2.1.4.

17

Definition 2.2 (Strongly convex function) A convex function f : X Ď Rn Ñ R is m-
strongly convex iff

pSCq fpxq ´
m

2
}x}2 is convex.

We note here that f does not need to be differentiable to be strongly convex. Here too, multiple
definitions exist if we have additional properties, for example:

(SC)` f P C1pXq ðñ @x,y P X, x∇fpxq ´∇fpyq,x´ yy ě m}x´ y}2 (2.3)

(SC)` f P C2pXq ðñ @x,y P X, ∇2fpxq ľ mIn (2.4)

A proof of the relations above can be found in YN, by using Theorem 2.1.8, 2.1.9, and 2.1.10.

Definition 2.3 (Smooth function) A convex function f : X Ď Rn Ñ R is L-smooth iff

pLCq
L

2
}x}2 ´ fpxq is convex.

Importantly (LC) ùñ f P C1pXq, that is a condition on the function implies its differentiability.
Since this is rather important, we give a short proof here.

Proof. Define gpxq “ L
2 }x}

2 ´ fpxq, by the definition of subgradient of a convex function:

gpxq ´ gpx1q ě uJpx´ x1q, @x, x1, u P Bg,

where Bg is the subdifferential of g. Furthermore, by definition of g and the convexity of f ,

L

2
}x}2 ´

L

2
}x1}2 ě fpxq ´ fpx1q ` uJpx´ x1q ě pu` vqJpx´ x1q, @x, x1, u P Bg, v P Bf,

where we have indicated with Bf the subdifferential of f .

Since the function L
2 }x}

2 is convex and differentiable, then we know that its subdifferential at x1

is a singleton and it is equivalent to Lx1. Then, u`v is a singleton and u`v “ Lx1. Furthermore
since u and v are elements of the subdifferentials and can be chosen independently, then u and v
separately are also singletons. That is, f is differentiable. So pLCq ùñ f P C1pRnq. ♣

As before, depending on additional properties, multiple definitions of smoothness exist, for ex-
ample:

(LC) ðñ @x,y P X, }∇fpxq ´∇fpyq} ď L}x´ y} (2.5)

(LC) ðñ @x,y P X,
1

L
}∇fpxq ´∇fpyq}2 ď x∇fpxq ´∇fpyq,x´ yy(2.6)

(LC)` f P C2pXq ðñ @x,y P X, 0 ĺ ∇2fpxq ĺ LIn (2.7)

We see already that (2.5) is a Lipschitz condition on the gradient of f . Since our definition is
equivalent to (2.5), often it is the latter than is used as a definition of smoothness.

The proof of the relations above can be found in YN, e.g., Theorem 2.1.5 and related.

We look here at the m-strongly convex L-smooth class, which is at least one time differentiable.
To echo the class Cp,qL , we refer to the convex classes as

f P Sp,qm,L ðñ tf P Cp,qL u X tf is m-strongly convexu.

We are especially interested in the function class f P S1,1
m,L. If f P S1,1

0,L, the function is just convex.

We also use a slight abuse of notation to indicate with f P S1,1
m,`8 when the function is not

Lipschitz and not differentiable. However, at least here, unless explicitly said, 0 ă m ď L ă `8.
Finally, we remind that m ď L always and κ :“ L{m ě 1.

18

Even though there are plenty of definitions, for this course, you will need to remember at least
the following,

@x,y P Rn, x∇fpxq ´∇fpyq,x´ yy ě m}x´ y}2 (2.8)

x,y P Rn, }∇fpxq ´∇fpyq} ď L}x´ y}, (2.9)

which will carry you a long way.

Geometrically, a function in the class S1,1
m,L is a function that in all its domain grows faster than

a quadratic function with concavity m but slower than a quadratic of concavity L. This is rather
easy to see for doubly differentiable functions, for which mIn ĺ ∇2fpxq ĺ LIn, but it is also
valid in general. In this context, the class S1,1

m,L impose conditions on growth, which will be key
in establishing efficient algorithms.

We have now all the tools to characterise convergence of our methods.

2.2 Standard gradient methods

2.2.1 Case I: Gradient for f P S1,1
m,L

We look at the unconstrained problem

minimise
xPRn

fpxq,

when f P S1,1
m,L (0 ă m ď L ă `8), and we use the gradient method with constant stepsize

α ą 0.

We already have a result for it (Theorem 1.6), and in particular:

Theorem 2.1 The gradient descent method on unconstrained problems with constant stepsize
α ă 2{L, for functions f P S1,1

m,L has a (global) convergence certificate of

}xt ´ x
˚} ď ρt}x0 ´ x

˚} (2.10)

for ρ “ maxt|1´ αm|, |1´ αL|u, and t iterations.

Proof. The proof follows from the proof of Theorem 1.6, substituting the fact that the local
property (1.18) is now valid for the whole space. Particular attention has to be put on the fact
that f is now not doubly differentiable, so one has to prove }gpxq ´ gpyq} ď ρ}x ´ y} by other
means. How? ♣

Can we do better in the convex case in terms of rate, more than just global? No we can’t. The
reasoning is rather technical, but there exist a function g P S1,1

m,L for which we have

}xt ´ x
˚} ě ωt}x0 ´ x

˚}, 0 ă ω ď ρ.

This result is very strong: it tells you that in the worst case, linear convergence for f P S1,1
m,L is

the best you can achieve. We will not prove this result here, but the interested reader can have
a look at YN.

We can derive how other metrics (objective, fixed point) converge as well, and you will prove
them in the exercises. In particular, for f P S1,1

m,L, you will also derive similar linear converging
conditions for fpxtq´fpx

˚q and }∇fpxtq}, completing the family picture for the gradient method.

Furthermore, one can show that there exist optimal stepsize and rates, which are, α˚ “ 2
m`L

and ρ˚ “ κ´1
κ`1 .

19

2.2.2 Case II: Gradient for f P S1,1
0,L

Let’s move on to a non-strongly convex function class. In this case, there may be multiple
solutions in terms of x˚, all equally optimal.

Theorem 2.2 The gradient descent method on unconstrained problems with constant stepsize
α ă 2{L, for functions f P S1,1

0,L has an ergodic (global) convergence certificate of

fpx̄tq ´ fpx
˚q ď

C

t` 1
}x0 ´ x

˚}2, (2.11)

for x̄t “
1
t`1

řt
k“0 xk, constant C ą 0, and t iterations.

Proof. Start with the update rule,

}xk`1 ´ x
˚}2 “ }xk ´ α∇fpxkq ´ x˚}2

“ }xk ´ x
˚}2 ´ 2αx∇fpxkq,xk ´ x˚y ` }α∇fpxkq}2

Use ∇fpx˚q “ 0 to say that the right-hand side (RHS) is

}xk ´ x
˚}2 ´ 2αx∇fpxkq ´∇fpx˚q,xk ´ x˚y ` α2}∇fpxkq ´∇fpx˚q}2.

Now use Eq. (2.6) to say,

RHS ď }xk ´ x
˚}2 ´ αp2´ αLqx∇fpxkq ´∇fpx˚q,xk ´ x˚y.

For α ă 2{L the term p2´ αLq is positive and the error }xk ´ x
˚}2 decreases.

This gives convergence, but not the rate.

Use convexity to say fpx˚q ě fpxkq`x∇fpxkq,x˚´xky and hence: fpxkq´fpx
˚q ď x∇fpxkq,xk´

x˚y.

Therefore,
RHS ď }xk ´ x

˚}2 ´ αp2´ αLqrfpxkq ´ fpx
˚qs.

Sum over k to arrive at

t
ÿ

k“0

fpxkq ´ fpx
˚q ď

1

αp2´ αLq

˜

t
ÿ

k“0

´}xk`1 ´ x
˚}2 ` }xk ´ x

˚}2

¸

ď
1

αp2´ αLq
looooomooooon

“:C

}x0 ´ x
˚}2.

Now we use Jensen’s inequality valid for convex f : fp
ř

i βxiq ď
ř

i βifpxiq for
ř

i βi “ 1, to
say,

fpx̄tq ´ fpx
˚q ď

1

t` 1

t
ÿ

k“0

fpxkq ´ fpx
˚q ď

C

t` 1
}x0 ´ x

˚}2,

from which the thesis. ♣

Let us analyse the result. Theorem 2.2 gives us a global convergence result in terms of ergodic
objective, with a rate of Op1{tq. An ergodic objective, or ergodic mean, is the fact that we are
using x̄t instead of xt. Sometimes this helps to render the proofs easier. With a little more
effort, we could obtain an objective convergence fpxtq ´ f˚ ď Op1{tq, but we do not look into
that here.

An objective convergence of this type in the convex case is better than in the nonconvex case,
for which we had a fixed point convergence to a stationary point with rate Op1{

?
tq (imposing

Lipschitz).

Can we do better? Yes, actually the attainable complexity bound for the class S1,1
0,L is Op1{t2q.

But how? The answer to this question will make us study one of the most important algorithms
in optimisation of the past forty years: Nesterov’s method.

20

2.3 Nesterov’s accelerated gradient

Let’s set the stage by defining some supporting sequences, tλku and tγku defined as,

λ0 “ 0, λk “
1`

b

1` 4λ2k´1

2
, and γk “

1´ λk
λk`1

. (2.12)

Note already that γk ď 0, λ1 “ 1, and λk ą 1 for k ą 1.

Now the algorithm is defined by the following equations,

Nesterov’s accelerated gradient descent

• Start with x0 “ y0 P Rn and the sequences (2.12)
• Iterate: yk`1 “ xk ´ α∇fpxkq, xk`1 “ p1´ γkqyk`1 ` γkyk, k “ 0, 1,

In other words, Nesterov’s accelerated gradient descent performs a simple step of gradient descent
to go from xk to yk`1, and then it ‘slides’ a little bit further than yk`1 in the direction given
by the previous point yk.

Theorem 2.3 Nesterov’s accelerated gradient method on unconstrained problems, with constant
stepsize α “ 1{L, for functions f P S1,1

0,L has a (global) convergence certificate of

fpxtq ´ fpx
˚q ď

2L

t2
}x1 ´ x

˚}2, (2.13)

for t iterations.

Proof. Start from convexity, Lipschitz, and α “ 1{L:

f px´ α∇fpxqq ´ fpyq
ď f px´ α∇fpxqq ´ fpxq `∇fpxqTpx´ yq

ď ∇fpxqT px´ α∇fpxq ´ xq ` L

2
}x´ α∇fpxq ´ x}2 `∇fpxqTpx´ yq

“ ´
1

2L
}∇fpxq}2 `∇fpxqTpx´ yq.

Now let us apply the inequality to x “ xk and y “ yk, which gives

fpyk`1q ´ fpykq “ f pxk ´ α∇fpxkqq ´ fpykq

ď ´
1

2L
}∇fpxkq}2 `∇fpxkqTpxk ´ ykq

“ ´
L

2
}yk`1 ´ xk}

2 ´ Lpyk`1 ´ xkq
Tpxk ´ ykq.

Similarly we apply it to x “ xk and y “ x˚ which gives

fpyk`1q ´ fpx
˚q ď ´

L

2
}yk`1 ´ xk}

2 ´ Lpyk`1 ´ xkq
Tpxk ´ x

˚q.

Now multiplying the first by pλk ´ 1q which is positive for k ą 2 and adding the result to the
second, one obtains with δk “ fpykq ´ fpx

˚q,

λkδk`1 ´ pλk ´ 1qδk ď ´
L

2
λk}yk`1 ´ xk}

2 ´ Lpyk`1 ´ xkq
Tpλkxk ´ pλk ´ 1qyk ´ x

˚q.

Multiplying the last inequality by λk ą 0 and by using that by definition λ2k´1 “ λ2k ´ λk one
obtains

λ2kδk`1 ´ λ
2
k´1δk

ď ´
L

2

ˆ

}λkpyk`1 ´ xkq}
2 ` 2λkpyk`1 ´ xkq

Tpλkxk ´ pλk ´ 1qyk ´ x
˚q

˙

.

21

We remark that λ2k´1 “ λ2k ´ λk follows from λk “
1`
?

1`4λ2
k´1

2 , in fact the latter implies,

p2λk ´ 1q2 “ 1` 4λ2k´1 ðñ λ2k´1 “ λ2k ´ λk.

Now one can verify that

}λkpyk`1 ´ xkq}
2 ` 2λkpyk`1 ´ xkq

Tpλkxk ´ pλk ´ 1qyk ´ x
˚q

“ }λkyk`1 ´ pλk ´ 1qyk ´ x
˚}2 ´ }λkxk ´ pλk ´ 1qyk ´ x

˚}2.

Next remark that, by definition of γk, one has

xk`1 “ yk`1 ` γkpyk ´ yk`1q

ô λk`1xk`1 “ λk`1yk`1 ` p1´ λkqpyk ´ yk`1q

ô λk`1xk`1 ´ pλk`1 ´ 1qyk`1 “ λkyk`1 ´ pλk ´ 1qyk.

Putting together the previous relationships one gets with uk “ λkxk ´ pλk ´ 1qyk ´ x
˚,

λ2kδk`1 ´ λ
2
k´1δk ď

L

2

ˆ

}uk}
2 ´ }uk`1}

2

˙

.

Summing these inequalities from k “ 1 to k “ t´ 1 (rem: λ0 “ 0, λ1 “ 1) one obtains:

δt ď
L

2λ2t´1

}u1}
2.

By induction: λt´1 ě
t
2 which concludes the proof. ♣

What is the meaning of this convergence result? We have a global convergence result in terms of
objective, with a rate of Op1{t2q, which matches the lower bound. In this context, we say that
Nesterov’s accelerated method is an optimal method. This is way better than in the nonconvex
case, for which we had a fixed point convergence to a stationary point with rate Op1{

?
tq.

If one is attentive, one can see that we have proved a result for a specific α “ 1{L. However, a
one-line proof can show that we can extend the theorem to any α ď 1{L, how?

Corollary 2.1 Theorem 2.3 is valid for α ď 1{L.

Proof. Homework. ♣

2.3.1 Nesterov’s alternative formulations*

Nesterov’s accelerated scheme is only one of the few accelerations that are possible for solving
smooth convex problems. Moreover, Nesterov’s acceleration may be presented in a few alternative
(but almost equivalent) forms. In fact, in the proof of the method, we use the fact that the
coefficients λ2k´1 “ λ2k ´ λk. However, for the rate to be proven, one would only need the looser
condition, ´λ2k´1 ď ´pλ2k ´ λkq, which leads to λ2k´1 ě λ2k ´ λk. This yields a few different
alternatives.

A popular choice is to set λk “
k
2 , this verifies,

λ2k´1 ě λ2k ´ λk ùñ pk ´ 1q2 ě k2 ´ 2k ðñ 1 ě 0.

With this choice γk “
2´k
k`1 . So that the method is presented as follows.

Nesterov’s accelerated gradient descent (variant)

• Start with x0 “ y0 P Rn

• Iterate: yk`1 “ xk ´ α∇fpxkq, xk`1 “ yk`1 `
k´2
k`1 pyk`1 ´ ykq, k “ 0, 1,

22

2.4 The subgradient method

Let’s now look at the case in which we lose differentiability. We let f P S1,1
m,`8. In this case,

since ∇fpxq does not exist, we need another notion, the one of subgradient Bfpxq.

Definition 2.4 (Subdifferential) We define the subdifferential at x as the set

Bfpxq :“ tg P Rn|fpyq ě fpxq ` xg,y ´ xy, @y P Rnu.

You have studied in details the subdifferential and the subgradient in OPT201. For the sake
of this course, it is useful to see the subdifferential as a set of all the vectors that generate
hyperplanes that stay “below” the function at any point. You can also see the parallel between
the definition of subdifferential and the definition of convex function. In particular, if the function
f is convex and differentiable, then, the subdifferential is a singleton: Bfpxq “ t∇fpxqu.

You may encounter many definitions of subdifferential in the nonconvex domain. Luckily for us,
in the convex domain they are equivalent to our definition. Finally, in many algorithms, we don’t
even need to get the whole subdifferential set, just one element g P Bfpxq will be enough!

With this new notion in place, we are ready for the subgradient method as follows.

Select a stepsize αk ą 0:

Subgradient method

• Start with x0 P Rn

• Iterate: find a gk P Bfpxkq, compute xk`1 “ xk ´ αkgk, k “ 0, 1,

We are now also ready for its convergence certificate under the additional condition that the
subgradient is bounded, as

f P S0,0
0,G, or equivalently }g} ď G, or equivalently }fpxq ´ fpyq} ď G}x´ y} @x,y.

Theorem 2.4 The subgradient method on unconstrained problems with stepsize satisfying the
conditions,

lim
kÑ8

αk Ñ 0,
8
ÿ

k“0

αk “ 8,

for functions f P S0,0
0,G has a (global) convergence certificate of

lim
tÑ8

min
k“0,...,t

fpxtq ´ fpx
˚q “ 0. (2.14)

Furthermore, at best, mink“0,...,t fpxtq ´ fpx
˚q “ Op1{

?
tq.

Valid conditions on αk are, e.g., αk “
1
k`1 , αk “

1?
k`1

,...

Proof. [for the choice of αk “
1
k`1] We start from the algorithm definition and convexity,

}xk`1 ´ x
˚}2 “ }xk ´ x

˚}2 ´ 2αkxgk,xk ´ x
˚y ` α2

k}gk}
2

ď }xk ´ x
˚}2 ´ 2αkpfpxkq ´ fpx

˚qq ` α2
kG

2.

Summing over k, we obtain,

2
ÿ

k

αkpfpxkq ´ fpx
˚qq ď }x0 ´ x

˚}2 `
ÿ

k

α2
kG

2.

Since
ř

k αkpfpxkq ´ fpx
˚qq ě p

ř

k αkqminkpfpxkq ´ fpx
˚qq, then,

min
k
pfpxkq ´ fpx

˚qq ď
1

2
ř

k αk
}x0 ´ x

˚}2 `

ř

k α
2
k

2
ř

k αk
G2 Ñ 0.

The Ñ 0 is not immediately evident and requires some extra work. It is obvious if, e.g., αk “
1
k`1 .

23

In particular, the selection αk “
1
k`1 , we obtain the lowest rate bound,

min
k
pfpxkq ´ fpx

˚qq „ Op
1

log t
q Á Op

1
?
t
q

where we recall that Oplog tq ă Op
?
tq. ♣

We have a global convergence result in terms of best objective, with a rate of Op1{
?
tq. This is

the rate of nonconvex fixed point residual in the Lipschitz case, so it’s better in the convex case,
but it’s very slow compared to the convex Lipschitz case, for which we found Op1{t2q.

In the next class, we will see how to avoid the use of the subgradient method (in some cases) by
the use of splitting operator and restore reasonable convergence rates.

2.4.1 Adding strong convexity‹

One may want to see if adding strong convexity to a non-differentiable cost f can change the
convergence certificates we obtain. This is not the case, since adding strong convexity does not
change the differentiability of the cost. So in general, you still have a Op1{

?
tq convergence

guarantee.

However, adding strong convexity, that is, considering functions f P S1,1
m,`8, can help the subgra-

dient method to converge linearly to an error ball. In this sense, the subgradient method obtains
two phases, a fast phase up to an error ball, and a slow phase, to the true optimizer.

Let’s see how to show that. First, we need a improved strong convexity characterisation.

Lemma 2.5 A function f : Rn Ñ R is m-strongly convex iff fpxq ´ m
2 }x}

2 is convex, or
equivalently

pv ´wqJpx´ yq ě m}x´ y}2, @v P Bfpxq,w P Bfpyq,

for all x,y P Rn.

You can find the proofs in many standard references, such as E. K. Ryu and S. Boyd, Primer on
Monotone Operator Methods, 2016.

Then, we can prove that,

Theorem 2.6 The subgradient method on unconstrained problems with constant stepsize α ă
1{2m for functions f P S0,0

m,G has a (global) convergence certificate of

lim
kÑ8

}xk ´ x
˚} “

c

α

2m
G. (2.15)

Proof. The function is strongly convex, so we have an unique optimiser x˚. We start from the
algorithm definition,

}xk`1 ´ x
˚}2 “ }xk ´ x

˚}2 ´ 2αxgk,xk ´ x
˚y ` α2}gk}

2

“ }xk ´ x
˚}2 ´ 2αxgk ´ g

˚,xk ´ x
˚y ` α2G2

since g˚ P Bfpx˚q, and we can take g˚ “ 0

ď p1´ 2mαq}xk ´ x
˚}2 ` α2G2 by strong convexity.

Then, since α ă 1{2m, by geometric recursion,

}xk`1 ´ x
˚}2 ď p1´ 2mαqk}x0 ´ x

˚}2 `
αG2

2m
,

from which the thesis follows. ♣

From the proof, we can see how the error }xk`1 ´ x
˚}2 decreases exponentially, up to an error

floor αG2

2m . We can also see that if we want to reduce the error floor, we need to take α small,
but this renders p1´ 2mαq « 1, which damps convergence. This is a rather typical behaviour.

24

2.5 Damped Newton’s method in the convex case

To close this chapter, we revisit the damped Newton’s method we have seen in the previous class,
and we provide a convergence certificate via the following theorem.

Theorem 2.7 Apply the damped Newton’s method on unconstrained problems, for cost functions
f P S2,2

m,M , and generate the sequence txku. Then, there exist two positive scalars η and γ with

0 ă η ď m2{M and γ ą 0 such that

• If }∇fpxkq} ě η, then
fpxk`1q ´ fpxkq ď ´γ.

• If }∇fpxkq} ă η, then the backtracking line search selects αk “ 1 and

M

2m2
}∇fpxk`1q} ď

ˆ

M

2m2
}∇fpxkq}

˙2

.

As such, we obtain an accuracy of ε, i.e., fpxkq ´ f
˚ ď ε, in,

fpx0q ´ f
˚

γ
` log2 log2

ˆ

2m3

M2ε

˙

iterations.

Proof. The proof can be found in [BV] Section 9.5.3. ♣

Theorem 2.7 tells us that the application of the damping strategy renders the Newton’s method
global. It can therefore converge from any initial points. The initial converge can be slow, but
it is at least constant:

fpxk`1q ´ fpxkq ď ´γ,

for all k’s. Then, when we are close to an optimiser, the quadratic convergence phase kicks in,
and we converge very fast.

2.6 Main messages

We finish this lesson with a recap table and a figure. The table captures all the results we
have presented in this chapter. Your goal is to learn this table and understand what each entry
means. In particular, for unconstrained problems, you should know which method to use in
which situations, with which convergence certificate and performance.

For the sake of completeness, we present here also a figure to give more tangible intuitions on
how slow or how fast certain methods can be.

Figure 2.1 depicts the different order of convergence rate if we could put them all on the same
plot, for the same error measure and number of iterations. This graph tells you that Op1{

?
tq

is unbelievably slow, reducing the error of one order of magnitude each two orders of magnitude
iterations. Read it again. To get one more digit right, you need two order of magnitude more
iterations!

On the other hand of the spectrum, the Newton’s method is incredibly fast: the number of
correct digits of your optimiser roughly doubles at each step! Needless to say: Go Newton!

2.7 References

• YN: Introduction and Chapter 2

• BV: Chapter 9

• S. Bubeck’s blog I’m a bandit — The complexities of optimization, post 12, 13, 14, 15. [link
to blog]

˛ ˛ ˛

25

https://blogs.princeton.edu/imabandit/orf523-the-complexities-of-optimization/
https://blogs.princeton.edu/imabandit/orf523-the-complexities-of-optimization/

Table 2.1. Summary of the certificates results obtained for nonconvex and convex uncon-
strained problems depending on the type of method and function class.

Function type generic C1,1
L ,S1,1

0,L C1,1
m,L,S

1,1
m,L C2,2

m,M ,S
2,2
m,M

First-order Second-order

nonconvex convergence f P C1 Op1{
?
tq locally Opρtq locally Opρ2

t

q

Theorem 1.4 Theorem 1.5 Theorem 1.6 Theorem 1.7

Convex Op1{
?
tq Op1{tq, Op1{t2q Opρtq globally: const.,

 Nesterov’s locally Opρ2
t

2 q

Theorem 2.4 Theorem 2.2-2.3 Theorem 2.1 Theorem 2.7

+ Exercise 2.2

100 101 102 103 104 105 106

Iterations

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

Er
ro

r O
rd

er

O(1/ t)
O(1/t)
O(1/t2)
linear
quadratic

Figure 2.1. The intuition behind the convergence rates.

26

2.8 Exercises

Exercise 2.1 (Resit 2023) We aim at minimizing the following quadratic problem,

min
xPRn

1

2
xTAx` bTx` c,

for A symmetric and positive definite, b a vector, and c a scalar. Assume that `In ĺ A ĺ LIn,
for two scalars 0 ă ` ď L ă `8.

1. Is the problem convex? Is the problem smooth? Is the problem strongly convex? Let x‹ be
an optimizer of the above problem. Prove that it is unique and find its value.

2. To solve the problem above, we look at the following variation of a gradient scheme. Start
with random x1, x0 and define two stepsizes α, β ą 0, then for k ą 1 do:

xk`1 “ xk ´ α∇fpxkq ` βpxk ´ xk´1q.

Prove that,
„

xk`1 ´ x
‹

xk ´ x
‹



“

„

p1` βqIn ´ αA ´βIn
In 0



loooooooooooooooomoooooooooooooooon

“:T

„

xk ´ x
‹

xk´1 ´ x
‹



3. Prove that the above algorithm converges (in the sense that }xk´x
‹} Ñ 0) if the eigenvalues

of T are inside the unit ball, meaning they are all in modulus less than 1.

4. Let n “ 1, A “ `, β “ 0. Find the allowed range for the stepsize α to ensure convergence.
In this case, determine also the rate of convergence.

Exercise 2.2 The aim of this exercise is to derive linear convergence guarantees.

Consider the problem,
x˚ P arg min

xPRn
fpxq,

for a µ-strongly convex and L-smooth function.

Consider the gradient method with constant stepsize α ą 0 to find the unique minimizer of f .

In class, we have see that,
}xk ´ x

˚} ď ρk}x0 ´ x
˚},

for all α ă 2{L. Start from it and,

• Prove that,
|fpxkq ´ fpx

˚q| ď κρ2k|fpx0q ´ fpx
˚q|,

• Prove also that,
}∇fpxkq} ď κρk}∇fpx0q}, κ “ L{m,

which shows the effect of the condition number explicitly.

Exercise 2.3 The aim of this exercise is to make you aware that different notion of convergences
may not be necessarily better than others.

Consider the problem,
x˚ P arg min

xPRn
fpxq,

for a µ-strongly convex and L-smooth function.

Consider the gradient method with constant stepsize α ą 0 to find the unique minimizer of f .
We have seen that the method converges as

}xk ´ x
˚} ď ρk}x0 ´ x

˚},

for all α ă 2{L. The convergence above is called linear convergence. Linear convergence of xk
is always better than Op1{kq convergence of the same quantity. However, that may not be true
for other quantities!

27

• Prove that the gradient method in this case is also converging in an ergodic sense as,

}x̄k ´ x
˚} ď

1

k ` 1

1

1´ ρ
}x0 ´ x

˚}, x̄k “
1

k ` 1

k
ÿ

i“0

xi

for all α ă 2{L. In particular, show that linear convergence of xk implies ergodic conver-
gence as Op1{kq.

Take-home message: when you have ergodic convergence as Op1{kq it may not be so bad
after all. And remember always to spell out convergence of what and with respect to what.

28

Chapter 3

Third lecture
Constrained optimisation (I): first-order methods

3.1 Setting

We look at generic convex optimisation problems of the form

(PC) minimise
xPXĎRn

fpxq (3.1)

subject to gpxq ď 0 (3.2)

Ax “ b, (3.3)

for which, we consider a convex cost function fpxq : Rn Ñ R, convex inequality constraints
gpxq : Rn Ñ Rl, affine equality constraints, hpxq : Rn Ñ Rp ” Ax ´ b, as well as a convex
feasible set X Ď Rn. From previous courses, see also the appendix, we know that (PC) is then a
convex problem, for which necessary and sufficient conditions exist for finding its optimal points.

In this first class about the subject, we will focus on a specific version on (PC) and we will look
at first-order methods (such as the gradient). In particular, we will look at proximal methods,
projected gradient, dual ascent, and primal-dual methods.

I will give for granted some notions like KKT conditions and duality, but you can refer to the
appendix for some recap.

3.1.1 Setting: simplified

We look at a specific convex optimisation problems of the form

(PC) minimise
xPXĎRn

fpxq, (3.4)

with a convex cost fpxq : Rn Ñ R and a convex feasible set X Ď Rn. Whereby here X is a
“simple” set.

The notion of a “simple” set is rather vague, but we can loosely characterise it as follows: a set is
simple if and only if one can easily project over it (e.g., a box constraint, the semidefinite cone).
This will be clearer later. For now think of X as a subset of all the possible convex sets.

We talk here of projection, since a typical methods for our simply constrained optimisation
problem is the projected gradient method, which performs the iterations,

xk`1 “ PX rxk ´ α∇fpxkqs, PXpvq :“ arg min
xPX

1

2
}x´ v}2.

Here PXpvq is the Euclidean projection of the vector v onto the convex set X. And therefore
you can already see why I want the set X to be simple: I want its projection to be carried over
with as little complexity as possible, ideally in closed-form.

All these notions will be cleared later, when properly formalised. To do that, we can start with
a little more general setting than (PC). We will start from

(PS) minimise
xPRn

f1pxq ` f2pxq, (3.5)

29

for convex costs f1pxq, f2pxq : Rn Ñ R. This seems rather surprising, but this setting will be
very fertile in terms of results and reach. Let’s see how.

3.2 Splitting methods

Let’s go back to our new cost in terms of f1pxq ` f2pxq. We consider problems for which,

• f1 is convex and at least f1 P S1,1
0,L. In this context, f1 will carry the favourable aspects of

the optimisation problem;

• f2 is the “rest”. In general f2 is non-differentiable and “just” closed convex proper (CCP).

We recall that,

Definition 3.1 (Closed convex proper functions) The extended real line is R :“ RYt`8u.
An extended real convex function f : Rn Ñ R is proper iff is @x : fpxq ą ´8, and Dx0 : fpx0q ă

`8. A proper convex function is closed iff it is lower semi-continuous (l.s.c.). A proper, l.s.c.,
convex function is indicated with f P Γ pRnq.

Example 3.1 (Indicator function) Define the indicator function of a set X as the function
ιX : Rn Ñ R,

ιXpxq :

"

0 if x P X,
`8 otherwise.

Then, the indicator function ιXpxq of a closed and non-empty convex set X is Γ pRnq.

We know show that (PC) is a special case of (PS).

Proposition. (PC) and (PS) are have the same optimisers and optimal value iff f2 is the
indicator function for X.

Proof. Consider
(PC) min

xPX
fpxq, (PS’) min

xPRn
fpxq ` ιXpxq

and look at the optimality conditions

(PC-o) ∇fpxq `NXpxq Q 0,

(PS’-o) ∇fpxq ` BιXpxq Q 0,

where BιXpxq is the subdifferential of ιXpxq. One can show (try it) that: BιXpxq is nothing else
than the normal cone of X, i.e., BιXpxq “ NXpxq, for which the claim follows. ♣

Having established that our f1 ` f2 is more general than the constrained setting, let us look at
what we can do with it.

3.2.1 Forward-backward splitting

The first question we may ask is how do we find the optimal points of f1 ` f2? If we studied
well the second class, we know that if we were to use the subgradient method we would have
a Op1{

?
tq convergence rate. This is not very enticing. On the other hand, since f2 may be

non-differentiable, we are not equipped with any better methods so far.

The following theorem may offer us some hints on how to proceed.

Theorem 3.1 Let A “ ∇f1 and B “ Bf2. Then the following conditions are equivalent (for any
constant α ą 0),

(a) pA` Bqpxq Q 0 (3.6)

(b) x “ x´ αpApxq ` yq, y P Bpxq (3.7)

(c) x` αBpxq Q x´ αApxq (3.8)

(d) pI ` αBqpxq Q pI ´ αAqpxq . (3.9)

30

Proof. Immediate. ♣

Let’s look at these conditions very carefully. Condition (a) is just the optimality condition.
Condition (b) describes a fixed point iteration: the subgradient method. When the subgradient
method is converging, then (b) is verified and therefore we are at optimality. So far nothing new.

Conditions (c-d) describe a new fixed point iteration: the proximal method. The proximal
method is an implicit method, in fact we can write:

x` αBpxq Q x´ αApxq ðñ x P pI ` αBq´1pI ´ αAqx. (3.10)

Let us stop for a moment. We have split the optimality condition into two parts A and B, then
applied a forward pass I ´ αA on x, and subsequently a backward pass pI ` αBq´1. This gives
the name of what we are doing: a forward-backward splitting. If A and B are not just any
operators, but (as in our case) gradient and subgradient of some functions, then the splitting is
also named the proximal method.

How do we compute pI ` αBq´1 and what is it? Let us first define the proximal operator.

Definition 3.2 (Proximal operator) Given a function ϕ P Γ pRnq and a positive constant
α ą 0, the proximal operator proxαϕ : Rn Ñ Rn is defined as,

proxαϕpyq :“ arg min
xPRn

"

1

2α
}x´ y}2 ` ϕpxq

*

.

The proximal operator is the result of an optimisation problem. Since the cost function of the
proximal operator is strongly convex for any positive α, then the solution is unique and the
operator is well-defined. We will see later its properties, for now let’s accept this definition and
move on. How do we interpret pI ` αBq´1pI ´ αAqx in an algorithmic fashion?

Let us consider the step,
x` αBf2pxq Q x´ α∇f1pxq, (3.11)

which represents x`αBpxq Q x´αApxq with our choice of A and B. Consider now the following
line of reasoning: let y represent the right-hand side,

x` αBf2pxq Q x´ α∇f1pxq :“ y

x` αBf2pxq ´ y Q 0.

Now, the last inclusion can be interpreted as the optimality condition of an optimisation problem,
which one? This one:

1

2
}x´ y}2 ` αf2pxq Ñ min

x “ arg min
wPRn

"

1

2α
}w ´ y}2 ` f2pwq

*

,

which reminds us directly the definition of a proximal operator. In fact, the last equation is
equivalent to,

x “ proxαf2 pyq by definition

x “ proxαf2 px´ α∇f1pxqq .

So, finally, we have interpreted the forward-backward step as a gradient and proximal step
respectively, i.e., pI ` αBq´1pI ´ αAqx is x “ proxαf2 px´ α∇f1pxqq.

We are now fully ready for the proximal gradient method.

Remark 1 Note, many splitting methods exist for different “structures”. The proximal gradient
method is one of the most used, e.g., in machine learning.

31

3.3 The proximal gradient method

The method reads as follows, for a stepsize selection αk ą 0

Proximal gradient method

• Start with x0 P Rn

• Iterate xk`1 “ proxαkf2
pxk ´ αk∇f1pxkqq, k “ 0, 1,

The method is an upgrade of the gradient method, where we split the cost into a “nice” cost f1
and the “rest”, and we take a forward step on the nice part and a backward step on the rest.

When f2 is the indicator function of a closed convex set ιX , then the proximal gradient is
equivalent to a projected gradient method, in fact,

proxαkιX
pyq “ arg min

xPRn

"

1

2α
}x´ y}2 ` ιXpxq

*

“ arg min
xPX

"

1

2
}x´ y}2

*

“ PX rys,

which is the Euclidean projection on X. So, once again, we are saying that the splitting strategy
is a generalisation of the constrained problem (PC).

3.3.1 Prox-friendly functions

As you may already imagine, the proximal method is computationally reasonable when taking
the proximal operator is computationally reasonable. To say it in another way, f2 needs to be
prox-friendly, otherwise the computations that we need to solve the optimisation problem in the
definition of the proximal operator may exceed the computations to solve the whole problem.

If f2 is prox-friendly, then the proximal gradient method can be applied. There are a few prox-
friendly functions. Below two simple examples.

Example 3.2 (Prox-friendly functions 1) If f2 “ ιX , when X is a box constraint, then
taking the proximal can be done in closed-form. For example, when X “ r0, 1sn, then,

yk`1 “ pxk ´ αk∇f1pxkqq, xk`1 “ Pr0,1snpyk`1q,

and, each component i of the projection can be computed as,

rPr0,1snpyk`1qsi “ maxt0,mint1, ryk`1siuu,

where r‚si is the i-component of the vector.

Proof. The proximal gradient reads,

xk`1 “ Pr0,1snpxk ´ α∇fpxkqq

Now the projection operator reads,

Pr0,1snpyk`1q “ arg min
zPr0,1sn

1

2
}z ´ yk`1}

2 “ arg min
zPr0,1sn

n
ÿ

i“1

1

2
przsi ´ ryk`1siq

2.

The above problem is separable into n optimisation problems, i.e.,

arg min
zPr0,1sn

n
ÿ

i“1

1

2
przsi ´ ryk`1siq

2 “

n
ÿ

i“1

1

2
arg min

rzsiPr0,1s
przsi ´ ryk`1siq

2,

whose solution is
rxk`1si “ rzs

˚
i “ maxt0,mint1, ryk`1siuu.

♣

32

Example 3.3 (Prox-friendly functions 2) For f2pxq “ }x}1, then the proximal operator is
the soft-thresholding operator:

rproxα}‚}1pyqsi ” signprysiqp|rysi| ´ αq`,

where r‚si is the i-th component of the vector, sign is the sign operator, and p‚q` is maxt‚, 0u.

Proof. The proximal gradient reads,

xk`1 “ proxα|‚|1pxk ´ α∇fpxkqq “ arg min
zPRn

p}z}1 `
1

2α
}z ´ xk ` α∇fpxkq}2q

Solving the proximal step calling yk`1 “ xk ` α∇fpxkq,

arg min
zPRn

p}z}1 `
1

2α
}z ´ yk`1}

2q ðñ αB}z}1 ` pz ´ yk`1q “ 0

The last set of equations reads, for all i:

αB|rzsi| ` rzsi “ ryk`1si

We have now several possibilities,

rzsi ą 0 ùñ rzsi “ ryk`1si ´ α pwhich is valid then for ryk`1si ą αq

rzsi ă 0 ùñ rzsi “ ryk`1si ` α pwhich is valid then for ryk`1si ă ´αq

rzsi “ 0 ùñ B|rzsi| P r´1, 1s and ryk`1si P r´α, αs.

Reversing,

rxk`1si “ rzs
˚
i “

$

&

%

ryk`1si ´ α for ryk`1si ą α
ryk`1si ` α for ryk`1si ă ´α

0 otherwise

and compactifying: rxk`1si “ signpryk`1siqp|ryk`1si| ´ αq`. ♣

3.3.2 Proximal properties

The proximal operator has a number of useful properties that we can give and leverage to prove
the convergence of the proximal gradient method. We focus on one in this course.

Theorem 3.2 The proximal operator of a function f2 P Γ pR
nq is non-expansive, meaning that:

@α ą 0,@y1,y P Rn : }proxαf2py
1q ´ proxαf2pyq} ď }y

1 ´ y}. (3.12)

Proof. It follows from the implicit function theorem, and it is omitted here. ♣

We are now ready for the convergence results.

3.3.3 Convergence of the proximal gradient method

We have the following.

Theorem 3.3 Let f1 P S1,1
m,L and f2 P Γ pR

nq. Choose a constant stepsize α ă 2{L. Then the
proximal gradient method on (PS) has the (global) convergence certificate of,

}xt ´ x
˚} ď ρt}x0 ´ x

˚}, (3.13)

for ρ “ maxt|1´ αm|, |1´ αL|u, and t iterations.

Furthermore, let f1 P S1,1
0,L and f2 P Γ pR

nq. Choose a constant stepsize α ă 2{L. Then the
proximal gradient method on (PS) has the (global) convergence certificate of,

|f1pxtq ` f2pxtq ´ f1px
˚q ´ f2px

˚q| ď
ω

t` 1
}x0 ´ x

˚}2, (3.14)

for a constant ω ą 0, and t iterations.

33

Consider now the following accelerated variant of the proximal gradient method. Define the
supporting sequences, as before, in Equation (2.12), and the proximal accelerated gradient
method as

Proximal accelerated gradient method

• Start with x0 “ y0 P Rn and the sequences (2.12)
• Iterate: yk`1 “ proxαkf2

pxk ´ α∇f1pxkqq, xk`1 “ p1 ´ γkqyk`1 ` γkyk, k “
0, 1,

Then,

Theorem 3.4 Let f1 P S1,1
0,L and f2 P Γ pR

nq. Choose a constant stepsize α ă 1{L. Then the
proximal accelerated gradient method on (PS) has the (global) convergence certificate of,

|f1pxtq ` f2pxtq ´ f1px
˚q ´ f2px

˚q| ď
ω

t2
}x0 ´ x

˚}2, (3.15)

for a constant ω ą 0, and t iterations.

Proof. To prove the first statement of Theorem 3.3, we use the non-expansivity property. Start
from the algorithm update,

}xk`1 ´ x
˚} “ }proxαf2pxk ´ α∇f1pxkqq ´ proxαf2px

˚ ´ α∇f1px˚qq} ď
ď }xk ´ α∇f1pxkq ´ x˚ ` α∇f1px˚q}. (3.16)

Then, the rest follows as in the proof of Theorem 2.1.

The remaining results (f1 P S1,1
0,L standard and accelerated) are more involved and omitted here.

♣

3.3.4 Interpretation of the results

The results in Theorem 3.3 and 3.4 are quite impressive. If compared to the results we obtained in
Theorem 2.1 and 2.3 for the unconstrained case, they say that the proximal gradient method has
exactly the same guarantees of an unconstrained algorithm that does not have the complicated
f2 part.

This is brilliant. Whenever f2 is a prox-friendly function, we can just apply the proximal gradient
method and its accelerated variant and forget it exists for the convergence analysis.

In particular for strongly convex and smooth f1 costs, we obtain a linear convergence rate, while
for just smooth f1 costs, we obtain a Op1{kq and Op1{k2q rate. The latter in case of a Nesterov’s
acceleration.

Incidentally, in the case f1 ” 0, then we obtain a better method than the subgradient method,
for the case of prox-friendly f2, called proximal point algorithm.

In this section, we have see that (PC) can be generalized into (PS) and we have introduced your
first splitting method to solve it (the proximal gradient algorithm). Albeit the method works best
when f2 and therefore the set X is prox-friendly, the proximal gradient is one of the workhorses
of machine learning and modern optimisation as first-order algorithms are concerned.

In fact, researchers are very good at finding prox-friendly f2’s.

The proximal gradient splits the objective in a nice part and in a not-so nice part, and then
convergence goes as if only the nice part existed!

This brings us to the cases in which we can’t avoid looking at non-prox-friendly constraints.

34

3.3.5 Numerical example

Before continuing, it is good to have a look at a specific numerical example, which you will
explore in the second numerical project. We consider an image deblurring task: given an blurred
image, our task is to retrieve the original, sharp one.

The task can be formulated in different ways. One possibility is to write an optimisation problem
of the form,

x˚ P arg min
xPRn

1

2
}Ax´ b}22 ` ε}x}1, (3.17)

for given matrix A P Rmˆn, vector b P Rm and regularisation parameter ε ą 0. The regularisa-
tion is added, since typically the matrix A has very few rows m ! n, and the problem can be
ill-conditioned.

The cost function is convex, but non-differentiable, nor strongly convex. At face value, we
should use the subgradient method. However, considering the splitting, f1pxq “

1
2}Ax´ b}

2
2 and

f2pxq “ ε}x}1, we can use the proximal gradient. Since f1 is not just differentiable, but also
smooth, we can also use the accelerated proximal gradient. The proximal gradient for this `1-
regularised problem is traditionally called ISTA (i.e., iterative soft-thresholding algorithm), while
the accelerated variant is called FISTA (for fast ISTA), since we are using the soft-thresholding
operator to solve the proximal step (see Example 3.3).

In Figure 3.1, you can see the convergence curves for the three methods, and appreciate the
added value of the acceleration. Also, in Figure 3.2, you can see the end result. Note that in
this example m “ 92416, n “ 131072.

1 2 4 8 16 32

Number of iterations

104

105

106

O
p
ti
m
al
it
y
ga
p
:
F
´
F

˚

ISTA

FISTA

Subgradient, αk9
1

0.1k ` 1

Op1{kq

Op1{k2q

Figure 3.1. Convergence plots for Problem (3.17).

3.4 Duality

3.4.1 Equality constrained problems

We look now at a more explicit setting, for not so simple linear equality constraints,

(PE) minimise
xPRn

fpxq (3.18)

subject to Ax “ b, (3.19)

where A is a Rpˆn real-valued matrix, and b P Rp with b in the image of A for feasibility. Here
f : Rn Ñ R is a convex function, as usual.

35

Original Blurred FISTA deblurred

Figure 3.2. Image results for Problem (3.17). Original file by Camille Enlart, reproduced
under Creative Commons Attribution-Share Alike 4.0 International license.

We will look at first-order dual methods, so we will need the Lagrangian function for the problem
above, which reads,

Lpx, λq “ fpxq ` xλ,Ax´ by “ fpxq ` λJpAx´ bq.

We also need the dual problem,

max
λPRp

qpλq, qpλq :“ inf
xPRn

Lpx, λq,

where qpλq : Rp Ñ R is the so-called dual function.

Dual problems are useful, since when there is no duality gap then the maximum of the dual
problem coincides with the minimum of the primal problem; so if the former is easier to solve,
we can just solve it instead of the latter.

Here, you should know that when f convex and constraints are linear (and feasible), constraint
qualification holds, and there is no duality gap. If you don’t remember the details, please refer
to OPT201, or the appendix.

3.4.2 The dual ascent method

If we look at the dual problem, we see that it is an unconstrained problem in λ, so we could
optimise it via a gradient method. Indeed, the method (renamed Dual Ascent/ Uzawa’s method),
look like the following:

• Start with λ0 P Rp

• Iterate λk`1 “ λk ` αky, y P Bqpλkq k “ 0, 1,

We already remark the following important point: in general we don’t know if the dual function
q is differentiable, so we may need to use the subgradient of the dual function.

You may have already noticed, the properties of convergence and rate of the dual ascent method
are linked to the properties of the dual function q. In particular, most of the theorems we have
already proved in the second lesson will apply here, once we can determine the properties of q
in terms of properties of the original cost f and constraints A.

Remark 2 We give for granted some standard linear algebra results, like the notion of singular
values and how to compute them. If you are not familiar with that, please revise Appendix A.5
of [BV].

We have the following key result.

Theorem 3.5 Consider the problem (PE). The dual function qpλq is always concave. Further-
more, if we label the singular values of A as σmin ď ¨ ¨ ¨ ď σmax, then the following statements
hold.

36

(a) If f P S1,1
m,`8, σmax ą 0, then ´q P S1,1

0,L1 with L1 “ σ2
max{m.

(b) If f P S1,1
0,L, σmin ą 0, then ´q P S1,1

m1,`8 with m1 “ σ2
min{L.

(c) The converse is true if f is convex.

Proof. We prove only the second part of the theorem, since you should know that the dual
function is always concave from OPT201.

We start by (a). If f P S1,1
m,`8, σmax ą 0, then the function,

x˚pλq “ arg min
x

fpxq ` λJpAx´ bq

is single-valued, since the solution is unique (due to strong convexity of the cost). Optimality
conditions state:

∇fpx˚pλqq “ ´AJλ.

Strong convexity of fpxq also implies,

}∇fpxq ´∇fpyq}}x´ y} ě x∇fpxq ´∇fpyq,x´ yy ě m}x´ y}2, @x,y,

hence:
}∇fpxq ´∇fpyq} ě m}x´ y}, @x,y,

and setting x “ x˚pλq, y “ x˚pλ1q, we obtain

1

m
}AJλ1 ´AJλ} ě }x˚pλq ´ x˚pλ1q}. (3.20)

Consider now the dual function’s gradient along any direction e P Rp,

eJ∇qpλq “ lim
εÑ0

minx

`

fpxq ` pλJ ` εeJqpAx´ bq
˘

´minx
`

fpxq ` λJpAx´ bq
˘

ε

“ lim
εÑ0

`

fpx˚pλ` εeqq ` pλJ ` εeJqpAx˚pλ` εeq ´ bq
˘

´
`

fpx˚pλqq ` λJpAx˚pλq ´ bq
˘

ε

Use then Taylor,

fpx˚pλ` εeqq “ fpx˚pλqq `∇fpx˚pλqqpx˚pλ` εeq ´ x˚pλqq `Op}ε}2q “
fpx˚pλqq ´ λJApx˚pλ` εeq ´ x˚pλqq `Op}ε}2q,

where we have used the Lipschitz property of x˚pλq for Op.q (Eq. (3.20)) and the optimality
condition.

Substituting the latter into the gradient of the dual,

eJ∇qpλq “ lim
εÑ0

´λJApx˚pλ` εeq ´ x˚pλqq ` pλJ ` εeJqpAx˚pλ` εeq ´ bq ´ λJpAx˚pλq ´ bq

ε

“ eJpAx˚pλq ´ bq

and therefore ∇qpλq “ Ax˚pλq ´ b.

Lipschitz continuity of the gradient means analyzing:

}∇qpλq ´∇qpλ1q} “ }Ax˚pλq ´Ax˚pλ1q} ď σ2
max

m
}λ´ λ1},

where we have used the Lipschitz property of x˚pλq (Eq. (3.20)), which proves the claim.

We continue by proving (b). If f P S1,1
0,L, σmin ą 0, we need to prove strong convexity of ´q.

Here we cheat a bit by allowing f to be strictly convex, so q is differentiable, but the proof can be

37

extended to the general case with a little more work. So, with the cheat, we need a lower bound
as,

x´∇qpλq `∇qpλ1q, λ´ λ1y ě κ}λ´ λ1}2,

but,

x´∇qpλq `∇qpλ1q, λ´ λ1y “ x´Ax˚pλq `Ax˚pλ1q, λ´ λ1y

“ x´x˚pλq ` x˚pλ1q, AJλ´AJλ1y

“ x´x˚pλq ` x˚pλ1q,∇fpx˚pλ1qq ´∇fpx˚pλqqy

For L-smoothness of f ,

x´x˚pλq ` x˚pλ1q,∇fpx˚pλ1qq ´∇fpx˚pλqqy ě 1

L
}∇fpx˚pλ1qq ´∇fpx˚pλqq}2,

and using the optimality conditions,

x´∇qpλq `∇qpλ1q, λ´ λ1y ě σ2
min

L
}λ´ λ1}2,

as required.

We leave (c) for homework. ♣

This theorem is key: it relates the properties of f to the properties (i.e., the functional class) of
q. In particular,

• If f is strongly convex and A is not identically zero, then the negative of the dual function
´q is smooth. I can then apply a gradient method, and its accelerated variant with a
convergence rate of Op1{tq and Op1{t2q, respectively. I can also compute the Lipschitz
constant, and therefore I know the stepsize upper bound.

• If f is smooth and A is full row rank, then the negative of the dual function ´q is strongly
convex, but not necessarily differentiable. I will have to apply a subgradient method, with
a convergence rate of Op1{

?
tq.

• If f is both strongly convex and smooth, and A is full row rank, then ´q is also strongly
convex and smooth, and I can apply a gradient method with linear convergence guarantees.

This is all quite good. However, we need to compute the gradient or the subgradient of ´q. How
do we proceed?

Theorem 3.6 Consider (PE) and f P Γ pRnq. Indicate with conv the convex hull, then:

Bqpλq “ convpAx˚pλq ´ bq,

where, x˚pλq P arg minxPRn Lpx, λq, which is a set in general.

If f is strictly convex, then x˚pλq is a singleton for every λ, and Bqpλq ” ∇qpλq, i.e., q is
differentiable.

Proof. The proof follows from the proof of Theorem 3.5 and the definition of subdifferential. It
is also know as Danskin’s theorem, and an alternate proof can be found in Bestekas, Nonlinear
Programming, Section B.25. ♣

Armed with our gradient definition, we can rewrite the dual ascent method as,

Dual (sub)-gradient ascent method

• Start with λ0 P Rp

• Iterate:
˝ Solve the primal optimisation problem: x˚pλkq P arg minxPRn Lpx, λkq,
˝ Update: λk`1 “ λk ` αkpAx

˚pλkq ´ bq k “ 0, 1, . . .

In the algorithm, we have already indicated the gradient of the dual function as Ax˚pλkq ´ b.
When the dual function is not differentiable, the algorithm does not change and we take an

38

element of the subdifferential of q, i.e., an optimiser x˚pλkq. We recall that we do not need to
take the whole subdifferential set.

If q is smooth, then we can accelerate the gradient via a Nesterov’s acceleration in pretty much
the same way we discussed in the previous lectures.

The convergence and rates of the (sub)-gradient ascent method and its accelerated variant, in
terms of the sequence tλku as well as the cost qpλkq follow readily from the discussion we had
above, and in particular, let’s make it a theorem.

Theorem 3.7 Consider problem (PE). By using the (sub)-gradient dual ascent method we gen-
erate a sequence tλku, which has the following convergence certificates,

• If f P S1,1
m,`8, σmax ą 0, and the stepsize is chosen constant as α ă 2m{σ2

max then,

q˚ ´ qpλkq ď Op1{tq,

for a number of iterations t.

• If f P S1,1
0,L, σmin ą 0, then choosing the stepsize as in Theorem 2.4, at best,

min
k“0,...,t

q˚ ´ qpλkq ď Op1{
?
tq,

for a number of iterations t.

• If f P S1,1
m,L, σmin ą 0, then we can choose the stepsize as α ă 2m{σ2

max to obtain,

}λk ´ λ
˚} ď Opρtq,

for a number of iterations t and ρ “ maxt|1´ ασ2
min{L|, |1´ ασ

2
max{m|u ă 1.

Bu using a Nesterov’s accelerated version, then, if f P S1,1
m,`8, σmax ą 0, and the stepsize is

chosen constant as α ă m{σ2
max then,

q˚ ´ qpλkq ď Op1{t2q,

for a number of iterations t.

Proof. The proof follows from the discussion above. ♣

The theorem tells us how to construct dual sequences that convergence in a pertinent sense. We
recall that strong duality holds, and as such f˚ “ q˚, so we are converging to the minimum of
our problem. However, no mention is given to the primal variable x˚. That is, given a dual
sequence, how can we recover the corresponding primal variable? This is important, right? At
the end of the day, you want to solve (PE) and you don’t necessarily care about its dual variant.

Theorem 3.8 (Primal recovery) Consider problem (PE). If f P S1,1
m,L, L ď `8, then we can

set
x˚ “ arg min

xPRn
Lpx, λ˚q.

Otherwise, construct the auxiliary ergodic variable,

x̄k “
1

k ` 1

k
ÿ

i“0

xi, xi :“ x˚pλiq.

Then, }x̄k ´ x
˚} Ñ 0.

Proof. The first part of the proof is obvious, since x˚ is unique. The second part is more
involved and left here. ♣

Summarising: We have transformed (PE) into an unconstrained dual problem, which we can
fully characterise and solve as we did in the second class.

39

Dual ascent is only one of the possible dual algorithms, and not even the best performing. Many
algorithms out there, but all of them follow the basic principles that we have looked at here.
In particular, you use duality to derive properties of the dual problem; then you use your basic
unconstrained theory to derive convergence certificates. Finally, you can say something about
primal recovery in some more complex cases.

Homework. Can you think of a dual Newton’s method? Can you think of a dual proximal
method? When would you apply these methods and with which guarantees?

Before moving on, stop a bit and reflect. In the proximal setup, convergence certificates were
very easy to obtain, and the disadvantage was to have prox-friendly costs. In the dual setup,
convergence certificates require a bit more work, and now we need that the gradient of the dual
function is easy to compute. This latter requirement means that we can compute

x˚pλkq “ arg min
xPRn

Lpx, λkq

in an easier way than solving the full, constrained, problem. What if it is not the case? Let’s
look at primal-dual methods.

3.4.3 Inequality and equality constrained problems

When we play with dual ascent methods, you may be tempted to try out different modifications.
As we have just discussed, you may find the optimisation arg minxPRn Lpx, λkq awkward, and
tempted to substitute it with one or a few steps a gradient method,

xκ`1 “ xκ ´ ακ∇xLpxκ, λkq, κ “ 0, 1, . . . , T,

where you could start with xκ “ xk, and let x˚pλkq « xT`1. This is of course a naive modifi-
cation that may (or not) work. This type of modifications goes under the name of primal-dual
methods, since we both change the primal and the dual at the same time. Let’s look at a more
general setting and then specify our results for a few algorithms.

We look now at the complete setting

(PI) minimise
xPXĎRn

fpxq (3.21)

subject to Ax “ b, gpxq ď 0, (3.22)

where A is a Rpˆn real-valued matrix, and b P Rp with b in the image of A for feasibility. The
functions f : Rn Ñ R and g : Rn Ñ Rl are convex functions, and X is a convex set. Assume
that Slater’s constraint qualification holds (i.e. Dx̄ : x̄ P relintpXq, gpx̄q ă 0). In this context,
problem (PI) is convex and there is no duality gap.

Notice that (PE) Ă (PI).

We look here at primal-dual methods, whose convergence is harder and more technical to char-
acterise, and mostly open in many settings. But, we will see what we can say, at least in a simple
case.

3.4.4 A primal-dual method

Start by considering f, g to be differentiable. A simple (perhaps naive) primal gradient descent
- dual ascent method is the following.

Form the Lagrangian
Lpx, λ, νq “ fpxq ` λTpAx´ bq ` νTgpxq,

then look at the saddle-point problem,

min
xPX

max
λPRp,νPRl

`

Lpx, λ, νq. (3.23)

We recall here that the dual variable associated to the inequality constraint gpxq ď 0 has to be
constrained in the positive orthant, i.e., ν P Rl

`. This comes from the KKT conditions.

40

Then, one can ask how to solve (3.23), for instance iterating as follows (where we indicate with
P the projection operator).

(Basic) Primal-dual descent-ascent method

• Start with x0, λ0, ν0 and stepsizes α, β, γ ą 0,
• Iterate for k “ 0, 1, . . .:

xk`1 “ PX rxk ´ α∇xLpxk, λk, νkqs
λk`1 “ λk ` β∇λLpxk, λk, νkq
νk`1 “ PRl

ě0
rνk ` γ∇νLpxk, λk, νkqs

This primal-dual method (a method which alternates between a primal update and a dual update)
is rather basic. Its convergence is hard to characterise in general (since L is not strictly concave
in λ, ν). Better and more involved methods exists that tune the stepsize or take more or less steps
in the primal and in the dual. Also, you can find methods that add penalisation or regularisation
terms to help convergence. We do not explore this here, but it is useful to understand to which
we are converging to, in general.

Convergence is to a saddle point, i.e., a point px˚, λ˚, ν˚q such that:

@x P X,λ, ν P Rl
ě0 Lpx˚, λ, νq ď Lpx˚, λ˚, ν˚q ď Lpx, λ˚, ν˚q.

This convergence is hard to characterise since you are not descending, not ascending with a
certain rate, but you are alternating. So convergence involves determining how far you are from
the saddle point, and how much you are violating your constraints.

I stop here, but let’s have a look at one interesting example.

3.4.5 Convergence: an example

Let’s go back to our (PE) and try to solve it with our basic primal-dual method. In this case
g ” 0, and we don’t need ν. We have the following theorem.

Theorem 3.9 Let f P S1,1
m,L and g ” 0. Let A be full row rank. Then, the primal-dual algorithm

with α “ β ă 1{L delivers a sequence txk, λkukPN such that,

txk, λkukPN Ñ px˚, λ˚q

linearly.

Proof. The proof is interesting since we are going to use a different tool: Energy decrease! By
the assumptions on the function and problem, we know that the saddle point px˚, λ˚q exists and
is unique.

Consider then the variable: zk “ colpxk´x
˚, λk´λ

˚q, and the energy function Vk “
1
2}zk}

2. If
we show that the energy decreases with k, then }zk} Ñ 0. The energy function Vk is the so-called
Lyapunov function, for the students who know what I am talking about.

First, we can write

zk`1 “ zk ` α

„

´∇xfpxkq ´A
Tλk `∇xfpx

˚q `ATλ˚

Axk ´ b´Ax
˚ ` b



.

Then, by using Taylor expansion and the mean value theorem,

∇xfpxkq ´∇xfpx
˚q “ ∇xxfpξkqpxk ´ x

˚q,

for a certain ξk on the line with end point xk and x˚. In particular, let Qk “ ∇xxfpξkq. Then,

zk`1 “ zk ´ α

„

Qk AT

´A 0



zk “

„

I´ αQk ´αAT

αA I



zk.

41

This is a dynamical system. Convergence to zero requires the system to be stable, therefore the
system matrix to have eigenvalues in the unit circle. If the matrix rQk, A

T;´A,0s has all the
eigenvalues in the positive half plane and its maximum eigenvalue is bounded, then we can make
the system matrix to have eigenvalues in the unit circle by choosing a small enough α.

In order to check for the eigenvalues of rQk, A
T;´A,0s to be positive, we need to verify that

vT

„

Qk AT

´A 0



v ą 0, @v,

which is trivially verified. In particular σmaxprQk, A
T;´A,0sq “ σmaxpQkq “ }Qk} ď L. Thus,

choosing α ă 1{L leads stability of the dynamical system and convergence of the primal-dual
method. In particular, zk Ñ 0, linearly.

♣

3.4.6 Summarising

We have transformed (PI) into a simply-constrained saddle-point problem, which however it
is more complex to characterise and solve than what we have seen for (PE) with purely dual
methods. In fact, the research in primal-dual methods is very active and we do not have a
complete picture yet.

As we have seen, when moving from simply-constrained problems to general problems, we find
more and more general algorithms, which are more and more difficult to handle in theory. While
the scope here is just to give you the tools to understand the methods, don’t forget that there
are many many methods out there, even if the basic ingredients are all the same!

3.5 References

• E. K. Ryu and S. Boyd, Primer on Monotone Operator Methods, 2016

• N. Parikh and S. Boyd, Proximal Algorithms, 2013

• J. Eckstein, Splitting methods for monotone operators with applications to parallel optimi-
sation, 1989

˛ ˛ ˛

3.6 Exercises

Exercise 3.1 (Exam 2023) Consider the following quadratic optimisation problem in two scalar
variables,

min
x1PR,x2PR

1

2
px1 ´ x2q

2 ` 4px1 ´ 1q ` apx21 ` 2x22q, subject to px1, x2q P X,

where a is a real scalar, and X a generic set.

1. Prove that it is sufficient that a ě 0 and X convex for the problem above to be convex.

2. Consider now a “ 0 and X “ tx1, x2 |x1 P r0, 1s, x2 P r0, 1su, give an example of a
first-order algorithm that achieves the optimal convergence rate for this class of problems.
Write the algorithm explicitly (that is, write every steps of the algorithm and detail all the
operations involved including the allowed numerical values for the stepsize) and provide its
optimal convergence certificate in terms of distance to f˚.

3. Consider now a “ 1 and X “ tx1, x2 |x1 ´ x2 “ 1u:

(a) Derive the dual function. Which functional properties does this dual function have?
(Be as precise as you can be: for example if the function is L-smooth, derive the
numerical value for the constant L, and so forth).

42

(b) Derive the dual problem. Which first-order algorithm would solve the dual problem with
the fastest convergence rate? Write the algorithm explicitly (that is, write every steps
of the algorithm and detail all the operations involved including the allowed numerical
values for the stepsize), and provide a convergence certificate for it.

Exercise 3.2 (Resit 2023) Consider the problem,

pP q min
xPR

fpxq ` ϕpxq,

where, fpxq “ 1
2px

2, with p ą 0 and,

ϕpxq “

"

1
2x

2 if x P r´1, 1s
|x| ´ 1

2 otherwise
.

1. Is the problem convex? Strongly convex?

2. Prove that

proxαϕpxq “

"

x
1`α if |x| ď 1` α

x´ α signpxq otherwise
.

3. Write the proximal gradient method and its accelerated variant to solve pP q. What are
the convergence guarantees that you can give? What are the conditions on α to ensure
convergence?

4. Considering the convergence rate alone. Is the accelerated variant better?

Exercise 3.3 (Exam 2023) Consider the set of real symmetric matrices of dimension n ˆ n,
and indicate it as SpRnq. Consider their eigenvalue decomposition as X “ UΛUJ, where X P

SpRnq, and Λ is the matrix collecting on the diagonal the eigenvalues of X. Let the eigenvalues
be λ1, . . . , λn, and collect them in a vector λ P Rn, such that, Λ “ diagpλq.

Consider now special convex functions g : SpRnq Ñ RY t`8u, the so-called spectral functions,
which can be defined by considering eigenvalue functions alone. For example, the trace is a
spectral function, since tracepXq “ 1Jλ. Other such functions are the indicator function of the
sets X1 “ tX P S|X ľ 0 ” λ ě 0u, or X2 “ tX P S|}X}2F ” tracepXJXq ď 1 ” }λ}22 ď 1u.

For these spectral functions, then the proximal map simplifies as

proxgpXq “ UdiagrproxgpλqsU
J,

where with a slight abuse of notation we use the function g both for matrix X and its eigenvalues
λ.

Now, consider the problem,

p‹q min
XPXĎSpRnq

fpXq ` f2pXq,

for a differentiable convex function f : SpRnq Ñ R, such that ∇fpXq P SpRnq, and a generic
convex function f2 : SpRnq Ñ RY t`8u.

1. Write the standard proximal gradient method for the problem p‹q for the set X “ X1 and
f2 ” 0. Give the proximal operator in closed-form.

2. Write the standard proximal gradient method for the problem p‹q for the set X “ X2 and
f2 ” 0. Give the proximal operator in closed-form.

3. Write the standard proximal gradient method for the problem p‹q for the set X “ SpRnq

and f2 “ tracepXq. Give the proximal operator in closed-form.

4. Consider problem p‹q for fpXq “ exppXq, X “ X1, and f2 ” 0. With the theory we have
studied in class, which convergence guarantees has the standard proximal gradient method
applied to p‹q for fpXq “ exppXq? (You could consider n “ 1 for simplicity, if you need).

43

Chapter 4

Fourth lecture
Constrained optimisation (II): second-order methods, i.e.,
interior-point method

4.1 The full picture

We look at the complete explicit convex setting,

(PI) minimise
xPXĎRn

fpxq (4.1)

subject to Ax “ b, gpxq ď 0. (4.2)

where A is a Rpˆn real-valued matrix, and b P Rp with b in the image of A for feasibility.
Furthermore, both fpxq : Rn Ñ R and g : Rn Ñ Rl are convex functions, and X is a convex
set. Assume that Slater’s constraint qualification holds (i.e. Dx̄ : x̄ P relintpXq, gpx̄q ă 0).
Remark that (PE) Ă (PI).

In this lecture, we are interested in second-order algorithms that can deliver very fast convergence,
since they will use variants of the Newton’s algorithm in some inner loops. We are mainly
concerned with interior-point methods, which are the state of the art, if one can afford the
computations to run them. For example, you can see them implemented in off-the-shelf solvers
like cvxpy in python.

To develop the methods, we will assume that both the cost f and the constraint function g are at
least double differentiable, so that f, g P C2. This is reasonable, since we will need their Hessians
for constructing a second-order oracle.

We will then make use of some properties of the Newton’s algorithm (namely its affine invari-
ance) to build polynomial-time algorithms to a large class of optimisation problems. As far as
computational complexity and time go, polynomial-time algorithms are the “good guys”, mean-
ing that they allow to solve optimisation problems in a time which is bounded by a polynomial
function of the inputs. This is in contrast with exponential-time algorithms, which are in general
the “bad guys”. We will discuss this a bit further in the lecture, but keep in mind that the
polynomial-time algorithm that we will study made the front page of the New York Times in
1984, when it was discovered! Polynomial-time algorithms are the stars in optimisation.

And, finally, we will use our star method to gauge which convex problems are easy (i.e., can be
solved in polynomial time), and which not. Please, remember that convex problems are still in
general very hard to solve, even though their optimality conditions can be written down.

4.1.1 Barrier functions and penalised problems

We are now ready to introduce some constructions and notions to help us develop the algorithm.
Assume without loss of generality that X ” Rn. This is without loss of generality, since you can
load g with the constraints represented by X, as well.

Suppose now that we can construct a convex l.s.c. barrier function

Φgpxq :

"

« 0 @x : gpxq ď 0
`8 otherwise.

(4.3)

44

As a typical example, consider the constraint x ď 0, and the barrier

Φxď0pxq “ ´ logp´xq.

This logarithmic barrier is `8 if xÑ 0, and stays small for small negative x. As a generalisation,
for the convex function gpxq : Rn Ñ Rl and the constraint gpxq ď 0, we can consider each
constraint gi for i “ 1, . . . , l, and then build a barrier as,

Φgpxq “ ´
l
ÿ

i“1

logp´gipxqq, (4.4)

both barrier functions extended outside the domain by `8.

Having now constructed a barrier, instead of the original problem, consider the following pe-
nalised version

(PIP) minimise
xPRn

tfpxq ` Φgpxq (4.5)

subject to Ax “ b, (4.6)

for t ě 0.

Since the barrier function Φgpxq is convex, and t ě 0, then the penalised problem is still convex.
We define as x˚ptq a solution of this penalised problem and we further call the curve tx˚ptqutě0

the central path. The central path is then the curve generated by a solution of (PIP) by varying
t. Moreover, we notice that x˚p0q is a particular feasible point, called the analytical center of
the constraint function gpxq.

By simple inspection, we can immediately see that if we let limtÑ`8 x
˚ptq we obtain x˚, a

minimiser of the original problem PI, that is the central path converges to the solution of our
original problem.

The idea is to move along the central path, using some basic algorithm to do small steps along
the central path. The “basic algorithm” that is used in interior-point methods is the Newton’s
method, because of its very fast local convergence.

The technical details are for which classes of problems the (PIP) problems do not become harder
and impossibly hard as t Ñ 8, and how to select the increment of t such that we stay in the
local convergence zone.

Since gradient methods depend on the condition number and they would become very slow for
large values of t, we can safely say that they are useless in this lecture.

4.1.2 Interpretation of the penalised problem

To understand a bit better the idea behind the penalised problem, let us have a look at the KKT
conditions for it. In particular, consider a logarithmic barrier function, then the KKT conditions
for (PIP) are

t∇fpxq `ATλ`
l
ÿ

i“1

1

´gipxq
∇gipxq “ 0 (4.7)

Ax “ b, gipxq ă 0 i “ 1, . . . , l. (4.8)

Or equivalently, introducing the new variables νi “ ´1{ptgipxqq,

∇fpxq `ATλ`
l
ÿ

i“1

νi∇gipxq “ 0 (4.9)

Ax “ b, gipxq ă 0 νi ą 0 i “ 1, . . . , l (4.10)

´νigipxq “ 1{t i “ 1, . . . , l. (4.11)

By the second set of equation, we can see that the (PIP) approximates the complementary
slackness condition, and as tÑ8, we regain the original problem. Excellent.

45

4.2 A Newton’s step for the penalised problem

We are now ready to develop a Newton’s step/method for the penalised problem, which is an
equality-constraint convex optimisation problem. The developments here are rather general and
can be applied at any equality-constraint convex optimisation problems.

Let’s start by constructing the Lagrangian function for (PIP) as,

Ftpx, λq “ tfpxq ` λTpAx´ bq ´
l
ÿ

i“1

logp´gipxqq, (4.12)

where we have indicated with λ the dual variable associated to the constraint Ax “ b.

We can further write the optimality conditions for (PIP) as,

∇xFtpx, λq “ 0 Ax “ b. (4.13)

To build a Newton’s method, we need to expand the optimality conditions by using a Taylor
approximation around a point pxk, λkq, i.e.,

∇xFtpxk, λkq `∇2
xxFtpxk, λkq∆x`∇2

λxFtpxk, λkq∆λ “ 0 (4.14)

Axk ´ b`A∆x “ 0. (4.15)

We can now build the linear system for the Newton’s increment p∆x, ∆λq as,

„

∇2
xxFtpxk, λkq AT

A 0



looooooooooooooomooooooooooooooon

“:Hk

„

∆x
∆λ



“

„

´∇xFtpxk, λkq
´Axk ` b



loooooooooooomoooooooooooon

“:rk

, (4.16)

and solve for p∆x, ∆λq.

Finally, we can use a damped strategy for the update, xk`1 “ xk ` αk∆x, λk`1 “ λk ` αk∆λ,
where αk ą 0 is the stepsize and it is based on the chosen damped strategy.

4.2.1 Damping and the full method

We focus here on a special choice of damping to fix the ideas, namely the backtracking strategy.
Since now the problem is constrained, we cannot use a strategy based on the cost, as done in
previous lectures. It is much better to use instead a strategy based on the residual }rk}, meaning
that you would like to reduce it at least by a given amount per iteration.

The full method then looks like the following.

Damped Newton’s method for equality-constrained problems

• Start with x0, λ0 P Rn (Need: x0 : gipx0q ă 0 if a penalised problem)
• Iterate:

˝ Solve the linear system: Hk

„

∆x
∆λ



“ rk,

˝ Backtracking: set αk “ 1, τ P p0, 1q, β P p0, 1{2q:
While }rpxk ` αk∆x, λk ` αk∆λq} ą p1´ βαkq}rk}, set: αk Ð ταk.

˝ xk`1 “ xk ` αk∆x, λk`1 “ λk ` αk∆λ.

As long as the generalised function Ft is strongly convex and had a Lipschitz Hessian in x, i.e.,
it is P S2,2

m,M , then convergence goes as in Theorem 2.7, and in particular it is locally quadratic.
The assumptions on Ft may be reasonable in some situations, but in our case, they may be
awkward. In fact the logarithmic barrier is not strongly convex, and it may even have problems
to have a Lipschitz Hessian.

In the next section, we will see how to modify the analysis and to change the assumption for a
more general one, which will help us with the convergence proof of the interior-point method,
independently of the conditioning parameter t.

46

4.3 Self concordance

We start with defining a new function class: the self-concordance class as follows.

Definition 4.1 (Self-concordance on R) A convex function f : R Ñ R is self-concordant iff

|f3pxq| ď 2f2pxq3{2

for all x P dompfq. Where 3 indicated the third order derivative and 2 the second order one.

Definition 4.2 (Self-concordance on Rn) A convex function f : Rn Ñ R is self-concordant
iff it is self-concordant along every line in its domain, i.e., if the function f̃pµq “ fpx ` µvq is
a self-concordant function of µ for all x P dompfq and for all v.

Self concordance will be indicated as SC. At first, this definition may sound a mathematical
weirdness, but we will see how it can help us a great deal, and it encompass a good deal of
functions!

Let’s look at some examples and properties.

4.3.1 Examples and properties

Let us look at |f3pxq| ď 2f2pxq3{2 in the scalar case. We notice immediately that, linear and
positive quadratic functions are self-concordant since convex and f3pxq “ 0 and f2pxq ě 0.

We also notice that, ´ logpxq is self-concordant on its domain: this key for us, since it will be
the basis for our barrier functions, which are not strongly convex. Since this is the key step, let’s
make it a theorem.

Theorem 4.1 (Self concordance of the logarithmic function) The function ´ logpxq is self-
concordant on its domain.

Proof. Homework. ♣

Some useful properties of the SC class are the following ones, whose proofs are immediate.

• If f1 P SC, f2 P SC then, f1 ` f2 P SC

• If f P SC and a ě 1, then, af P SC

• If f P SC then fpAx` bq P SC

4.3.2 Matrix extensions

In some cases, we also look at problems defined over the semi-definite cone. In particular, we
look at problems defined over symmetric real-valued matrix variables X P SpRnq, such as,

minimise
XPSpRnq

F pXq (4.17)

subsect to X ľ 0, (4.18)

where F : SpRnq Ñ Rn is a convex function. These types of problems are often referred to as
semi-definite programs, and they are useful in many domains.

First of all, it should be immediate to prove that the above is a convex problem, since X ľ 0 is
a convex set (try it out).

Then, we need two things. First an inner product, which is the trace. Second, a self-concordant
barrier.

Theorem 4.2 An allowed barrier function for the constraint X ľ 0 is φpXq “ ´ log detpXq.

47

Proof. We start by proving that φpXq is convex.

For the function φpXq, X ą 0, we can verify convexity by considering an arbitrary line, given by
X “ Z ` tV , where Z, V are symmetric matrices of dimension n. We define gptq “ φpZ ` tV q,
and restrict g to the interval of values of t for which Z ` tV ą 0. Without loss of generality, we
can assume that t “ 0 is inside this interval, i.e., Z ą 0.

We now show that g2ptq ě 0 (g2 is the Hessian), and conclude that φpXq is a convex function.

For the defined gptq,

gptq “ ´ log detpZ ` tV q

“ ´ log detpZ1{2pI ` tZ´1{2V Z´1{2qZ1{2q

“ ´

n
ÿ

i“1

logp1` tλiq ´ log detZ,

where λ1, . . . , λn are the eigenvalues of Z´1{2V Z´1{2, therefore for the scalar function gptq

g1ptq “
dg

dt
“ ´

n
ÿ

i“1

λi
1` tλi

, g2ptq “
d2g

dt2
“

n
ÿ

i“1

λ2i
p1` tλiq2

ě 0.

Note, we used the fact that detpAq “
śn
i“1 λipAq, that detpABq “ detpAqdetpBq, and the usual

logpabq “ logpaq ` logpbq.

We continue by proving the self-concordance of φpXq. Let us compute the derivatives along a
line X ` tV , for X ą 0 and V symmetric.

dφpX ` tV q

dt

ˇ

ˇ

ˇ

ˇ

t“0

“ ´
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

tlog detpXq ` log detpI ` tX´1V qu “ ´tracepX´1V q,

d2φpX ` tV q

dt2

ˇ

ˇ

ˇ

ˇ

t“0

“ ´
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

traceppX ` tV q´1V q “ tracepX´1V X´1V q,

d3φpX ` tV q

dt3

ˇ

ˇ

ˇ

ˇ

t“0

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

traceppX ` tV q´1V pX ` tV q´1V q “ ´2tracepX´1V X´1V X´1V q.

Let Ṽ “ X´1{2V X´1{2, then,

d2φpX ` tV q

dt2

ˇ

ˇ

ˇ

ˇ

t“0

“ tracepṼ 2q ą 0,
d3φpX ` tV q

dt3

ˇ

ˇ

ˇ

ˇ

t“0

“ ´2tracepṼ 3q.

Hence,

ˇ

ˇ

ˇ

ˇ

d3φpX ` tV q

dt3

ˇ

ˇ

ˇ

ˇ

t“0

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
´2tracepṼ 3q

ˇ

ˇ

ˇ
ď 2tracepṼ 2q3{2 “ 2

ˆ

d2φpX ` tV q

dt2

ˇ

ˇ

ˇ

ˇ

t“0

˙3{2

,

from which the thesis. ♣

4.3.3 Newton’s method for self-concordant functions

We are now ready for the analysis of the damped Newton’s method for self-concordant functions.

Theorem 4.3 Damped Newton’s method convergence globally for strictly convex and self-concordant
functions on the problem minxPRn fpxq. In particular, there exists a γ ą 0 depending on the
backtracking method, for which it obtains a solution xk for which fpxkq ´ fpx

˚q ă ε in

fpx0q ´ fpx
˚q

γ
` log logp1{εq

iterations.

48

Typically 1{γ „ 100, while log logp1{εq « 6. Note that the accuracy does not depend on the
conditioning of the function or on its strong convexity.

Proof. The proof is rather involved and left to the reader to check out in [BV] book. ♣

The theorem can be extended to equality-constrained Newton’s methods and the result stay the
same. With this result in place, let’s look at interior-point methods.

4.4 The interior-point method

Recall the damped Newton’s method for equality-constrained problems and consider the following
method to solve (PI) with a sequence of (PIP) problems,

Interior-point method

• Start with x0 such that gpx0q ă 0, t ą 0, µ ą 1 and required accuracy ε. Rem: g : Rn Ñ

Rl

• Iterate κ “ 0, 1 . . .
˝ Solve (PIP) starting from xκ with a damped Newton’s method. Let the solution be
xκ`1

˝ Quit if l{t ă ε (remember complementary slackness: ´νigipxq “ 1{t)
˝ Update: tÐ µt

Remark 3 You can’t start with t satisfying l{t ă ε, because t would be too big and we may be
far from the local convergence zone.

Our aim is now to show that if we use damped Newton’s method for each (PIP) the number of re-
quired iterations is bounded by a polynomial function of the inputs (e.g., number of constraints),
hence, the interior-point method for self-concordant functions and barriers has a polynomial
complexity and can solve (some) convex problems efficiently.

4.4.1 Computational complexity analysis: outer

First, we look at the outer steps (updates on t). Starting for a certain t, say t0 for short, each
steps we obtain an accuracy of

l

µκt0
.

Therefore for a desired accuracy ε, we need

R

logpl{εt0q

logµ

V

steps.

4.4.2 Computational complexity analysis: inner

Theorem 4.4 Consider the (PIP)s generated by an interior-point method. Assume the technical
requirements that,

• The function tfpxq ´
řl
i“1 logp´gipxqq is self-concordant for all t ą 0;

• The (PIP)s have bounded sub-level sets (i.e., they are solvable).

Then, the number of required inner iterations of the damped Newton’s method to achieve an
accuracy εnt can be upper bounded as,

lpµ´ 1´ logpµqq

γ
` log logp1{εntq «

lpµ´ 1´ logpµqq

γ
` 6.

with γ depending only on the backtracking parameters.

49

The proof is based on Theorem 4.3 on the convergence of the damped Newton’s method with
self-concordance assumption.

We see immediately that the number of iterations are linear in l. Each iteration requires a
Newton’s step computation, which is in the worst case a matrix inversion, which is of the order of
Oppn`mq3q, so also polynomial. We also see that the bound does not depend on the penalisation
term t.

4.4.3 Computational complexity analysis: complete

Now we can put things together

Theorem 4.5 Assume (PI) is convex and enjoys a self-concordant barrier function and each of
the (PIP) is solvable. Then employing an interior-point method with parameters pt0, µ, γq delivers
a solution with accuracy ε in

R

logpl{εt0q

logµ

V

ˆ

R

lpµ´ 1´ logpµqq

γ
` 6

V

“ opl2q

iterations. Each of them requiring the solution of a matrix inversion with complexity ă Oppn`
mq3q.

As such the interior-point method with self-concordant barrier is a polynomial-time method, with
overall complexity of ă Opl2pn`mq3q.

Theorem 4.5 delivers the convergence certificate guarantees we need: it tells us how many itera-
tions we need to reach a certain accuracy, in terms of complementary slackness. It also tells us
that each iteration can be carried out in polynomial time, making our life easy.

We have therefore developed a polynomial-time method for generic convex optimisation problems.
This is a huge feat: we can actually solve some of the problems (using a second-order oracle)
with very high accuracy!

I want to recall that first-order methods can offer better computational complexity per iteration,
but they may take many many iteration (not polynomially bounded) to converge. Sometimes
however, that’s the only thing you have.

The next natural question is: which optimisation problems can be solve then in polynomial time?
All convex ones?

4.5 Classes of easy problems

We now look at the classes of easy problems, problems that can be solved in polynomial time by
using the interior-point method that we have developed. There are four of such classes, which can
model a widespread array of applications. This is what makes (a sub-set of convex) optimisation
a useful technology. In particular, this sub-set of convex optimisation is a “complete” domain:

• We have an amazing theory and we understand it inside out;

• We have efficient algorithms and we can get their complexity;

• The problems we can solve efficiently matter for society!

Frankly, you will not see much of these domains in your professional life. For example, machine
learning matter for society but the theory behind is still not well understood. Binary optimisation
matter for society, but we do not have efficient algorithms.

Our four musketeers are:

• Linear programs (LPs);

• Quadratic programs (QPs);

• Second-order conic programs (SOCPs);

50

• Semidefinite programs (SDPs).

And for all the above you have a self-concordant barrier, so that you can apply Theorem 4.5.

4.5.1 Linear programs

Linear programs (or LPs) are convex optimisation problems with linear cost and linear con-
straints. Linear programs in continuous optimisation do not have to be mixed with linear pro-
grams in integer programming, where the decision variables are integer. The latter are not linear
at all!

A typical linear program is the following,

minimise
xPRn

cTx, (4.19)

subject to Ax “ b, Dx ď e. (4.20)

For example:
minimise
x1PR,x2PR

2x1 ` x2

subject to x1 ě 0, x2 ě 0
x1 ` x2 ď 0.

The solution is on the boundary (vertex), from which the simplex method can be developed
(which is a combinatorial method with worst-case exponential-time complexity). The interior-
point method was applied to LPs successfully in 1984 with a complexity of Opn2mq,m ě n
for n variables and m constraints. Typically one can solve instances with 10k variables and
constraints. Furthermore, LPs can be used to approximate more complex optimisation problems
by linearisation.

4.5.2 Quadratic Programs: QPs

Quadratic Programs or QPs are convex optimisation problems with convex quadratic cost and
linear constraints,

minimise
xPRn

1
2x

TQx` cTx, (4.21)

subject to Ax “ b, Dx ď e, (4.22)

with Q ľ 0.

QPs have better properties than LP and their solution is not on the boundary. The level sets
are ellipsoids, and in general, they are not more complicated to solve than LPs. In fact, writing
the Lagrangian and the KKT conditions (here the constraint qualifications are satisfied)

S :

»

—

—

—

—

–

Qx` c`AJλ`DJν “ 0
Ax´ b “ 0
Dx´ e ď 0
ν ě 0
pDx´ eqiνi “ 0

Ñ
find x, λ, ν
s.t. x, λ, ν P S

“ LP + sth. else

we see that QPs are similar to LPs.

Here the computational complexity with interior-point is limited by matrix inversions. We can
cite a few notable examples of QPs, such as least-squares problems, regression problems, optimal
control, and so forth. QPs have been, and still are, the cornerstone of nonconvex optimisation
with sequential quadratic programming (SQP).

4.5.3 Second-Order Conic Programs: SOCPs

Second-Order Conic Programs or SOCPs are convex optimisation problems with quadratic cost
and quadratic constraints and a bit more. Compactly, they can be written as,

minimise
xPRn

cTx

subject to }Dix` ei}2 ď hT
i x` di, i “ 1, . . . ,m

Ax “ b

(4.23)

51

4.5.4 Semi-Definite Programs: SDPs

Semi-Definite Programs or SDPs are convex optimisation problems with linear cost and with
semidefinite constraints.

Let’s us define a Linear matrix F : Rn Ñ Sn:

F pxq “ x1F1 ` x2F2 ` . . .` xnFn `G x P Rn, F1, . . . , Fn, G P Sn.

and, the SDP:
minimise

x
cJx

subject to F pxq ľ 0 pSDP constraint, LMI..q
Ax “ b.

4.6 Summary

In these four classes we have developed a theory of algorithms for optimisation. Without it,
we wouldn’t be able to solve anything. Without it, we wouldn’t be able to know how many
iterations we need to run to obtain a result with a certain accuracy. Without it, we could wait
forever to get nothing in return.

When talking about algorithms, we care about complexity, and which type of oracles we can
afford to use: zero-order, first-order, second-order, and so forth.

And, we also care about the properties (convexity, smoothness) of the problems, and we use
them to decide which algorithm to employ.

And, finally, by using the algorithmic lens, we can decide how to model our problem, so that we
are able to solve it (we are guided in terms of assumptions). To further hammer this last point,
consider the following last example.

Example 4.1 Consider the problem,

(Pex) minimise
xPRn

1

2
xTQx` cTx` λ}x}8,

Q ľ 0. How would you solve the problem?

At face value: since the cost is not differentiable, we could employ the sub-gradient method. This
would converge very slowly.

However, isn’t the term } ¨ }8 prox-friendly? Then the proximal method can be employed instead.
Here we could even use its accelerated variant.

Is the dimension not-too big? Say n „ 1000? Then, transform the problem into a QP and solve
it via interior-point methods (which are much faster), how? By using the epigraph form:

(Pex) ðñ
minimisexPRn,tą0

1
2x

TQx` cTx` λt,
subject to }x}8 ď t ðñ |rxsi| ď t@i

ðñ rxsi ď t, rxsi ě ´t,@i

Optimisation problems can be transformed into other ones.

4.7 References

• BV: Chapters 10, 11.

˛ ˛ ˛

52

4.8 Exercises

Exercise 4.1 Consider the problem,

min
x1PR,x2PR

1

2
px21 ` x

2
2q, subject tox2 ě 1´ x1.

1. Introduce a logarithmic barrier for the constraint, write the penalised problem, and find the
analytical centre.

2. Plot in a 2D sketch the qualitative level curves of the penalised problem for t “ 1 and
t “ 10.

3. Argue that the problem is equivalent to the one dimensional problem,

min
yPR

1

2
y2, subject to y ě 1{2,

in the sense that x˚1 “ x˚2 “ y˚.

4. Write the penalised problem for y and solve it analytically for t “ 1, 4, 10.

5. What is the value of y as tÑ8 ? Could you have guessed that ?

Exercise 4.2 (Exam 2023) Consider the problem,

min
xPRn

1

2
xJQx` cJx` }x}1,

with Q ľ 0.

1. Prove that the problem above can be formulated as a quadratic program as,

min
xPRn,yPRn

1

2
xJQx` cJx` 1Jy,

subject to xi ´ yi ď 0, xi ` yi ě 0, yi ě 0, @i,

where ‚i represents the i-th component of a given vector ‚.

2. Apply the interior-point method to the quadratic program above using a logarithmic barrier,
in particular write:

(a) The modified cost function with the logarithmic barrier;

(b) The Newton’s step for the inner problems, that is: the linear system;

(c) A damped strategy to solve each inner problems;

(d) How many Newton iterations do you need overall? What is the total computational
complexity (i.e., number of iterations times the complexity per iterations)?

(e) Finally, focus on the constraint yi ě 0. Could one use log2
pyiq as a barrier?

Exercise 4.3 (Resit 2023) Consider the problem

min
xPRn

xTWx, subject to x2i “ 1, i “ 1, . . . , n.

Assume that W is symmetric and its diagonal is 0.

1. Is this problem convex?

2. Prove that the dual of the above problem is,

min
νPRn

1Jν, subject to W ` diagpνq ľ 0,

where diagpνq is a nˆ n matrix, with diagonal equal to ν. Prove that the dual problem is
convex and it is in fact an SDP.

3. We are going to solve this SDP via an interior-point method.

53

(a) Write the modified cost function with the barrier function φpXq : Sn` Ñ R, defined as
φpXq “ log detpX´1q “ ´ log detpXq for the set X ľ 0. Recall that the space Sn` is
the space of symmetric matrices in n dimension.

(b) Write the Newton’s step, recalling that

∇ν log detpW ` diagpνqq “ DiagrpW ` diagpνqq´1s,

where Diagrp¨qs is a vector, whose entries are the diagonal elements of p¨q. And,

∇νν log detpW ` diagpνqq “ ´pW ` diagpνqq´2.

54

Appendix A

Recap from OPT201

A.1 Optimality conditions: sets

Consider the convex problem
minimise
xPXĎRn

fpxq,

with f : Rn Ñ R convex, and X convex. Then, necessary and sufficient conditions for optimality
are,

Bfpx˚q `NXpx
˚q Q 0,

where Bf is the sub-differential of f and NXpxq is the normal cone operator of X at x.

If f is differentiable then Bf ” ∇f and we can write,

∇fpx˚q `NXpx˚q Q 0.

The above is equivalent (in the convex case, in which we are) to

∇fpx˚qJpx´ x˚q ě 0,@x P X

All of these are set conditions, and it is hard to compute x˚ from them.

A.2 Optimality conditions: equality constraints

Consider now the case X “ tx|Ax “ bu, A P Rqˆn, and for simplicity the case in which
f P CpRnq. The problem is still convex. We have the following implication.

Theorem A.1 Consider the problem, minxPRn fpxq, subject to Ax “ b, if the constraints are
qualified, then the optimality conditions ∇fpx˚q `NXpx˚q Q 0 can be equivalently written as

"

∇fpx˚q `AJλ˚ “ 0
Ax˚ “ b

• The variables λ P Rq are the Lagrangian multipliers;

• We can write the optimality conditions as the saddle-points of the Lagrangian function,

Lpx, λq “ fpxq ` λJpAx´ bq.

• These are non-linear equations: easier to solve them with first-order methods or Newton’s.

• In the convex case as we are, the constraint Ax “ b is always qualified, provided that a
solution exist! (I.e., b is in the image of A).

55

A.3 Optimality conditions: complete case

Consider now the case X “ tx|Ax “ b, gpxq ď 0u, A P Rqˆn, g : Rn Ñ Rp, convex and
differentiable, and for simplicity the case in which f P CpRnq. The problem is still convex. We
have the following implication.

Theorem A.2 Consider the problem, minxPRn fpxq, subject to Ax “ b, gpxq ď 0 if the con-
straints are qualified, then the optimality conditions ∇fpx˚q ` NXpx

˚q Q 0 can be equivalently
written as

$

&

%

∇fpx˚q `AJλ˚ `∇Jgpx˚qν˚ “ 0
Ax˚ “ b, gpx˚q ď 0
ν˚ ě 0, rν˚sirgpx

˚qsi “ 0,@i P t1, pu

• The variables λ P Rq, ν˚ P Rp are the Lagrangian multipliers or dual variables;

• We can write the optimality conditions as the saddle-points of the Lagrangian function,

Lpx, λ, νq “ fpxq ` λJpAx´ bq ` νJgpxq,

with the restriction that ν ě 0.

• These are non-linear inequalities: not so easy to solve.

• In the convex case as we are, the constraint gpxq ď 0 is qualified for example if there exists
at least a feasible point x1 for which Ax1 “ b and gpx1q ă 0. We call this condition: Slater’s
constraint qualification.

A.4 Extension to matrix decisions

It is often useful to look at problems whose decision variables are symmetric matrices. We can
extend most of the results of these classes to this setting (and beyond to infinite dimensional
Hilbert spaces), by considering the proper inner product. For squared symmetric matrices the
inner product is the trace, as such,

minimise
XPSn

fpXq, subject to X ľ 0

we can form the Lagrangian with dual matrix variable Z and derive the optimality conditions,

LpX,Zq “ fpXq ´ tracepZXq rZ ľ 0s

"

∇XLpX,Zq “ 0 Ñ ∇fpXq ´ Z “ 0
X ľ 0, Z ľ 0, tracepZXq “ 0.

A.5 Useful reformulations: epigraph and Schur’s comple-
ment

Optimisation problems can be transformed into equivalent ones. By equivalent we mean different
problems from which we can derive the solution of each other, for example:

min
xPR

fpxq, subject to |x| ď 1 ÐÑ min
xPR

fpxq, subject to x ď 1, x ě ´1.

We are going to recap a few useful rules.

(A) Epigraph. (i.e., all the opt. problems can have a linear cost).

Consider the optimisation problem,

min
xPRn

fpxq, subject to x P X.

This problem is equivalent to the optimisation problem in n` 1 variables, with linear cost,

min
xPRn,tPR

t, subject to fpxq ď t, x P X.

56

(B) Substitutions.

min
xPRn,yPRm

fpxq ` gpyq, subject to y “ Ax` b ÐÑ min
xPRn

fpxq ` gpAx` bq.

(C) Partial Min.

min
xPX,yPY

fpx, yq, ÐÑ min
yPY

ˆ

min
xPX

fpx, yq

˙

looooooomooooooon

“f̃pyq

.

(D) Monotone transfer. Ψ0 is a monotone increasing function, min fpxq Ñ minΨ0 ˝ fpxq, ex:

min
xPRn

}Ax´ b}2
loooooooomoooooooon

Non-diff, hard to solve

, ÐÑ min
xPRn

}Ax´ b}22
loooooooomoooooooon

Super-easy to solve

(E) Schur’s complement (very useful in SDPs)

Consider the squared symmetric matrix X, and partition it as follows,

X “

„

A B
BJ C



.

Then, the convex semidefinite constraint X ľ 0 can be equivalently formulated in two ways,

First possibility: tA ą 0, S1 “ C ´BJA´1B ľ 0u;

Second possibility: tC ą 0, S2 “ A´BC´1BJ ľ 0u;

and conversely.

A.6 (Lagrangian) Duality

Consider the problem,

minimise
xPX

fpxq, subject to Ax “ b, gpxq ď 0

Define the Lagrangian,

Lpx, λ, νq “ fpxq ` λJpAx´ bq ` νJgpxq,

We call primal problem:

pP q inf
xPX

˜

sup
λ,νě0

Lpx, λ, νq

¸

“

"

infxPX fpxq if Ax “ b, gpxq ď 0,
`8 otherwise.

We define the dual function:
qpλ, νq :“ inf

xPX
Lpx, λ, νq,

and call the dual problem:

pDq sup
λ,νě0

ˆ

inf
xPX

Lpx, λ, νq
˙

“ sup
λ,νě0

qpλ, νq.

The dual function qpλ, νq is always concave, so D is always convex! The proof of it is that q is
the point-wise infimum of affine functions. Rem: maxita

J
i x` biu is convex.

Furthermore, d˚ “ valpDq ď valpP q “ p˚ or otherwise stated

sup
λ,νě0

inf
xPX

Lpx, λ, νq ď inf
xPX

sup
λ,νě0

Lpx, λ, νq.

For convex problems that have a solution, and under constraint qualification (e.g., under Slater’s
condition), then the KKT point is a saddle-point and we don’t have duality gap (i.e., d˚ “ p˚).
So for most convex problems solving the dual problem or the primal is the same.

57

A.7 Determining the dual problem: examples

Example A.1 (Dual of an LP) Let’s look at an LP in the (standard) form:

minimise
xPRn

cJx, subject toAx “ b, x ě 0.

for matrix A P Rmˆn, and b P Rm. Introduce the Lagrangian multipliers λ P Rm for Ax´ b “ 0
and ν P Rn for ´x ď 0, and write the Lagrangian function:

Lpx, λ, νq “ cJx` λJpAx´ bq ´ νJx.

The dual function is given by

qpλ, νq “ inf
x

Lpx, λ, νq “ ´λJb` inf
x

`

cJx` λJAx´ νJx
˘

“ ´bJλ` inf
x

`

xJpAJλ´ ν ` cq
˘

,

which yields,

qpλ, νq “

"

´bJλ if AJλ´ ν ` c “ 0
´8 otherwise.

The dual problem is then given as,
sup
λ,νě0

qpλ, νq,

so,
minimise
λ,νě0

bJλ subject to:AJλ´ ν ` c “ 0, ν ě 0.

In fact ν ě 0 is redundant and can be eliminated as

minimise
λPRm

bJλ subject to:AJλ` c ě 0.

Note the duality between primal LP and dual LP, which is also a consequence of Farkas’ lemma.

Example A.2 (Dual of a QCQP) Consider the convex QCQP

minimise
xPRn

p1{2qxJP0x` c
J
0 x` r0

subject to p1{2qxJPix` c
J
i x` ri ď 0, i “ 1, . . . ,m,

with P0 positive definite and Pi positive semi-definite.

The Lagrangian is
Lpx, νq “ p1{2qxJP pνqx` spνqJx` rpνq,

with

P pνq “ P0 `

m
ÿ

i“1

νiPi, spνq “ s0 `
m
ÿ

i“1

νisi, rpνq “ r0 `
m
ÿ

i“1

νiri.

This gives a dual function of the form,

qpνq “ inf
x

`

p1{2qxJP pνqx` spνqJx` rpνq
˘

which can be computed analytically for ν ě 0, since P pνq is positive definite in this case. By
optimality conditions,

x˚pνq “ ´P pνq´1spνq,

and therefore
qpνq “ ´p1{2qspνqJP pνq´1spνq ` rpνq.

The dual problem is therefore,

minimise
νPRm

p1{2qspνqJP pνq´1spνq ´ rpνq

subject to ν ě 0.

58

Strong duality holds under Slater’s condition, i.e., if there exists a x such that p1{2qxJPix `
cJi x` ri ă 0, i “ 1, . . . ,m.

For Pi “ 0 (the QP case), then P pνq´1 “ P´1
0 and

spνqJP pνq´1spνq “ ps0 ` S
JνqJP´1

0 ps0 ` S
Jνq “ νJSP´1

0 SJν ` 2sJ0 P
´1
0 ν ` sJ0 P

´1
0 s0

where S P Rnˆm is the matrix such that SJ “ rs1|s2| . . . |sms. As such, with some re-labelling,
the dual is

minimise
νPRm

p1{2qνJQν ` wJν ` z

subject to ν ě 0,

which is a convex QP.

Let’s get back to the general case. The dual problem is

minimise
νPRm

p1{2qspνqJP pνq´1spνq ´ rpνq

subject to ν ě 0.

Use the epigraph form,

minimise
t,νPRm

t´ rpνq

subject to p1{2qspνqJP pνq´1spνq ď t

ν ě 0, t ě 0,

and then Schur’s complement (since P pνq ą 0),

minimise
t,νPRm

t´ rpνq

subject to

„

t spνqJ

spνq 2P pνq



ľ 0

ν ě 0, t ě 0,

Since rpνq, spνq and P pνq are affine functions of ν, then the above is a SDP.

A.8 Conjugate function

Consider a function f : Rn Ñ R. We define its conjugate function as,

f‹pyq :“ sup
xPRn

pyJx´ fpxqq

When f is closed convex and proper, then

pBfq´1 “ Bf‹

where Bf is the subdifferential set.

59

	First lecture
	Introduction
	Oracles, algorithms, and an impossibility theorem
	Unconstrained optimisation
	Setting
	Lipschitz conditions

	The gradient method
	Newton's method
	Damped Newton's method
	Gradient vs. Newton's
	Least-squares problems
	References
	Exercises

	Second lecture
	The convex problem class
	Some necessary definitions

	Standard gradient methods
	Case I: Gradient for fS1,1m,L
	Case II: Gradient for fS1,10,L

	Nesterov's accelerated gradient
	Nesterov's alternative formulations*

	The subgradient method
	Adding strong convexity

	Damped Newton's method in the convex case
	Main messages
	References
	Exercises

	Third lecture
	Setting
	Setting: simplified

	Splitting methods
	Forward-backward splitting

	The proximal gradient method
	Prox-friendly functions
	Proximal properties
	Convergence of the proximal gradient method
	Interpretation of the results
	Numerical example

	Duality
	Equality constrained problems
	The dual ascent method
	Inequality and equality constrained problems
	A primal-dual method
	Convergence: an example
	Summarising

	References
	Exercises

	Fourth lecture
	The full picture
	Barrier functions and penalised problems
	Interpretation of the penalised problem

	A Newton's step for the penalised problem
	Damping and the full method

	Self concordance
	Examples and properties
	Matrix extensions
	Newton's method for self-concordant functions

	The interior-point method
	Computational complexity analysis: outer
	Computational complexity analysis: inner
	Computational complexity analysis: complete

	Classes of easy problems
	Linear programs
	Quadratic Programs: QPs
	Second-Order Conic Programs: SOCPs
	Semi-Definite Programs: SDPs

	Summary
	References
	Exercises

	Recap from OPT201
	Optimality conditions: sets
	Optimality conditions: equality constraints
	Optimality conditions: complete case
	Extension to matrix decisions
	Useful reformulations: epigraph and Schur's complement
	(Lagrangian) Duality
	Determining the dual problem: examples
	Conjugate function

