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A B S T R A C T 

Modified Newtonian dynamics (MOND), postulating a breakdown of Newtonian mechanics at low accelerations, has considerable 
success at explaining galaxy kinematics. Ho we ver, the quadrupole of the gravitational field of the Solar system (SS) provides 
a strong constraint on the way in which Newtonian gravity can be modified. In this paper, we assess the extent to which the 
A QUAdratic Lagrangian (A QUAL) and QUasilinear MOND (QUMOND) modified gravity formulations of MOND are capable 
of accounting simultaneously for the radial acceleration relation (RAR), the Cassini measurement of the SS quadrupole and the 
kinematics of wide binaries in the Solar neighbourhood. We achieve this by inferring the location and sharpness of the MOND 

transition from the Spitzer Photometry and Accurate Rotation Curves (SPARC) RAR under broad assumptions for the behaviour 
of the interpolating function and external field effect. We constrain the same quantities from the SS quadrupole, finding that this 
requires a significantly sharper transition between the deep-MOND and Newtonian regimes than is allowed by the RAR (an 

8.7 σ tension under fiducial model assumptions). This may be relieved somewhat by allowing additional freedom in galaxies’ 
mass-to-light ratios – which also impro v es the RAR fit – and more significantly (to 1.9 σ ) by removing galaxies with bulges. 
For the first time, we also apply to the SPARC RAR fit an AQUAL correction for flattened systems, obtaining similar results. 
Finally, we show that the SS quadrupole constraint implies, to high precision, no deviation from Newtonian gravity in nearby 

wide binaries, and speculate on possible resolutions of this tension between SS and galaxy data within the MOND paradigm. 

Key words: gravitation – ephemerides – planets and satellites: general – galaxies: kinematics and dynamics – galaxies: statis- 
tics – dark matter. 
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 I N T RO D U C T I O N  

he goal of the theory of gravity is to explain as many gravitational
henomena as possible with as few parameters. The theory of 
eneral relativity (GR), based on Newtonian gravity, is successful 
n scales from sub-mm (from E ̈otv ̈os type experiments; Adelberger, 
eckel & Nelson 2003 ) to tens of Gpc (the dynamics of the cosmos

s a whole, assuming dark matter and dark energy). On galaxy 
cales, the principal alternative is Modified Newtonian dynamics 
MOND; Milgrom 1983a , b , c ), which postulates a breakdown of
ewtonian gravity or inertia at accelerations � 10 −10 m s −2 . This has

uccess at explaining several aspects of galaxy dynamics as well as a
mattering of observations at other scales (see F amae y & McGaugh
012 ; Banik & Zhao 2022 , for re vie ws). 
MOND provides a framework within which to understand the 

therwise surprising simplicity of galaxy dynamics. For example, 
he baryonic Tully–Fisher relation – the correlation between the 
symptotic circular velocity and baryonic mass of rotation-supported 
alaxies – has very small intrinsic scatter and an almost perfect 
ower-law shape across five orders of magnitude in mass (McGaugh 
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t al. 2000 ; Desmond 2017b ). There are no residual correlations
ith galaxy size or baryonic surface density (F amae y & McGaugh
012 ; Lelli, McGaugh & Schombert 2016b ; Desmond et al. 2019 ),
hich one would typically expect to be produced by the dark matter
alos of a Lambda cold dark matter ( � CDM) cosmology (based on
R; Desmond & Wechsler 2015 ). At the same time, galaxies of fixed
aryonic mass, while sharing a similar asymptotic circular velocity, 
isplay rotation curves (RCs) with a vast diversity of inner shapes
ven in dwarf galaxies where, in � CDM, dark matter supplies most
f the gravity. Indeed, it has long been known that the shapes of RCs
o depend strongly on baryonic surface density, even in dark matter-
ominated galaxies (e.g. Zwaan et al. 1995 ; de Blok & McGaugh
997 ; Swaters et al. 2009 ). The RC shapes are thus not only diverse
t a given mass-scale while sharing a single asymptotic velocity, but
re uniform at a given baryonic surface density scale. In � CDM, this
mplies a diversity of cored and cuspy dark matter profiles which is
ot currently understood (Oman et al. 2015 ; Ghari et al. 2019b ).
his may be explained by highly non-circular motions (Roper 
t al. 2023 ), at the price of producing distorted 2D velocity fields
ot resembling observed ones (e.g. Kuzio de Naray & Kaufmann 
011 ). 
All of this phenomenology for disc galaxies can actually be 

educed from a single, apparently more fundamental, local relation 
McGaugh, Lelli & Schombert 2016 ; Lelli et al. 2017 ) between the
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otal gravitational acceleration at any point in the disc ( g obs ) and that
enerated by the observed baryons ( g bar ). This radial acceleration
elation (RAR) has recently been shown to pass all posited tests
or fundamentality, and appears to be the root cause of all other
adial dynamical correlations of disc galaxies (Stiskalek & Desmond
023 ). For such systems, the RAR is nothing more than MOND
ritten in terms of observables, so that, within that paradigm, all

he abo v e observations become readily understandable. There were
lready hints at the inception of MOND that the characteristic rotation
elocities of galaxies were correlated with their luminosity (Tully &
isher 1977 ); Milgrom ( 1983a , 1983b , 1983c ) promoted them to a

entativ e la w of Nature by proposing that Newtonian dynamics,
he weak-field limit of GR, breaks down at ultralow accelerations
ypical of the outskirts of galaxies (below a ne w uni versal constant
 0 � 10 −10 m s −2 ) where one instead has g obs = 

√ 

a 0 g bar . In semi-
nalytic and hydrodynamical models of galaxy formation of � CDM,
n the other hand, while the global shape of the RAR can be
eproduced, its low scatter and lack of residual correlations are very
ifficult to understand (e.g. Di Cintio & Lelli 2016 ; Desmond 2017a ;
aranjape & Sheth 2021 ). 
Given MOND’s success at the scale of galaxies, it is crucial to

nvestigate the extent to which it may be extended to other regimes.
n larger scales, it has problems accounting for the mass discrepancy

n clusters (e.g. The & White 1988 ; Sanders 1999 ; Pointecouteau &
ilk 2005 ; Angus, F amae y & Buote 2008 ; Li et al. 2023 ) and a
ully fledged and observationally consistent cosmology is proving
hallenging to formulate (although see Skordis & Zło ́snik 2021 for
ecent progress). On smaller scales, within the Milky Way, key
ests are the orbits of wide binary (WB) systems in which the
nternal orbital acceleration lies below a 0 , and of bodies in the
S. Both of these systems are embedded within the gravitational
eld of the Milky Way at or near the position of the Sun, which

s around 1.8 a 0 (Gaia Collaboration et al. 2021 ). This makes the
ests less clean than the fully weak-field probes in the outskirts
f low surface density galaxies, but it is nevertheless clear – at
east within canonical modified gravity formulations – that MOND
hould provide a small boost to the dynamics in these systems if it
s to provide one for RCs at accelerations of 1.8 a 0 . WBs have had
 long and confused history in the context of MOND, with some
uthors finding consistency with Newtonian dynamics (Pittordis &
utherland 2023 ; Banik et al. 2024 ), while others argue that these
nalyses are flawed and the data instead prefer MOND (Hernandez
t al. 2019, 2023 ; Hernandez, Cookson & Cort ́es 2022 ; Hernandez
023 ; Chae 2023a , b ; Hernandez & Chae 2023 ). 
In this work, we focus instead on the SS tests, which were revo-

utionized by the Cassini spacecraft’s radioscience tracking (Wolf &
mith 1995 ; Antreasian et al. 2005 ; Jacobson et al. 2006 ; Iess et al.
010 , 2012 ). Cassini’s measurements made it possible to reconstruct
he spacecraft’s trajectory as it orbited Saturn between 2004 and
013, and to impro v e significantly our knowledge of Saturn’s orbit.
he most constraining measurement in the MOND context is a null
etection of the quadrupole moment of the gravitational field of
he Sun (Hees et al. 2014 ). A quadrupole is expected in (at least
he most popular) modified gravity formulations of MOND – the
QUAdratic Lagrangian (AQUAL; Bekenstein & Milgrom 1984 )
nd QUasilinear MOND (QUMOND; Milgrom 2010 ) formulations –
iv en the e xternal field effect (EFE) due to the relative magnitude and
rientation of the (internal) Saturn–Sun and (external) Sun–Galactic
entre gravitational fields (Milgrom 2009 ; Blanchet & Novak 2011 ).
ees et al. ( 2016 ) found Cassini’s quadrupole measurement to
e inconsistent with a large variety of Newton-to-deep-MOND
ransitions that describe the RAR well. Although the Cassini mission
NRAS 530, 1781–1795 (2024) 
nded in 2017, studies of RCs have greatly advanced since then,
aking the topic ripe for revisiting. 
The EFE arises because, as an acceleration-based modification to

ewtonian mechanics, MOND is sensitive to the total gravitational
eld and hence violates the strong equi v alence principle (see e.g.
 amae y & McGaugh 2012 ; Banik & Zhao 2022 , for a detailed
ccount). While the majority of evidence seems to point towards
he helpfulness of the EFE for explaining the kinematics and tidal
tability of various types of galaxies within a MOND context (e.g.
 amae y, Bruneton & Zhao 2007b ; Wu et al. 2008 ; Haghi et al.
009 , 2016 , 2019 ; McGaugh & Milgrom 2013 ; Hees et al. 2016 ;
 amae y, McGaugh & Milgrom 2018 ; Kroupa et al. 2018 ; Thomas
t al. 2018 ; Banik et al. 2020 ; Chae et al. 2020 ; Oria et al. 2021 ;
sencio et al. 2022 ; Kroupa et al. 2022 ), there are also cases where

he EFE should be present but appears absent (Freundlich et al.
022 ). It is also important to note that, while some form of EFE
s generically expected by MOND, in modified inertia formulations
t may be very different (e.g. dependent on an object’s entire past
rajectory) or ef fecti vely absent (e.g. Milgrom 2011 , 2023a ). 

The consistency – or lack thereof – between the RAR and SS
uadrupole in MOND hinges on the nature of the transition between
he Newtonian and deep-MOND regimes, g obs = f ( g bar ) in the
anguage of the RAR. The functional form cannot, at present, be
erived theoretically and thus must be constrained empirically: the
nly requirements in MOND (absent the EFE) are the limits f ( g bar )
 g bar as g bar → ∞ and f ( g bar ) → 

√ 

a 0 g bar as g bar → 0. Any
 that satisfies these limits may be re-expressed as a MONDian
interpolating function’ (IF). Such transition functions are not part
f MOND’s basic tenets but are used, in one way or another, by all
nown modified gravity formulations of the theory, generally put by
and into the Lagrangian. The IF could, ho we ver, emerge from a
undamental underlying theory with an actually different functional
orm in different systems, as may in fact be expected in modified
nertia formulations (Milgrom 2023a ). 

Many functions satisfying the MOND requirements have been
roposed and investigated in the literature (see F amae y & McGaugh
012 ; Banik & Zhao 2022 , and references therein). Desmond,
artlett & Ferreira ( 2023 ) e v aluated all possible functions of low
omplexity on dynamical galaxy data, concluding that the optimal
unction for RC data is fairly complex – and may not have MOND
imits – but that more data is required to deduce it unambiguously. In
articular, it is not clear from RC data alone that g obs ∝ 

√ 

g bar at low
 bar . Additional uncertainty arises from the EFE, which depends on
he imperfectly observationally characterized baryonic large-scale
tructure of the Universe and has a functional form that cannot be
educed analytically for general mass distributions. Here, we group
Fs into classes or parametric ‘families’, which contain not only
 0 as a degree of freedom but also a shape parameter controlling
he sharpness of the transition from the deep-MOND to Newtonian
egimes. 

The aim of this paper is twofold. First, we extend the RAR analysis
f Desmond ( 2023 ) to co v er three IF families under four different
tate-of-the-art models for the EFE. Within classical modified gravity
ormulations (AQUAL and QUMOND), this essentially fully spans
he space of possibilities both for the form of the MOND force law
nd the effect of the environment on the galaxies in question, thus
ffording a definitive inference of the associated parameters with
he galaxies’ systematically uncertain properties fully accounted for.

e also explore various priors for the mass-to-light ratios ( M / L s)
f the galaxies’ components, in case the fiducial model is o v erly
estrictiv e, and we e xplicitly check the effect of the flat disc geometry
n the context of AQUAL. Secondly, we compare the RAR { a 0 ,
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hape } constraints with those inferred from the measurement of the 
S quadrupole by the Cassini mission, and to results of the Banik
t al. ( 2024 ) wide binary test (WBT). These all provide independent
robes of MOND, which, if inconsistent with each other, would 
ose a severe problem for the AQUAL (Bekenstein & Milgrom 

984 ) and QUMOND (Milgrom 2010 ) weak-field modified gravity 
ormulations. 

In Section 2, we describe the galaxy and SS data that we use as
onstraints. In Section 3 , we lay out our MOND models (Section 3.1 ),
ur method for inferring their parameters from the RAR (Section 3.2 )
nd SS quadrupole (Section 3.3 ), and the method for relating these to
he WBT (Section 3.4 ). Section 4 describes the results, separately for
he RAR (Section 4.1 ) and SS quadrupole (Section 4.2 ), and explores
hy the two sets of constraints are difficult to reconcile (Section 4.3 ).
e conclude in Section 5 . Throughout the paper, log has base 10. 

 OBSERVA  T I O NA L  DA  TA  

.1 SPARC galaxy sample 

or the RAR, we utilize the Spitzer Photometry and Accurate 
otation Curves (SPARC) sample (Lelli, McGaugh & Schombert 
016a ), 1 containing 175 RCs from the literature with photometry 
t 3.6 μm from the Spitzer satellite (see also Gentile, F amae y & de
lok 2011 ). We adopt the same quality cuts as Lelli et al. ( 2017 ),
xcluding galaxies with quality flag 3 (indicating strong asymmetries, 
on-circular motions and/or offsets between the stellar and H I 

istributions) or inclination i < 30 ◦, and points with a fractional
otation velocity uncertainty > 10 per cent. 2696 points from 147 
alaxies remain, of which 31 contain a central stellar bulge. This is
he same sample as was used in Desmond ( 2023 ). 

.2 Cassini measurement 

he MOND paradigm breaks the strong equi v alence principle such 
hat the external gravitational field of our Galaxy impacts the internal 
ynamics of the SS (Milgrom 2009 ; Blanchet & Novak 2011 ). The
eading effect is a modification to the central Newtonian potential 
f the Sun by an additional quadrupole term (adopting the Einstein
ummation convention) 

� ( x ) = −Q 2 

2 
x i x j 

(
ˆ e i ̂  e j − 1 

3 
δij 

)
, (1) 

here ˆ e = g ext /g ext is a unit vector pointing towards the Galactic 
entre, x the position within the SS with respect to the Sun, δij the
ronecker delta and Q 2 a parameter that depends on the MOND IF

nd acceleration scale a 0 , the Sun’s mass M and the value of the
xternal gravitational field from the Galaxy, g ext . 

The modified Newtonian potential from equation ( 1 ) will induce 
n anomalous acceleration which rises linearly with distance from 

he Sun and can be sought using the kinematics of planets (Milgrom
009 ; Blanchet & Novak 2011 ; Hees et al. 2012 ), Kuiper Belt objects
Brown & Mathur 2023 ), asteroids, or comets (Maquet & Pierret 
015 ; Vokrouhlick ́y, Nesvorn ́y & Tremaine 2024 ). In Hees et al.
 2014 ), the Q 2 parameter of equation ( 1 ) was inferred using the
E430 planetary ephemerides data (Folkner et al. 2014 ). Of central 

mportance for constraining this parameter are the 9 yr of Cassini
ange and Doppler tracking data which strongly constrain Saturn’s 
 http:// astroweb.cwru.edu/ SPARC/ 

2

i
p

rbit. Although subject to some systematic uncertainty (see Hees 
t al. 2014 for details), the 1 σ constraint may be described by 

 2 = ( 3 ± 3 ) × 10 −27 s −2 . (2) 

 M E T H O D  

.1 Parametrising MOND 

e consider a diverse set of possible MONDian descriptions of 
he relation between total and baryonic acceleration, viz. IFs. 
he MOND force law in highly symmetric configurations can be 
xpressed as 

g = g N ν
(

g N 

a 0 

)
, (3) 

here g is the total gravitational field (or dynamical acceleration), 
g N is the Newtonian gravitational field sourced by baryons, ν( y ) is the
F and g N ≡

∣∣g N ∣∣. The only a priori requirement on ν from the basic
enets of MOND is the asymptotic behaviour ν( y ) → 1 when y → ∞ ,
nd ν( y ) → 1 / 

√ 

y when y → 0. The three most common examples
re the ‘Simple’ IF (F amae y & Binne y 2005 ; Zhao & F amae y 2006 ) 

simp ( y) = 

1 + (1 + 4 y −1 ) 1 / 2 

2 
, (4) 

he ‘Standard’ IF (Milgrom 1983c ): 

stand ( y) = 

(
1 + (1 + 4 y −2 ) 1 / 2 

2 

)1 / 2 

(5) 

nd the ‘RAR’ (also called ‘McGaugh–Lelli–Schombert’ or ‘MLS’) 
F (McGaugh et al. 2016 ) 

RAR ( y) = 

(
1 − exp ( −y 1 / 2 ) 

)−1 
. (6) 

Absent theoretical or compelling observational evidence for a 
articular IF, it is convenient to group IFs into ‘families’ sharing
 more general functional form in order to test them. These have a
arameter (in addition to g N / a 0 , their only other degree of freedom)
hat interpolates between specific IFs by controlling the sharpness of 
he transition between the deep-MOND ( g N / a 0 	 1) and Newtonian
 g N / a 0 
 1) regimes. Here, we investigate three IF families described
n F amae y & McGaugh ( 2012 ): 

n ( x) = 

[ 

1 + 

(
1 + 4 x −n 

)1 / 2 

2 

] 1 /n 

, (7a) 

δ( x) = 

(
1 − e −x δ/ 2 

)−1 /δ
, (7b) 

γ ( x) = 

(
1 − e −x γ / 2 

)−1 /γ
+ ( 1 − 1 /γ ) e −x γ / 2 

. (7c) 

hese co v er the great majority of functions that have been considered
n the literature; in particular, the n -family encompasses the Simple
 n = 1) and Standard ( n = 2) IFs, while the δ- and γ -families contain
he RAR IF at δ = γ = 1. 2 We refer to n , δ and γ collectively as
shape’. 

As well as a model without any EFE, we explore the possible
onsequences of the EFE on the RAR fit using two different formulae.
hese are the ‘Freundlich–Oria analytic’ (Oria et al. 2021 ; Freundlich 
t al. 2022 ) and ‘AQUAL numerical’ models of Chae & Milgrom
MNRAS 530, 1781–1795 (2024) 

 There is also a β family (equation 51 of F amae y & McGaugh 2012 ), but this 
s not flexible enough to co v er Simple- or RAR-like behaviour, and hence is 
oor at fitting the RAR. 

http://astroweb.cwru.edu/SPARC/
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 2022 ) (cases 4 and 6 in their table 1). These are both fitting functions
or RCs, the former developed in the context of the QUMOND model
nd the latter that of AQUAL. These modify the raw IFs and hence
an be applied to any of them. Considering the Newtonian external
eld strength in units of a 0 , i.e. e N ≡ g N, ext / a 0 , the QUMOND EFE
odel is given by 

EFE, QUMOND ( y) = ν

(
min 

[
y + 

e 2 N 

3 y 
, e N + 

y 2 

3 e N 

])
(8) 

nd the AQUAL model by 

EFE, AQUAL ( y) = ν( y β ) 

[
1 + tanh 

(
βe N 

y 

)γ ˆ ν( y β ) 

3 

]
, (9) 

here ˆ ν( y) ≡ d ln ν( y) / d ln y and y β ≡
√ 

y 2 + ( βe N ) 2 . The best-
tting values of the parameters β and γ are 1.1 and 1.2, respec-

ively (Chae & Milgrom 2022 ). These roughly span the space of
ossible EFE behaviour, although note that equation ( 9 ) is strictly
nly intended to be used in the outer parts of RCs (where the EFE
lays a larger role). 
For each of these models, we then consider two different ways of

etting the external field strengths e N of the SPARC galaxies. The
rst is simply to treat e N as a global constant and infer it (with a
ide uniform prior) from the data. The second is to allow the local
 N to vary g alaxy-by-g alaxy, with a prior specified by the ‘maximum
lustering’ model of Chae et al. ( 2021 ), which infers e N for each
PARC galaxy from its large-scale baryonic environment assuming
nseen baryons to correlate maximally with observed baryons. 3 e N 
or each galaxy separately is then a free parameter of the inference
o be marginalized o v er. As in Desmond ( 2023 ), for galaxies outside
he footprint of the Sloan Digital Sky Survey (where Chae et al.
021 could not calculate precise e N values), we use the median
 v er all SPARC galaxies within the footprint as the prior centre,
ith an uncertainty twice the median uncertainty for those galaxies.
or the maximum-clustering case, this gives the prior log ( e N ) =
2.300 ± 0.575. 
Finally, it is important to note that in MOND equation ( 3 )

often referred to as the ‘algebraic MOND relation’) is exact only
or circular orbits in modified inertia versions of the paradigm
Milgrom 1994 , 2022 ), and cannot be strictly exact in modified
ravity, even in the absence of an EFE. We will consider it a
ufficient approximation (Jones-Smith et al. 2018 ; Oria et al. 2021 )
n our fiducial analysis, but in Section 4.1.3, we will investigate an
lternative formula for the MOND boost taking into account the
orrection for flattened systems within the AQUAL formulation. 

.2 RAR inference 

ur method to analyse the RAR extends that of Desmond ( 2023 ,
ee especially sec. 3.2). In short, we infer the parameters of the
AR ( a 0 and intrinsic scatter σ int , in addition to the IF shape)

imultaneously with the parameters describing each galaxy using
riors from previous measurements and theoretical expectations.
he galaxy nuisance parameters are distance D , inclination i ,
NRAS 530, 1781–1795 (2024) 

 Chae et al. ( 2021 ) also obtain ‘no clustering’ results in which unseen baryons 
o not correlate at all with observed baryons and hence do not systematically 
ncrease e N but only its scatter, and Desmond ( 2023 ) considers an ‘average 
lustering’ model midway between the two. We focus on the maximum- 
lustering case because it was found to yield best agreement with the data in 
hae et al. ( 2021 , 2022 ), and is a priori the most likely case in MOND. The 
ifferences for our purposes are minor. 

w  

u  

q  

4

a
5

p

uminosity L 3.6 , the M / L of the disc ϒ disc , bulge ϒ bulge and gas
 gas , and the external field strengths e N . This amounts to ∼900
arameters in total, which is too high a dimensionality for most
arkov chain Monte Carlo samplers to handle reliably. It is,

o we ver, necessary in order to properly propagate the galaxies’
arameters as systematic rather than statistical uncertainties, and
ap out their degeneracies with the global properties of the RAR.
e veraging automatic dif ferentiation in Jax, we employ the No
-Turns sampler (a species of Hamiltonian Monte Carlo) as im-
lemented in numpyro (Bingham et al. 2019 ; Phan, Pradhan &
ankowiak 2019 ). This produces a fully converged chain of ∼2000
oints in ∼10 min; we concatenate 28 chains with multiprocessing
or impro v ed statistics and to verify insensitivity to the initializa-
ion. Restricting to the Simple IF and a single parametrization
f the EFE, Desmond ( 2023 ) revealed the intrinsic scatter of the
AR to be minute ( σ int = 0.034 ± 0.001(stat) ± 0.001(sys)dex),

upporting the claim that the RAR is ‘tantamount to a law of
ature’ (Lelli et al. 2017 ). Weak evidence was adduced for the
FE. 
Besides freeing up the IF and EFE implementations as discussed

bo v e, we now develop more flexible models for the M/L of the
PARC galaxies’ discs and bulges. These are the only parameters
f the galaxies that are not directly constrained empirically, yet are
rucial for locating the galaxies’ RC points on the RAR plane and
ence constraining the RAR parameters. In particular, we consider
ix possible priors: 

(i) The fiducial SPARC model in which ϒ disc and ϒ bulge follow
ognormal 4 priors with means 0.5 and 0.7 and widths 0.125 and
.175, respectively (this is also the model used in Desmond 2023 ). 
(ii) ϒ disc and ϒ bulge drawn from separate Gaussian hyperpriors

ith means μd and μb inferred from the data with independent wide
niform priors. We retain a width of 25 per cent for the hyperprior.
his models a scenario in which the centres of the prior M / L
istributions are unknown, although their uncertainties follow the
PARC error model. 
(iii) As (ii) but requiring μb > μd , as expected from population

ynthesis models. 
(iv) ϒ disc and ϒ bulge drawn independently from wide uniform

riors, modelling a scenario in which nothing is known about them
 priori. 

(v) As (iv) but requiring ϒ bulge > ϒ disc on a g alaxy-by-g alaxy
asis, as expected from population synthesis models. 
(vi) As (ii) but removing the 31 galaxies with bulges. This models

 scenario in which bulges are too poorly understood to be included
n the sample. 

(vii) As (ii) but removing the 116 galaxies without bulges. This
rovides a counterpoint to (vi), allowing us to investigate the
onsistency of bulgey and bulge-free galaxies. 5 

The ϒ gas model, based on McGaugh et al. ( 2020 ) with a 10 per cent
ncertainty, is not altered. Adding extra dark gas has been shown not
o impro v e MOND RC fits (Ghari, Haghi & Zonoozi 2019a ). 

We use uniform priors on a 0 , σ int , and shape, all of which are
ell enough constrained by the data for the choice of prior to be
nimportant. In particular, using a log-prior on the dimensionful
uantities a 0 or σ int , or a prior on shape corresponding to a flat prior
 We use lognormal for consistency with previous works, but the results with 
 normal prior are almost identical. 
 Very similar results for models (vi) and (vii) are obtained using free uniform 

riors rather than Gaussian hyperpriors for the remaining ϒ parameters. 
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Figure 1. Variation of � q ( y 0 ), the contribution from ν( y ) between y 0 and 
y 0 + 0.1 to q( ̃ e ), for the IF νRAR of equation ( 6 ) and three different values 
of ˜ e . The value of q( ̃ e ) from equation ( 12 ) equals the sum of the points for 
each curve, which gives q (1) = 0.094, q (1.5) = 0.159, and q (2) = 0.221. 
The vertical dashed lines represent the corresponding values of e N . The plot 
shows that the value of q( ̃ e ) mainly probes the behaviour of the IF around e N . 
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n Q 2 (see Section 3.3 ) makes negligible difference to the RAR
esults. 

.3 Quadrupole inference 

heoretically, the SS quadrupole value that appears in equation ( 1 )
an be expressed as (Milgrom 2009 ) 

 2 = − 3 a 3 / 2 0 

2 
√ 

GM 

q( ̃ e ) , (10) 

here, in the SS, M = 1 M �, and q is a dimensionless parameter
hat depends only on the MOND IF as well as the value of 

˜  ≡ g ext 

a 0 
, (11) 

here g ext , in this case, is the external field of the Milky Way at the
S. In the context of QUMOND, Milgrom ( 2009 ) has derived an
 xact e xpression for q : 

( ̃ e ) = 

3 

2 

∫ ∞ 

0 
d v 

∫ 1 

−1 
d ξ ( ν − 1)[ e N (3 ξ−5 ξ 3 ) + v 2 (1 −3 ξ 2 )] , (12) 

here ν = ν
[ √ 

e 2 N + v 4 + 2 e N v 2 ξ
] 

and e N is the solution of 

 N ν ( e N ) = ˜ e . In the case of AQUAL, the abo v e inte gral leads only
o an approximate value for the q parameter. In this case, q must be
omputed by numerically solving the non-linear Poisson equation (as 
one in Milgrom 2009 and Blanchet & Novak 2011 ). By comparing
he QUMOND values with those obtained using AQUAL in table 1 
f Milgrom ( 2009 ) and table 1 of Blanchet & Novak ( 2011 ), it is
lear that our QUMOND calculation leads to a lower Q 2 , 6 and is
herefore conserv ati ve when it comes to assessing the tension with
he data. 

The value of q( ̃ e ) obtained from equation ( 12 ) depends mainly on
he behaviour of the IF around e N . To illustrate this, Fig. 1 presents,
s a function of the argument of the ν-function in a small bin between
 0 and y 0 + � y (with � y set to 0.1), the contribution � q ( y 0 ) of ν( y )
n this bin to the value of q( ̃ e ). In practice, � q ( y 0 ) is computed by
eplacing the function ν( y ) by 1 in equation ( 12 ) (i.e. g = g N ) except
n the range [ y 0 , y 0 + � y ] where it instead follows equation ( 6 ) (i.e.
= 1 in equation 7b or γ = 1 in equation 7c ). Fig. 1 presents the

ariation of � q with y 0 for three different values of the external field
˜  . The vertical-dashed lines show the corresponding values of e N . It
an be noticed that | � q | is large only around e N , which is the case for
ll other IFs too. This means that the Cassini constraint probes the IF
round y ∼ e N = g N, ext / a 0 , the gravitational field of the Milky Way at
he Sun, similarly to the WBT (Banik et al. 2024 ) and to the analysis
f Vokrouhlick ́y et al. ( 2024 ). This is independent of whether the
nternal Newtonian acceleration probed is higher (as in the Cassini 
onstraint) or lower (as in the aphelia of long-period comets) than 
 N, ext in these different cases. 
Then, for each IF family (equation 7), we have computed the q

actor on a regular grid for the ( ̃ e , shape ) parameters with ˜ e ranging 
etween 1 and 20 (with spacing 0.05) and the shape parameter 
etween 0.5 and 10.4 (with spacing 0.1). To reach lower values 
f a 0 , we supplement this with an irregular sampling of ˜ e values
xtending to 1000. We then interpolate this grid using a 2D cubic
pline. We use equation ( 2 ) as the likelihood function in our inference
 More precisely, we compare the values of Q 2 obtained for νn with n = 1, 2, 
, and 20. The value of Q 2 is al w ays larger in AQ UAL, by less than 10 −27 

 

−2 , except for n = 1 where it is about 25 per cent larger. The tension is 
herefore if anything underestimated in our QUMOND calculation. 

w  

r

η

o constrain { a 0 , shape } . Our model for the external field of the SS
ourced by the Milky Way derives from the Gaia EDR3 measurement
f the acceleration of the Sun, which is g ext = 2.32 ± 0.16 × 10 −10 

 s −2 (Gaia Collaboration et al. 2021 ). While the 2 σ lower bound
 × 10 −10 m s −2 is realistic (corresponding to a large but acceptable
eculiar velocity of the Sun; Bovy et al. 2015 ), the 2 σ upper bound
s not (as it would imply an unrealistic ne gativ e peculiar velocity
f the Sun). We therefore consider the upper bound on g ext to be
.48 × 10 −10 m s −2 . We treat it in one of tw o w ays: (i) use the value
ithin the range [2, 2.48] × 10 −10 m s −2 that leads to the lowest
redicted value of Q 2 in order to be conservative in our inference of
 a 0 , shape } and maximize consistency with the RAR, or (ii) infer
 ext along with { a 0 , shape } using the prior N (2 . 32 , 0 . 16) truncated
t 2.48. These methods give very similar results; we present results
or the second method because it is more statistically principled and
akes the Q 2 and RAR inferences fully independent. 
For the Q 2 inference, a flat prior on shape produces a posterior

xtending to infinity, in which limit Q 2 → 0. As well as complicating
he construction of confidence intervals, this would introduce a strong 
olume effect into the PPD of the WBT test statistic (see next
ubsection). We therefore instead adopt a prior flat on Q 2 (with a
niform prior on a 0 ), which matches that used in Hees et al. ( 2014 )
o derive the constraint of equation ( 2 ). This is achieved by taking
he numerical deri v ati ve of Q 2 with respect to shape at each point
ithin the grid. 

.4 Connection to the wide binary test 

ollowing Banik et al. ( 2024 ), we summarize the expected result of
 WBT in the Solar neighbourhood using a parameter αgrav defined 
s 

grav ≡
√ 

η − 1 

0 . 193 
, (13) 

here η ≡ 〈 g r 〉 / g N , the boost of the azimuthally averaged asymptotic
adial gravity compared to Newton. In QUMOND, this is given by 

= νe 

(
1 + 

1 

3 

∂ ln νe 

∂ ln ( g N,ext ) 

)
, (14) 
MNRAS 530, 1781–1795 (2024) 
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here νe ≡ ν( e N ) is the IF e v aluated at the Ne wtonian-equi v alent
alactic gravity e N = g N, ext / a 0 at the Solar position. In AQUAL, it

s instead given by 

= μ−1 
e 

(
∂ ln μe 

∂ ln g ext 

)−1 / 2 

× tan −1 

( (
∂ ln μe 

∂ ln g ext 

)1 / 2 
) 

. (15) 

is an alternative description of the IF, defined by μ( x ) = ν( y ) −1 

here y = x μ( x ). equation ( 13 ) is chosen such that αgrav = 0 for fully
ewtonian gravity, and αgrav = 1 for the case of QUMOND with the
imple IF, assuming a 0 = 1.2 × 10 −10 m s −2 and ˜ e = 1 . 8. Table 4
f Banik et al. ( 2024 ) shows the αgrav values corresponding to a few
hoices of IF at fixed a 0 and g N, ext . 

Equation ( 13 ) describes a mapping from { a 0 , shape, g N, ext } to
grav , allowing us to convert results on these parameters from either

he RAR or Q 2 into a PPD of αgrav values. This is the distribution
e would expect to see given the RAR or Q 2 inference, and may

ubsequently be compared to the posterior of a WBT such as that
f Banik et al. ( 2024 ) to assess the consistency of the MOND
nterpretation of these systems. For simplicity, following Banik et al.
e fix g e = 2.142 × 10 −10 m s −2 for this comparison, since varying

his within the range allowed by Gaia Collaboration et al. ( 2021 )
akes little difference to the results. Although straightforward, we

o not compute { a 0 , shape } posteriors from the inference of Banik
t al., as we do in Section 4.2 from the Q 2 measurement. This is
n order not to restrict ourselves to those results, reflecting the less
stablished nature of the WBT than the Q 2 measurement and the
act that other WBT analyses have reached substantially different
onclusions (Hernandez et al. 2019 ; 2022 , 2023 ; Hernandez 2023 ;
hae 2023a , b ). 
Like Q 2 , αgrav goes to 0 in the limit shape → ∞ , so a flat prior

n shape and the associated semi-infinite prior volume towards that
imit would have made αgrav appear more strongly constrained by
assini than it in fact is. This is cured by adopting a flat prior on
 2 . Note that the αgrav inference of Banik et al. ( 2024 ), to which
e compare the αgrav PPD from Q 2 , used instead a uniform prior on
grav . We have checked that switching to this prior – or a log-uniform
rior in Q 2 or αgrav – makes little difference to our results. 

 RESULTS  

.1 Constraints and predictions from the RAR 

.1.1 Fiducial mass-to-light ratio priors 

e begin with the fiducial SPARC M / L model (Schombert &
cGaugh 2014 ). Table 1 shows, in this case, the constraints on

he RAR parameters for each IF family and EFE model. We do not
how σ int , which is between 0.033 and 0.035 dex for all models
ith an uncertainty of 0.001. For the local EFE models, where e N 
aries per galaxy, we show the median and 68 per cent confidence
ntervals of the median e N values across the posteriors of all galaxies;
hese entries are italicized to distinguish them from the qualitatively
ifferent global e N constraints appearing in the same column. For
ach model, we also summarize the PPDs of Q 2 and αgrav by their
edian and 68 per cent confidence interval, including the tension
ith the Cassini measurement in the case of Q 2 . This is calculated

ssuming a Gaussian distribution of the lower uncertainty. 
The final two columns describe the goodness-of-fit, specifically

he the Bayesian information criterion (BIC) relative to the reference
AR IF shown in the top row. The BIC is the limit of the Bayesian
vidence (the probability of the data given the model) when the
NRAS 530, 1781–1795 (2024) 
osterior is modelled as a Gaussian around the maximum a posteriori
oint and the number of data points greatly exceeds the number
f free parameters. Although neither of these assumptions are
anifestly true in our case, the BIC still functions as a useful model

omparison heuristic by trading off the accuracy of a model with
ts complexity in terms of number of free parameters. It is given by
Schwarz 1978 ) 

IC ≡ k ln ( N ) − 2 ln ( ˆ L ) , (16) 

here k is the number of free parameters, N is the number of
ata points, and ˆ L is the maximum-likelihood value. The evidence
s proportional to exp ( − BIC/2). On the Jeffreys scale (Jeffreys
939 ), an evidence ratio in excess of 100 ( | � BIC | > 9.21) indicates
decisi ve’ e vidence in fa v our of the higher e vidence, lo wer BIC
odel. 
In the limit of much data, the likelihood approximates the posterior

ecause the prior does not scale with the number of data points while
he likelihood does. In our case, ho we ver, a better estimator of model
uality may be achieved by replacing the maximum-likelihood with
aximum-posterior value. This leads us to define 

IC(P) ≡ k ln ( N ) − 2 ln ( ˆ P ) , (17) 

or maximum posterior value ˆ P , which we also show. Note that
ince all log-probability values are ne gativ e, introducing additional
arameters must increase BIC(P) relative to BIC. For models with
he same priors, ho we v er, BIC(P) may pro vide a better model
omparison statistic because it is the relative posterior probabilities
f the models that are important, not only the likelihoods they assign
he data. 

We highlight three results from this investigation: 

(i) a 0 and shape are in all cases well constrained and largely
onsistent between the models. They show the RAR to have a
ransition location consistent with recent studies (e.g. table 3 of
esmond 2023 ) and a transition sharpness closely approximating

he Simple (shape = 1 in the n -family) and RAR (shape = 1 in the
- and γ -families) IFs. There is therefore at most weak evidence
or a more general IF relative to Simple or RAR. A corollary is
hat the family with which one extends these IFs is not particularly
mportant, allowing us to focus our remaining analyses on a single
ne. We choose the δ-family because it is the simplest that includes
he most popular RAR function. Some historical context to our a 0 
onstraints may be found in Section 5 . 

(ii) Allowing local gravitational field strengths in the EFE is
trongly disfa v oured by the BIC relative to the no-EFE model due
o the addition of 147 free parameters, and allowing a single global
eld strength is mildly disfa v oured. Our analysis does not therefore
ho w strong e vidence for the existence of the EFE in the SPARC
AR. This can also be seen from the fact that the e N values of the
lobal-EFE models are all consistent with 0 within 2 σ . It is, ho we ver,
urious to note that while the AQUAL constraints on a global e N are
ignificantly below the expectation from the maximum-clustering
rior (and hence also the g alaxy-by-g alaxy e N constraints from the
ocal EFE model), the QUMOND constraints are almost identical.
his suggests that the RC constraints accord better with the large-
cale structure priors in Q UMOND than AQ UAL, which is supported
y the lower BIC and BIC(P) values for the QUMOND EFE models.
hese results differ from those of Chae et al. (, 2021 , 2022 ) due to

heir focus on specific galaxies and ours on the o v erall RAR, and our
ifferent fitting and goodness-of-fit assessment procedures. 
(iii) Q 2 and αgrav are clearly non-zero in all cases, indicating that

e viation from Ne wtonian gravity in the SS quadrupole and WB
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Table 1. Constraints on RAR (or, equi v alently, algebraic MOND) parameters and goodness-of-fit statistics for the fiducial SPARC M / L model. The parameter 
a 0 has units of 10 −10 m s −2 and Q 2 of 10 −27 s −2 . We show all combinations of IF family (equation 7) and EFE model (equations 8 and 9 ). For the models with 
galaxy-specific (‘local’) EFE, the quoted e N constraints – written in italics – describe the median stacked posteriors o v er all galaxies, implicitly including the 
maximum-clustering prior. The Q 2 (equation 10 ) and αgrav (equation 13 ) columns summarize the posterior predictive distributions (PPDs) of the quadrupole 
and WB test statistic from the RAR fits, while σQ 2 is the number of sigma tension between the Q 2 prediction and the Cassini measurement. For reference, 
the first row shows the RAR IF fit without the EFE; the BIC values (defined using either the maximum-likelihood or maximum-posterior points) are shown 
relative to this. 

IF family EFE model Shape a 0 e N Q 2 σQ 2 αgrav � BIC � BIC(P) 

RAR IF No EFE – 1 . 03 + 0 . 03 
−0 . 03 – 29 . 2 + 0 . 3 −0 . 4 8.7 0 . 74 + 0 . 03 

−0 . 03 0 0 

δ No EFE 0 . 97 + 0 . 04 
−0 . 04 1 . 02 + 0 . 04 

−0 . 04 – 29 . 4 + 0 . 4 −0 . 5 8.7 0 . 78 + 0 . 06 
−0 . 06 11.1 −10.2 

δ AQUAL global 0 . 98 + 0 . 04 
−0 . 04 1 . 03 + 0 . 04 

−0 . 04 0 . 0017 + 0 . 001 
−0 . 001 29 . 4 + 0 . 4 −0 . 5 8.7 0 . 77 + 0 . 07 

−0 . 06 18.7 15.2 

δ AQUAL local 1 . 14 + 0 . 05 
−0 . 05 1 . 25 + 0 . 05 

−0 . 05 0 . 0048 + 0 . 0082 
−0 . 0020 30 . 2 + 0 . 5 −0 . 5 8.9 0 . 71 + 0 . 06 

−0 . 06 1090 1480 

δ QUMOND global 0 . 98 + 0 . 04 
−0 . 04 1 . 03 + 0 . 04 

−0 . 04 0 . 0049 + 0 . 0015 
−0 . 0019 29 . 4 + 0 . 4 −0 . 5 8.7 0 . 77 + 0 . 07 

−0 . 06 13.9 −1.98 

δ QUMOND local 1 . 08 + 0 . 05 
−0 . 05 1 . 17 + 0 . 04 

−0 . 04 0 . 0050 + 0 . 0030 
−0 . 0018 29 . 9 + 0 . 5 −0 . 5 8.8 0 . 73 + 0 . 07 

−0 . 06 1090 1470 

γ No EFE 1 . 03 + 0 . 07 
−0 . 07 1 . 03 + 0 . 03 

−0 . 03 – 29 . 1 + 0 . 4 −0 . 4 8.6 0 . 71 + 0 . 07 
−0 . 07 5.93 −1.99 

γ AQUAL global 1 . 04 + 0 . 07 
−0 . 07 1 . 04 + 0 . 03 

−0 . 03 0 . 0018 + 0 . 0010 
−0 . 0010 29 . 2 + 0 . 4 −0 . 4 8.7 0 . 71 + 0 . 07 

−0 . 07 14.7 14.9 

γ AQUAL local 1 . 14 + 0 . 06 
−0 . 06 1 . 19 + 0 . 04 

−0 . 04 0 . 0048 + 0 . 0070 
−0 . 0020 30 . 8 + 0 . 4 −0 . 4 9.2 0 . 76 + 0 . 06 

−0 . 06 1100 1510 

γ QUMOND global 1 . 04 + 0 . 07 
−0 . 07 1 . 04 + 0 . 03 

−0 . 03 0 . 0050 + 0 . 0015 
−0 . 0018 29 . 2 + 0 . 4 −0 . 4 8.6 0 . 71 + 0 . 07 

−0 . 06 9.69 8.32 

γ QUMOND local 1 . 11 + 0 . 07 
−0 . 07 1 . 14 + 0 . 04 

−0 . 04 0 . 0050 + 0 . 0030 
−0 . 0017 30 . 2 + 0 . 4 −0 . 4 9.0 0 . 73 + 0 . 06 

−0 . 06 1080 1490 

n No EFE 1 . 02 + 0 . 04 
−0 . 04 1 . 08 + 0 . 04 

−0 . 04 – 28 . 4 + 0 . 4 −0 . 4 8.4 0 . 87 + 0 . 07 
−0 . 06 17.7 23.3 

n AQUAL global 1 . 03 + 0 . 04 
−0 . 04 1 . 09 + 0 . 04 

−0 . 04 0 . 0018 + 0 . 0009 
−0 . 0010 28 . 4 + 0 . 4 −0 . 4 8.4 0 . 86 + 0 . 07 

−0 . 06 26.3 33.2 

n AQUAL local 1 . 19 + 0 . 06 
−0 . 04 1 . 31 + 0 . 05 

−0 . 05 0 . 0048 + 0 . 0094 
−0 . 0020 29 . 4 + 0 . 5 −0 . 5 8.7 0 . 79 + 0 . 07 

−0 . 06 1100 1490 

n QUMOND global 1 . 03 + 0 . 04 
−0 . 04 1 . 09 + 0 . 04 

−0 . 04 0 . 0049 + 0 . 0014 
−0 . 0017 28 . 4 + 0 . 4 −0 . 4 8.4 0 . 86 + 0 . 07 

−0 . 06 20.9 25.6 

n QUMOND local 1 . 12 + 0 . 05 
−0 . 05 1 . 23 + 0 . 04 

−0 . 04 0 . 0051 + 0 . 0032 
−0 . 0018 29 . 1 + 0 . 4 −0 . 5 8.6 0 . 82 + 0 . 07 

−0 . 06 1080 1470 
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ynamics should be detected if these models are correct. Note, 
o we ver, that the expected αgrav is less than unity – the result for
he Simple IF at a 0 = 1.2 × 10 −10 m s −2 – in all cases, largely due
o the lower preferred a 0 value. The tensions with the quadrupole 
easurement of equation ( 2 ) are strong, ∼8–9 σ . The left panels of
igs 2 and 3 show the full PPDs of Q 2 and αgrav, respectively. 

.1.2 Extended mass-to-light ratio priors 

e begin our investigation of more general M / L models with a
aussian hyperprior model in which the centres of the lognormal 
riors on ϒ disc and ϒ bulge are free parameters to be inferred alongside
 0 and shape. These results comprise the first two rows of Table 2
for the δ-family). We find the best-fitting values of the hyperprior 
entres to be μb ≈ 0.7 and 0.6 regardless of the IF family and
FE model used. This provides a significantly better fit than the 
ducial SPARC model, and the BIC shows that the addition of these

wo extra parameters is clearly warranted by the data. These values 
re, ho we v er, highly une xpected from a stellar population modelling
oint of view: in dwarfs, one should if anything expect ϒ disc < 0.5
F. Lelli, pri v ate communication), while the older stars in the bulge
hould in all cases have higher M / L than those in the disc. In Fig. 4 ,
e show partial corner plots of the Gaussian hyperprior model for

he δ-family and two different EFE models: no EFE (left panel) and
QUAL EFE with maximum-clustering prior (right panel). 
In addition to improving the goodness of fit, allowing this extra 

reedom in ϒ disc and ϒ bulge significantly increases δ from ∼1 
o up to ∼1.3 −1.5, corresponding to a sharper deep-MOND-to- 
ewtonian transition. As a result, the predicted Q 2 and αgrav values 

re significantly reduced, as shown in the central panels of Figs 2
nd 3 . The effect is most pronounced using the AQUAL local EFE
odel. Ho we ver, although the tensions with Cassini and the WBT
f Banik et al. ( 2024 ) are eased relative to the fiducial M / L model
hey remain significant, at the ∼7 σ level for Q 2 . 

The other M / L models of Section 3.2 – shown in the remaining
ows of Table 2 – tell similar stories. Allowing ϒ disc and ϒ bulge to
oat freely yields ϒ disc > ϒ bulge with a corresponding significant 

mpro v ement in goodness-of-fit. The fact that BIC is significantly
ower for the free uniform than free hyperprior model, along with
he best-fitting scatter on ϒ disc and ϒ bulge between galaxies being 
onsiderably larger than 25 per cent (italicized entries), suggests that 
he M / L values may not in fact possess the degree of similarity
xpected in the SPARC error model, at least under the assumption
f a fixed RAR. Forcing μd < μb or ϒ disc < ϒ bulge results in μd ≈
b and ϒ disc ≈ ϒ bulge , respectively, with worsened goodness-of-fit 
nd increased Q 2 and αgrav . We omit the e N constraints in this table
ecause they are very similar to those in Table 1 , and show only
 BIC [not � BIC(P)] for goodness-of-fit. 
Even more drastic changes are apparent in the final four rows of

able 2 , where we remo v e either galaxies with bulges or galaxies
ithout bulges (in both cases using a Gaussian hyperprior for the

emaining M / L s). Removing the galaxies with bulges causes an
mmense increase in best-fitting shape – reaching δ = 2.5 for the 
QUAL local EFE model with maximum-clustering prior – and a 
ore modest decrease in a 0 . The RAR points transformed according

o the best-fitting galaxy parameter values with the best-fitting δ- 
amily fit o v erplotted is shown in Fig. 5 , illustrating the very sharp
ransition between the Newtonian and deep-MOND regimes. The 
S, with acceleration 2.32 × 10 −10 m s −2 shown by the horizontal
lue line, is almost fully Newtonian. (In contrast, the Simple IF
ith the same a 0 , shown in red, gives a large MOND boost at that

cceleration.) This reduces the expected Q 2 almost to zero as shown
n the right panel of Fig. 2 , bringing it approximately into consistency
ith the Cassini measurement. The expected αgrav is concomitantly 

educed to 0 (right panel of Fig. 3 ), making it fully consistent with
MNRAS 530, 1781–1795 (2024) 
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Figure 2. PPD of Q 2 from the RAR for the δ-family under the five different EFE models. Left panel: Fiducial SPARC M / L model; centre panel: Gaussian 
hyperprior model; right panel: as centre but excluding galaxies with bulges. The ‘local’ EFE models, with a separate e N per galaxy, use the maximum-clustering 
prior. The constraint on Q 2 from Cassini is visible in dashed grey in the right panel. 

Figure 3. As Fig. 2 , but for αgrav rather than Q 2 . The constraint on αgrav from the WBT of Banik et al. ( 2024 ) is visible in dashed grey in the right panel. 
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he null result of Banik et al. ( 2024 ). The o v erall goodness-of-fit is,
o we ver, reduced, as sho wn by larger � BIC and � BIC(P) values.
e note that the use of a Gaussian hyperprior for the mean of the disc
/L μd is important for the great increase in the best-fitting shape

arameter when removing galaxies with bulges; there is almost no
uch increase if the fiducial SPARC M / L model is used instead, with
est-fitting δ returning to ∼1. Conv ersely, remo ving galaxies without
ulges lowers shape, increases a 0 , brings back a strong tension with
he Q 2 measurement, and predicts αgrav ≈ 1. 

These results indicate an incompatibility between the separate
AR fits of bulgey and bulge-free galaxies. Fig. 6 illustrates

his by showing various fits for one bulgey galaxy, UGC 2953.
he fits obtained when fixing the values of a 0 and shape pa-

ameter to their best fit values obtained from bulge-free galaxies
 δ = 1.97, a 0 = 0 . 99 × 10 −10 m s −2 without EFE, and δ = 2.49,
 0 = 1 . 1 × 10 −10 m s −2 with EFE) are quite poor. In addition, the
est-fitting distance, inclination and ϒ values are far from their
NRAS 530, 1781–1795 (2024) 
riors. It therefore appears unlikely that the high shape values
referred by the bulge-free galaxies can explain the dynamics of
ulge y galaxies. To pro vide another angle on this discrepanc y, we
how in Fig. 7 the { a 0 , shape } constraints without EFE from the
ducial SPARC model, the free hyperprior model and the models
ith bulgey or bulge-free galaxies remo v ed (using a Gaussian
yperprior for the remaining M / L s). Each model is in clear tension
ith the others. This could be due either to the modelling of the
ulge and disc light within the SPARC data-reduction pipeline,
r to inaccuracy of the RAR modelling of these components. For
xample, the violation of axisymmetry caused by a significant
ulge or bar – or the dependence on past trajectories and exact
rbital structure in modified inertia formulations – may greatly
odify the ef fecti v e MOND force la w. Using the fiducial M / L
odel rather than the Gaussian hyperprior for the no-bulge and

ulge-only cases the best-fitting δ values are reduced, to ∼1 for
he former and ∼0.9 for the latter, but they remain clearly dis-
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Table 2. As Table 1 , but focusing on the δ-family and models either without an EFE or with a galaxy-specific AQUAL EFE with maximum-clustering prior 
on e N , allowing the M / L model to vary. The models considered are (1) unconstrained Gaussian hyperpriors on ϒ disc and ϒ bulge , (2) as (1) but requiring the 
centre of the ϒ bulge prior to exceed that of the ϒ disc prior, (3) free uniform priors on ϒ disc and ϒ bulge , (4) as (3) but requiring ϒ bulge > ϒ disc g alaxy-by-g alaxy, 
(5) as (2) but excluding galaxies with bulges, and (6) as (2) but excluding galaxies without bulges. For models with Gaussian hyperpriors on ϒ disc and ϒ bulge , 
the μd and μb columns show the mean and 68 per cent confidence intervals of their centres; for the other models (italicized) they instead show the mean and 
68 per cent confidence intervals of the mean ϒ disc and ϒ bulge values across the posteriors of all galaxies. The uncertainty on σ int (measured in dex) is ±0.001 
in all cases. � BIC is again defined relative to the top row of Table 1 . 

M / L model EFE model shape ( δ) a 0 σ int μd μb Q 2 σQ 2 αgrav � BIC

Free hyper No EFE 1 . 28 + 0 . 06 
−0 . 06 1 . 04 + 0 . 03 

−0 . 03 0.034 0 . 71 + 0 . 03 
−0 . 03 0 . 62 + 0 . 04 

−0 . 03 25 . 5 + 0 . 8 −0 . 9 7.2 0 . 40 + 0 . 05 
−0 . 05 −53.0 

Free hyper AQUAL local 1 . 50 + 0 . 08 
−0 . 07 1 . 21 + 0 . 04 

−0 . 04 0.032 0 . 72 + 0 . 03 
−0 . 03 0 . 62 + 0 . 04 

−0 . 03 25 . 6 + 0 . 9 −0 . 9 7.2 0 . 34 + 0 . 05 
−0 . 05 1000 

Const hyper No EFE 1 . 24 + 0 . 06 
−0 . 06 1 . 05 + 0 . 03 

−0 . 03 0.034 0 . 68 + 0 . 02 
−0 . 02 0 . 69 + 0 . 02 

−0 . 02 26 . 3 + 0 . 7 −0 . 8 7.5 0 . 44 + 0 . 05 
−0 . 05 −46.9 

Const hyper AQUAL local 1 . 45 + 0 . 07 
−0 . 07 1 . 23 + 0 . 04 

−0 . 04 0.032 0 . 69 + 0 . 02 
−0 . 02 0 . 70 + 0 . 02 

−0 . 02 26 . 6 + 0 . 8 −0 . 9 7.6 0 . 39 + 0 . 05 
−0 . 05 1000 

Free unif No EFE 1 . 28 + 0 . 06 
−0 . 06 1 . 10 + 0 . 03 

−0 . 03 0.031 0 . 73 + 0 . 72 
−0 . 40 0 . 68 + 0 . 41 

−0 . 27 26 . 5 + 0 . 7 −0 . 8 7.6 0 . 44 + 0 . 05 
−0 . 05 −440 

Free unif AQUAL local 1 . 52 + 0 . 08 
−0 . 07 1 . 24 + 0 . 04 

−0 . 04 0.029 0 . 74 + 0 . 70 
−0 . 38 0 . 60 + 0 . 53 

−0 . 19 25 . 9 + 0 . 9 −0 . 9 7.3 0 . 34 + 0 . 05 
−0 . 05 637 

Const unif No EFE 1 . 06 + 0 . 04 
−0 . 04 1 . 18 + 0 . 04 

−0 . 04 0.032 0 . 58 + 0 . 73 
−0 . 33 0 . 73 + 0 . 58 

−0 . 27 30 . 1 + 0 . 4 −0 . 5 8.9 0 . 75 + 0 . 06 
−0 . 06 −274 

Const unif AQUAL local 1 . 24 + 0 . 06 
−0 . 05 1 . 39 + 0 . 05 

−0 . 05 0.031 0 . 57 + 0 . 72 
−0 . 29 0 . 74 + 0 . 63 

−0 . 28 30 . 8 + 0 . 5 −0 . 6 9.1 0 . 68 + 0 . 06 
−0 . 06 823 

No bulge No EFE 1 . 97 + 0 . 22 
−0 . 18 0 . 99 + 0 . 03 

−0 . 03 0.041 0 . 81 + 0 . 03 
−0 . 03 – 14 . 3 + 3 . 0 −2 . 9 2.7 0 . 05 + 0 . 04 

−0 . 04 2140 

No bulge AQUAL local 2 . 49 + 0 . 33 
−0 . 27 1 . 10 + 0 . 04 

−0 . 04 0.039 0 . 81 + 0 . 03 
−0 . 03 – 10 . 9 + 3 . 2 −2 . 9 1.9 0 . 00 + 0 . 03 

−0 . 02 2940 

Only bulge No EFE 0 . 99 + 0 . 06 
−0 . 06 1 . 30 + 0 . 08 

−0 . 07 0.026 0 . 59 + 0 . 05 
−0 . 05 0 . 68 + 0 . 04 

−0 . 04 31 . 7 + 0 . 5 −0 . 6 9.4 0 . 99 + 0 . 13 
−0 . 12 −191 

Only bulge AQUAL local 1 . 19 + 0 . 08 
−0 . 07 1 . 57 + 0 . 10 

−0 . 09 0.024 0 . 62 + 0 . 05 
−0 . 04 0 . 69 + 0 . 04 

−0 . 04 32 . 7 + 0 . 7 −0 . 8 9.6 0 . 87 + 0 . 11 
−0 . 10 −105 

Table 3. As Table 2 , but using the modified gravity prescription of equation ( 18 ) for calculating the MONDian radial acceleration g rather than the algebraic 
MOND relation. Here, we use the n -family without EFE in all cases. 

M / L model shape ( n ) a 0 σ int μd μb Q 2 σQ 2 αgrav � BIC 

Fiducial 0 . 78 + 0 . 03 
−0 . 03 0 . 96 + 0 . 05 

−0 . 05 0.046 0.5 0.7 29 . 2 + 0 . 3 −0 . 2 8.7 1 . 34 + 0 . 09 
−0 . 08 2050 

Free hyper 1 . 57 + 0 . 09 
−0 . 09 1 . 12 + 0 . 03 

−0 . 03 0.042 0 . 97 + 0 . 03 
−0 . 03 0 . 64 + 0 . 04 

−0 . 04 22 . 8 + 1 . 0 −1 . 0 6.3 0 . 33 + 0 . 05 
−0 . 05 2290 

Free unif 1 . 34 + 0 . 08 
−0 . 07 1 . 10 + 0 . 04 

−0 . 03 0.041 0 . 88 + 0 . 76 
−0 . 40 0 . 64 + 0 . 43 

−0 . 25 25 . 2 + 0 . 8 −0 . 9 7.1 0 . 49 + 0 . 06 
−0 . 06 2120 

No bulge 1 . 93 + 0 . 19 
−0 . 17 1 . 01 + 0 . 03 

−0 . 03 0.049 1 . 08 + 0 . 04 
−0 . 04 – 17 . 5 + 2 . 4 −2 . 4 3.8 0 . 15 + 0 . 05 

−0 . 04 3680 

Figure 4. Partial corner plots of the RAR inference using the δ-family of IFs and the Gaussian hyperprior model for ϒ disc and ϒ bulge , for the case of no EFE 

(left panel) and AQUAL with maximum-clustering e N prior (right panel). The truth line shows μb = 0.7, the fiducial SPARC value (the corresponding μd = 0.5 
is off the plot). 
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Figure 5. SPARC data points transformed according to the best-fitting 
parameters for the δ-f amily, local AQ UAL EFE, and M / L hyperprior model 
removing galaxies with bulges. The orange line and band show the best-fitting 
RAR and its 95 per cent confidence limit (producing a very small boost to 
gravity in the SS), while the red line shows the Simple IF with the same a 0 . 

Figure 6. Example of fits for an individual bulgey galaxy, UGC 2953. The 
blue curves correspond to a fit where a 0 and shape are fixed to their best- 
fitting values based on the RAR of bulgey galaxies only (last lines of Table 2 ). 
The orange curves correspond instead to a fit where a 0 and shape are fixed 
to their best-fitting values based on the RAR of bulgeless galaxies only. The 
solid lines correspond to fits including the AQUAL-local EFE, while the 
dashed lines correspond to fits without EFE. The fitted parameters (distances, 
inclination, and ϒ) are additionally pushed far from their priors for the orange 
fits. This illustrates that bulgey galaxies are not well described by the RAR 

obtained from bulge-free galaxies alone, which could otherwise satisfy the 
Q 2 and WBT constraints. 
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only fits seem to hint at systematics in the SPARC data, subtleties related to 
the underlying MOND theory and/or significant issues with the fiducial M / L 
priors. This disagreement cannot be resolved by changing the EFE model. 
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repant in a 0 . We leave further investigation of this issue to further

ork. 

.1.3 A QU AL modified gravity RAR fit 

ur fiducial analysis abo v e uses the algebraic MOND relation,
quation ( 3 ), which is also the usual form of the RAR. While this
s an exact prediction in modified inertia formulations of the theory
or circular orbits, modified gravity formulations necessarily deviate
rom it to a (small) extent that depends on the geometry of the system
see F amae y & McGaugh 2012 ). As we are interested here in testing
odified gravity theories (specifically AQ UAL and Q UMOND) in
hich the IF is the same between galaxy RCs, the SS, and nearby wide
inaries, it is important to check that our results are not significantly
NRAS 530, 1781–1795 (2024) 
ffected by this deviation from the algebraic relation. To this end, we
mploy here the AQUAL approximation found by Brada & Milgrom
 1995 , equation 25) for flat discs: 

 = 

g N 

μ
(

g + 
N 

a 0 
ν
(

g + 
N 

a 0 

)) , (18) 

here g + 

N ≡
(
g 2 N + (2 πG�) 2 

)1 / 2 
, for a total baryonic surface density

 at each point in the disc. Here, μ is the usual alternative form of the
F already described in Section 3.4 , defined by ν( x μ( x )) ≡ 1/ μ( x ).
quation ( 18 ) is appropriate for the radial acceleration predicted by
QUAL within razor-thin axisymmetric systems; we caution that its
ccuracy will be lower for galaxies with bulges. 

The baryonic surface density is the sum of a stellar disc, stellar
ulge and gas component; while the first two are given in the SPARC
atalogue, the third is not. We calculate it here from the SPARC
 gas values using equation (13) of Toomre ( 1963 ). This requires an

ntegral of V gas to r = ∞ . We extrapolate it beyond the last measured
oint with a Keplerian decline, corresponding to the assumption of
pherical symmetry and that all gas is enclosed within the observed
egion. To test the effect of this approximation, we consider an
lternativ e (e xtreme) model in which V gas is constant be yond the
ast measured point, finding minimal difference in the results. 

We use the MONDian g calculated from equation ( 18 ) in place of
quation ( 3 ) in the likelihood term and repeat the inference for the
 -family (which has simple analytic forms for both ν and μ), without
FE. The results are shown in T able 3 . W e see a decrease in the quality
f the fit (shown by σ int and � BIC exceeding the corresponding
ows of Table 1 and 2 ) and an increased disagreement between the
AR, Q 2 and WBT constraints (shown by the reduced shape and

ncreased σQ 2 and αgrav ). Our main results using the algebraic MOND
odel are therefore conserv ati ve. It is also interesting to note that the
AR seems to fa v our the straight algebraic MOND relation o v er this
odified gravity correction, although not with high significance. 
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Figure 8. Constraints on a 0 , δ, and g ext from the Cassini constraint Q 2 = 

(3 ± 3) × 10 −27 s −2 , using a flat prior on Q 2 . a 0 and g ext are in units of 
10 −10 m s −2 . The g ext posterior is dominated by its truncated Gaussian prior. 
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.2 Constraints from Cassini and comparison to the RAR and 

BT 

o shed further light on the discrepancy at the heart of our analysis,
e now infer { a 0 , shape } from the SS quadrupole. To set the stage,
e show in Fig. 8 the corner plot of the Q 2 inference for the δ-family
hen g ext is also inferred using a truncated Gaussian prior from Gaia
ollaboration et al. ( 2021 ) (see Section 3.3 ). Higher shape and lower
 0 values are preferred by the likelihood because this pushes the SS
urther into the Newtonian regime where the prediction for Q 2 is
. Ho we ver, our flat prior on Q 2 creates a prior ∝ d( Q 2 )/d(shape)
n shape, which goes to 0 at high shape as Q 2 levels out at 0. This
runcates the posterior so that only a finite shape range is allowed.
he shape and a 0 marginals only decline at small values (also in
ig. 9 ) due to our priors δ > 0.5 and a 0 > 0.0025 × 10 −10 m s −2 ,
hich do not impact the (in)consistency with the RAR. There is little

onstraining power on g ext from the Q 2 measurement, so its posterior
s similar to its prior. 

Next, in Fig. 9 , we compare the posteriors on a 0 and shape from the
AR and Q 2 inferences. In each panel, we use the δ-family and show

he results for each of the EFE models; the three panels show the same
 / L models as in Figs 2 and 3 . We see again the clear tension between

he RAR and Q 2 measurement using either the fiducial or Gaussian 
yperprior M / L model: The inferences only become consistent when 
he galaxies with bulges are remo v ed. This conclusion is not affected
y the choice of IF family or EFE model. If instead of sampling
 ext we choose the value in the range 2 −2.48 × 10 −10 m s −2 that
inimizes Q 2 at given a 0 and shape (corresponding to the best 

ossible g ext for reducing the tension), the posterior is only slightly
hifted to lower shape. 

It is also instructive to consider the RAR fits obtained when the
 2 constraint is enforced at the 1 σ level. To achieve this we fix δ =
 and a 0 = 1.45 × 10 −10 m s −2 – which yields Q 2 = 6 × 10 −27 s −2 

and repeat the RAR inference using Gaussian hyperpriors on ϒ disc 

nd ϒ bulge . For the no-EFE model, requiring this IF lowers ln ( ˆ L )
y 195, indicating a hugely worse fit. The ln-distance prior is also
orsened by 16.4 and the ln-inclination prior by 38.8, showing that 
hese galaxy parameters are being forced to take values far from their
riors. The constraints on the M / L hyperpriors are μd = 0.92 ± 0.03
nd μb = 0.67 ± 0.04, indicating an even greater deviation from the
ducial M / L model than the regular Gaussian hyperprior case. σ int is
nly 0.04 dex, ho we ver, and the plot of the transformed points with
= 5, a 0 = 1.45 × 10 −10 m s −2 model o v erlaid (not shown) looks

imilar to Fig. 5 , just with a somewhat sharper transition. Analogous
esults hold for the other EFE models. 

Finally, we show in Fig. 10 the PPD of αgrav from the Q 2 chain.
ere, we see that the Cassini measurement already imposes a stronger

onstraint on αgrav than does the WBT result of Banik et al. ( 2024 ):
quation ( 2 ) allows one to predict, from the SS alone, that the WBT
ill be null to high precision regardless of IF family. This result may

ppear surprising given the fact that Banik et al. rule out the RAR
F with a 0 = 1.2 × 10 −10 m s −2 at 16 σ , while we rule out the RAR
F using the Cassini measurement at only 8.7 σ (top row of Table 1 ).
his is primarily because αgrav is more sensitive to shape than is Q 2 ,
o when allowing shape to increase from unity one achieves αgrav 

0 sooner than Q 2 ≈ 0. We therefore conclude that as a general
onstraint on modified gravity MOND, the SS quadrupole is stronger 
han the WBT that is currently possible. The PPD of αgrav from Q 2 

grees with the inference of Banik et al. but would not with those
f Hernandez et al. ( 2019 , 2022 , 2023 ), Hernandez ( 2023 ), and Chae
 2023a , 2023b ), who find approximate agreement with the Simple
r RAR IF, αgrav ≈ 1. Our results therefore argue in fa v our of Banik
t al. 

.3 Can a fine-tuned IF reconcile the Cassini and RAR 

onstraints? 

ne might be tempted to design a new IF with a sharp transition
etween the MONDian and Newtonian regimes in an attempt to 
econcile the Cassini and RAR constraints, whilst still producing 
 deviation from Newtonian gravity in local wide binaries. We 
ave seen that removing bulges and adopting free hyperpriors for 
he stellar M / L s of SPARC discs can reconcile the RAR and the
assini constraints to better than 2 σ . Ho we ver, this produces no non-
ewtonian behaviour in the WBT. Moreo v er, using fiducial SPARC
 / L values or including bulgey galaxies in the RAR fit returns us to

 gradual transition close to the Simple or RAR IF. 
In order to explore this question more systematically, let us 

ow consider a class of IFs built from νRAR by introducing a new
cceleration scale a N, trans where a sharp sigmoid transition is applied 
etween νRAR and the Newtonian regime ( ν = 1). This means that for
 < a N, trans / a 0 the IF beha ves as νRAR , b ut it becomes fully Newtonian
s soon as y > a N, trans / a 0 . The case a N, trans = a 0 would correspond to a
harp transition from Newton to deep-MOND without introducing a 
ew acceleration scale. However, to keep a positive WBT, one would
eed a N, trans > a 0 in order to produce non-Newtonian behaviour at
he Sun’s position in the Milky Way. 

The left panel of Fig. 11 shows the RAR obtained with this class
f fine-tuned IFs for different values of a N, trans . We also display
he minimum and maximum observed accelerations probed by the 
PARC RCs (using the cuts defined in Section 2.1 ), and the external
eld of the Milky Way at the position of the sun (assuming a 0 =
.03 × 10 −10 m s −2 ; see Table 1 ). The right panel then shows the
alue of Q 2 in the SS as a function of a N, trans . It is clear that, in
rder to satisfy the Cassini constraint at 1 σ , the new transition
cceleration a N, trans must be below the Newtonian external field at the
un. This will both strongly affect the RAR fits, especially in bulgey
alaxies that do not allow such a sharp transition as we have seen
n Section 4.1.2 , and necessarily yield no deviation from Newton in
MNRAS 530, 1781–1795 (2024) 
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Figure 9. Posteriors on a 0 and δ from the RAR and SS quadrupole. Left panel: fiducial SPARC M / L model; centre panel: free Gaussian hyperpriors on ϒ disc 

and ϒ bulge ; right panel: as centre but excluding galaxies with bulges. 

Figure 10. PPD of αgrav for the three IF families from the Q 2 constraint. 
This constraint foretells αgrav = 0 to higher precision than the WBT of Banik 
et al. ( 2024 ). 
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Figure 11. Exploration of a class of IFs constructed by introducing a sharp 
sigmoid transition between νRAR and ν = 1 (fully Newtonian behaviour) at a 
new transition acceleration scale a N, trans . Left panel: the RAR of this IF class 
for different values of a N, trans . The two horizontal dotted lines bound the 
gravitational fields probed by the SPARC RAR while the dashed horizontal 
line shows the external field acting on the SS, g ext, Sun . The vertical shaded 
area shows the range of Newtonian external fields corresponding to g ext, Sun 

for different IFs. Right panel: the variation of Q 2 produced by this class of 
IFs as a function of a N, trans . This transition must occur at an acceleration 
below the external field g N, ext, Sun in order to satisfy the Cassini constraint at 
1 σ , which would both strongly impact the SPARC RAR and produce no non- 
Newtonian behaviour in the WBT (since local wide binaries are embedded 
in the same external field as the SS, where the IF would have to be fully 
Newtonian). 
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ocal wide binaries. It appears therefore to be highly unlikely that one
ould cook up a fine-tuned universal IF that would simultaneously
xplain the RAR and pass the Cassini constraint, especially if one
lso wants a non-Newtonian WBT. 

 DISCUSSION  A N D  C O N C L U S I O N  

he simplicity and regularity of galaxy kinematics – epitomized
or late-type galaxies’ radial dynamics by the RAR – appears to
rovide strong support for MOND relative to the galaxy formation
cenario of � CDM. We find excellent fits to the RAR of the SPARC
alaxy sample using generalized IFs of the n -, δ-, or γ -families, with
he very small intrinsic scatter ( ∼8 per cent) approximately expected
rom remaining systematics or departures from spherical symmetry
n modified gravity formulations of MOND. Including all galaxies,
e find the best-fitting shape of the RAR to be very close to the
imple IF or the one proposed in McGaugh et al. ( 2016 ). The impact
f the EFE, while not clearly required in our analysis, is consistent
ith the expectation from independent calculations of the galaxies’

arge-scale environments. 
It is interesting to compare our best-fitting a 0 values with those in

he literature. We reco v er a 0 ≈ 1 × 10 −10 m s −2 when not including
NRAS 530, 1781–1795 (2024) 
he EFE or when the EFE is fitted as a global parameter, and
 0 ≈ 1 . 2 × 10 −10 m s −2 when the EFE is allowed to vary galaxy-
y-galaxy with the maximum clustering prior. Historically, the first
stimates of a 0 – fitted with the Standard IF until circa 2005 – gave
alues around a 0 = 1 . 2 × 10 −10 m s −2 (e.g. Kent 1987 ; Milgrom
988 ; Begeman, Broeils & Sanders 1991 ), typically using fewer
han 10 RCs. Complementing the data of Begeman et al. ( 1991 ) with
ata from Gentile et al. ( 2004 ) and using the Simple IF, F amae y
t al. ( 2007a ) found a 0 = 1 . 35 × 10 −10 m s −2 with 14 RCs, whilst a
ater analysis of 12 higher resolution RCs from the THINGS surv e y
Gentile et al. 2011 ) gave a 0 = 1 . 22 × 10 −10 m s −2 with the Simple
F, but with an intriguing tension for the archetypal RC of NGC 3198,
ndicating a 0 = 0 . 9 × 10 −10 m s −2 in line with the more recent EFE-
ree estimates. Including the local EFE gives back the ‘old’ value of
 0 ≈ 1 . 2 × 10 −10 m s −2 . 
Our main result is that the location and sharpness of the transition

etween the deep-MOND and Newtonian regimes inferred from the
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AR is grossly inconsistent with that inferred from the Cassini 
easurement of the SS quadrupole in classical modified gravity 

ormulations of MOND. Including full marginalization o v er all 
ele v ant galaxy nuisance parameters, we calculate this tension to be
.7 σ for the δ-family of IFs and fiducial M / L model of SPARC. We
se the algebraic MOND relation between g obs and g bar fiducially, 
ut show explicitly that switching to an AQUAL fitting formula 
oes not qualitatively affect the results. It is also interesting to note
hat the RAR seems to slightly fa v our the straight algebraic MOND
elation o v er this modified gravity correction, although not with high
ignificance. 

We find that the tension can be slightly ameliorated by allowing 
he M / L ϒ of the discs and bulges of the SPARC galaxies to float,
hich is strongly fa v oured by the RAR data (given an IF-family fit).
his significantly increases the sharpness of the MOND transition –
aking the Solar neighbourhood more Newtonian – but prefers ϒ disc 

 ϒ bulge , flying in the face of stellar population modelling. Using
aussian hyperpriors with free means for ϒ disc and ϒ bulge reduces 

he Q 2 tension to 7.2 σ . A much greater gain is to be had by discarding
he 31 galaxies with bulges, in which case the RAR with free ϒ disc 

s in only 1.9 σ tension with the quadrupole constraint using the 
QUAL g alaxy-by-g alaxy EFE model. The resulting model cannot 
t galaxies with bulges, ho we ver. We stress that these modifications

o the quadrupole prediction arise entirely internally to the RAR 

odelling and without any reference to the Cassini measurement: It 
s not a case of ameliorating tension in a joint inference by enlarging
he parameter space, but rather a preference within the SPARC data. 

e also show that, for the wide range of parametric RAR shapes
onsidered here, the Cassini measurement implies (in the modified 
ravity context) no detectable deviation from Newtonian gravity in 
ide binaries in the Solar neighbourhood to greater precision than 
aia measurements of the wide binaries currently afford. This is 

onsistent with (and renders unsurprising) the results of Banik et al. 
 2024 ), but disagrees with Hernandez et al. ( 2019 , 2022, 2023 ),
ernandez ( 2023 ), Chae ( 2023a , 2023b ), and Hernandez & Chae

 2023 ). 
Thus, while the RAR does appear to be tantamount to a natural law

n galaxies (Lelli et al. 2017 ; Desmond 2023 ; Stiskalek & Desmond
023 ), extending it into the Solar neighbourhood does not work 
nless the SPARC M / L model and/or treatment of bulges is greatly
n error. How should we interpret this perplexing situation? Aside 
rom the conclusion that the simplicity of galaxy dynamics is a red
erring – a to-be-understood emergent behaviour of dark matter – and 
OND on a hiding to nothing, there appear to be three possibilities:

(i) Our different results from considering separately the bulgey 
nd bulge-free galaxies – and preference for ϒs far remo v ed from
he fiducial SPARC values – may be indicating that there are 
ystematics in the RAR data which could permit a MOND-to- 
ewtonian transition as steep as is required by the SS quadrupole. 
emoving galaxies with bulges and allowing ϒ disc to float freely is

he most conserv ati ve model if one has reason to doubt the bulge
odelling, and it may not be a coincidence that it is consistent with

he Cassini measurement. In this case, the orbits of WBs in the Solar
eighbourhood are also expected to be fully Newtonian. This may, 
o we ver, cause problems with observables not studied here, such as
he RC of the Milky Way. 
here is no a priori reason to remo v e galaxies with b ulges, b ut
 posteriori the tension between galaxies with and without bulges 
rovides strong moti v ation to examine this issue further (within the
OND paradigm). The fact that the RAR { a 0 , shape } constraints

etween bulgey and bulge-free galaxies and for various M / L choices
re clearly discrepant with one another (Fig. 7 ) is concerning in itself
or the universality of the RAR. One may wonder whether the RAR
arameters may correlate with other galaxy properties; this appears 
ot to be the case from Stiskalek & Desmond ( 2023 ). Note that
he bulge y v ersus bulge-free dichotomy is different to that of Chae
 2022 ), where it is instead between the RARs followed by inner and
uter points of the RCs regardless of bulge fraction. This is unlikely to
emain in the underlying RARs presented here due to their extremely
mall intrinsic scatter. 

(ii) Remaining within the modified gravity paradigm and taking 
he inconsistency of the RAR and Q 2 results at face value necessitates
 modification to the AQUAL or QUMOND weak-field limits of 
ny such theory. One way to achieve this would be to screen the
odification to GR on small scales, a method already common 

or preventing scalar–tensor theories of gravity from manifesting 
nobserved deviations from the inverse square law (‘fifth forces’) in 
he SS (see Jain & Khoury 2010 ; Baker et al. 2021 for re vie ws). This
ay be achieved in the case of MOND by, for instance, including
 covariant Galileon-type term (involving a length-scale) for the 
calar field in the MOND action (Babiche v, Def fayet & Esposito-
ar ̀ese 2011 ): This could completely suppress all MOND effects
elow a Vainshtein radius depending on the source mass, a 0 and
he new length-scale. Interestingly, with the length-scale proposed 
y Babichev et al. ( 2011 ), MOND effects would be killed in the
S and up to the typical (mass and length) scale of WBs. Such a
alileon term could therefore be added to frameworks such as those
f Skordis & Zło ́snik ( 2021 ), and would not affect the predicted
AR on larger scales where interesting deviations from the algebraic 
OND relation are already to be found. This is studied for high-mass

galaxy cluster-like) systems in Durakovic & Skordis ( 2023 ); see
lso Banik et al. ( 2024 ). The idea of adding a new scale to MOND
s somewhat akin to the approach of ‘Extended MOND’ where a
econd gravitational variable (in this case potential) modulates the 
OND boost (Zhao & F amae y 2012 ). 
It is important to bear in mind that our conclusions refer solely

o specific modified gravity instantiations of MOND in the classical 
egime, namely the AQUAL and QUMOND models where the IF is
ecessarily universal. Generalizations such as TRIMOND (Milgrom 

023b ) and GQUMOND (Milgrom 2023c ) have more complex 
ehaviour, and may e v ade our constraints by having different IFs
n galaxies, wide binaries and the SS. In GQUMOND, a new scale
aturally arises, allowing MOND effects to be screened below some 
ength-scale (as in the Galileon screening case) or dynamical time. 
RIMOND manifests three gravitational degrees of freedom – the 
OND potential and two auxiliary potentials, one of which is the
ewtonian potential – and contains AQUAL and QUMOND as 

pecial cases (Milgrom 2023b ). There thus remains an e xtensiv e
heory space of MOND-like theories, which could be constrained 
hrough the apparent incompatibility re vealed here. Ho we ver, one
ay consider that we are reaching the point where the complexity of
odified gravity formulations of MOND is no longer warranted by 

ts empirical successes relative to � CDM. 
(iii) Finally, one may consider MOND as implying a modification 

o inertia. Modified inertia formulations are far more difficult to con-
truct and study because the dynamics of an object may depend on its
ntire past history (e.g. Milgrom 2011 ; Milgrom 2022 ). It is, ho we ver,
odified inertia that produces in its pristine form the strongest piece

f MOND phenomenology, viz. the RAR (Milgrom 1994 ; Milgrom 

022 ). In this context, the mismatch between bulgey and bulge-free
alaxies could be a manifestation of the subtle dependence of the
OND force law on the underlying orbital dynamics and history. 
ur results may therefore be indicating that modified inertia is the
MNRAS 530, 1781–1795 (2024) 
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orrect interpretation of MOND, spurring the search for theories and
odels that allow it to make contact with data beyond disc galaxy

ynamics. Indeed, an SS quadrupole is not generically predicted by
odified inertia Milgrom ( 2023a ), potentially allowing the Cassini

onstraint to be completely circumvented. 
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