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Recursive inverse dynamics of a swimming snake-like robot with a
tree-like mechanical structure

Xiao Xie1, Johann Herault1,2, Vincent Lebastard1, Frédéric Boyer1

Abstract—In this paper, we report a recursive inverse dynam-
ical model for a new snake-like robot called NATRIX. This
robot has been designed to maintain its gaze on the water
surface and monitor sensible ecosystems. Inspired by real snakes,
the robot features rotating outer shells allowing to change the
level of immersion of each module and re-stabilize quickly the
robot. This new degree of freedom leads to an original tree-
like geometric structure. We present here the theoretical model
and the numerical solutions that allow us to simulate in real
time the dynamics of the robot on the water surface. After
reporting the benchmark of the simulator, we present surprising
preliminary results suggesting the possibility of capsizing for a
given frequency range.

I. INTRODUCTION

More than 70% of the world’s population lives near coastal
regions which induces great anthropogenic pressure on ecosys-
tem. Nutriment introduction and chemical pollution over the
past century has led to ecological collapse and destabilizing
biospheres. To face this challenge, marine surface robotics
is one of the most promising solutions [1, 2]. However,
unmanned surface vehicles (USV) with propellers can deeply
perturb sensitive ecosystems causing strong turbulence and
mud flocs resuspension [2, 3].

This point has motivated the development of bio-inspired
robots taking inspiration from the fishes or reptiles to limits
their impact on ecosystems, such as swimming snake-like
robots [4, 5, 6, 7]. Unfortunately, after twenty years of intense
development, snake-like robots have not been as successful as
expected due to severe impediments.

The stability of robots on the water surface is one of
the current limitations to their deployment. Because of their
slender morphology, these robots have a low axial inertia
and are consequently very sensitive to rolling perturbation
on surface [5, 8]. This rotational motion could significantly
perturbs the swimming performance as well as the vision
guidance. In the worst case, the robot can capsize. How can
these robots be actively stabilised? Yet, we don’t know.

To face this challenge, we proposed a new bio-inspired
snake robot called Natrix (see Fig. 1) that features new
technologies enabling active gaze control [9]. Natrix stands
for New Advanced Technoly for Robot Involved in the eX-
ploration and takes inspiration from cottonmouthes [8], semi-
aquatic snakes exhibiting an exceptional sense of balance at
surface.

To control the stability of the robot, those semi-aquatic
snakes modify in real time the immersion level of each
body section [8]. These three-dimensional deformations are
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composed of lateral and dorso-ventral bendings as well as
some torsion. However, we are still far from managing such
complexity of deformation. Moreover, we prefer to keep a
planar structure of the robot in order to preserve the efficiency
of the undulatory propulsion.

Therefore, we took as a starting point a serial structure,
which drives the lateral undulation, on which is superimposed
external shells. The rotation of the shells with triangular-like
cross-section can modify the level of immersion as well as the
rotational inertia without changing the planarity of the robot
[9]. Besides, our robot can lift its head out of the water thanks
to three degrees of freedom located in its neck (see Fig. 2).
The conception of the robot is still under development, and
preliminary tested has been performed (cf Fig. 1). Thanks to
these new improvements, we aim at producing new strategies
of control to stabilize the orientation and elevation of the head.
Before, we need to develop the dynamical model and the
corresponding simulator paving the way to active control of
the gaze.

In previous studies [9, 10], we developed quasi-static feed-
forward controllers enabling to deform the robot geometry
while keeping its gaze constant. Furthermore, we proved that
the static stability can be improved by exploiting the external
rotating shells. However, as soon as the robot starts moving in
real conditions, it naturally exhibits 3D oscillations around an
equilibrium due to its inertia. Such effect was not captured
by our previous simulator. Hence, the present paper aims
at extending our previous work by considering the complex
3D inertial dynamics of the multi-body system subject to
hydrostatic forces.

Fig. 1. First swimming test of Natrix on the water surface.

Here, we choose to develop our own simulator based on a
Newton-Euler recursive algorithm with an exact 3D geometric
representation of each module. Unlike previous serial swim-
ming robots [5, 11, 12], Natrix exhibits a tree-like structure
due to the rotating external shells, which requires to extend
the previous models [5, 11].

The most significant contributions of this paper are (I) a
theoretical extension of the Newton-Euler recursive algorithm
with a tree-like architecture coupling rotational and flexural



Fig. 2. Left: schematic diagram of the robot’s movements. Right: Illustration of the geometric parametrization of each module (see text for details)

motion; (II) the development of the simulator and its bench-
mark; and (III) a first investigation of stability for undulatory
swimming revealing a surprising capsizing phenomenon.

II. PARAMETRIZATION AND GEOMETRICAL MODEL OF
THE ROBOT NATRIX

The robot is composed of 14 rigid bodies all actuated by
one servomotor (see Fig.2), including a head, a neck and six
body modules each with an autonomous rotating outer shell.
The real robot features a passive tail (cf Fig.1) that is yet not
included in our model.

Hence, nine serial rigid bodies noted Bj form the robot
backbone (cf. Fig.2), with j = 0 the head, j = 1 the neck,
and j ∈ [2, 3, ..., 8] for the serial body modules. The outer
shells Bj,shell with j ∈ [2, 3, ..., 8] lead to a tree-like structure
mounted on the serial structure (see Fig. 3). The configuration
of each Bj is given by a local frame Fj of origin Oj (cf Fig. 2).
For the body module, this origin coincides with the center of
rotation in the servomotor whose rotation leads to the change
of orientation of the reference frame Fj . The motion of the
floating frame F0 located in the head characterises the solid
body motion of the robot with respect to the Galilean frame
FG.

The relative configuration of each module is determined by
the joint coordinates q ∈ S = (S1)14. The head and the
neck is connected by a two-axes servomotor with respective
angles amplitudes q0 (yaw) and q1 (pitch). To model it, we
introduce a mass-less body Bv associated to Fv that provides
the mechanical linkage. Then the joint with angle q2 connects
the neck to the rest of the body as illustrated on Fig.2. It is
worth noting that the pitching joints q1 and q2 allow for lifting
the head while keeping its orientation constant as a pan tilt for
camera. The planar undulation is provided by five yaw joints
(qj) with j ∈ [3, 4, ..., 7], while the local rolling motion of the
j-th shell is denoted (qr)j (j ∈ [2, 3, ..., 7]).

The configuration space of the robot is fully determined by
the couple (g0,q) ∈ C with C = SE(3)×S [9]. The element
g0 ∈ SE(3) characterizes the configuration of the head frame
F0 (i.e. the floating base) with respect to the surface frame
FG. Its homogeneous representation reads

g0 =

(
R0 p0

01×3 1

)
∈ SE(3) (1)

where R0(t) and p0(t) are the rotation matrix and the position
vector. Now, to locate each module along the backbone in the
global frame FG, we introduce its configuration gj given by

gj = g0
(
0gv

)
(vg1) ...

(
j−1gj

)
(2)

with j = [1, 2, ..., 8]. Reciprocally, the shell configuration
(gshell)j mounted on the j-th body can be computed thank
to the relative configuration hj where (gshell)j = gjhj .

TABLE I
DENAVIT–HARTENBERG PARAMETERS OF NATRIX

Frame αj [deg] ϕj [deg] aj [mm]
F0 to Fv 0 q0 100
Fv to F1 −90 q1 0
F1 to F2 90 q2 105

Fj−1 to Fj , j ∈ [3, 4, ..., 7] 0 qj 170
Fj to Fj,shell, j ∈ [2, 3, ..., 7] qr,j 0 85

Each relative configurations j−1gj and hj depends solely on
a corresponding joint component that is parameterized by the
modified Denavit–Hartenberg convention [13], given by

j−1gj , hj = cosϕj − sinϕj 0 aj

sinϕj cosαj cosϕj cosαj − sinαj −bj sinαj

sinϕj sinαj cosϕj sinαj cosαj bj cosαj

0 0 0 1


with the Denavit–Hartenberg’s parameters αj , ϕj , aj reported
in Tab.I (bj = 0).

III. DYNAMICAL MODEL AND COMPUTATIONAL ASPECTS

In most of the previous works (see for instance [5, 12]),
the motion of the robots has been assumed planar. Here, we
extend these models to 3D motion to include the heave, roll
and pitch. The 3D dynamical model of snake-like robots can
be written into the very general Lagrangian form [5, 11](

M0 Mq

MT
q M

)(
η̇0

q̈

)
+

(
β
βb

)
=

(
Wstat

wstat

)
+

(
Wdyn

wdyn

)
+

(
0
Γ

)
(3)

The left-hand side terms results from the momentum con-
servation while the right-hand side terms correspond to the
generalized external forces. In this paper, we will focus on
the first row that stands for the head dynamics. Its velocity
ηT
0 = (VT

0 ,ω
T
0 )

T ∈ R6 is expressed in the head frame F0,



and is given by the twist components of the skew-symmetric
matrix η̂0 ∈ se(3) where [14]

η̂0 = g−1
0 ġ0. (4)

The matrices M(q) ∈ R6×6 and Mq(q) ∈ R6×n in equation
3 correspond respectively to the generalized inertia of the
head (for a frozen body shape) and to the coupled inertia
between the head and the joints. The vector β(η0, q, q̇) ∈ R6

contains all the quadratic terms corresponding to the Coriolis
and centrifugal forces. The wrench Wstat(g0, q) ∈ R6 is the
resultant of the gravity and buoyancy forces that we call
hydrostatic wrench [15].

For the sake of generality, we have also included hydrody-
namic forces Wdyn that will not be considered in this study.
Unlike underwater locomotion, surface swimming requires
consideration of the influence of confined flow dynamics
and waves. A major effect is the dependence of the added
mass with respect to the body configuration gj and the beat
frequency [15]. Reciprocally, waves can lead to a drag. So
far, we do not know how to integrate such effects into concise
and real time models. Indeed, to our knowledge, there is no
theoretical model for 3D propulsion at the water surface that
takes into account surface dynamics. In a first approach, we
omit these complex effects that requiring experimental and
numerical investigations that are beyond the scope of this
study.

The robot motion is achieved by a position control of the
joint q(t) and we assume that the servomotors can provide the
expected joint trajectories (q, q̇, q̈). Consequently, the robot’s
dynamics consists in solving the first line of equation 3, i.e. to
compute η̇0 as a function of (g0,η0) and q and its derivative. It
is worth noting that we can also compute the required torque Γ
to drive the motion, all these computations realise the inverse
dynamic model.

Going into further details, the resolution of the inverse dy-
namics consists in updating the new head state (g0,η0)(t+dt)

from the current acceleration (η̇0)t depending on the state
(g0,η0)t and the current joint trajectories (q, q̇, q̈)t. First,
(η̇0)t is computed via a recursive Newton-Euler (N-E) algo-
rithm detailed in section IV. Then, the acceleration (η̇0)t is
integrated to obtain (η0)t+dt. Finally, the head configuration
(g0)t+dt is determined from (η0)t+dt by a geometric integrator
in which the rotation matrix R0(t) matrix (see equation 1) is
computed with unit quaternions [11].

The simulator has been developed in Python. The time-
integration is based on a fourth-order Runge-Kutta integrator
with a time step of typically 1ms. Gauss quadrature has been
used to spatially integrate the immersed volume and compute
the buoyancy wrench along the segments of robot. For a sim-
ulation corresponding to 1s physical time, the computational
time is 0.12s when the buoyancy is neglected, but increases up
to 1.23s when it is considered. Our calculation are performed
with a laptop with intel core i5-8365U CPU, 1.60 GHz and
16.0 Gb of xRAM.

IV. NEWTON-EULER ALGORITHM AND HEAD MOTION

The recursive Newton-Euler (N-E) algorithm was initially
applied to rigid manipulators [16], generalized to floating-
base systems [17] and extensively applied to bio-inspired
locomotion [18]. Unlike manipulators, the acceleration of
the first module of the robot, i.e. the floating base of the
locomotor, is not known and must be computed. We will
see that this point requires further theoretical developments.
Besides, Natrix differs from previous swimming robots [5] by
its additional external shells that lead to extra terms in the
recursions.

Fig. 3. Tree-like structure with the wrenches exerted on the linkages.

For standard N-E algorithms, the recursive inverse dynamics
is composed of three sequential recursive loops: two forward
loops and one backward loop. To compute the head accelera-
tion η̇0, only the first forward and backward loops are required.
The third one aims at computing the required torques provided
by the servomotors to produce q(t) and will not be reported
in the present paper.

In this process, we will need three recursive equations. First,
the velocity ηj and acceleration η̇j of j-th body Bj can be
recursively computed. Starting from j = 0 (the head) to the
last body, the velocity of each module is given by the recursive
equation

ηj = Adjgj−1
ηj−1 +Aj q̇j , (5)

with Aj = (0T
3 , e

T
j )

T , where ej is the unit vector along which
the j-th joint rotates. Similarly, the acceleration is transferred
from one module to another by the following recursion

η̇j = Adjgj−1
η̇j−1 + ζj +Aj q̈j . (6)

The term ζj comes from the time variation of the axis of
rotation and reads ζj = adηjAj q̇j ∈ R6. In both equation, we
have used the adjoint representation of the Lie group Adg ∈
SE(3) and the Lie algebra adηj

∈ R6×6 [14], that are defined
by

Adg =

(
R p̂R

03×3 R

)
, adηj

=

(
Ω̂j V̂j

03×3 Ω̂j

)
. (7)

From Newton’s law and Euler’s theorem, one can state a
recursive backward equation (from the last module) such that

Fj − AdT
j+1gj

Fj+1 − AdThj
Fj,shell + Fext,j

= Mj η̇j + βj(ηj , q̇j)
(8)



where the wrench FT
j = (fTj ,mT

j ) is composed of the linear
force fj and torque mj that are exerted by the body Bj−1 onto
Bj (see Fig.3). This equation holds only for the module along
the serial structure, not for the shell module. Reciprocally,
Fj,shell is the wrench exerted by the j-th local shell onto Bj ,
and Fext,j the wrench of external force (such as gravity).

In equation 8, the right-hand side terms correspond to the
inertial terms composed of the Coriolis and centrifugal forces
βj = −adTηj

ηj and Mj η̇j . Here, the local matrix of inertia
Mj expressed in Fj reads

Mj =

(
mjI3 −mjŜj

mjŜj JGj −mjŜjŜj

)
(9)

with Sj ∈ R3 the coordinate of center of mass in Fj , and JGj

the matrix of moment of inertia at the center of mass. For the
rest of the paper, we will lighten the notations by integrating
the external forces Fext,j in the Coriolis and centrifugal forces
by making the change of variable βj −Fext,j 7→ βj as in [11].

Before going into the details of the body index loops, we can
already identify in equations 5-8 the difficulty of our problem.
Indeed, our ultimate goal is to establish Newton’s law and
Euler theorem for the head module:

η̇0 = M−1
0

(
−β0 − AdT0g1F1

)
(10)

Ideally, the wrench F1 is deduced from the backward
recursive equation 8. However, at each recursion both terms Fj

and η̇j are unknown in equation 8, and Fj can’t be computed.
Unlike manipulators, the acceleration η̇j can’t be updated
in the forward recursion since we seek to compute η̇0. To
overcome this issue, we will reformulate the equations 8 and
10 in the recursive backward loop.

The Forward loop. In this first loop, we compute all the
quantities that are independent of η̇0. Hence, we start by
the geometrical model of the robot presented in section II.
Then, the velocities ηj can be updated thanks to equation 5.
At this step, some elements of the equation 6 and 8 can be
computed. Hence, the contribution of the servomotor to the
body acceleration given by ζj+Aj q̈j is estimated. Besides, the
Coriolis and centrifugal forces and the external forces stacked
in the vector βj depend solely on the robot velocities and the
configuration of each Bj with respect to FG (cf buoyancy and
gravity forces).

The backward loop. Since equation 8 can’t be directly used
under its current form, we propose to rewrite an analogue
equation relating Fj to the force and acceleration η̇j . To do
so, we introduce a modified inertia M∗

j and a generalized
force β∗

j to obtain the new momentum balance deduced from
equation 8

Fj = M∗
j η̇j + β∗

j (11)

Here, equation 6 has been written backward in order to
cascade sequentially the inertia and the Coriolis and centrifu-
gal forces from the last to the first body along the backbone.
Hence, at each new recursion the term Fj+1 will only depend
on the generalized inertia M∗

j+1 and force β∗
j+1. This process

leads to an algorithm (cf section 4.2 of [5]) where the terms

M∗
j and β∗

j are computed recursively along the body modules,
such that

M∗
j = Mj + AdT

j+1gj
M∗

j+1Adj+1gj
+ AdT

hj
M∗

j,shellAdhj .

β∗
j = βj + AdT

j+1gj

[
β∗
j+1 +M∗

j+1 (ζj+1 +Aj+1q̈j+1)
]

+AdT
hj

[βj +Mj (ζj +Ajq̈j)]shell ,
(12)

For j ∈ [2, 3, ..., 8], the bracket [−]shell contains all the
terms associated with the j-th shell. It is worth recalling
that the terms βj take into account the wrench exerted by
external forces. For the last modules without an external shell
(neck+head), we omit the components related to the shell.

Finally, one obtains the head acceleration given by

η̇0 = −(M∗
0)

−1 (β∗
0) , (13)

with M∗
0 positive definite and thus invertible. This equation

is the recursive version of the first row of the dynamic model
3 with M∗

0 = M. Note that the third (forward) loop can be
then performed to obtain the torques Γ, a step not reported
here.

If one is only interested in the head motion, a gain of
computation time can be obtained by computing directly the
inertia matrix and the net force exerted on the robot head
without performing the full backward loop. Hence, the inertia
matrix can be estimated by expanding the embedded sum in
equation 12

M = M0+
∑
j

AdT
jg0

MjAdjg0 +
∑
j

AdTjh0
(Mshell)jAdjh0

(14)
with jg0 and jh0 the relative configurations of the head frame
with respect to the body module and its shell. The second
inertia matrix takes the form

Mq =
(
AdT

vg0M
∗
vAv, ...,AdT

jg0
M∗

jAj , ..., [AdT
8h0

M∗
8A8]shell

)
(15)

Reciprocally, the pseudo-forces acting on the head in equa-
tion 3 are given by

β = β0 +

8∑
j=1

AdT
jg0

(
βj +M∗

jζj
)
+

8∑
j=2

AdT
jh0

[
βj +M∗

jζj
]
shell

(16)
An other advantage for computing the terms is to identify

the Lagrangian model of the robot and to perform linear
analysis around equilibrium configurations (see [9]).

V. BENCHMARKS AND PRELIMINARY RESULTS

A. Benchmarks

Before presenting our first results, we want to make sure
that physical quantities such as energy and momentum are
preserved. First, we will test whether the solid motion of the
robot (i.e. without deformation) preserves the total energy, a
quantity directly related to the accuracy of the temporal and
spatial integration schemes and the mechanical consistency of
the model. In the second case, we check the conservation of
momentum during the robot deformation.

Hence, we start with a set-up where all joint positions are
fixed and the head motion is simulated. Since the gravity and
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Fig. 4. Time-Evolution of the relative energy loss during the robot oscillations
around an equilibrium in a frozen body shape.

buoyancy forces are the only source of external forces in this
case, the system is conservative. The relative variation of total
energy (potential+kinetic) of the system is then calculated
to quantify the accuracy of the simulator. For the initial
conditions, we choose to initiate a small rolling angle from
various local equilibrium.

We have reported in Fig.4 a simulation where the robot
is frozen on a cosine-like shape (see for instance [9]). One
observes two time-scales of energy variation. The fastest time
scale is due to the physical oscillations of the robot around
the equilibrium configuration with typical value around 0.4s.
Note that the energy frequency is twice the motion frequency.
The slowest one is the energy decrease caused by the intrinsic
scheme inaccuracy such that the system looses 1% of its
initial energy after 10s, i.e typically 15 oscillations around an
equilibrium. This is a good trade-off between the simulation
speed and the energy conservation.
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Fig. 5. Time-Evolution of the displacement of the center of mass ∆CoM =
(∆CoMx,∆CoMy ,∆CoMz)T during 20s in FG with tf = 10s (see
equation 17)

For the second benchmark, no external force is applied
on the robot, and only the inertial terms are considered. In
this case, it is expected that the linear momentum of the
robot is conserved [19] during its body deformation. To verify
this property, we propose the following joint trajectory for a
uniform lateral bending qj(t) with time-evolution for an half-
period t ∈ [0, tf ]

f(t) =
1

160

(
0.25 t4 − 0.5 tf t

3 + 0.25 tf
2t2

)
(17)

and then f(t) 7→ −f(t − tf ) for the second half period t ∈
(tf , 2tf ]. The function f(t) is a polynomial function of time

that allows to start and finish at qj = 0 and q̇j = 0 after a
half period t = tf , then from tf to 2tf , we apply the reverse
motion. Here, we fix qr = 0. The robot will thus bend and then
recover its initially straight configuration. The corresponding
position of the center of mass is reported on Fig. 5 during the
robot bending. We observe that the displacement of the center
of mass remains small with 1 × 10−4m compared with the
robot length (L = 1.24m) and thus the linear momentum is
almost conserved.

B. Rolling motion vs undulatory swimming

In this section, we report the first study of the impact of
swimming onto stability by considering the coupling between
inertial effects and hydrostatic forces as the dominant effects.
More precisely, we analyse the rolling motion exhibited by
the robot when it performs the undulatory swimming. This
gait consists in propagating a lateral deformation wave from
the head to the tail, and can be generated by the following
body deformation law without torsion (qr = 0)

qj = Qeαsj . sin
[
2π

(nsj
L

− F.t
)]

for j = [0, 3, ..., 8] (18)

with n = 1.5 the relative spatial frequency, F the temporal
frequency, L the robot length, and Q the bending amplitude.
To model realistic snake swimming [20], we have considered
an exponential wave envelop with α = 0.1m−1. Here, t and sj
are the time and the curvilinear position of j-th module along
robot’s backbone at rest (sj = 0 is the snout).

First, we investigate the response of the robot for a fre-
quency range F ∈ [0.5 − 3]Hz and a constant amplitude
Q = 0.25 rad. The resulting rolling amplitude θx of the robot
head is determined from the Euler angles expressed in the
frame FG. Then the standard deviations are reported on Fig.6.

At low and high frequencies (black circles), the non-
linear response of the rolling motion (Figure A) increases
as the frequency approach the frequency range [1.5 − 2]Hz.
This behaviour suggests a resonant mechanism. Then, the
rolling motion exhibit beat, i.e. the superimposition of two
components with very close frequencies (Figure B, triangles)
similar to interference. Surprisingly, one observes an instability
(Figure C) in the frequency range F ∈ [1.33, 1.41]Hz. In this
regime, the rolling angle reaches an amplitude of 180 deg.
Since our measure is modulo 180 deg, this motion is actually
unbounded which implies that the robot capsizes. Concerning
the origin of the instability, the beats suggest the presence of
a progressive frequency locking of two components, which is
known to be a precursory element of an instability [21]. Yet,
we don’t know precisely the underlying mechanism of this
original instability displayed by the robot.

We then perform a parametric investigation of the
amplitude-frequency (Q,F ) plane. The instability is still
present for various amplitude Q (stars symbols) and always
occurs in a finite frequency range in between beat regimes
(dotted area). As the amplitude increases, there is a shift of this
band to higher frequencies. This figure is similar to stability
diagrams exhibiting Arnold’s tongues [22], confirming our
intuition that a synchronization phenomenon is at play. We
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may also notice that these frequency ranges are relevant
for swimming (see [5]) and can be explored by the robot.
Further investigations are required to better characterize this
phenomenon.

VI. CONCLUSION

In this paper, we have reported the design of new snake
like robot with a tree-like structure. We proposed a N-E
algorithm to solve the dynamics of this robot, and benchmark
the accuracy of our simulators. Yet, only the inertial, gravity
and buoyancy forces are taken into account. We demonstrated
that the robot can capsize in a narrow but relevant range of
frequency swimming. This preliminary result will motivate
a numerical and experimental parametric investigation of the
stability of the robot. Besides, we don’t know if the hydro-
dynamic effects such as wave damping or added mass, can
prevent this instability. Consequently, an identification of the
hydrodynamic coefficients is required to improve the simulator
paving the way to controllers stabilizing the robot gaze.
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