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1 Introduction

In a recent paper [1], we discussed stabilizing the dilaton, complex structure and Kähler moduli
in heterotic M-theory vacua that are consistent with presently well-supported Swampland
conjectures in the limit of large moduli fields. A major challenge for string theory is that it
predicts a vast landscape of potential vacua, most of which are incompatible with particle
physics experiments and cosmological observations. Brute force analysis of the full landscape
to identify which vacua are consistent with observations does not appear to be practical.
Furthermore, simpler approaches based on supergravity and effective field theory may also
be unproductive, since they admit an abundance of models that are incompatible with string
theory and quantum gravity, as suggested by Swampland studies [2–6]. A more modest
but potentially more productive approach has been to try to construct explicit models
directly from heterotic M-theory, following the highly non-trivial, elaborate methodology for
compactifying eleven to (3+1)-dimensions [7–10]. There is a large literature in this context

— mainly constructing the MSSM and other phenomenologically acceptable vacua on the
observable sector — see, for example [11–17]. However, an important requirement of any such
vacuum is to demonstrate the stability of the dilaton, complex structure and Kähler moduli.
This has been studied for a wide variety of superstring vacua in [18–23]. A careful and precise
protocol for doing this within the context of heterotic M-theory was recently presented in [1].
However, several of the mathematical and analytic procedures used require further in-depth
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presentation. Furthermore, it is important to show that it is possible to find at least one such
vacuum that has both phenomenologically and cosmologically acceptable low energy physics.

This paper is an attempt to satisfy both requirements. First, the mathematical and ana-
lytic subtleties used in [1] will be elucidated in detail. Secondly, using the protocol presented
in [1], a modest attempt to present an explicit model that satisfies all phenomenological and
cosmological constraints will be presented. This is a modest attempt because, even within
the formalism presented in [1], it is not currently known how to compute certain details
of compactification. For now, our only option is to parameterize these uncertainties based
on mathematically plausible constraints. As shown in [1], the results are instructive and
promising. In this paper, we demonstrate with an explicit example that it is possible (subject
to the uncertainties noted above) to construct models based on heterotic M-theory that
contain a stable vacuum with fixed moduli, a visible sector with realistic standard model
physics, and a vacuum energy consistent with ΛCDM cosmology.

The paper is organized as follows: section 2 reviews the general procedure described
in [1] for deriving the D-term and F-term contributions to the potential energy (VD and
VF , respectively), for the dilaton, complex structure moduli, and Kähler moduli in heterotic
M-theory. As argued in [1], the minima of the total potential satisfy VD = 0. What remains
is to minimize VF subject to this constraint. Section 3 describes the numerical procedure
used to search for minima of VF in which all the moduli are stabilized and to determine the
range of possible potential shapes as parameters are varied. Section 4 then demonstrates
that this construction can be enhanced with a visible sector that results in realistic particle
phenomenology and ΛCDM cosmology. For this example, we choose the heterotic M-theory
B − L MSSM model. Section 5 discusses some of the implications of this work for Swampland
conjectures and quantum gravity [2–6]; for related dark energy theorems for compactified
theories [24–26]; and for axion-based cosmology. We want to emphasize that the moduli
stabilized B − L MSSM vacua presented here are consistent with all presently well-supported
Swampland conjectures.

Finally, we want to point out that all results in this paper are calculated to leading order
in both the perturbative and non-perturbative superpotentials arising in the theory. That is,
although supersymmetry is spontaneously broken by gaugino condensation at the stabilized
moduli vacua presented, higher order perturbative corrections due to this supersymmetry
breaking–which are expected to be relatively suppressed–will be ignored.

2 Deriving the potential energy

A step-by-step procedure for deriving the potential energy V for the dilaton, complex structure
moduli and Kähler moduli in heterotic M-theory vacua where the hidden sector contains an
anomalous U(1) gauge group was presented in detail in [1]. For simplicity, the dimensions
of the relevant cohomologies of the compactification Calabi-Yau threefold X were chosen
to be h1,1 = h2,1 = 1. However, the results apply to the “universal” geometric moduli of
theories with h1,1, h2,1 > 1 as well.

In this section, we present a brief review of that procedure. First, one constructs the
F -term potential energy, VF . To do this, begin by considering the complex structure moduli
of za, a = 1, . . . , h2,1. For arbitrary h2,1 ≥ 1, the Kähler potential, K and superpotential,
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Wflux are well known [27, 28]. However, here, as in [1], we limit the analysis to Calabi-Yau
threefolds with h2,1 = 1. The resulting potential energy, Vflux, has a countably infinite set of
local minima with unbroken N = 1 supersymmetry. We, henceforth, will assume that the
complex structure modulus z is fixed to be in one of these supersymmetry preserving vacua.

The second step is to include the complex dilaton field S with the associated Kähler
potential KS . One then assumes that the commutant in E8 of the anomalous U(1) structure
group contains a non-Abelian group that becomes strongly coupled near the compactifica-
tion mass scale MU . This induces a non-perturbative superpotential WG through gaugino
condensation [29–32].

The third step, since h1,1 = 1, is to introduce the universal Kähler modulus T with the
known Kähler potential KT , as well as the associated non-perturbative “worldsheet” instanton
superpotential WT [33–38]. The superpotential results from wrapping a string around each
isolated, genus-zero, holomorphic curve Ci, the number of which is given by the Gromov-
Witten invariant. Summing over all such curves leads to the instanton superpotential of
exponential form WT = M3

U (peiθp) e−τT , where peiθp is the complex-valued “Pfaffian” factor
(with magnitude p and phase θp). The Pfaffian is a holomorphic function of vector bundle
moduli evaluated at each isolated curve Ci and then summed over all such curves [39, 40]. This
sum has been shown to be non-vanishing for a large number of heterotic string vacua [41–46]

— which we assume henceforth. The full F -term potential energy VF was then computed from
the combined superpotential W = Wflux + WG + WT using the associated Kähler potentials.

Next, a separate D-term potential VD, which is generated by the inhomogeneous trans-
formations of the S and T moduli “axions”under the anomalous U(1) structure group [47, 48],
must be added. These inhomogeneous transformations arise from the Green-Schwarz mecha-
nism [49] required to cancel the U(1) anomaly. VD, whose exact form can be found in [50],
is a non-negative function of s = Re S and t = Re T . VD is minimal, in fact precisely zero,
along a specific direction in field space, s = const. × t, where the proportionality constant is
a fixed function of various parameters of the chosen vacuum. Since the scalar fields along this
specific direction minimize VD, we will henceforth write them as ⟨s⟩ and ⟨t⟩ despite the fact
that ⟨s⟩ ∝ ⟨t⟩ have not yet been determined. By constraining s and t to lie along the “D-flat
direction” (referred to as setting the Fayet-Iliopouos term to zero or FI = 0), VD does not
break N = 1 supersymmetry. Hence, in the full potential energy V = VD +VF , supersymmetry
breaking is due entirely to gaugino condensation at the compactification scale MU [51].

Since the D-flat direction corresponds to an absolute minimum of VD, the search for the
minima of the combined potential V = VF + VD can be confined to values of S and T along
⟨s⟩ = const. × ⟨t⟩. Furthermore, the complex perturbations of S and T around any point
along the D-flat direction can be unitarily rotated to two new complex fields, ξ1 and ξ2, that
have canonical kinetic energy and are mass eigenstates. The mass of ξ1 is non-zero and given
by the anomalous mass manom of the U(1) vector boson. For choices of parameters and ⟨t⟩
for which manom ≥ MU , the U(1) vector superfield and chiral superfield ξ1 can be “integrated
out” of the low energy effective Lagrangian. However, the second diagonalized complex scalar
ξ2, with real and imaginary components η and ϕ respectively, has canonical kinetic energy and
much smaller masses, mη and mϕ, so they must be included in the low energy potential V .

After these steps, and using the fact that VD = 0 along the D-flat direction, minimizing the
total potential energy amounts to minimizing VF subject to the constraint ⟨s⟩ = const. × ⟨t⟩.
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More specifically, it was shown in [1] that the D-flat direction of VD is given by

⟨s⟩ = 0.230F 4/3β⟨t⟩ , (2.1)

where the coefficient F parameterizes the ratio of the length scale πρ of the fifth dimension
of the vacuum to five times v1/6, where v sets the scale of the volume of the Calabi-Yau
threefold, and β is the gauge charge on the observable sector. VF is then reduced to a
function of ⟨t⟩ and the fields ϕ and η:

VF (⟨t⟩, η̃, ϕ̃) = M4
U

F 4/3β⟨t⟩4 ⟨c⟩3 (0.230+1.15ϕ̃)(1+5.00ϕ̃)3

×
{

1.14 (A2+B2)
F 4/3

+1.32×10−6(
(1+19.0F 2/3β⟨t⟩(1+5.01ϕ̃)2+3

)
×exp[−19.0F 2/3β⟨t⟩(1+5.01 ϕ̃)]

−(2.43×10−3F −2/3)
(
1+19.0F 2/3β⟨t⟩(1+5.01 ϕ̃)

)
×exp[−9.48F 2/3β⟨t⟩(1+5.00 ϕ̃)]

×sgn(A)
√

A2+B2 cos[47.5F 2/3β⟨t⟩η̃− arctan(B

A
)]

+2.62×10−6 p
(
5.5+⟨t⟩(19.0F 2/3β(1+5.01 ϕ̃)+3τ(1+5.00 ϕ̃))

)
×exp[−(9.49F 2/3β(1+5.011 ϕ̃)+τ(1+5.00 ϕ̃))⟨t⟩]

×cos[(−47.5F 2/3β+5.00τ)⟨t⟩η̃+θp]

+4.36×10−7p2(
3+(3+2τ⟨t⟩(1+5.00 ϕ̃))2)

×exp[−2τ⟨t⟩(1+5.00 ϕ̃)]

−2.43×10−3 F −2/3 p(1+2τ⟨t⟩(1+5.00 ϕ̃))

×exp[−τ⟨t⟩(1+5.00 ϕ̃)]

×sgn(A)
√

A2+B2 cos[5.00τ⟨t⟩η̃+θp− arctan(B

A
)]

}

(2.2)

where η̃ = η/MP and ϕ̃ = ϕ/MP , MP = 1.22 × 1019 GeV is the four dimensional Planck
mass, and the unification scale is canonically fixed to MU = 3.15 × 1016 GeV [52, 53]. The
coefficients A, B and ⟨c⟩ are set by the choice of the N = 1 supersymmetric minimum of Vflux.

It was shown in [1] that

manom = 3.38 l MU /(Fβ1/2⟨t⟩3/2) , (2.3)

where l is an integer that defines the line bundle. As discussed above, our expression for VF

given in (2.2) is valid provided manom ≥ MU ; or, equivalently, VF given in (2.2) is only valid for

⟨t⟩ < ⟨t⟩bound ≡
( 3.38 l

Fβ1/2

)2/3
. (2.4)
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3 Potential energy minima

Before adding a visible sector to the heterotic M-theory construction above, we search for a
parameter range consistent with our physical approximations for which there exist stable or
long-lived metastable vacuum states. We have argued that the minima lie along the D-flat
direction, along which ⟨s⟩ is proportional to ⟨t⟩ and VD is at its absolute minimum and equal
to zero. What remains is to find the minima of VF (⟨t⟩, η̃, ϕ̃) in eq. (2.2) satisfying eq. (2.4) as
a function of the parameters. In principle, one could invoke a brute force numerical code for
this purpose. However, it is more instructive to take steps to simplify the problem before
turning to numerics. We then check our results by substituting our answers into the original
expression and confirming our conclusions.

The following approach proves to be effective:

1. Reduce the degrees of freedom by setting ϕ̃ = 0: by construction, ϕ̃ is a perturbation away
from any minimum we find along the ⟨s⟩ = const.⟨t⟩ D-flat direction, so it’s expectation
value at the minimum must be zero. Furthermore, as a check for consistency, we
compute the squared mass m2

ϕ of the perturbation ϕ̃ about any minimum we may find,
and show that it is always positive.

2. Simplify VF by ignoring numerically negligibly terms: of the six terms within the braces
in eq. (2.2), the numerical values of the second, third and fourth terms are negligible
compared to the rest because they include a suppression factor of the form e−α⟨t⟩, where
α is a large positive coefficient. The first term has no such exponential factor and the
fifth and sixth have exponential factors in which α is much smaller. Quantitively, for
parameters in the range of interest, the suppression of the second, third and fourth
terms compared to the other three terms is by a factor of 106 or more, so they can be
safely neglected for the purposes of identifying minima.

3. Reduce the degrees of freedom further by fixing η̃: among the remaining terms — the
first, fifth, and sixth in eq. (2.2) — the axion-like field η̃ appears only in the sixth term
in the argument of the cosine factor. If A > 0, η̃ has stable minima whenever this
argument is such that the cosine is unity; or, equivalently,

⟨η̃⟩ = 2πn + arctan(B/A) − θp

5.00τ⟨t⟩
(3.1)

where n ∈ Z is any integer. (If A < 0, the minimum of η̃ shifts by π.) Without loss
of generality, we will set A > 0 and n = 0 in our examples. It follows from eq. (3.1)
that the phase θp of the Pfaffian factor only shifts ⟨η̃⟩, and does not effect VF at the
minimum since the value of the cosine remains unity. Also, a shift in ⟨η̃⟩ does not affect
the masses of ϕ or η in this approximation.

4. For a given ⟨t⟩, determine if there is a Pfaffian factor p for which ⟨t⟩ is an extremum:
an extremum exists if (∂VF /∂⟨t⟩)|η̃ = 0, where the subscript signifies that η̃ is to be
fixed by eq. (3.1) after taking the derivative. Setting ϕ̃ = 0 and A > 0, dropping
the second, third and fourth terms and fixing ⟨η̃⟩ according to eq. (3.1), the potential
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reduces to

VF (⟨t⟩) = M4
U

0.230F 4/3β⟨t⟩4 ⟨c⟩3

{
1.14 F −4/3(A2 + B2)

−2.43 × 10−3 p F −2/3
√

A2 + B2 (1 + 2τ⟨t⟩) × exp[−τ⟨t⟩]

+ 4.36 × 10−7p2(
3 + (3 + 2 τ⟨t⟩)2)

× exp[−2τ⟨t⟩]
} (3.2)

One can see that VF is quadratic in p, and the same is true for its derivative:

∂VF

∂⟨t⟩
|η̃ = M4

U

F 8/3β⟨t⟩5 ⟨c⟩3

{
−19.8(A2 + B2)

+ p F 2/3
√

A2 + B2 exp[−τ⟨t⟩](0.042 + 0.07τ⟨t⟩ + 0.021τ2⟨t⟩2)

− p2 F 4/3 exp[−2τ⟨t⟩]10−4(0.91 + 1.1τ⟨t⟩ + 0.61τ2⟨t⟩2 + 0.15τ3⟨t⟩3)
}

.

(3.3)

Therefore, finding a value of p for which (∂VF /∂⟨t⟩)|η̃ = 0 entails solving a quadratic
equation for p, whose two roots depend on ⟨t⟩:

p1,2(⟨t⟩) = 10300
√

A2+B2eτ⟨t⟩

F 2/3(6+7.5τ⟨t⟩+4τ2⟨t⟩2+τ3⟨t⟩3)
[
0.042+0.07τ⟨t⟩+0.02τ2⟨t⟩2

∓ 10
√

−0.54−0.27τ⟨t⟩+0.25τ2⟨t⟩2+0.19τ3⟨t⟩3+0.045τ4⟨t⟩4
]

,

(3.4)

where the superscript 1 or 2 corresponds to minus or plus, respectively, in front of the
last term within the square brackets.

There is the restriction that the magnitude of the Pfaffian factor, p, must be real
and non-negative; or equivalently, the discriminant of the quadratic equation must be
non-negative. The discriminant has real coefficients and depends only on τ and ⟨t⟩,
both of which are real. VF can only have extrema at ⟨t⟩ if there are real combinations
of p, τ and ⟨t⟩ that satisfy one of the two root equations.

Because β and ⟨c⟩ only appear as pre-factors in the expression for the first derivative, the
existence or non-existence of extrema and the value of ⟨t⟩ at extrema (when they do exist)
does not depend on either parameter. Furthermore, after substituting the expressions
for p1,2(⟨t⟩) ∝

√
A2 + B2/F 2/3 into eq. (3.3), the first derivative of VF factorizes,

∂VF

∂⟨t⟩
|η̃ = g(A, B, β, ⟨c⟩, F ) × h(τ ⟨t⟩), (3.5)

where g is a positive function of its arguments. Since g can be factored out when the
first derivative is set to zero, the existence or non-existence of extrema depends only on
the properties of h. Notably, this means that, in addition to β and ⟨c⟩, the extrema do
not depend on A, B or F either. Any changes to A, B and F can be compensated by
changing p ∝

√
A2 + B2/F 2/3 to obtain a potential whose first derivative has the same

h and, hence, an extremum at the exact same value of τ⟨t⟩. Importantly, however, note
that the scalar expectation value ⟨t⟩ depends on the explicit choice of parameter τ .

– 6 –
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Figure 1. Plot of the two solutions p1(⟨t⟩) and p2(⟨t⟩) (the blue and gold curves, respectively) as a
function of ⟨t⟩ for τ = 3.0 and the parameter values given in eq. (3.6). The two semi-infinite curves
join together at a point at ⟨t⟩ = tcrit to form a “combined blue-gold curve.” The dotted rectangle
shows the region illustrated in the enlargement in figure 2 shown below.

Although they do not affect the existence or locations of extrema, the parameters
A, B, β, ⟨c⟩, F do affect details like the magnitude of VF at an extremum and the
masses of ϕ̃ and η̃. For our examples throughout this paper we take, without loss
of generality,

A = 1/3 , B = A/
√

3 , ⟨c⟩ = 1/
√

3 and F = 1.5 , (3.6)

choices that were discussed in ref. [1]. (Note, however, that in discussions below where
the range of Pfaffian parameter p is enlarged, parameter F will be allowed to vary). We
also chose

l = 1 and β = 6.42 (3.7)

for reasons that will be discussed in the next section. Note from (2.4) that for F = 1.5
and l = 1, β = 6.42, the upper bound on ⟨t⟩ is given by

⟨t⟩bound = 0.925 . (3.8)

Figure 1 (see also figure 2) is a plot of the exact numerical solutions (keeping all terms
in VF rather than our approximation) for the roots p1(⟨t⟩) and p2(⟨t⟩) for τ = 3.0. For
⟨t⟩ < tcrit, the discriminant is negative and p1,2 both have unphysical non-zero imaginary
parts; so there can be no extrema at ⟨t⟩ < tcrit. For ⟨t⟩ > tcrit, the discriminant is
positive and both roots are real. For ⟨t⟩ = tcrit, the discriminant is zero and so the two
roots coincide and are real.
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Draw a vertical line on figure 1 beginning at any value of ⟨t⟩ > tcrit. Clearly, that
vertical line will intersect both the gold and blue curves. For there to be an extremum
at the chosen value of ⟨t⟩, the Pfaffian factor must equal the value of p at one of those
two intersections.

Alternatively, for any given p, draw a horizontal line on figure 1 at that value of p and
note the intersections with the blue and gold curves. Each corresponds to an extremum
of VF at the value of p and t corresponding to the intersection. By inspection of figure 1,
one can see that, depending on the value of p, the horizontal line can have zero, one or
two intersections, which means that VF can have zero, one or two extrema.

5. Determine which extrema are minima vs. maxima: by computing the sign of the second
derivative (∂2VF /∂⟨t⟩2)|η̃ for the values of p and ⟨t⟩ corresponding to the intersections
between horizontal lines of constant p and the blue and green curves in figure 1, one
can distinguish the extrema.

It is straightforward to show that any intersections with the gold curve correspond to
values of p and ⟨t⟩ for which (∂2VF /∂⟨t⟩2)|η̃ is positive, that is, a minima of VF . It is
also straightforward to show that VF at such minima is always negative.

Intersections with the blue curve are a more complicated story. Intersections with the
blue curve correspond to minima of VF if and only if the slope of the blue curve is
negative at the intersection. This is the case only if the value of ⟨t⟩ at the extremum
lies between tcrit and the minimum of the blue curve, which we will label tcross — see
figure 2. That is, intersections with the blue curve at ⟨t⟩ < tcross correspond to minima
of VF . However, intersections with the blue curve at ⟨t⟩ > tcross correspond to maxima
of VF . An intersection at precisely ⟨t⟩ = tcross corresponds to an inflection point of VF .

If the intersection corresponding to a minimum of VF lies sufficiently close to ⟨t⟩ = tcrit,
the value of VF is negative; if the intersection lies sufficiently close to ⟨t⟩ = tcross, the
value of VF is positive. Somewhere in between, there must be a value — which we
denote by tV =0 — such that, if the intersection lies at ⟨t⟩ = tV =0, VF must be zero.

To summarize: we have explained that, for fixed τ , every intersection between a
horizontal line and a blue or gold curve in figure 1 at (p, ⟨t⟩) corresponds to an extremum
of VF for that value of the Pfaffian factor and for that value of ⟨t⟩. Intersections with the
gold curve always correspond to minima with negative vacuum density VF . Intersections
with the blue curve for which ⟨t⟩ lies between tcrit and tcross also correspond to minima,
but the vacuum density can be negative, zero or positive. Intersections with blue curve
for which ⟨t⟩ is greater than tcross are maxima.

6. Classify the possible potential shapes: figure 2 is an enlargement of figure 1 that can be
used to classify the qualitatively different shapes that VF (⟨t⟩) can take. We begin with
the assumption that there are sufficiently many different compactifications possible that
the Pfaffian factor p can take values over a substantial nearly continuous range. A given
choice of p lies in one of the three colored bands (from top to bottom: blue, purple,
and green) or precisely on the red line dividing the blue and purple bands or precisely
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Figure 2. Enlargement of the dotted rectangular region of figure 1 showing the two solutions p1(⟨t⟩)
and p2(⟨t⟩) (the blue and gold curves, respectively) as a function of ⟨t⟩ for τ = 3.0 and the parameter
values given in eq. (3.6). Note that the abscissa begins on the left at tcrit, which is equal to 0.42 in
this example. The shape of the potential VF (described as Types 1–5 in the text) depends on the
value of the Pfaffian factor p. The shape can be identified by drawing a horizontal line at the given
value of p and determining if it lies in the blue shaded region (Type 1); the purple shaded region
(Type 2); or in the green shaded region (Type 3). If the horizontal line of constant p lies precisely on
the line dividing the purple and green bands, the shape is of Type 4; if the line lies precisely on the
red line dividing the blue and purple regions, the shape is of Type 5.

on the line dividing the purple and green bands (which has no special marking). Each
of these five possibilities corresponds to a different type of potential shape.

Based on the discussion above of the different extrema, the different shapes take the
following forms:

Type 1. The horizontal line lies in the blue shaded region so it intersects the combined
blue-gold curve twice. The intersection on the left (at the smaller value of ⟨t⟩) is either
somewhere on the gold curve or it is on the blue curve with tcrit < ⟨t⟩ < tV =0. In either case,
based on the discussion above, the value of ⟨t⟩ at the intersection is the location of a minimum
of the potential with VF < 0 (negative vacuum density). There is also an intersection at
a large value of ⟨t⟩ at a point on the blue curve where the slope is positive. Based on the
discussion above, this corresponds to a maximum of the potential with VF > 0. A more
detailed study of VF shows that it remains positive at larger values of ⟨t⟩ and asymptotes
to zero as ⟨t⟩ → ∞. The detailed expression for VF in eq. (2.2) is not precisely accurate
beyond ⟨t⟩ = ⟨t⟩bound = O(1) in eq. (2.4), but the asymptotic behavior is correct. The blue
curve marked “1” in figure 3 exemplifies the generic shape for cases of Type 1. Note that
the negative minimum is a global minimum.
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Figure 3. Range of potential shapes corresponding to different values of p for fixed τ = 3.0, and the
parameter values given in eqs. (3.6) and (3.7). It follows that ⟨t⟩bound = .925. Each potential shape
corresponds to drawing a horizontal line of constant p in figure 2, where p = (250, 200, 175, 192, 210)
for potential Types 1–5 respectively, as indicated by the numbers inside the circles. The colors of the
curves match the colors of the regions in figure 2 in which the horizontal line lies. For example, the
blue curve corresponds to p = 250 which lies in the blue shaded region of figure 2 and corresponds to
Type 1.

Type 2. The horizontal line of constant p lies in the narrow purple shaded region. The
horizontal line intersects the blue curve twice, once where the slope is negative at small ⟨t⟩
(which corresponds to a minimum) and once where the slope is positive at large ⟨t⟩ (which
corresponds to a maximum). The minimum occurs at ⟨t⟩ > tV=0, which means it has positive
vacuum density, VF > 0, and is a metastable minimum. The solid purple curve marked “2”
in figure 3 exemplifies the generic shape for cases of Type 2.

Type 3. The horizontal line of constant p lies in the green shaded region. It does not
intersect either the blue or gold curves, so the potential has no extrema. The green curve
marked “3” in figure 3 is a representative of Type 3.
Then there are two special cases which (for fixed τ) occur for unique values of p:

Type 4. The horizontal line of constant p lies on the border between the purple and green
shaded regions and passes through tcross. The slope of the blue curve at tcross is zero, so
corresponds to neither a maximum or minimum of VF . Instead it corresponds to an inflection
point, as illustrated by the dashed purple curve marked “4” in figure 3.

Type 5. The horizontal line of constant p lies on the red line, the border between the blue
and purple shaded regions that passes through tV =0 where the slope of the blue curve in
figure 2 is negative. The negative slope means that value of ⟨t⟩ at that intersection corresponds
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manom mϕ mη

blue (Vmin < 0) 1.0 × 1017 GeV 1.7 × 1015 GeV 1.7 × 1015 GeV
red (Vmin = 0) 9.7 × 1016 GeV 1.2 × 1015 GeV 1.5 × 1015 GeV

purple (Vmin > 0) 9.0 × 1016 GeV 9.2 × 1014 GeV 1.4 × 1015 GeV

Table 1. The values for manom and mϕ, mη at the minima of the blue, red and purple curves in
figure 3.

to a minimum and the fact that it occurs at ⟨t⟩ = tV =0 means that vacuum density vanishes,
VF = 0. The red line has a second intersection on the right where the slope of the blue curve
is positive, corresponding to a maximum. The overall potential shape is the red curve marked
“5” in figure 3. In this case, similar to Type 1, the minimum is a global (stable) minimum.

In the examples presented here, with τ = 3 and the other coefficients specified in eqs. (3.6)
and (3.7), we have explicitly checked at the minimum of each of the blue, red and purple curves
of figure 3 that the following conditions are satisfied; first, manom > MU = 3.15 × 1016 GeV
and second, by computing the second derivative of the potential in eq. (2.2), that the masses
of the ϕ and η fields are more than an order of magnitude below MU , consistent with our
assumptions in deriving the expression for VF . See the results in table 1. Ref. [1] gives more
examples and includes numerical details about the masses.

Finally, recall from the caption of figure 3 that the potential VF is calculated for
the fixed parameter values given in eqs. (3.6) and (3.7). Specifically note that F = 1.5.
As mentioned above, it follows from (2.4) that ⟨t⟩bound = 0.925. In addition, we have
chosen the parameter τ = 3. Each of the five curves shown in figure 3 corresponds to a
different value of p. Specifically, the potentials for the curves of Type 1–5 correspond to
p = (250, 200, 175, 192, 210) respectively. For concreteness, we limit the discussion here to
the curve of Type 5 with p = 210; that is, the red curve with minimum at ⟨t⟩ ≃ 4.3 and
VF = 0. The generic results, however, apply to each of the five curves. As discussed in detail
in [1], it is important to be able to extend the single value of p = 210 to a wide range of
values for p, all associated with the red curve with minimum at ⟨t⟩ ≃ 4.3 and VF = 0.

This extension of the value of p to a wide range of values is important for the following
reason. As discussed in our earlier paper [1], other than the fact that the Pfaffian must
be some holomorphic polynomial of the associated B − L MSSM heterotic vector bundle
moduli, the exact form of this expression is presently unknown. Furthermore, the associated
bundle moduli Kähler potential is also unknown. It follows that, at the present time, the
vacuum values of these moduli and, therefore, the value of the Pfaffian parameter p cannot
be calculated from first principles. Hence, we have simply assumed that parameter p takes
the value necessary in order to stabilize the associated moduli–as in figure 3. However, since
the value of p cannot at present be explicitly computed, it is a great interest to know if the
same moduli stabilization can, in fact, occur over a wide range of p.

As shown in [1], this can be accomplished as follows: recall from section 1, that if
one keeps all parameters, including τ , fixed — but allows F to vary — then the values
of ⟨t⟩ at both extrema of the red curve do not change if one appropriately compensates
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by adjusting p. With this in mind, one first notes from figure 3 that the local maximum
of the red curve occurs approximately at ⟨t⟩max = 0.70. Second, let us increase the value
of parameter F from F = 1.5 to a value Fmax such that ⟨t⟩bound = ⟨t⟩max = 0.70. Since,
⟨t⟩bound ∝ 1/F 2/3 from (2.4) and the value of ⟨t⟩bound = 0.925 for F = 1.5, it follows that
Fmax = 2.28. Similarly, it was shown above that p ∝ 1/F 2/3. Therefore, when F is increased
so that ⟨t⟩bound = ⟨t⟩max = 0.70, it follows that the associated Pfaffian parameter decreases
to p = 158. That is, for the red curve, adjusting F so that 0.70 ≤ ⟨t⟩bound ≤ 0.925, the
range of parameter p varies over 158 ≤ p ≤ 210.

In fact, one can further extend the range of p by going beyond the discussion in [1] as
follows. Instead of increasing the value F , let us consider the effect of decreasing F . One
can show, using the results at the beginning of section 3, that decreasing the value of F will
increase the value of the masses of scalar fields ϕ and η at the minima of each of the curves
in figure 3, including the red curve. The values of these masses evaluated for F = 1.5 are
shown in table 1. Note that each mass is more than an order of magnitude smaller than
MU = 3.15 × 1016GeV. Let us now decrease the value of F to Fmin until at least one of these
masses becomes exactly MU /10. We find that this occurs for Fmin = 0.8. It then follows from
the above discussion that the value of p increases to p = 320. We conclude that over the range

Fmin = 0.8 ≤ F ≤ 2.28 = Fmax =⇒ 320 ≤ p ≤ 158 . (3.9)

Therefore, we have shown that the red curve with minimum at ⟨t⟩ ≃ 4.3 and VF = 0 can
be obtained for a greatly increased range of p.

As stated above, all of the examples presented above in figure 3 and table 1 were evaluated
using the fixed parameters given in (3.6) and (3.7), as well as taking τ = 3. The value of
F in (3.6) was then allowed to vary so as to extend the range of the Pfaffian parameter
p. However, it is of interest to ask what happens if, in addition to varying F , one allows
the value of τ to vary as well. As above, we will limit our discussion to the red curve with
minimum at VF = 0, although similar calculations can be carried out for the blue and purple
curves as well. Using the full expression for the VF potential presented in (2.2), evaluated for
the fixed parameters A, B, ⟨c⟩ and l, β given in (3.6) and (3.7) respectively, we numerically
plot the allowed range for F versus an arbitrary choice of τ . The results are presented in
figure 4. Note that the results in (3.9) are shown as the dotted red vertical line at τ = 3. As
a second example, it follows from figure 4 that at τ = 8 the allowed values of F are given by

Fmin = 3.7 ≤ F ≤ 10 = Fmax =⇒ 115 ≤ p ≤ 60 , (3.10)

where the range of the Pfaffian parameter p is computed exactly as discussed for the τ = 3
case above.

We conclude that by varying both F and τ over their physically allowed ranges, the
value of Pfaffian parameter p that stabilizes the red curve in figure 3 can take values from
p = 60 and smaller to as large as p = 320 and beyond. This greatly improves the likelihood
that a future explicit calculation of p will correspond to the stabilized value of the red curve
in figure 3–and similarly for the remaining four curves in figure 3.

Finally, we note that since the range of parameter p leading to a specific vacuum (such
as the red curve of figure 3) has been shown to be rather large–and higher order perturbative
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Figure 4. For Type 5 potentials with V = 0 at the minimum (that is, the red curve in figure 3), with
the A, B, ⟨c⟩ and l, β parameters fixed as in (3.6) and (3.7) respectively, the gray region indicates
the range of τ and F that satisfies all constraints: namely, manom ≳ MU ; the masses of the ϕ and
η fields are each at least an order of magnitude less than MU ; and ⟨t⟩ at the local maximum of the
potential satisfies ⟨t⟩max ≤ ⟨t⟩bound. The gray region can be continued to larger values of τ and F ,
as shown by the red arrows. The red star indicates the Type 5 potential in figure 3 with τ = 3,
F = 1.5 and p = 210. For the same value of τ but different values of F , p can be adjusted so that the
minimum of the potential remains at V = 0 and at the same value ⟨t⟩. For example, in the case of the
vertical dashed line at τ = 3, as F changes from 0.8 to 2.3, p ranges from 320 to 158, as indicated in
the figure. This shows that a given type of potential can be obtained for a large range of p. As τ

increases, the range of F satisfying all constraints also increases. For larger values of F , the value of
the Pfaffian parameter is smaller. As a result, the value of p decreases moving up and to the right in
the gray region.

corrections due to this supersymmetry breaking should be relatively suppressed, the value of
parameter p is expected to be adjustable to account for any perturbative corrections to the
potential. Furthermore, since higher order perturbative corrections to potential V should
be relatively small, we expect the value of V associated with the adjusted parameter p to
remain of the same sign–or very close to the same sign–as in the leading order case.

4 Heterotic B − L MSSM example

What remains is to connect the construction above with a visible sector such that the
combination produces realistic particle phenomenology and cosmology. As a concrete example,
we have selected the heterotic M-theory B − L MSSM model, using it to define the universal
moduli, to give the exact functional form for various parameters and to fix the gauge charge
β on the hidden sector. This choice should be viewed as a proof of principle, to show that
complete realistic constructions are possible and to explore their observational consequences.
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This choice has the advantage that its details have been extensively elaborated — see, for
example [13, 52, 54, 55].

4.1 The full h1,1 = h2,1 = 3 theory

The heterotic M-theory B − L MSSM theory was developed in a number of papers. Relevant
to the present paper is the following. The B − L MSSM vacuum has an observable sector
and a hidden sector separated by a fifth-dimension and is compactified on a specific Schoen
Calabi-Yau threefold X. This threefold has cohomology h1,1 = h2,1 = 3. Hence, in addition
to the dilaton S, there are three real Kähler moduli ai, i = 1, 2, 3, three complex structure
moduli za, a = 1, 2, 3 as well as a real modulus R̂ in the fifth dimension.

The three complex structure moduli are defined to be

za = ra + ica a = 1, 2, 3 (4.1)

with the associated Kähler potential

κ2
4K = −ln[2i(G − Ḡ) − i(za − z̄a)( ∂G

∂za
+ ∂Ḡ

∂z̄a
)] (4.2)

where
G = −1

6 d̃abcz
azbzc (4.3)

and d̃abc are the intersection numbers of the specific Shoen threefold X.
The dilaton and the three complex Kähler moduli are define as

S = V + iσ , T i = ti + iχi i = 1, 2, 3 (4.4)

where
V = 1

6 d̃ijkaiajak, ti = R̂

V 1/3 ai (4.5)

and the associated Kähler potentials are given by

κ2
4KS = −ln(S + S̄)

κ2
4KT = −ln

( 1
48 d̃ijk(T i + T̄ i)(T j + T̄ j)(Tk + T̄ k)

)
.

(4.6)

The B − L MSSM has a line bundle L = OX(l1, l2, l3) with an anomalous U(1) structure
group in its hidden sector. It was shown in [47] that under this U(1) transformation the
dilaton and Kähler moduli, although carrying no U(1) charge, transform inhomogeneously as

δθS = i2πϵ2
Sϵ2

R(−1
2β

(2)
i li)θ ,

δθT i = −i2ϵSϵ2
Rliθ .

(4.7)

Here β
(2)
i is the gauge charge on the hidden sector. As discussed in [51], the embedding of

the U(1) structure group into the hidden sector E8 has been chosen so that the a coefficient
that generically would appear in (4.7) has been set to unity. For specificity, following [51],
we henceforth choose the line bundle to be

L = OX(2, 1, 3) , (4.8)
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Figure 5. Viable “magenta” region of Kähler moduli space that satisfies all phenomenological and
mathematical constraints for the line bundle L = OX(2, 1, 3).

although many other line bundles satisfy all constraint conditions. For the specific Schoen
Calabi-Yau threefold X and the SU(4) holomorphic vector bundle chosen in the observable
sector, it was shown in [51], absorbing the five-brane class into the hidden sector, that

−β
(2)
i = β

(1)
i =

(2
3 , −1

2 , 4
)

. (4.9)

Combining (4.8) and (4.9), it follows that the −1
2β

(2)
i li factor in (4.7) is given by

−1
2β

(2)
i li = 6.42 . (4.10)

Finally, within the context of this h1,1 = h2,1 = 3, B − L MSSM theory, it was shown
in [51] that all mathematical and phenomenological constraints are satisfied by a well-defined,
but constrained, subspace of the three-dimensional real Kähler moduli space. Choosing a
specific gauge, called unity gauge, defined by

ϵ′
SR̂

V 1/3 = 1 , (4.11)

it was found that all constraints will be satisfied for real Kähler moduli in the so-called
“magenta” surface shown in figure 5.

Scanning over this surface and using V in (4.5), we find that the real scalar field s = V

is confined to the range

s ∈ [0.55, 1.22] . (4.12)

It follows from definition (4.11) of unity gauge, that

R̂ = s1/3

ϵ′
S

. (4.13)
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Using the result in [1] that

ϵ′
S = 0.690F 4/3 , (4.14)

where F is a free real parameter in the range 0.6 ≲ F ≲ 2, it follows that the real field
R̂ is confined to the range

R̂ ∈ [ 1.19
F 4/3 ,

1.55ß
F 4/3 ] . (4.15)

4.2 Reduction to the universal complex structure and Kähler moduli

In order to use the h1,1 = h2,1 = 1 results of the previous sections within the context of the
B − L MSSM, it is necessary to restrict the analysis to the “universal” complex structure
and Kähler moduli, which are defined as follows.

Recall that the Kähler potential for the three complex structure moduli za,a = 1, 2, 3
is given by (4.2) with

G = −1
6 d̃abcz

azbzc . (4.16)

The universal complex structure modulus z is defined by setting

d̃z3 = 1
6 d̃abcz

azbzc (4.17)

for an arbitrary integer d̃. It follows that

G = −d̃z3 (4.18)

and, hence, for the universal complex structure modulus

κ2
4K = −ln[id̃(z − z̄)3] , (4.19)

where
z = r + ic . (4.20)

Similarly, recall from (4.6) that the Kähler potential for the three Kähler moduli T i,
i = 1, 2, 3 is given by

κ2
4KT = −ln

( 1
48 d̃ijk(T i + T̄ i)(T j + T̄ j)(T k + T̄ k)

)
(4.21)

Using the results in (4.5), it follows that this Kähler potential can be re-written as

κ2
4KT = −3ln

(
R̂

)
. (4.22)

Therefore, we should define the universal modulus T to be such that

κ2
4KT = −3ln

(
T + T̄

)
= −3ln

(
R̂

)
(4.23)

and, hence, that

T = t + iχ , t = R̂

2 . (4.24)
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Note that the definition of unity gauge in (4.13) now becomes

t = s1/3

2ϵ′
S

. (4.25)

Also, it follows from (4.15) that t along the magenta surface is restricted to lie in the range

t ∈ [0.594
F 4/3 ,

0.774
F 4/3 ] . (4.26)

Now let us compare the anomalous inhomogeneous transformation of S in the h1,1 =
h2,1 = 3 case given in (4.7) with the same transformation of S in the h1,1 = h2,1 = 1 case
presented in [1, 48] and given by

δθS = i2πϵ2
Sϵ2

R(βl)θ , (4.27)

where L = O(l) defines a “universal” line bundle. Using (4.10), this leads to the identi-
fication that

−1
2β

(2)
i li = βl = 6.42 . (4.28)

With these definitions of the universal complex structure and Kähler moduli, as well as
the definition of the dilaton S given in (4.4), we can now apply all the results in [1] — and
outlined in the previous sections — to the B − L MSSM vacuum.

It is of interest to know whether any of the points on the magenta surface also satisfy
the condition that FI = 0. As shown in ref. [1], FI = 0 if and only if

s = ϵ′
Sβ

3 t = 0.230F 4/3β t . (4.29)

Combining this with the unity gauge definition (4.25), we find that there is a unique point
— which we denote with a hat — that is both on the “magenta” surface and satisfies the
FI = 0 condition. It is given by

ŝ = 0.068β3/2 , t̂ = 0.296
F 4/3 β1/2 . (4.30)

Comparing ŝ to the allowed range for s given in (4.12), we find that, for the “magenta”
surface to be consistent with FI = 0, the coefficient β must lie in the range

4.03 ≤ β ≤ 6.85 . (4.31)

It is clear from (4.28) that this will be the case only if one takes

l = 1 , β = 6.42 . (4.32)

Therefore, the point in the “magenta” surface that simultaneously satisfies the D-flatness
condition FI = 0 is given by

ŝ = .068(6.42)3/2 = 1.11 (∈ [0.55, 1.22]) ,

t̂ = 0.296(6.42)1/2

F 4/3 = 0.749
F 4/3 (∈ (0.594

F 4/3 ,
0.774
F 4/3 ]) .

(4.33)

Note that ŝ and t̂ are in the allowed range for any choice of F . We will refer to the geometric
moduli ŝ, t̂ as the “physical point”.
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manom mϕ mη

blue (Vmin < 0) 9.7 × 1016 GeV 1.54 × 1015 GeV 1.6 × 1015 GeV
red (Vmin = 0) 9.7 × 1016 GeV 1.3 × 1015 GeV 1.6 × 1015 GeV

purple (Vmin > 0) 9.7 × 1016 GeV 1.3 × 1014 GeV 1.6 × 1015 GeV

Table 2. The values for manom and mϕ, mη at the minima of the blue, red and purple curves in
figure 6.

4.3 Stabilizing the universal geometric moduli at the physical point

Now we come to the crucial question: can the B − L MSSM theory described in this section
have a moduli potential with stable or metastable minima, as described in the previous section,
such that the resulting vacua produce realistic particle phenomenology? The challenge is
that the B − L MSSM theory imposes additional constraints.

As we have explained, in the B − L MSSM, once one has chosen to work in unity
gauge (4.25), there is a limited “magenta” region in Kähler moduli space that satisfies all
mathematical and phenomenological constraints. Furthermore, within that limited region,
there is a unique point that is also consistent with the requirement that the Fayet-Iliopoulos
term FI = 0. Given the fact that the B − L MSSM requires that l = 1 and β = 6.42, it
follows from (4.33) that the vacuum must be located at ⟨t⟩ = t̂ = 0.749

F 4/3 , where thus far we
have limited parameter F to the range .6 ≲ F ≲ 2. We note that in all examples in the
previous section, we chose l = 1 and β = 6.42 — see (3.7) — knowing that this would be
necessary in the B − L MSSM example. However, in the sequence of potentials shown in
figure 3, the minima were marked with small colored dots to make it apparent that they
occurred at different values of ⟨t⟩, so at most one of the minima could lie at ⟨t⟩ = t̂. In fact,
for the parameters chosen for figure 3, specifically F = 1.5, none of them did.

However, previously we fixed all parameters except for one, p, which was allowed to vary.
This limited our flexibility. Our question now becomes: is it possible to keep all parameters
fixed (including F ) except for two, τ and p, and to adjust these two so that the minima for
each of the three types of potentials with stable or metastable minima (Types 1, 2 and 5)
occur at exactly the same value of ⟨t⟩, namely at ⟨t⟩ = t̂ = 0.749

F 4/3 , as required for consistent
particle phenomenology, and FI = 0 (recall that potential Types 3 and 4 have no minima).
Figure 6 demonstrates that the answer is yes.

For the analysis associated with figure 6, we once again choose the same parameters
as those used in figure 1 — that is, the coefficients given in (3.6) and (3.7). We emphasize
that in (3.6), the parameter F is chosen to be F = 1.5. It then follows from (2.4) that
⟨t⟩bound = 0.925 and from (4.33) that t̂ = 0.436. In figure 6, the potential VF is plotted as a
function of ⟨t⟩ for various choices of (τ, p), with the allowed range restricted to 0 ≤ ⟨t⟩ ≤ 0.925.
Once again, there are potentials whose minima have negative, zero or positive vacuum energy
density. This time, however, the minima all occur at ⟨t⟩ = t̂ = 0.436, proving that including
all of the B − L MSSM constraints does not rule out any of the three categories of minima.

As discussed in [1], it is essential to compute the masses of the scalar fluctuations ϕ and
η at the minima of each curve in figure 6, and to show that they are substantially smaller
than the compactification scale MU = 3.15 × 1016 GeV. The results of these calculations for
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Figure 6. Examples of potentials whose minima have negative vacuum energy density (blue curve,
Type 1), positive vacuum energy density (purple curve, Type 2) and zero vacuum energy density
(red curve, Type 5) and which all satisfy the B − L MSSM “magenta” and the FI = 0 constraint
⟨t⟩ = t̂ = 0.749

F 4/3 = 0.436 at their minima. For this figure, we chose all parameters to be those given
in (3.6) and (3.7) for each of the three potentials — leaving two free parameters, τ and p. Both τ

and p were varied to keep the minima at ⟨t⟩ = t̂ in all three cases, which ensures consistent particle
phenomenology and FI = 0 at each vacuum of the stabilized moduli. Specifically, the values of τ and
p are: (τ = 2.93, p = 252) for Type 1; (τ = 3.1, p = 204) for Type 2; and (τ = 3.03, p = 210) for
Type 5.

the blue, red and purple curves, as well as the value of the manom, at t̂ = .436 are shown
in table 2. For each of the three curves, the masses of ϕ and η are substantially below MU

and, hence, they are included in the low energy effective theory.

4.4 Enhancing the range of Pfaffian parameter p

As presented in the caption of figure 6, for a given value of τ , each curve has its shape, and,
hence, its extrema determined by a fixed value of p. For example, the red curve has τ = 3.03
with a fixed value of p = 210. As discussed in detail in section 6 of [1], it is of importance,
for any specific curve, to be able to extend the range over which the Pfaffian parameter p

can vary. This increases the probability that this Pfaffian minimizes the effective potential
energy of the vector bundle moduli. A concrete method for doing this was presented in [1]
and used at the end of section 3 — which we now apply to the three curves in figure 6.
For specificity, let us begin by considering the red (Type 5) curve — whose minumum has
vanishing potential energy. As shown in section 1 above, if one keeps all parameters, including
τ , fixed — but allows F to vary — then the ⟨t⟩ locations of both extrema of the red curve
do not change if one appropriately compensates by adjusting p. Importantly, it was shown
in section 6 of [1] that for the class of heterotic M-theories we are discussing — and, in
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particular, the B − L MSSM — the value of parameter F becomes arbitrary and need not
be confined to the range 0.6 ≲ F ≲ 2.

With this in mind, we proceed by reiterating part of the discussion at the end of section 3
— limiting our analysis in this section, for simplicity, to the results of increasing the value of
F only. First, determine the ⟨t⟩ value of the local maximum of the red curve, which we find
from figure 6 to be ⟨t⟩max = 0.70. Second, we increase the value of parameter F from F = 1.5
to a value Fmax such that ⟨t⟩bound = ⟨t⟩max = 0.70. Since, from (2.4) ⟨t⟩bound ∝ 1/F 2/3, and
the value of ⟨t⟩bound = 0.925 for F = 1.5, it follows that Fmax = 2.28. Similarly, it was shown
above that p ∝ 1/F 2/3. Therefore, when F is increased so that ⟨t⟩bound = ⟨t⟩max = 0.70,
it follows that the associated Pfaffian parameter decreases to p = 159. That is, for the
red curve, adjusting F so that 0.70 ≤ ⟨t⟩bound ≤ 0.925, the range of parameter p varies
over 159 ≤ p ≤ 210.

This analysis is identical to that discussed in section 6 of [1]. However, when applied
to the B − L MSSM vacuum there is another important constraint that must be satisfied:
as mentioned above, when raising the value of parameter F from F = 1.5 to Fmax = 2.278
and adjusting p from p = 210 down to p = 159, the location of the minimum of the red
curve remains at ⟨t⟩ = 0.436. However, using (4.33), it follows that the value of t̂ decreases
from 0.436 for F = 1.5 down to t̂ = 0.249 for Fmax = 2.278. That is, the value of ⟨t⟩ at the
unique point in the magenta surface satisfying FI = 0 has become smaller and no longer
lies at the minimum of the red curve. It would appear, therefore, that the vacuum of the
red curve no longer satisfies the necessary physical constraints with FI = 0. However, as
we now show, this is not the case.

As discussed above, within the context of this h1,1 = h2,1 = 3, B − L MSSM theory,
it was shown in [53] that all mathematical and phenomenological constraints are satisfied
by a well-defined, but constrained, subspace of the three-dimensional real Kähler moduli
space. As analyzed in [53], all of these constraints remain invariant under a scaling of the
Kähler and R̂ moduli given by

ai −→ µai, i = 1, 2, 3 and R̂ −→ µ3R̂ . (4.34)

In [53], as used in the discussion thus far in this paper, it was most convenient to solve all
the mathematical and physical constraints by using the scaling in (4.34) to choose a specific
moduli gauge, called “unity gauge”, defined by

ϵ′
SR̂

V 1/3 = 1 . (4.35)

Working in this gauge, we found that all constraints will be satisfied for the real Kähler
moduli in the so-called “magenta” surface shown in figure 5. Within this choice of gauge, we
showed above that there is a unique value for the “universal” real Kähler modulus t defined
in (4.24), namely t̂ = .7490

F 4/3 , which is on this magenta surface and simultaneously satisfies
the FI = 0 constraint. For F = 1.5, this led to the minima of the three curves in figure 6
being located at .436. However, we note that this value for t̂ is highly dependent on the fact
that we chose to work in a specific moduli gauge, namely unity gauge. However, the solution
to all the mathematical and physical constraints will remain valid for any choice of gauge;
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that is, for any scaling with non-zero real parameter µ of the Kähler and R̂ parameters as
given in (4.34). For a fixed value of µ, expression (4.35) becomes

ϵ′
SR̂

V 1/3 = µ2 (4.36)

and one will obtain a new surface in Kähler moduli space — a linear scaling of the “magenta”
region shown in figure 5 — for which all constraints are also satisfied. One can now ask: what
is the value of ⟨t⟩ that lies on this new scaled surface and simultaneously satisfies FI = 0? It
is clear from the analysis leading to (4.33) that this new value of ⟨t⟩ is given by

ˆ̂t = 0.749
F 4/3 µ3 , (4.37)

where the double hat indicates that this is in a new moduli gauge specified by µ. Choosing
the gauge parameter µ to be

µ = 1.20 (4.38)

and recalling that Fmax = 2.28, it follows that

ˆ̂t = 0.749
F

4/3
max

µ3 = 0.436 . (4.39)

Hence, we have shown that the minimum of the red curve in figure 6 indeed satisfies all
mathematical and phenomenological constraints as well as FI = 0. To summarize: for the
red curve, with a minimum with zero potential energy and parameter τ = 3.03, we find that
Fmax = 2.28. Over the range of F from Fmax to F = 1.5, it follows that

0.70 ≤ ⟨t⟩bound ≤ 0.925. =⇒ 158 ≤ p ≤ 210 . (4.40)

Furthermore, by appropriately choosing the moduli gauge parameter, the minimum of the
potential satisfies the FI = 0 constraint for any value of F in this allowed range.

Suffice it to say that a similar analysis will also extend the range of the Pfaffian parameter
p for both the blue and purple curves in figure 6. Here, we simply state the results. For the
blue curve, with a minimum with negative vacuum potential energy and parameter τ = 2.93,
we find we find that Fmax = 1.56. Over the range of F from Fmax to F = 1.5, it follows that

0.90 ≤ ⟨t⟩bound ≤ 0.925 =⇒ 245 ≤ p ≤ 252 . (4.41)

Applying the same analysis to the purple curve, with positive vacuum potential energy
with parameter τ = 3.1, we find that Fmax = 2.546. Over the range of F from Fmax to
F = 1.5, it follows that

0.65 ≤ ⟨t⟩bound ≤ 0.925 =⇒ 101 ≤ p ≤ 204 . (4.42)

Finally, as for the red curve, by appropriately choosing the moduli gauge parameter, the
minimum of the potential of the blue and purple curves satisfies the FI = 0 constraint for
any value of F in their allowed ranges.
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5 Implications for cosmology and fundamental physics

The key results of the preceding analysis (including ref. [1]) are that:

• five types of potential shapes are possible for the moduli sector (as illustrated in
figure 3);

• three of them (Types 1, 2 and 5) have minima corresponding to either stable or long-lived
metastable vacuum states; and

• a visible sector with particle phenomenology in agreement with all current observations
(for example, the B − L MSSM) can be incorporated.

In this section, we first discuss whether the observational constraints imposed by ΛCDM cos-
mology can be satisfied by these M-theoretic models and comment briefly on the implications
for axion-based cosmology. We then consider whether these models satisfy the Swampland
conjectures [2–6] that are proposed to apply to string theory or quantum gravity, generally.
Finally, we discuss the consistency conditions that must be satisfied by theories with extra
dimensions and the metrics assumed in the M-theoretic models [24–26].

5.1 Consistency with ΛCDM cosmology

Of the five types of potentials, only Type 5 is compatible with ΛCDM cosmology.
Type 1 potentials have a global minimum with very negative vacuum energy, ⟨V ⟩ =

−O(M4
U ), a strongly anti-deSitter ground state that is inconsistent with observations. Type 2

potentials have a local minimum with large positive vacuum energy density, ⟨V ⟩ = +O(M4
U ),

which is also incompatible with ΛCDM. A universe with ⟨t⟩ trapped in a Type 2 minimum
would undergo inflation, but there would be no path to a graceful exit — for example, through
“slow roll.” Bubble nucleation would be required to escape, and the escape would be to large
values of ⟨t⟩ where supersymmetry is restored and the particle phenomenology is inconsistent
with observations. Types 3 and 4 have no local or global minima at all, so there is no stopping
a rapid escape to large values of ⟨t⟩ in these cases as well.

On the other hand, Type 5, with a globally stable minimum at ⟨V ⟩ ≈ 0, can be made
to fit all current cosmological observations. The minimum is globally stable for ⟨V ⟩ ≲ 0
and very long-lived for ⟨V ⟩ ≳ 0. In the latter case, the barrier height is O(M4

U ), so bubble
nucleation is highly suppressed such that the lifetime of the metastable phase exponentially
exceeds a Hubble time.

In the analysis here, we have not included contributions to the vacuum density due to
the electroweak symmetry breaking phase transition — associated with the Higgs field — or
any other contributions with energy densities much less than MU . In principle, though, these
can be easily accommodated by tiny changes in parameters that can shift the total vacuum
density to equal zero without significantly changing the shape of the Type 5 potential.

To incorporate dark energy, there are at least two options. First, the parameter changes
described above can be finely adjusted to shift the vacuum density above zero so that the
total is slightly positive and equal to the observed dark energy density. The small positive
shift would transform the vacuum from being globally stable to a very long-lived metastable
state (which eventually would tunnel to the V → 0, ⟨t⟩ → ∞ state).
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Alternatively, it is possible to modify Type 5 models to incorporate Quintessence Cold
Dark Matter (QCDM) rather than ΛCDM cosmology. Dark energy can be included by
introducing a low energy density quintessence-like scalar field that adds a degree of freedom to
the potential along some additional field direction out of the plane of the plot of the potential
in figure 6. The quintessence field could be rolling slowly towards the true vacuum with V = 0
along this additional direction, so that the universe eventually settles in the V = 0 ground
state. In this situation, there is the novel possibility that ⟨t⟩ is prevented from ever escaping to
infinity, so that supersymmetry is never restored and extra dimensions never open up. Natural
candidates for the quintessence field are the Kähler moduli or associated axions that would
be added if the cohomology were extended to h1,1 > 1 (see the discussion of axions below).

It should be noted, though, that Type 5 models only occur for a limited range of
parameters. In figure 2, where fixed values of A, B and F are assumed, this corresponds to
constraining the Pfaffian parameter p to be exponentially close to the horizontal red line.
However, as we have noted in the discussion of eq. (3.5), a combination of variations in
A, B and F compensated by a changing p ∝

√
A2 + B2/F 2/3 enables a rather wide range

of p that maintains the same potential type, as exemplified by the example described by
eq. (4.40). Variations from unity gauge enable a yet wider range. Hence, there is actually a
reasonable chance of finding a vector bundle moduli sector that can produce p in the range
required to obtain a Type 5 potential.

5.2 Implications for axions and axion-like particles

Our construction has implications for cosmological models of inflation, dark energy and
dark matter based on axion-like fields derived from string theory, such as η. A common
approximation is to treat the axion potential as a single cosine potential with a constant
coefficient or, in the case of axiverse models involving many axions, a sum of such terms.

Our example, though, shows that the potential for axion-like fields in string theory is
generically more complicated. This is even true for the simplest cohomology, as considered in
this paper, where h1,1 = h2,1 = 1 and there is only a single axion-like field, η. We found that
the potential VF contains three different terms with cosine factors whose arguments each
include η. Also, the coefficients are not constants. Rather, they are different complicated
functions of other fields. In axion-based cosmological models in which the axion is evolving
with time (e.g., models of inflation or quintessence dark energy), these interactions would
induce back-reactions from the fields to which they are coupled which may lead to additional
observational constraints.

For more realistic examples like the B − L MSSM theory, the axion story is more
complicated. For example, a full implementation requires a Schoen Calabi-Yau threefold
X with cohomology h1,1 = h2,1 = 3 that leads to three axion-like fields. The resulting
supergravity potential includes more complicated coefficients and many kinds of cross terms.
These are functions of different combinations of axion fields multiplied by coefficients involving
the dilaton and Kähler moduli.

A proper analysis for axion cosmology derived from string theory will require considering
potential energy landscapes of this more complex type, which is a challenge to analyze. But
this may also offer opportunities, such as novel phenomena not found in the usual simplistic
approximations. This will be a target for our future research.
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5.3 Conjectured constraints from string theory and quantum gravity

The potentials for heterotic M -theory presented in this paper are interesting test cases for
the Swampland conjectures [2–6] that are postulated to be satisfied by string theory and any
consistent theory of quantum gravity. Here we consider the Transplanckian Censorship Con-
jecture (TCC) [2] bounds in the asymptotic regime of large moduli field for all potentials and
in the center of moduli space for monotonic potentials because the TCC conjectures are well-
established in the sense that the constraints can be derived by independent arguments [56, 57].

The TCC [2] implies that, for large values of moduli fields (transformed so that their
kinetic energies are canonically normalized), there is a positive lower bound on the gradient
of the total potential if V > 0, namely

|∇V |
V

≥ 2√
d − 2

, (5.1)

where d is the spacetime dimension and ∇ is the derivative with respect to the canonically
normalized field Φ (see below). Since d = 4 in our case, the Swampland lower bound is
equal to

√
2.

In ref. [1], we showed that all five types of potentials presented in this paper approach
zero from above; that is, for large ⟨t⟩, V > 0, but V → 0 as ⟨t⟩ → ∞ and, in addition, they all
satisfy the bound in (5.1). In brief, we pointed out that V in the large ⟨t⟩ limit is dominated
by the first term in the square brackets in eq. (2.2), the only one of the six terms that is not
suppressed by a factor of the form e−α⟨t⟩. In this limit, V ∝ 1/⟨t⟩4. However, the kinetic
energy density for ⟨t⟩ is non-canonical, 3

4
(∂⟨t⟩)2

⟨t⟩2 . To convert to a canonically normalized
kinetic energy, we rewrite ⟨t⟩ in terms of a new scalar real scalar field Φ as exp (

√
2/3Φ).

The potential V ∝ 1/⟨t⟩4 then becomes V ∝ exp[−4
√

2/3Φ]. From this we find

|dV/dΦ|
V

= 4
√

2/3 >
√

2, (5.2)

which satisfies the TCC and Strong deSitter Conjecture, eq. (5.1).
The Swampland conjectures are more subtle near the center of moduli space — for

example, for ⟨t⟩ = O(1). This is of interest, since this is the region where the extrema of
our potentials are located. For monotonically decreasing potentials only, there is a TCC
constraint on the slope. Violation of this slope constraint requires that

|∇V |
V

≤ 2√
(d − 1)(d − 2)

(5.3)

over a field range

∆Φ ≥
√

(d − 1)(d − 2)
2 ln

((d − 1)(d − 2)
2 Vmax

)
, (5.4)

where Vmax is the maximum value of V within the field range (expressed in reduced Planck
units) and Φ has canonical kinetic energy density [2]. The monotonic potentials in our
study correspond to Type 3 (no extremum) and Type 4 (an inflection point), as illustrated
in figure 3. For these cases, the value of Vmax is O(M4

U ) ≈ 10−8 and d = 4. Using these
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values, violating the TCC bound requires having |∇V |
V ≤

√
2/3 (eq. (5.3)) over a field range

∆Φ > 20 (eq. (5.4)). In our Type 4 examples where ∇V = 0 at the inflection point, the
range is ∆Φ ≈ 0.5, far less than required for a TCC violation. (As a further check, one
can also show that |M3

P ∇3V/V | ≫ 1 at the inflection point, which is too large to support
significant accelerated expansion; see appendix B in [2].) Since Type 3 potentials are steeper
than Type 4, the range is even smaller, so they do not violate the TCC either. For Types 1,
2 and 5, which have minima in the center of moduli space, there is currently no accepted
Swampland conjecture. We therefore conclude the following:

• All the heterotic M-theory potentials presented here and in ref. [1] satisfy currently
well-established Swampland conjectures.

There are, however, other conditions specific to heterotic M-theory that need to be
checked; namely, in order to be safely below the strongly coupled limit, it is necessary that

LM11 ≫ 1 and V1/6
CY M11 ≫ 1 (5.5)

where M11 is the 11d Planck mass, VCY = vs is the physical 6d Calabi-Yau volume and
L = 2πρt is the physical length of the compact heterotic dimension. To convert these bounds
into constraints involving the 4d Planck mass MP , one can use the relation

M9
11v(πρ) ≈ M2

P , (5.6)

assuming s and t are O(1) in reduced Planck units. Furthermore, using the results from [1]
that πρ = 5Fv1/6, MP = 1.22×1019GeV and MU = 3.15×1016GeV, as well as equation (4.29),
it follows that the relations in eq. (5.5) then reduce to

1 ≪ LM11 = 38.8 F
8
9 t (5.7)

and
1 ≪ V

1
6
CY M11 = 3.04 β

1
6 F

1
9 t

1
6 , (5.8)

respectively. Since all of the parameter-dependent factors are O(1) for the potentials presented
in this paper and ref. [1], it is straightforward to see that the first constraint is easily satisfied
but the second only marginally so. Without a systematic way of computing corrections to
high orders, one cannot be sure of the degree of accuracy of the non-perturbative potential
presented here. However, attempts to compute the next to leading order corrections — for
a concrete example see appendix D of ref. [51] — suggest that there is not a qualitative
change in the physics implications.

5.4 Additional consistency conditions on theories with extra dimensions

Even if the Swampland conjectures are satisfied for the potentials derived here, there are
generic “metric-based” consistency conditions that must also be satisfied by theories with
extra spatial dimensions [24–26], including our heterotic M-theory models.

The Swampland and metric based constraints are fundamentally different in character.
Whereas the Swampland conjectures impose constraints on potential shapes independent
of cosmology, the metric-based consistency conditions are based on the equation of state
of the universe independent of the potential shape. The metric-based conditions apply
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to any compactified theory with a Ricci-flat or conformally Ricci-flat metric that satisfies
the null energy condition (NEC). This includes Type 2 potentials (or Type 5 models if
V > 0 at the minimum), as well as non-string theoretic examples, such as Randall-Sundrum.
The conditions only become relevant in our examples if the universe undergoes a period of
accelerated expansion due to being trapped in the metastable vacuum with V > 0. Then, as
shown in ref. [24], it is impossible to satisfy the Einstein equations in both higher dimensions
and in the effective (3+1)-dimensional compactified theory. In the case of Type 2 potentials
(or Type 5 models if V > 0 at the minimum), if the universe becomes trapped in the
metastable phase and the extra dimensions do not decompactify, the null energy condition
must be violated with a time-varying component that is inhomogeneously distributed in
the compact dimensions and that is varying in synchrony with w, the equation-of-state in
the (3+1)-d effective theory [26].

The heterotic M-theory models considered here do not include an exotic NEC-violating
ingredient of this kind. If there is no such component, a prediction is that decompactification
must begin and/or deviations from the Einstein equations must start to grow large. The
current phase of dark energy domination and accelerated expansion cannot be maintained for
more than a few e-folds into the future without these producing an observable effect.

6 Final remarks

We close by pointing out the remarkable example of the Type 5 heterotic M-theory potential
with V ≈ 0 at the minimum. This example satisfied all the constraints we have considered.
First, it was derived from 11d M-theory following a protocol full of intricate steps. Second, we
have shown the highly non-trivial result that it can be combined with a visible sector that leads
to realistic particle phenomenology. Third, the model is consistent with ΛCDM cosmology or,
with a modest enhancement, quintessence dark energy replacing the cosmological constant Λ.
In the latter case, where V = 0 precisely at the minimum, there need not be a long-lasting
period of accelerated expansion, so the metric-based constraints can be satisfied. Unlike
all the other examples, the vacuum state is globally stable and eternal. (The cases with
negative potential minima are unstable to gravitational collapse and have a finite lifetime;
the cases with positive minima are metastable and have a finite lifetime.) The vacuum in
Type 5 models is supersymmetry breaking but never decays to the supersymmetric vacuum
at ⟨t⟩ → ∞ where extra dimensions open up. We believe that the existence of a heterotic
M-theory model possessing all these properties is quite noteworthy.
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