Jerome Fehrenbach 
email: jerome.fehrenbach@math.univ-toulouse.fr
  
Oleg Melnik 
  
Reconstruction of zircon crystallization history

Trace element concentrations in zircon crystals that grow in cooling magmas record the temperature evolution in a magmatic system on timescales of decades to million years. We propose an algorithm for the solution of inverse problem that allows reconstruction of temperature variation with time by minimization of the misfit between calculated and measured trace element concentrations.

The solution of the variational problem is obtained using the derivation of the tangent model to the crystal formation model, namely a one-phase Stefan problem. Once the sensitivity matrix is obtained, the quadratic misfit is minimized using Gauss-Newton method. The algorithm is first tested on two synthetic datasets, and then on a zircon crystal from Early Fish canyon tuff eruption. Reconstructed temperature ranges and cooling duration are in good agreement with petrological interpretation.

Introduction

Most of volcano-magmatic processes are hidden from direct observations. For prehistoric eruptions only analysis of their products is suitable for reconstruction of the evolution. Crystals of different minerals provide access to magma storage and ascent conditions. Among these crystals zircons are widely used for dating of different events on timescales of decades to millions of years. This is due to very slow zircon growth, extreme resistance to external factors and active incorporation of trace elements, especially U and Th, during the growth.

Distribution of trace elements within zircon crystals reflects conditions, especially the temperature evolution in a parcel of magma in which the crystal was growing. At thermodynamic equilibrium the concentration of trace element in the crystal is proportional to its concentration in the surrounding melt. The proportionality constant is called partition or distribution coefficient. Usually it strongly depends on the temperature and magma composition, but not on the rate of crystal growth. If conditions in the magma body change faster than a characteristic time of diffusion equilibration, only local thermodynamic equilibrium can occurs on the interface between zircon crystal and surrounding melt. Boundary layer is formed around the growing crystal where the trace element content is different from the bulk composition. For trace elements with small diffusion and large partition coefficient, such as Hf, the boundary layer will be strongly depleted.

A forward model of zircon growth with account for trace element incorporation was developed in [START_REF] Melnik | Modeling of trace elemental zoning patterns in accessory minerals with emphasis on the origin of micrometer-scale oscillatory zoning in zircon[END_REF]. This model is adapted to the case of a spherically symmetric domain, it consists of a set of 1D diffusion equations for zirconium and trace elements together with appropriate boundary conditions that reflect mass conservation and conditions of local thermodynamic equilibrium on moving interfaces. Partition and diffusion coefficients are temperature dependent. Note that the temperature is considered to be constant in space within the domain since the time scale of thermal diffusion is much faster than the time scale of minerals diffusion.

Results of the forward model indicate that small variations of the temperature with time can lead to significant variations in trace element concentrations inside the crystal due to a strong dependence of trace element contents in the boundary layer on the growth rate of the crystal, which in turn is governed by the diffusive flux of zirconium.

The goal of this paper is to propose and evaluate a reconstruction method for the temperature evolution during zircon crystal growth based on the distribution of different trace elements within the crystal by means of the solution of an inverse problem. A variational data assimilation framework will be developed.

Variational data assimilation is a general approach to estimate the parameters of a model, when observations on the solution are available. It can be viewed as a constrained minimization problem, where the constraint is the model (here it is a partial differential equation) and the objective function J to be minimized is the error between the observations and the predictions of the model. Relevant mathematical tools are based on the theory of optimal control, see e.g. the reference book [START_REF] Louis | Optimal control of systems governed by partial differential equations[END_REF].

The dependence of the objective function J on the parameters is composed of two steps: the solution of the model depends on the parameters (parameter-to-state map), and the observations depend on the solution (state-to-observation map). In weather forecasting applications, the number of parameters is large, and the gradient of the objective function J is estimated using an adjoint approach [START_REF] Dimet | Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects[END_REF]. The parameters are then retrieved using a gradient descent, or a method of the L-BFGS type [START_REF] Dong | On the limited memory bfgs method for large scale optimization[END_REF] which has the same first iteration as a gradient method.

In our case, the state-to-observation map is non-linear, since the state is described over a time interval [0, T ] by the evolution of the location of the boundary of the crystal, and the concentration of Zr and trace elements in the liquid phase. The observations consist of the concentration of each trace element at positions that correspond to the locations of the boundary of the domain, but the time is not available. However, despite its non linearity, the derivative of the state-to-observation map is analytically available.

Moreover, we take advantage of having a quadratic cost function of the form

J = 1 2
∥F ∥ 2 which allows to use Gauss-Newton algorithm, that has efficient convergence properties, at least close to the minimizer [START_REF] Nocedal | Numerical optimization[END_REF]. It requires information of first order derivatives, namely the Jacobian matrix DF , and provides a descent direction (with optimal step 1, so no line search is necessary) that yields asymptotically a quadratic convergence.

Another feature of the problem addressed here is that the number of parameters is relatively small: the evolution of the temperature is described by 2 parameters (in the case of a linear evolution), or a small number of parameters (piece-wise linear evolution). In this situation, we propose to compute the Jacobian matrix DF column-wise using the tangent model. This requires the solution of one tangent model for each parameter, which is a reasonable computational load. The sensitivity of the parameter-to-state map is given by the tangent model, and as we already mentioned the sensitivity of the state-to-observation map is analytically calculated.

The approach proposed is illustrated by numerical experiments in order to document its efficiency. In the first two experiments, we generate a solution of the forward problem that is then perturbed by additive Gaussian noise. The last experiment uses experimental profiles measured in a zircon crystal from Fish Canyon Tuff (USA) eruption, where we use the measured concentration profiles of Hf, Y, U and Th.

The manuscript is organized as follows: in Section 2 we describe the forward problem of zircon crystallization -it is a one-phase Stefan problem -together with the incorporation of trace elements. The continuous formulation in spherical symmetry is provided, together with the discretization that was implemented. The result depends on the temperature evolution θ(t), for t ∈ [0, T ] where T is the total cooling time that is considered. In Section 3 we derive the tangent model to the Stefan problem for Zircon and to the advection-diffusion problems for the trace elements. We compute the derivative with respect to any perturbation of the temperature evolution η. We also obtain the derivative with respect to the total cooling time T . In Section 4 we detail the variational approach that was used to estimate the temperature history, together with the algorithms that were implemented to obtain respectively the total cooling time (assuming linear decrease of the temperature), and a more detailed temperature evolution is a small dimensional subspace. Section 5 shows results obtained on synthetic and real data, and the manuscript closes by summary and a discussion on the geological implications of this work.

The forward problem

The crystal formation is described by a one-phase Stefan problem, which is a diffusion problem in a moving domain, where the thermodynamic equilibrium condition at the boundary leads to a fixed point problem that admits as solution both the concentration in the domain and the boundary velocity. We assume spherical symmetry of the domain, which leads [START_REF] Melnik | Modeling of trace elemental zoning patterns in accessory minerals with emphasis on the origin of micrometer-scale oscillatory zoning in zircon[END_REF] 

Notation

We follow the notation from [START_REF] Melnik | Modeling of trace elemental zoning patterns in accessory minerals with emphasis on the origin of micrometer-scale oscillatory zoning in zircon[END_REF], excepted that we have a different convention for the orientation of the velocities of the crystal boundaries, see Figure 1. The outgoing velocities of the inner, resp. outer, boundaries of the domain are denoted V (t), resp. W (t). We introduce the following notation: u Zr (t, x) is the zirconium concentration in the melt phase, C Sat is its value at the interface between the growing zircon crystal and the melt, C S Zr = 490000 ppm is the concentration of zirconium in zircon crystal, s is the position of the crystal/melt interface, R is the outer radius of the melt cell, Kpl is the partition coefficient for zirconium in the crystals of major magmatic phases that are growing on the outer boundary, Kpl i and Ktr i are partition coefficients for trace element i between the zircon and major phases, respectively. We use experimentally determined values from [START_REF] Rubatto | Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks[END_REF].

Continuous forward model

In the rescaled geometry, the space variable is x ∈ [0, 1] and the concentrations in the melt are denoted respectively u Zr (t, x) for zircon, and u i (t, x), i = 1 . . . p for trace elements. The temperature evolution is described by its value θ(t) at time t. The evolution of the geometry is governed by the cristallization/dissolution of zircon. The quantities u Zr (t, x), V (t) solve the following :

                 ∂u Zr ∂t + (x -1)V + xW R -s ∂u Zr ∂x = D Zr (R -s) 2 (s + x(R -s)) 2 ∂ ∂x (s + x(R -s)) 2 ∂u Zr ∂x , - D Zr R -s ∂u Zr ∂x (x = 0) = V (C Sat -C S Zr ), u Zr (x = 0) = C Sat , - D Zr R -s ∂u Zr ∂x (x = 1) = W (1 -Kpl), ( 1 
where the diffusion coefficient and equilibrium concentration change with temperature θ: D Zr = D Zr (θ(t)) and C Sat = C Sat (θ(t)). The velocity of the outer boundary is given by

W (t) = - 1 3R 2 dX dt , (2) 
where X = X(θ) is the volume fraction of the major phases that simultaneously crystallise in magma and reduce the volume of the melt cell (W (t) ≤ 0). The volume fraction depends on the temperature θ, and is given as an explicit analytic function of θ.

The system ( 1) is thus a one-phase Stefan problem with unknowns u Zr , V . The evolution of the boundaries of the melt domain is given by

     ∂s ∂t = V, ∂R ∂t = W. (3) 
The system (1-3) is complemented with the following initial condition:

u Zr (t = 0, .) = C Sat (θ(t = 0)), s(t = 0) = s 0 , R(t = 0) = R 0 . (4) 
The velocities V (t), W (t) are, thus, imposed by the evolution of the Zr and major phases crystallisation. For the concentration of trace elements the following advectiondiffusion problem is then solved:

             ∂u i ∂t + (x -1)V + xW R -s ∂u i ∂x = D i (R -s) 2 (s + x(R -s)) 2 ∂ ∂x (s + x(R -s)) 2 ∂u i ∂x , - D i R -s ∂u i ∂x (x = 0) = V (1 -Ktr i ), - D i R -s ∂u i ∂x (x = 1) = W (1 -Kpl i ).
(5)

Observation operator

Profiles of concentrations of the trace elements as a function of distance from the core of the crystal can be measured in laboratory (see example on Fig. 1 in [START_REF] Melnik | Modeling of trace elemental zoning patterns in accessory minerals with emphasis on the origin of micrometer-scale oscillatory zoning in zircon[END_REF] or Section 5.4 below). These profiles are formed during a growing-only period, when no dissolution occurred, in other words V (t) ≥ 0 for t ∈ [0, T ]. These profiles will be used as observations for the inverse problem. Each point in the profile corresponds to an instant t of crystallization where the concentration of each trace element at the boundary is

u i (t, x = 0),
and the boundary of the crystal is located at s(t). In other words, the observations consist of the values (s(t), u i (t, x = 0))

for some observation instants t = τ 0 , τ 1 , . . . τ N obs . Note that only the values of (s, u i ) are observed, but not the values of the time t.

Discrete forward model

The systems ( 1)-( 2)-( 3)-( 4)-( 5) are approximated using a finite volume spatial discretization, and an implicit time discretization, as described in [START_REF] Bindeman | Zircon survival, rebirth and recycling during crustal melting, magma crystallization, and mixing based on numerical modelling[END_REF]. We recall here the method and define additional notation that will be used in the sequel.

Let us describe first the semi-discretization in space. The space discretization points are fixed and denoted x 0 = 0 < x 1 < . . . < x Nx = 1. We use the notation u Zr (t) for the semi-discrete version in space of u Zr (t, .). We consider in system (1) the Dirichlet condition at x = 0. For a given value of V the finite volume matrices arising after multiplying by (R -s) 2 (s + x(R -s)) 2 and integrating between x k-1/2 and x k+1/2 (see [START_REF] Bindeman | Zircon survival, rebirth and recycling during crustal melting, magma crystallization, and mixing based on numerical modelling[END_REF]) are denoted L(V ), F (V ). Note that the matrix F depends on D Zr and C Sat and therefore on θ(t), this dependence will be emphasized by denoting F (V, θ). The matrices L and F also depend on s and R but for the sake of concision we will not use a notation for this dependence for the moment. The semi-discrete in space version of (1) reads

     L(V ) ∂u Zr ∂t = F (V, θ(t))u Zr , V = - D Zr (R -s)(C Sat -C S Zr ) u Zr (t, x 1 ) -u Zr (t, x 0 ) x 1 -x 0 . (6) 
Let us denote u j Zr , resp. V j , R j , s j , j = 0 . . . N the value of the fully discrete approximation of u Zr , resp. of the time-approximation of V, R, s at time t j . Denote θ j = θ(t j ). Then the time-implicit discretization of ( 6)-( 2)-( 3)-(4) yields

                         u 0 Zr = C Sat (θ(t = 0)), L(V j )u j Zr -∆t F (V j , θ j )u j Zr = L(V j )u j-1 Zr j ≥ 1, V j = - D Zr (R j -s j )(C Sat -C S Zr ) u j Zr (x 1 ) -u j Zr (x 0 ) x 1 -x 0 j ≥ 1, W j = 1 3R j 2 X ′ (θ j ) θ j -θ j-1 ∆t , s j = s j-1 + ∆tV j j ≥ 1, R j = R j-1 + ∆tW j j ≥ 1. (7) 
For each value of j ≥ 1 this fixed point problem for u j Zr , V j is solved iteratively by alternating V j and u j Zr updates. The convergence of the iterations is ensured by the following Proposition 1 The spatial discretization is fixed. We assume that there exists h > 0 such that R j -s j > h (in other words the melt domain remains larger than h). Then for ∆t small enough, the mapping

V → Φ 1 (V, Φ 2 (V )) is contracting, where Φ 2 (V ) = (L(V ) -∆t F (V, θ j )) -1 L(V )u j-1 Zr Φ 1 (V, u ′ Zr ) = -D Zr (R j -s j-1 -∆tV )(C Sat -C S Zr ) u ′ Zr (x 1 ) -u ′ Zr (x 0 ) x 1 -x 0 . (8) 
Justification: since the space discretization is fixed, there is a constant

K such that |DΦ 1 (V, u Zr ).(ν, µ)| ≤ K(∆t ν + ∥µ∥ ∞ ). Let us denote A = L -∆tF , so that Φ 2 (V ) = A -1 (A + ∆tF )u j-1 Zr = u j-1 Zr + ∆tA -1 F u j-1
Zr . The matrices A and F depend on V, s j , R j (we do not provide the details here), but under the assumption that R j -s j > h the matrix A -1 F remains bounded, and therefore there is a constant

K ′ such that ∥Φ 2 (V 1 )-Φ 2 (V 2 )∥ ≤ K ′ ∆t|V 2 -V 1 |.
Gathering the upper bounds that we obtain, we have that if

f (V ) = Φ 1 (V, Φ 2 (V )) then |f ′ (V )| = |D 1 Φ 1 + D 2 Φ 1 .Φ ′ 2 (V )| ≤ |K ∆t + KK ′ ∆t|.
The choice of a small enough ∆t ensures that this map is contracting. □

We now denote for short

             u 0 Zr = C Sat (θ 0 ), A(V j , θ j )u j Zr = L(V j )u j-1 Zr j ≥ 1, V j = φ(θ j , u j Zr ), s j = s j-1 + ∆tV j j ≥ 1, R j = R j-1 + ∆tW j j ≥ 1, (9) 
where A = L -∆tF and φ is defined by the third equation in [START_REF] Melnik | Magma Chamber Formation by Dike Accretion and Crustal Melting: 2D Thermo-Compositional Model With Emphasis on Eruptions and Implication for Zircon Records[END_REF].

For the full discretization for trace elements from (5), the velocity V is known from the Zircon solution, and only one linear solve is necessary at each time step. The finite volume matrix is different since each trace element has its specific diffusion and partition coefficients. The initial condition for each trace element is a constant [START_REF] Melnik | Modeling of trace elemental zoning patterns in accessory minerals with emphasis on the origin of micrometer-scale oscillatory zoning in zircon[END_REF].

Let us denote u j i the value of the fully discrete approximation of u i at time t j . Then we have

u 0 i = c i , A i (V j , θ j )u j i = L(V j )u j-1 i j ≥ 1, (10) 
where A i = L -∆tF i , where F i is the finite volume matrix obtained by discretizing (5).

Tangent model

In the present work, we follow a discretize-then-differentiate approach. This means that we will compute the derivative w.r.t the temperature evolution θ of the discrete model given by systems ( 9)- [START_REF] Rubatto | Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks[END_REF]. We also provide in Section 3.3 an approach to estimate the derivative w.r.t the total time T .

Derivative of the zirconium concentration

We consider a discrete temperature history θ = θ 0 , . . . θ N . The corresponding solution of ( 9) is denoted u Zr = u Zr (θ). Now we emphasize that the matrices depend on s and R: they are denoted A j = A(s j , R j , V j , θ j ) and L j = L(s j , R j , V j ). Since the solution of ( 9) depends smoothly on each θ j , the solution u Zr (θ) and the domain boundaries s, R depend smoothly on θ. The derivatives of these quantities in the direction η = η 0 , . . . η N are denoted v Zr , s ′ , R ′ and solve the following system obtained by differentiating ( 2) and ( 9):

                                 v 0 Zr = C ′ Sat (θ 0 ).η 0 , s ′0 = 0, R ′0 = 0, A j v j Zr = -D s A j .s ′j u j Zr -D R A j .R ′j u j Zr -D V A j .V ′j u j Zr -D θ A j .η j u j Zr +L j v j-1 Zr + D s L j .s ′j u j-1 Zr + D R L j .R ′j u j-1 Zr + D V L j .V ′j u j-1 Zr j ≥ 1, V ′j = D θ φ(θ j , u j Zr ).η j + D u φ(θ j , u j Zr ).v j Zr j ≥ 1, s ′j = s ′j-1 + ∆tV ′j j ≥ 1, W ′j = - 2 3R 3 dX j dt R ′j - 1 3R 2 dX ′j dt , j ≥ 1, R ′j = R ′j-1 + ∆tW ′j j ≥ 1, (11) 
where X ′j = D θ X j .η j . For every j ≥ 1, this is a linear fixed point problem w.r.t v j Zr , V ′j . The linear operator that appears is exactly the tangent operator to the mapping that appears in the forward model [START_REF] Melnik | Magma Chamber Formation by Dike Accretion and Crustal Melting: 2D Thermo-Compositional Model With Emphasis on Eruptions and Implication for Zircon Records[END_REF]. Therefore an iterative solution of this fixed point problem will converge under the same condition as the iterations for the forward model, see proposition 1.

Derivative of the trace elements concentration

The differentiation of the system (10) in the direction η = η 0 , . . . η N provides the derivative of u i , that is denoted v i . Similarly as for the zirconium case, the matrices depend on s and R and are denoted A j i = A i (s j , R j , V j , θ j ) and L j = L(s j , R j ). The derivative v i solves the following:

     v 0 i = 0, A j i v j i = -D s A j i .s ′j u j i -D R A j i .R ′j u j i -D V A j i .V ′j u j i -D θ A j i .η j u j i +L j v j-1 i + D s L j .s ′j u j-1 i + D R L j .R ′j u j-1 i + D V L j .V ′j u j-1 i j ≥ 1.
(12)

Derivative w.r.t the total cooling time T

In practice, the first quantity to estimate is the total cooling time, even before the determination of the temperature profile. This can be on a time scale of 500-50000 years for typical zircon growth in magmatic systems and this time scale has to be determined. For this we use a simple temperature profile, namely a decreasing linear ramp. The aim is to estimate the sensitivity w.r.t the slope of this ramp. We start from an initial guess where the cooling occurs at a constant slope between the values θ 0 and θ final on a time interval [0, T ]. When the total cooling time changes from the value T to the value T ′ , the slope is modified. We can obtain an equivalent slope modification by keeping the same total time T and changing the final temperature from θ final to θ final ′ . The obtained trace element concentration will be the same if both temperatures θ final and θ final ′ correspond to solid states (there is no further evolution in the remaining time interval). These equivalent scenarios are presented on Figure 2. The relation between the different quantities is given by

θ final -θ 0 T ′ = θ final ′ -θ 0 T . (13) 
From the practical point of view, the estimation of the total cooling time T is performed by computing the sensitivity w.r.t. θ final , and replacing this sensitivity with a sensitivity w.r.t. T given by Equation (13).

Cooling history reconstruction

We present here the variational framework that was adopted and the algorithms that were implemented to estimate the cooling history.

The cooling history is defined on a time interval [0, T ], and discretized at the instants

t j = j∆t.
The total number of discretization instants is N + 1 where N = T /∆t. In order to reduce the number of unknowns (which is a method to regularize an inverse problem, see [START_REF] Kirsch | An introduction to the mathematical theory of inverse problems[END_REF]) we consider a piecewise linear temperature profile θ that depends on q control points. The temperature profile is thus described by a control variable x ∈ R q . The obtained concentration for trace elements will be denoted u i (x).

In order to find the optimal x we use Gauss-Newton algorithm to minimize the quadratic misfit between the predicted and measured trace elements concentrations. We recall that the observations consist of the values of (s, u Obs. i ) and will be presented as (s, u Obs. i (s)) for s ranging from s min to s max .

The continuous version of cost function that is minimized is the following:

J (x) = 1 2 p i=1 ω i smax s min (u Obs. i (s) -u i (x)(s)) 2 ,
where ω i is the weight that affects the trace element with label i. For the discrete computation, the integral is replaced by a discrete sum over the values of s that are available in the observations. Note that the points where u i (x) is available are not necessary the same as the points where u Obs.

i is available and an interpolation is performed. The discrete version reads

J(x) = 1 2 p i=1 ω i s∈S (u Obs. i (s) -u i (x)(s)) 2 = 1 2 p i=1 ∥F i (x)∥ 2 ,
where S is the set of values where the observations are available, and u i (x)(s) denotes the interpolation of u i (x)(t, 0) between values of t j such that s(t j ) ≤ s < s(t j+1 ). More precisely

u i (x)(s) = αu i (x)(t j , 0) + (1 -α)u i (x)(t j+1 , 0),
where j is such that s(t j ) ≤ s < s(t j+1 ) and α = s(t j+1 ) -s s(t j+1 ) -s(t j ) ∈ [0, 1).

In order to obtain the sensitivity of J w.r.t. x in the direction h we use the derivative of u i (x)(t) and the derivative of s(t) in the direction h. The derivatives of the quantities α and αu i (x)(t j , 0) + (1 -α)u i (x)(t j+1 , 0) in the direction h can be computed as long as α ̸ = 0. We commit the abuse of using the same computations when α = 0 (even if the piecewise linear interpolant is not smooth).

These provide the derivative of u i (x)(s) in the direction h, and thus the derivative of F i in the direction h. The direction h is given the different values of the vectors of a basis of the parameter space -that is each of the q elements of the basis of piecewise linear maps. We obtain this way the columns of the Jacobian matrix DF i .

We now detail the algorithms that implemented the Gauss-Newton minimization with the following objectives:

• Algorithm 1: Find the time scale of the cooling (estimation of the best linear ramp). A linear temperature decrease (time scale of the cooling) is determined by finding optimal θ 0 and T , as described in the following Algorithm 1.

• Algorithm 2: Find a more detailed temperature evolution by finding a piecewise linear history. In practice this algorithm is used on a coarse-to-fine approach. The Gauss-Newton minimization algorithm on a finite dimensional subspace is implemented as described in Algorithm 2 below.

Numerical results

We present here the implementation of the estimation method, and show examples on synthetic and real data.

Algorithm 1 Gauss-Newton method to find the optimal linear temperature decrease Input: measurements (s, u Obs. i (s)) for s ∈ S and i = 1 . . . p ; final temperature θ final ; initial guess for initial temperature θ 0 and time T Output: initial temperature θ 0 and time T such that the temperature evolution minimizes J.

Let (e 1 , e 2 ) be the linear functions on [0, T ] s.t. e 1 (0) = 1, e 1 (T ) = 0, e 2 = 1 -e 1 Set k = 0 while Not converged do for i = 1 . . . p do Compute F i = (u Obs. i (s) -u i (x)(s)) s∈S Compute DF i .e 1 and DF i .e 2 by solving [START_REF] Alan G Whittington | Temperature-dependent thermal diffusivity of the earth's crust and implications for magmatism[END_REF] and ( 12)

end for Let d k be the solution of ( p i=1 DF T i DF i )d k = -p i=1 DF T i F i update θ 0 = θ 0 + d k [0], and T = T /(1 + d k [1]/(θ final -θ 0 )) set k = k + 1 end while
Algorithm 2 Gauss-Newton method to find the parameter x that minimizes J in a finite dimensional subspace Input: measurements (s, u Obs. i (s)) for s ∈ S and i = 1 . . . p ; basis B = (h 1 , . . . , h q ) of the search space ; initial guess x 0 Output: x such that the temperature evolution θ(x) minimizes J. set k = 0 while Not converged do

The temperature history is θ(

x k ) = q ℓ=1 x k ℓ h ℓ for i = 1 . . . p do compute F i = F i (x k ) for ℓ = 1 . . . q do compute DF i (x k
).h ℓ by solving [START_REF] Alan G Whittington | Temperature-dependent thermal diffusivity of the earth's crust and implications for magmatism[END_REF] and ( 12) (This provides the columns of the matrix

DF i = DF i (x k )) end for end for Let d k be the solution of ( p i=1 DF T i DF i )d k = -p i=1 DF T i F i update x k+1 = x k + d k set k = k + 1 end while

Practical Implementation

The direct and tangent problems presented here were implemented in Python 3.8 and run on a laptop equipped with a Intel(R) Core(TM) i7 CPU. The computationally intensive parts of the code (tridiagonal linear solves) were implemented using Cython.

The estimation of a temperature profile on the interval [0, T ] described by a few (between 2 and a few 10s) parameters uses a coarse-to-fine method. First the initial temperature and total cooling time are determined using Algorithm 1. Then Algorithm 2 is used to find a more detailed profile. A dyadic refinement of the search space is performed every 4 iterations: the temperature profile is piecewise linear on an increasing number of intervals: 1, then 2, then 4, then 8... The total number of intervals can not be too large, since measurements error impair the estimation. In practice we stopped at 8, 16 or 32 intervals.

The simulations presented here were run with N x = 500 space points and N = 500 time points.

Test case 1: temperature profile estimation

We first present a test case where the temperature profile on a time interval [0, T ] is to be determined. We assume that the total cooling time T is known, and only Algorithm 2 is used with dyadic refinement every 4 iterations.

The reference evolution is a linear decrease of the temperature from 1113 K to 993 K, perturbed by 3 oscillations, see Figure 3. Knowing this reference temperature evolution, we compute the concentrations of trace elements in the crystal, namely: Hf, Y, U, Th, Sm, Dy, Yb. We then add a gaussian noise to these concentrations to generate the observations. We present in Figure 4 the concentration profiles, that are the concentrations of the trace elements, each concentration is normalized by its maximal value. The reconstruction of the temperature evolution follows the coarse-to-fine dyadic refinement described above up to 16 intervals (fine resolution) or 8 intervals (coarse resolution). The final estimated temperature profile, and the predicted concentration profiles are presented on Figures 3,4, 5 and 6. The total computation time is 8.6min for the fine resolution (16 time intervals, 17 control points) where we used 20 iterations. The computation time is 3.8min for the coarse resolution (8 time intervals, 9 control points), where we used 15 iterations.

Test case 2: total cooling time and temperature profile estimation

In the second test case, we first optimize w.r.t. the total cooling time, using the sensitivity analysis described in section 3.3 and Algorithm 1. Then the time interval is fixed and we search for a profile using dyadic refinement, where at each scale we use The synthetic data are generated as follows. We generate trace elements concentration with a decaying and oscillating temperature profile. These concentration are then perturbed by additive gaussian noise, see Figure 9.

For the inverse problem solution, the initial guess for the total cooling time is on purpose chosen far from the true value (60000 years vs 5000 years) in order to document the abilities of the proposed method. The total cooling time estimation requires 10 iterations (14 s), the resulting temperature evolution is denoted 'best ramp', see Figure 8. The reconstruction using the coarse-to-fine approach is stopped when the number of intervals is 32 (6.2 min). The results are presented on Figures 78(temperature evolution) and 9-10 (trace elements concentration).

Test case 3: reconstruction from experimental data

The third test case consists of experimental data that were presented in [START_REF] Melnik | Modeling of trace elemental zoning patterns in accessory minerals with emphasis on the origin of micrometer-scale oscillatory zoning in zircon[END_REF] for the zircon crystal from Early Fish Canyon Tuff.

In order to estimate the temperature history, we follow the methodology from the second test case, namely Algorithm 1 is used in a first step to estimate the best linear decrease (best ramp). The initial guess is a decrease from 1088K to 1018K in 4000 years. The optimal linear decrease obtained is a decrease from 1101K to 1017K in 1700 years. In a second step, we apply Algorithm 2 on subspaces with growing dimension, obtained by successive dyadic refinement. The initial guess on the first subspace is the best ramp obtained in the first step. A number of 4 iterations are performed on each resolution, therefore the number of iterations is related to the number of iterations: 8 iterations correspond to a subdivision of the time interval into 4 subintervals (5 control points), 12 iterations correspond to 9 control points and 16 iterations correspond to 17 control points. The results of the temperature history at different resolutions is presented in Figure 11, and the comparison between the predictions and the observations are presented in Figure 12. 

Summary and Discussion

In the present work, we have proposed a variational framework to reconstruct temperature evolution from the observation of trace elements in zircon crystals. This required to compute the tangent model of a one-phase Stefan problem and the analytical derivation of a nonlinear observation operator. The numerical experiments showed a reasonable ability to reconstruct the temperature evolution in a small dimensional subspace (piecewise linear evolution), without the need of incorporating regularization terms or other a-priori information. The quadratic minimization was performed using a Gauss-Newton method and convergence is achieved within a small number of iterations. We now discuss the contribution of this work for the geological community.

Test case 1 based on synthetic data shows the ability of the algorithm to reconstruct a complicated temperature history that mimics realistic thermal conditions of zircon crystallization in an incrementally building magmatic intrusion [START_REF] Melnik | Magma Chamber Formation by Dike Accretion and Crustal Melting: 2D Thermo-Compositional Model With Emphasis on Eruptions and Implication for Zircon Records[END_REF] by periodic injection of bathes of hot magma. There are several limitations of the method that naturally come form the physics of zircon growth in magmas. First, the temperature can be evaluated only above the solid state of the system when crystallization stops. Second, thermal information can be lost if significant temperature increase leads to partial zircon dissolution, and, third, if crystallization occurs on timescales much larger than timescales of trace element diffusion inside a melt cell around the growing zircon, trace element incorporation is only controlled by a partition coefficient. In the later case the temperature variation can be reconstructed directly from the mass balance of a trace element within the cell but no timescales can be retrieved.

The algorithm also shows good performance on natural samples and convergence of iterations towards a final temperature profile that has a cooling trend with periodic temperature spikes. This trend can be originated by temperature variations in a cooling parcel of magma that experience convection and/or heating from consequent intrusions of magma. Timescale of 1700 years mean a relatively small batch of magma 180 m in size if the cooling is conductive for the thermal diffusivity of 0.6 • 10 -6 m 2 /s [START_REF] Alan G Whittington | Temperature-dependent thermal diffusivity of the earth's crust and implications for magmatism[END_REF]. The temperature range estimated by the best fit model is in a good agreement with [START_REF] Brückel | Testing the Limits of Ti-in-Quartz Thermometry and Diffusion Modelling to Determine the Thermal History of the Fish Canyon Tuff[END_REF].

Model calibration for a particular magmatic system requires experimental determination of partition coefficients for trace elements and zirconium saturation as a function of temperature for the magma composition typical for the system. Additionally, diffusion coefficients must be measured for the same composition at representative temperatures. But, even for generally accepted values the model gives good starting estimates for the thermal history that was experienced by the growing zircon crystal.
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 2 Figure 2. The slope is modified by a change either in the final temperature, or in the final time.
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 3 Figure 3. Test case 1: estimated temperature evolution (fine resolution), along the iterations of the algorithm.

Figure 4 .

 4 Figure 4. Test case 1: observations (dashed), initial guess (dotted) and estimations (continuous) for the concentration profiles (fine resolution).
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 5 Figure 5. Test case 1: estimated temperature evolution (coarse resolution), along the iterations of the algorithm.
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 6 Figure 6. Test case 1: observations (dashed), initial guess (dotted) and estimations (continuous) for the concentration profiles (coarse resolution).
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 7 Figure 7. Test case 2: estimated temperature evolution along the iterations of the algorithm.
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 8 Figure 8. Test case 2: estimated temperature evolution along the iterations of the algorithm (zoom).
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 9 Figure 9. Test case 2: Observed (dashed) and estimated (continuous) concentration profiles after the first step (Algorithm 1).
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 10 Figure 10. Test case 2: Observed (dashed) and estimated (continuous) concentration profiles after the second step (Algorithm 2).
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 11 Figure 11. Test case 3: temperature history at several resolutions.

Figure 12 .

 12 Figure 12. Test case 3: trace element concentration at several resolutions (left column: 5 control points, center: 9 control points, right: 17 control points): observations vs predictions of the model. From top to bottom row: Hf, Y, U, Th. The best ramp obtained after Algorithm 1 is also indicated in blue.
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