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Abstract: The problem of ‘missing heritability’ affects both common and rare diseases hindering: 

discovery, diagnosis, and patient care. The ‘missing heritability’ concept has been mainly associated 

with common and complex diseases where promising modern technological advances, like genome-

wide association studies (GWAS), were unable to uncover the complete genetic mechanism of the 

disease/trait. Although rare diseases (RDs) have low prevalence individually, collectively they are 

common. Furthermore, multi-level genetic and phenotypic complexity when combined with the 

individual rarity of these conditions poses an important challenge in the quest to identify causative 

genetic changes in RD patients. In recent years, high throughput sequencing has accelerated 

discovery and diagnosis in RDs. However, despite the several-fold increase (from ~10% using 

traditional to ~40% using genome-wide genetic testing) in finding genetic causes of these diseases 

in RD patients, as is the case in common diseases—the majority of RDs are also facing the ‘missing 

heritability’ problem. This review outlines the key role of high throughput sequencing in 

uncovering genetics behind RDs, with a particular focus on genome sequencing. We review current 

advances and challenges of sequencing technologies, bioinformatics approaches, and resources. 

Keywords: missing heritability; rare disease; genome sequencing; long/short read sequencing; 

bioinformatics; variant detection; variant annotation; variation databases 

 

1. Introduction 

Heritability is a measure that estimates the proportion of a phenotypic trait variability that is genetic 

in origin (i.e., could not be explained by the environment or random chance). The ‘missing heritability’ 

problem term was first coined by Brendan Maher in 2008 [1], mainly to describe unmet expectations from 

the human genome project combined with promising modern technological advances, such as genome-

wide association studies (GWAS), to uncover genetic components of common traits and diseases [1]. 

Although the problem of ‘missing heritability’ has been mostly (read exclusively) associated with 

common and complex diseases in the medical research field [1,2], rare diseases also face ‘missing 

heritability’ problem despite the state-of-the-field technological advances [3]. 

Rare diseases (RDs) are mostly genetic diseases that are defined as life-threatening or chronically 

debilitating disorders affecting a small number of people (fewer than 5 per 10,000) [4]. Some 7000 

RDs have been reported to date (see ORPHANET [5] and OMIM for Online Mendelian Inheritance 

in Man [6] databases) and new syndromes continue to be described, making the RDs quite common 

overall. An estimated 350 million people in the world suffer from a rare disease and approximately 

50% of those are children. In Canada, this represents approximately 1 in 12 people according to the 

Canadian Organization for Rare Diseases (CORD). 

Traditionally, clinical genetic tests for diagnosing RD patients have involved high resolution 

molecular single-gene tests (e.g., Sanger sequencing), low resolution genome-wide cytogenetic tests 

(e.g., G-banded karyotype) or microarrays have achieved a diagnostic success rate of ~10% [3]. While 
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the GWAS had uncovered new associations in common diseases, this approach was not adaptable to 

RDs, due to genetic and phenotypic heterogeneity combined with the rarity of individual conditions, 

and the unavailability of large cohorts. It is only the crucial technological advances in high 

throughput sequencing (HTS) and the bioinformatics field that have enabled unprecedented 

opportunity to accelerate diagnosis and discovery in RDs [3,7–9]. However, even after almost a 

decade of HTS applications in RD patients, the majority of RD patients remain without genetic 

answers [3]. 

Here, we focus on the concept of the ‘missing heritability’ problem in the rare disease research 

field. We review the HTS approaches used so far, and highlight the potential of genome sequencing 

to uncover ‘missing heritability’ in RDs, with particular attention to types of sequencing technologies, 

bioinformatics approaches used, and available resources on ‘normal’ variation within populations. 

We conclude with future perspectives. 

2. Complexity of Rare Diseases 

2.1. Heterogeneity 

PHENOTYPIC HETEROGENEITY refers to strikingly different phenotypes associated with different 

variants of the same gene. For example, variants in TRPV4 have been reported in more than 10 

different dominant disorders, from various forms of skeletal disorders (e.g., Brachyolmia type 3, 

Parastremmatic dwarfism), to neuromuscular disorders (e.g., Hereditary motor and sensory 

neuropathy, type IIc, various forms of Spinal muscular atrophy) [6,10]. Similarly, variants in FLNA 

have been reported in various X-linked dominant (XLD) and recessive disorders (XLR), such as 

Periventricular Heterotopia 1, various malformation syndromes (e.g., XLD Otopalatodigital 

syndrome, XLR Frontometaphyseal dysplasia) and others [6]. Recently, we [11] and others [12] have 

associated heterozygous variants in the ATP1A1 to human diseases, either an inherited dominant 

Charcot-Marie-Tooth type 2 disease [12] or a more severe condition due to de novo variants with 

major features of renal hypomagnesemia, refractory seizures, and intellectual disability [11]. Another 

example of an emerging rare disease with phenotypic heterogeneity is Glutaminase deficiency. While 

a homozygous copy number variant (duplication) in GLS was associated with autosomal recessive 

spastic ataxia and optic atrophy in two brothers from a consanguineous family [13], homozygote loss 

of functional variants (e.g., nonsense and frameshift) were associated with severe neonatal Epileptic 

encephalopathy and death before 40 days [14]. Thus, with the discoveries of new genes related to 

human diseases (like ATP1A1 and GLS), it is clear that phenotypic heterogeneity continues to play an 

important role, and must be considered when interpreting the data. 

GENETIC HETEROGENEITY, on the other hand, is defined as variations in distinct genes (two or 

more) that produce the same or similar phenotypes, either biochemical or clinical. Beyond the 

phenotypic heterogeneity, the genetic heterogeneity of RDs poses substantial diagnostic challenge. 

The degree of heterogeneity varies between different diseases. For example, thus far cystic fibrosis 

had only been associated with variants in CFTR [6], while tuberous sclerosis had only been associated 

with TSC1 and TSC2 [15]. These are good examples of currently no known (cystic fibrosis) or low 

(tuberous sclerosis) genetic heterogeneity. On the other hand, retinitis pigmentosa is an inherited 

degenerative disease resulting in severe retinal dystrophy and visual impairment mainly with onset 

in infancy or adolescence. It is usually diagnosed by a clinical exam and electrophysiological 

recordings, but a genetic diagnosis requires a multi-gene approach since more than 60 different genes 

had been associated with monogenic retinal disorders [16]. While retinitis pigmentosa may be 

considered to be an example of moderate heterogeneity, intellectual disability with more than 800 

different gene associations [17] exemplifies substantial heterogeneity in human genetic diseases. 

Thus, considering phenotypic/genotypic heterogeneities in RDs is crucial for a successful approach 

to diagnosis. 
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2.2. Mutation Spectrum 

ClinVar [18], a freely accessible repository of human variation, summarizes reports of variants 

related to human phenotypes with an evaluation of pathogenicity (likely/benign, uncertain 

significance, likely/pathogenic) and the potential source of supporting evidence. As of December 

2018, more than 412,000 variants were available in ClinVar. Importantly, of those 13% (n = 52,424) 

were variants other than single nucleotide variants (SNVs) (Figure 1). 

 

Figure 1. ClinVar variome. Representation of ClinVar variant types (as of December 2018). About 13% 

were structural variants. The annotation of variants is according to sequence ontology [19]. 

Most of the well-described monogenic diseases display a spectrum of gene-inactivation 

mechanisms [15,18,20,21]. For example, in patients with a clinical diagnosis of tuberous sclerosis, a 

spectrum of heterozygous variants affecting TSC1 and TSC2 had been described [15,20]. The variants 

range from SNVs resulting in missense, nonsense, splice-site changes, to structural variants (SVs), 

such as large deletions and duplications [20]. Interestingly, somatic, rather than germline variants, 

(in TSC1 and TSC2) were identified in patients resistant to conventional diagnostic approaches 

[15,20]. Furthermore, in recent years HTS technologies revealed another type of SV termed 

chromothripsis, a type of chromosomal rearrangement with massive and complex clustered SVs that 

leave the affected genomic region changed beyond recognition [22]. Although chromothripsis had 

been predominantly associated with somatic genome instability (e.g., cancer), it had also been 

reported in individuals with severe congenital abnormalities [23] as well as in the striking case of 

spontaneous recovery in a patient with WHIM syndrome [24]. Given the variety of genetic 

mechanisms in gene inactivation, a holistic approach to assessment of individual genomes, including 

large insertions (such as mobile element insertions (MEI)), deletions, duplications, as well as 

translocations, inversions, repeat expansions, and other complex changes (Figure 2) would be a 

desired approach to discovery of functional variants in patients with rare disease. 
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Figure 2. Uncovering missing heritability. A spectrum of variants, beyond the SNVs (single nucleotide 

variants), contributes to human genetic conditions as either germline or somatic variations. In 

addition, different types of variants, such as large insertions (including mobile element insertions 

(MEI)), deletions, duplications, as well as translocations, inversions, repeat expansions and other 

complex changes may be the source of genetic modifiers with the capacity to alleviate or exacerbate 

the effect of the primary pathogenic variant, and thus contribute to phenotypic variability (severe-

mild-none). 

2.3. Phenotypic Variability 

MULTILOCUS GENETIC INHERITANCE contributes to phenotypic variability and subsequent 

diagnostic difficulty in patients with RDs. With the advent of HTS, it had been recognized that 

phenotypic variability or atypical presentation of a disease may be due to two or more genetic 

conditions with overlapping (blended) or discrete (composite) manifestations [25–27]. Newly 

discovered genetic conditions may also co-occur with another genetic condition(s) [28,29] (e.g., NPL 

and GJB2 composite effects in a patient with sialuria, exercise intolerance/muscle wasting, cardiac 

symptoms, and deafness) [28]. Thus, considering multiple diagnoses in a patient is important in 

presumed monogenic disorders, especially the ones with atypical ‘ultra’ rare phenotypes [30] and/or 

substantial phenotypic variability [31] before a conclusion on expanded clinical presentation of a 

monogenic disease is made. 

Beyond composite and/or blended effects of two or more genetic conditions, an increasing 

number of RDs is being reported where mutations in two or more genes need to co-occur for the 

disease to manifest. DIDA [32], a database on digenic diseases compiles information on 44 different 

digenic diseases and 213 of their corresponding digenic combinations [33]. For example, in 

ciliopathies, digenic compound heterozygous inheritance is repeatedly reported (e.g., Joubert 

syndrome; one heterozygous variant in CEP41 and another in KIF7) [34]. Importantly, recent findings 

suggest that oligogenic inheritance may explain missing heritability problem in multiple genetic 

diseases classically considered to be monogenic, such as Long QT [35] syndrome, Holoprosencephaly 

[36] and others [33,35]. 

GENETIC MODIFIERS are important contributors to phenotypic variability (Figure 2). As 

modulators, these variants may alleviate or exacerbate the effect of the primary pathogenic variant 

leading to variable penetrance and expressivity of RDs and poor genotype-phenotype correlations 

even among the siblings. The extent of variation of any individual genome, combined with a 

known/expected property of genetic modifiers (variants of modest effects, not necessarily rare, also 

likely to affect non-coding regions) makes it difficult to identify these in small patient cohorts, typical 

for RDs. However, large-scale sequencing projects that combine phenotypic information are proving 

to be invaluable resources for assessing penetrance and expressivity in RDs [37,38], and thus the 

potential effect of genetic modifiers [39,40]. 

2.4. Unknowns 

UNKNOWN GENE-DISEASE ASSOCIATIONS contribute to missing heritability in RDs. OMIM (Online 

Mendelian Inheritance in Man) database [6], daily updated, makes the inventory of the described and 
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published disease-related phenotypes with the causing genes and variants. To date, OMIM contains 

information on more than 15,000 genes and more than 8000 human disease phenotypes with a 

suspected Mendelian basis [6]. However, for more than 3000 phenotypes there is no known molecular 

basis of the disease. Given the rate at which new gene-disease associations are established [41], it is 

expected that the next decade will establish the majority of the currently unknown gene-disease 

associations, and thus facilitate better diagnostic success in patients with RDs. 

UNKNOWN GENETIC MECHANISMS continue to be an important possible cause of missing 

heritability in RDs. For example, non-coding genome (~98% of the human genome) remains largely 

unexplored, yet emerging studies reinforce the importance of considering these variants in RD 

patients [42]. Similarly, recently described promoter epimutation [43] or allelic imbalance due to 

untranslated (UTR) variations [44] are some examples of not routinely screened genetic mechanisms 

that may cause unexplained RDs. 

3. High Throughput Sequencing—Untangling Complexity 

3.1. Exome Sequencing 

Over the last decade, HTS has had a substantial impact on RDs by improving the likelihood of 

reaching a diagnosis. In particular, exome sequencing has emerged as an endorsed approach, mainly 

due to its cost-effectiveness and practicality. 

GENE PANEL SEQUENCING refers to a type of HTS approach where a subset of known disease 

regions or known disease genes is targeted for sequencing. Gene panels can be of various sizes, from 

only two genes to thousands of genes, with the most comprehensive panels targeting all exons of the 

genes currently known to be associated with monogenic disease (e.g., Illumina’s TruSight One ~4800 

genes or TruSight One Expanded ~6700 genes). Panels offer the advantage of limiting the search for 

pathogenic variants to known disease gene set [45,46]; thus, circumventing the need for time-

consuming interpretation of potentially unrelated variants and/or incidental findings (IFs). However, 

gene panels may result in missed or incomplete diagnoses, due to limited ability to address: (1) 

heterogeneity, (2) variability due to multiple diagnoses where one or more conditions may not be 

included on the panel, (3) novel genetic diseases and/or (4) genetic mechanisms of the disease due to 

limited capacity of the panel to detect a spectrum of gene-inactivation mechanisms. 

WHOLE EXOME SEQUENCING (WES), on the other hand, simultaneously targets an entire set of 

protein-coding genes and allows a more comprehensive approach to uncovering missing heritability 

in RDs. An effective compromise between cost-effectiveness (e.g., targeting exome, a small part of the 

genome, <2%) and inclusion (e.g., most of the coding gene regions), WES had enabled unprecedented 

discoveries. These include, but are not limited to, discoveries of novel gene-disease and genotype-

phenotype associations [6], unexpected role of somatic mosaicism in undiagnosed cohorts [15,47,48], 

as well as novel discoveries of causes of phenotypic variability (e.g., multiple genetic diagnoses in a 

single patient [25–27]). Moreover, WES effectively improved the diagnostic success rate well beyond 

the ~10% diagnostic rate of high resolution molecular single-gene tests (e.g., Sanger sequencing), low 

resolution genome-wide cytogenetic tests (e.g., G-banded karyotype) or microarrays [3]. While the 

diagnostic rate of WES varies widely depending on disease type, patient selection and type of the 

WES test (e.g., singleton-WES analyzing only the proband vs. trio-WES including the proband and 

two unaffected relatives, in most cases parents) [3], the overall diagnostic rate of trio-WES for RDs is 

estimated to be between 30% and 50% [3,49,50]. While WES had played a pivotal role in addressing 

multiple levels of complexity associated with deciphering RDs, it is still a test limited to a very small 

portion of a genome and exome-capture technologies [51]. This limitation of WES may explain 

persistent missing heritability in RDs, including the RDs with well-established clinical diagnosis 

[15,52]. 

3.2. Genome Sequencing 

Unlike targeted sequencing approaches, whole genome sequencing (WGS) enables untargeted 

view of the entire human genome, and thus is the most comprehensive test with the potential to 
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identify every genetic variation that plays a role in human disease, causing either primary or 

secondary clinical features, or modifying the primary disease-causing variant (Figure 2). However, 

since sequencing human genomes became affordable, there have been mixed reports on the benefits 

of genome sequencing as opposed to exome sequencing in RDs. Some report marginal benefit 

[3,53,54], while others report a substantial benefit [55,56]. Nonetheless, all of these studies 

demonstrate that WGS facilitates discoveries not possible using exome sequencing (Table 1). For 

example, we recently reported on a family with a biochemical diagnosis of Dihydropyrimidine 

Dehydrogenase Deficiency (DPDD) in three members of one family [52]. Thus far, the only known 

genetic cause of DPDD is the alteration of DPYD resulting in autosomal recessive inheritance. While 

one member of the family received a genetic diagnosis (compound heterozygote for two DPYD 

variants), two family members with a confirmed biochemical DPDD remained only with partial 

genetic diagnosis despite clinical genetic tests including WES. Indeed, only one heterozygous DPYD 

variant was identified in these individuals, while the second variant expected for this recessive 

condition was missing [52]. It was only by WGS (Illumina short-read) that we were able to resolve 

the ‘missing heritability’ problem in this family, which was due to a complex SV, an imperfect >100Kb 

inversion with breakpoints in introns 8 and 12 and 4 bp deletion in DPYD [52]. Recently, a role of 

short repeat expansions in ‘missing heritability’ was demonstrated by identifying a cause of Benign 

Adult Familial Myoclonic Epilepsy (BAFME) [57]. Using single-molecule, real-time sequencing of 

BAC clones and Nanopore sequencing of genomic DNA, Ishiura et al. (2018) identified the same 

abnormal expansions of TTTCA and TTTTA repeats in introns of several different genes (SAMD12, 

TNRC6A and RAPGEF2), suggesting that it is the repeat expansion that is the cause of pathogenesis 

in BAFME rather than one of these genes specifically [57]. These and other examples (Table 1) clearly 

show the potential of WGS to uncover missing heritability, in particular variants other than SNVs, as 

well as variants located in a region not captured by WES, such as deep intronic variants (Table 1). In 

fact, Brendan Maher, who broached the concept of missing heritability over a decade ago, had already 

suggested that perhaps it makes sense to stop relying on SNV-gnostic technologies (e.g., GWAS in 

common disease and exome sequencing in RDs), and start looking for other types of variation as 

structural variants (SVs) via genome sequencing [1]. Although it is clear that WGS surpasses exome 

sequencing in its ability to uncover more (Table 1), the question remains whether it is possible to 

enhance the discovery and diagnostic potential of WGS beyond the currently reported rates [3,55]. 

SHORT-READ SEQUENCING is a type of HTS also known as second- or next-generation sequencing 

that could be further sub-divided into two categories: (1) sequencing by ligation (e.g., Complete 

Genomics and SOLiD platforms) and (2) sequencing by synthesis (proposed by Illumina, Qiagen, 454 

pyrosequencing and IonTorrent platforms). These sequencing approaches allow high-throughput 

analyses with low error rate (Illumina accuracy rate >99.5%) and affordable per base costs. However, 

the short reads (typically 100 to 400 bp in length [8]) are challenging for accurate mapping (e.g., 

resolution of pseudogenes) and the detection of SVs [58]. 

LONG-READ SEQUENCING is a type of HTS known as third-generation sequencing that also could 

be sub-divided into two main categories: (1) single-molecule real-time sequencing approaches 

(SMRT, e.g., Pacific BioSciences, PacBio [59] and MinION, PromethION from Oxford Nanopore 

Technologies [60–62] and (2) synthetic long-read approaches proposed by Illumina and 10X 

Genomics. 
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Table 1. Examples of diagnoses facilitated by Whole Genome Sequencing (WGS). 

Authors Year Gene Disease Type of Variation Type of WGS Ref. 

Kloosterman et al. 2011 Multiple Severe congenital abnormalities De novo SV (chromothripsis) SOLiD [23] 

Gilissen et al. 2014 SHANK3 Phelan-McDermid syndrome De novo 66 kb deletion Complete Genomics [53] 

Gilissen et al. 2014 VPS13B Cohen syndrome 1.7 kb and 122 kb deletions Complete Genomics [53] 

Gilissen et al. 2014 MECP2 Rett syndrome De novo 0.6 kb deletion Complete Genomics [53] 

Gilissen et al. 2014 IQSEC2 Intellectual disability De novo 62 kb interspersed duplication Complete Genomics [53] 

Gilissen et al. 2014 SMC1A Cornelia de Lange syndrome De novo 2.1 kb deletion Complete Genomics [53] 

Gilissen et al. 2014 Multiple 16p11.2 deletion syndrome De novo 611 kb deletion Complete Genomics [53] 

Gilissen et al. 2014 STAG1 Intellectual Disability De novo 382 kb deletion Complete Genomics [53] 

van Kuilenburg et al. 2017 DPYD DPDD Large intragenic inversion Illumina [52] 

Chiu et al. 2017 Multiple Pulmonary alveolar proteinosis 425 kb deletion Illumina [63] 

Borràs et al. 2017 PKD1 Polycystic kidney disease Various, 18/19 probands PacBio [64] 

Cretu Stancu et al. 2017 Multiple Severe congenital abnormalities De novo SV (chromothripsis) ONT 1 + Illumina [65] 

Alfares et al. 2018 PHOX2B Central hypoventilation syndrome GCN (25) repeat expansion [+25] Illumina [54] 

Alfares et al. 2018 TPM3 Nemaline myopathy 1 Large deletion Illumina [54] 

Alfares et al. 2018 TSC2 Tuberous sclerosis type 2 De novo deep intronic SNV Illumina [54] 

Lionel et al. 2 2018 GPR143 Ocular albinism Deep intronic variant Illumina [55] 

Lionel et al. 2 2018 OTC Ornithine transcarbamylase deficiency Deep intronic variant Illumina [55] 

Ostrander et al. 2018 Multiple Global developmental delay Balanced inverted translocation Illumina [56] 

Ostrander et al. 2018 CDKL5 Global developmental delay De novo 63 kb tandem duplication Illumina [56] 

Tavares et al. 2018 BBS1 Bardet-Biedl syndrome Retrotransposon insertion Illumina [66] 

Cowley et al. 2018 SYNGAP1 Epileptic encephalopathy De novo 13 bp duplication Illumina [67] 

Miao et al. 2018 G6PC Glycogen storage disease type Ia 7.1 kb deletion ONT 1 [68] 

Merker et al. 2018 PRKAR1A Carney complex De novo 2184 bp deletion PacBio [69] 

Sanchis-Juan et al. 2018 ARID1B Coffin-Siris syndrome De novo complex SV dupINVinvDEL Illumina [70] 

Sanchis-Juan et al. 2018 HNRNPU Seizures; Intellectual disability De novo complex SV delINVdup Illumina [70] 

Sanchis-Juan et al. 2018 CEP78 Cone-rod dystrophy; Hearing loss complex homozygous SV delINVdel Illumina [70] 

Sanchis-Juan et al. 2018 CDKL5 Birth asphyxia; Fetal distress De novo complex SV dupINVdup Illumina + ONT 1 [70] 

Ishiura et al. 2018 SAMD12 BAFME 3 TTTCA and TTTTA repeat expansions PacBio +ONT [57] 

Ishiura et al. 2018 TNRC6A BAFME 3 TTTCA and TTTTA repeat expansions PacBio + ONT [57] 

Ishiura et al. 2018 RAPGEF2 BAFME 3 TTTCA and TTTTA repeat expansions PacBio + ONT [57] 

Mizuguchi et al. 2019 SAMD12 BAFME 3 4.6 kb intronic repeat insertion PacBio [71] 

1 Oxford Nanopore Tech. 2 Lionel et al., reported 18 diagnoses by WGS; however, the majority was missed by exome panels since panels did not include the 

corresponding gene. The two deep intronic variants included in this table would not have been detected by exome sequencing approaches. 3 Benign adult familial 

myoclonic epilepsy. 
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The Nanopore sequencers are able to produce on average 7–8 kb long reads and PacBio 10–15 

kb long reads which may facilitate better detection of SVs as a result of more accurate alignments and 

better likelihood for detection of repetitive regions and tandem repeats [72]. However, there are many 

limitations associated with long-read sequencing technology, such as (1) significantly lower 

throughput; (2) higher per-sample sequencing cost (e.g., human WGS at 30Xcoverage is ~30-fold 

more expensive using PacBio than Illumina); (3) high error rates of >10% [8,73]; and (4) less resources 

of the available bioinformatics tools. 

HOLISTIC/COMPREHENSIVE APPROACHES: Despite the advantages and disadvantages of both the 

short- and long-read sequencing technologies, both of these were successfully utilized to uncover a 

spectrum of SVs not easily/detectable by other approaches (Table 1). For example, short-read 

sequencing WGS successfully detected variants, such as deletions, duplications, inversions, repeat 

expansions, translocations, mobile element insertions, as well as complex structural variants (e.g., 

duplication-inversion-inversion-deletion or chromothripsis) (Table 1). Similarly, long-read 

sequencing had been successfully applied to detect SVs (Table 1). A combined approach may also be 

a possibility, as demonstrated by several studies where combining Nanopore and Illumina 

technologies (Table 1) helped resolve complex SVs [65,70] or synthetic long-read technology may be 

considered (10X Genomics/Illumina). This technology re-builds long reads in silico using barcodes in 

existing short-reads, and thus could potentially bypass issues related to the cost, error rates, and 

throughput of true long-read sequencers [73]. Nonetheless, we believe that in order to maximize 

holistic potential of WGS, besides the detection of a variation spectrum (Figures 1 and 2, Table 1), 

good coverage is desired in order to reliably call variants in both homozygous and heterozygous 

states, as well as somatic mosaicism, an emerging cause of missing heritability [15,47,48]. 

Currently, short-read sequencing technology has been very well positioned to lead the way in 

comprehensive genomics (Table 1), and the emerging computational approaches may effectively 

address the limitations of short-reads [8] (Table 2). For example, the recently developed 

ExpansionHunter uses PCR-free WGS short-read data to identify long repeat expansions, addressing 

the problem of identifying repetitive variation that is longer than the sequencing read itself [74]. 

Considering that just some 20 tandem repeat diseases have been described to date [75], and the fact 

that the repeatome (all repetitive or repeat-derived DNA sequences in a genome) represents a 

substantial source of variation in humans [75–77], is suggestive that with tools like ExpansionHunter 

[74] and GangSTR [78], we are likely to uncover many more causes of missing heritability (both 

germline [57] and somatic, Figure 2). Beyond the repeatome, other SVs represent a substantial 

potential for individual variation [79] (estimated to be up to 10-fold larger than that of SNVs) [80], 

and mobile elements (~45% of the human genome [81]) also play an important role (Table 1) [82]. 

Many tools had been developed for a specific type of SVs and continue to be tested and evaluated 

(Table 2). Genome sequencing has already been shown to be at least as sensitive as microarrays in 

discovery of CNVs, both germline, de novo and somatic [83], using Canvas [84,85] (Table 2), and data 

mining/machine learning algorithms are being developed to assess performance and to merge calls 

from various SV-calling algorithms [86,87]. 
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Table 2. Examples of bioinformatics tools that facilitate comprehensive genome analyses. 

Authors Year Tool Method Input 1 Variants Detected Reference 

Abyzov et 

al. 
2011 CNVnator Read Depth 

PE2 Short 

read WGS 
Copy Number Variants [88] 

Rausch et al. 2012 DELLY 
Paired-ends, Read depth, Split-

reads 

Short read 

WGS 
Structural Variants [89] 

Calabrese et 

al. 
2014 MToolBox Read re-alignment 

WGS or 

WES 
Mitochondrial Variants [90] 

Layer et al. 2014 LUMPY 
Paired-ends, Read depth, Split-

reads 

PE short 

read WGS 
Structural Variants [91] 

Roller et al. 2016 Canvas Read Depth 
WGS or 

WES 
Copy Number Variations [84,85] 

Chen et al. 2016 Manta Pair Read, Split Read 
PE short 

read WGS 
Indels, Structural Variants [92] 

Dolzhenko 

et al. 
2017 

Expansion-

Hunter 
Sequence-graph 

PE short 

read WGS 

Large Expansion of Short 

Tandem Repeats 
[74] 

Ebler et al. 2017 DIGTYPER 
Breakpoint-Spanning, Split 

Alignments 

PE short 

read WGS 

Inversions, Tandem 

Duplications 
[93] 

Liang et al. 2017 Seeksv 
Split Read, Discordant Paired-End, 

Read Depth, 2 Ends Unmapped 

SE/PE 2 

short read 

WGS 

Structural Variants + Virus 

Integration 
[94] 

Mousavi et 

al. 
2018 GangSTR 

Enclosing, Fully Repetitive, 

Spanning and Off-target Fully 

Repetitive Read Pairs 

PE short 

read WGS 
Tandem Repeat expansions [78] 

Kim et al. 2018 Strelka2 Mixture-model 
PE short 

read WGS 

Single Nucleotide Variants, 

Indels 
[95] 

Ye et al. 2018 Pindel Split-reads 
PE short 

read WGS 

Indels, Structural Variants 

(small and medium-size) 
[96,97] 

Wala et al. 2018 SvABA Local assembly 
PE short 

read WGS 

Indels, Structural Variants 

(20–300 bp) 
[98] 

Becker et al. 2018 
SVE/ 

FusorSV 

8 SV callers combination + Data 

mining 

PE short 

read WGS 

Deletions + Duplications + 

Inversions 3 
[86] 

Antaki et al. 2018 SV2 
Supervised support vector machine 

classifiers 

PE short 

read WGS 
Deletions + Duplications [87] 

1 All tools take BAM files as input. MToolBoxaccepts FASTQ files. Strelka2, SV2, SvABA, ExpansionHunter, 

Manta also accept CRAM files, SV2 requires SVs to genotype, SNV VCF files and PED files. SVE/FusorSV 

accepts FASTQ, BAM and VCF files. SvABA also accepts SAM files. 2 PE = Paired-Ended; SE = Single-Ended 
3 Other SVs could be explored if they are present in the training dataset. 

3.3. Genome and Phenome Resources 

REFERENCE GENOME: A crucial step of HTS bioinformatics pipelines is the read mapping with 

the following scenarios: (1) alignment along a reference genome; (2) alignment along a personalized 

genome; (3) de novo alignment or (4) alignment-free process. The most widely used approach is the 

alignment along a reference genome. A human reference genome is an assembly of sequenced DNA 

from a number of people, which is stored in a database in its digital form. It provides a haploid mosaic 

of different DNA from each donor, and thus not any single person in particular. For example, the 

Genome Reference Consortium human genome, build 37 (GRCh37/hg19) released in February 2009, 

is derived from 13 anonymous volunteers from Buffalo, New York [99], and the new build 

GRCh38/hg38 (release in December 2013) contains the same DNA but with more than 100 gaps that 

were present in hg19 now closed in hg38, some using Nanopore sequencing [100]. One disadvantage 

of the widely used read mapping via the reference genome approach is the assumption that the 13 

volunteer genomes are representative of the genetic background of various populations subjected to 

genome/exome sequencing, which is unlikely to be the case. First, it has been shown that the human 

reference genome contains only an allele of O blood type of the ABO blood groups [101] and misses 

segments of DNA present in other populations [102], and additionally, it harbors some 20,000 ultra-

low frequency alleles [103]. Thus, alternative approaches, such as ethnically concordant synthetic 

human reference sequence [104] or genome graphs (a mathematical graph of variation missing from 

the reference) [105] may play an important role in improving unique read mapping and variant 

calling for disease-associated variants [104,105], and thus further help to address the problem of 

missing heritability. 
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VARIOME RESOURCES: Another crucial component of the rare disease HTS bioinformatics pipelines is 

the assessment of the frequency of the variants identified in the patient by comparison against ‘untargeted 

populations’ or ‘normal variation’ databases. This step in variant interpretation can reduce the number of 

candidate variants several fold by deprioritizing the ones seen more frequently than expected in these 

databases, and thus focus analysis on the ultra/rare variants that are more likely to play a role. dbSNP 

[106], and databases such as Exome Aggregation Consortium (ExAC, 60,706 individual exomes) [37], 

DiscovEHR (50,726 individual exomes [38]), Genome Aggregation Database (gnomAD, 125,748 exomes 

and 15,708 genomes) [37] and TOPMed project BRAVO dataset (62,784 genomes) [107], aggregate 

exome/genome data on thousands of unrelated individuals not affected by severe pediatric genetic 

conditions, and thus represent invaluable resources. Even so, despite their large number of 

exomes/genomes, these databases are not representative of the global human population and variations, 

making interpretation difficult, especially in underrepresented populations (Figure 3). First, all of these 

resources use the GRCh37/hg19 and/or GRCh38/hg38 as the reference genome when calling the variants. 

Second, all of these resources predominantly contain the information on European ‘normal’ variation (e.g., 

60% and 55% of ExAC and gnomAD data sets, respectively) (Figure 3), while other genomes are 

substantially under-represented (e.g., 67 Japanese individuals in gnomAD) or not at all (no information 

on Indigenous people) (Figure 3). This problem has been recognized and multiple efforts have been 

initiated to bridge these gaps, such as Iranome project [108], the Ashkenazi Jewish [109] reference panel, 

the Genome Russia project [110,111], as well as the Silent Genomes project (Canadian Indigenous people) 

[112]. Beyond these challenges with reference population data, another problem with the current 

population databases is that these aggregate predominantly SNVs. Thus, to effectively use WGS to 

uncover missing heritability, we will need both equitable representation of populations as well as robust 

methods to identify, compile and compare SVs across different populations. 

 

Figure 3. Populations represented in the gnomAD database. An example of various population 

exomes/genomes aggregated in the most comprehensive database, gnomAD (European populations 

are depicted in a spectrum of red colors). 

Beyond the ‘normal variation’ resources, databases on variants already implicated in human 

disease are very important as well. These include already mentioned freely accessible database 

ClinVar [18], as well as Leiden Open Variation Database (LOVD) [20], Human Gene Mutation 

Database (HGMD) [113] and ClinGen resources [114]. Additional more specialized databases compile 

information on structural variants, such as a dbVar [115], a database housing over 3 million submitted 
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structural variants (SSV) from 120 human studies or an HmtVar [116], a dataset of over 40,000 human 

mitochondrial variants. 

PHENOME RESOURCES: Accurate and detailed phenotyping is essential for correct and timely 

gene/variant-disease associations. Beyond the resources on human genetic variations, the resources 

on human phenomes, such as OMIM [6] and ORPHANET [5] compile the information on human rare 

phenotypes, as well as information on corresponding genes in cases where the associations had been 

made. The Human Phenotype Ontology (HPO) database contains HPO terms, a standardized 

vocabulary used to describe/communicate phenotypic abnormalities associated with disorders [117]. 

The HPO vocabulary not only helps link genes to diseases but also helps in standardizing health 

records around the world and thus connecting patients with the same disease [118]. In terms of 

matchmaking tools, there are a number of resources that facilitated the matching of patients with 

similar rare phenotypes who may have the same candidate gene identified from exome/genome 

sequencing studies. These include GeneMatcher [119], PhenomeCentral [120], as well as Matchmaker 

Exchange [121]. Since thousands of genes remain to be associated with rare disease, these 

matchmaking tools are effectively helping the missing heritability problem (e.g., by providing 

additional evidence; more than one patient with the same novel genotype-phenotype association). 

Similarly, international efforts, like the International Rare Diseases Research Consortium (IRDiRC) 

[49], Canadian Organization for Rare Diseases (CORD), UK10k project [122], the National Institute of 

Health (NIH) initiatives, Undiagnosed Diseases Program [123] and others are determined to work 

together in order to resolve the missing heritability in RDs and to understand the genetic origin of 

disease [124]. 

4. Uncovering Missing Heritability—“No Longer Just Looking under the Lamppost” 

In his William Allan Award address, Dr. Francis Collins used an “under the lamppost” search 

metaphor to illustrate his view of the difficulty associated with searching for genetic answers in the 

small regions of the genome only [124]. It relates to the story of a man losing his car keys in the street 

at night. He was only looking under the lamppost justifying that this is where he is likely to find his 

keys since this is where the light is. It is clear that in RDs, we are exhausting the “lamppost”, and thus 

it is time to search beyond for causes of “missing heritability”. With affordable sequencing of 

genomes, we are undeniably en route to find more variations (Table 1), to be inclusive of 

underrepresented populations (Figure 3), and well positioned to comb the genome base-by-base for 

answers. The search beyond the obvious truly opens windows to the wonders of genomics, and while 

it untangles some complexity, it informs us of another complexity of human genetic conditions that 

we did not even consider (e.g., complex mosaicisms [47], chromothripsis [23,24]). 

In this review, we discuss the ‘missing heritability’ paradigm through the rare disease lens. 

Heritability (H2) H2 = 
��� �

��� �
=  

��� �

��� � � ��� �
 is a measure that estimates the proportion (0 to 1) of a 

phenotypic trait or phenotypic variance (Var P) that is genetic (Var G) in origin (i.e., it could not be 

explained by the environment (Var E) or random chance). We argue that missing heritability affects 

RDs in a fashion similar to common and complex diseases. Furthermore, we believe that given the 

fact that the majority of rare disease phenotypes are mostly due to genetics (Var G), RDs are the best 

phenotypic traits where causes of missing heritability, applicable also to common disease, can be 

effectively explored. 

Funding: The authors were supported by Genome Canada (275SIL)/Genome BC/CIHR (GP1-155868) LSARP 

Genomics and Precision Health Silent Genomes Project and Alberta Children’s Hospital Research Institute 

Foundation. 

Acknowledgments: We thank Drs. Arbour, Lehman, Mwenifumbo and Stasiuk for thoughtful comments on the 

manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

 



Genes 2019, 10, 275 12 of 19 

 

References 

1.  Maher, B. Personal genomes: The case of the missing heritability. Nature 2008, 456, 18–21. 

2.  Turkheimer, E. Still missing. Res. Hum. Dev. 2011, 8, 227–241. 

3.  Wright, C.F.; FitzPatrick, D.R.; Firth, H.V. Paediatric genomics: Diagnosing rare disease in children. Nat. 

Rev. Genet. 2018, 19, 253–268. 

4.  Montserrat Moliner, A.; Waligóra, J. The European Union policy in the field of rare diseases. Public Health 

Genomics 2013, 16, 268–277. 

5.  Orphanet. Available online: https://www.orpha.net/consor/cgi-bin/index.php (accessed on Jan 6, 2019). 

6.  OMIM - Online Mendelian Inheritance in Man Available online: https://www.omim.org/ (accessed on Jan 

6, 2019). 

7.  Chakravorty, S.; Hegde, M. Gene and variant annotation for Mendelian disorders in the era of advanced 

sequencing technologies. Annu. Rev. Genomics Hum. Genet. 2017, 18, 229–256. 

8.  Caspar, S.M.; Dubacher, N.; Kopps, A.M.; Meienberg, J.; Henggeler, C.; Matyas, G. Clinical sequencing: 

From raw data to diagnosis with lifetime value. Clin. Genet. 2018, 93, 508–519. 

9.  Prokop, J.W.; May, T.; Strong, K.; Bilinovich, S.M.; Bupp, C.; Rajasekaran, S.; Worthey, E.A.; Lazar, J. 

Genome sequencing in the clinic: The past, present, and future of genomic medicine. Physiol. Genom. 2018, 

50, 563–579. 

10.  Schindler, A.; Sumner, C.; Hoover-Fong, J.E. TRPV4-Associated Disorders. In GeneReviews®; Adam, M.P., 

Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J., Stephens, K., Amemiya, A., Eds.; University of 

Washington, Seattle: Seattle, WA, USA, 1993. 

11.  Schlingmann, K.P.; Bandulik, S.; Mammen, C.; Tarailo-Graovac, M.; Holm, R.; Baumann, M.; König, J.; Lee, 

J.J.Y.; Drögemöller, B.; Imminger, K.; et al. Germline de novo mutations in ATP1A1 cause renal 

hypomagnesemia, refractory seizures, and intellectual disability. Am. J. Hum. Genet. 2018, 103, 808–816. 

12.  Lassuthova, P.; Rebelo, A.P.; Ravenscroft, G.; Lamont, P.J.; Davis, M.R.; Manganelli, F.; Feely, S.M.; Bacon, 

C.; Brožková, D.Š.; Haberlova, J.; et al. Mutations in ATP1A1 cause dominant Charcot-Marie-Tooth type 2. 

Am. J. Hum. Genet. 2018, 102, 505–514. 

13.  Lynch, D.S.; Chelban, V.; Vandrovcova, J.; Pittman, A.; Wood, N.W.; Houlden, H. GLS loss of function 

causes autosomal recessive spastic ataxia and optic atrophy. Ann. Clin. Transl. Neurol. 2018, 5, 216–221. 

14.  Rumping, L.; Büttner, B.; Maier, O.; Rehmann, H.; Lequin, M.; Schlump, J.-U.; Schmitt, B.; Schiebergen-

Bronkhorst, B.; Prinsen, H.C.M.T.; Losa, M.; et al. Identification of a loss-of-function mutation in the 

context of glutaminase deficiency and neonatal epileptic encephalopathy. JAMA Neurol. 2018. 

15.  Peron, A.; Au, K.S.; Northrup, H. Genetics, genomics, and genotype-phenotype correlations of TSC: 

Insights for clinical practice. Am. J. Med. Genet. C Semin. Med. Genet. 2018, 178, 281–290. 

16.  Bravo-Gil, N.; González-Del Pozo, M.; Martín-Sánchez, M.; Méndez-Vidal, C.; Rodríguez-de la Rúa, E.; 

Borrego, S.; Antiñolo, G. Unravelling the genetic basis of simplex Retinitis Pigmentosa cases. Sci. Rep. 2017, 

7, 41937. 

17.  Chiurazzi, P.; Pirozzi, F. Advances in understanding - genetic basis of intellectual disability. F1000Research 

2016, 5, doi:10.12688/f1000research.7134.1. 

18.  Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; 

Hoover, J.; et al. ClinVar: Public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 

2016, 44, D862-868. 

19.  Sequence Ontology Available online: http://www.sequenceontology.org/ (accessed on Jan 7, 2019). 



Genes 2019, 10, 275 13 of 19 

 

20.  Fokkema, I.F.A.C.; Taschner, P.E.M.; Schaafsma, G.C.P.; Celli, J.; Laros, J.F.J.; den Dunnen, J.T. LOVD v.2.0: 

The next generation in gene variant databases. Hum. Mutat. 2011, 32, 557–563. 

21.  Ulirsch, J.C.; Verboon, J.M.; Kazerounian, S.; Guo, M.H.; Yuan, D.; Ludwig, L.S.; Handsaker, R.E.; 

Abdulhay, N.J.; Fiorini, C.; Genovese, G.; et al. The genetic landscape of diamond-blackfan anemia. Am. J. 

Hum. Genet. 2018, 103, 930–947. 

22.  Piazza, A.; Heyer, W.-D. Homologous recombination and the formation of complex genomic 

rearrangements. Trends Cell Biol. 2019, 29, 135–149. 

23.  Kloosterman, W.P.; Guryev, V.; van Roosmalen, M.; Duran, K.J.; de Bruijn, E.; Bakker, S.C.M.; Letteboer, 

T.; van Nesselrooij, B.; Hochstenbach, R.; Poot, M.; et al. Chromothripsis as a mechanism driving complex 

de novo structural rearrangements in the germline. Hum. Mol. Genet. 2011, 20, 1916–1924. 

24.  McDermott, D.H.; Gao, J.-L.; Liu, Q.; Siwicki, M.; Martens, C.; Jacobs, P.; Velez, D.; Yim, E.; Bryke, C.R.; 

Hsu, N.; et al. Chromothriptic cure of WHIM syndrome. Cell 2015, 160, 686–699. 

25.  Tarailo-Graovac, M.; Shyr, C.; Ross, C.J.; Horvath, G.A.; Salvarinova, R.; Ye, X.C.; Zhang, L.-H.; Bhavsar, 

A.P.; Lee, J.J.Y.; Drögemöller, B.I.; et al. Exome Sequencing and the management of neurometabolic 

disorders. N. Engl. J. Med. 2016, 374, 2246–2255. 

26.  Posey, J.E.; Harel, T.; Liu, P.; Rosenfeld, J.A.; James, R.A.; Coban Akdemir, Z.H.; Walkiewicz, M.; Bi, W.; 

Xiao, R.; Ding, Y.; et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N. 

Engl. J. Med. 2017, 376, 21–31. 

27.  Balci, T.B.; Hartley, T.; Xi, Y.; Dyment, D.A.; Beaulieu, C.L.; Bernier, F.P.; Dupuis, L.; Horvath, G.A.; 

Mendoza-Londono, R.; Prasad, C.; et al. Debunking Occam’s razor: Diagnosing multiple genetic diseases 

in families by whole-exome sequencing. Clin. Genet. 2017, 92, 281–289. 

28.  Wen, X.-Y.; Tarailo-Graovac, M.; Brand-Arzamendi, K.; Willems, A.; Rakic, B.; Huijben, K.; Da Silva, A.; 

Pan, X.; El-Rass, S.; Ng, R.; et al. Sialic acid catabolism by N-acetylneuraminate pyruvate lyase is essential 

for muscle function. JCI Insight 2018, 3, doi:10.1172/jci.insight.122373. 

29.  Pérez-Torras, S.; Mata-Ventosa, A.; Drögemöller, B.; Tarailo-Graovac, M.; Meijer, J.; Meinsma, R.; van 

Cruchten, A.G.; Kulik, W.; Viel-Oliva, A.; Bidon-Chanal, A.; et al. Deficiency of perforin and hCNT1, a 

novel inborn error of pyrimidine metabolism, associated with a rapidly developing lethal phenotype due 

to multi-organ failure. Biochim. Biophys. Acta Mol. Basis Dis. 2019, doi:10.1016/j.bbadis.2019.01.013. 

30.  Armour, C.M.; Smith, A.; Hartley, T.; Chardon, J.W.; Sawyer, S.; Schwartzentruber, J.; Hennekam, R.; 

Majewski, J.; Bulman, D.E.; FORGE Canada Consortium; et al. Syndrome disintegration: Exome 

sequencing reveals that Fitzsimmons syndrome is a co-occurrence of multiple events. Am. J. Med. Genet. 

A. 2016, 170, 1820–1825. 

31.  Sass, J.O.; Gemperle-Britschgi, C.; Tarailo-Graovac, M.; Patel, N.; Walter, M.; Jordanova, A.; Alfadhel, M.; 

Barić, I.; Çoker, M.; Damli-Huber, A.; et al. Unravelling 5-oxoprolinuria (pyroglutamic aciduria) due to bi-

allelic OPLAH mutations: 20 new mutations in 14 families. Mol. Genet. Metab. 2016, 119, 44–49. 

32.  DIDA | DIDA is a novel database that provides for the first time detailed information on genes and 

associated genetic variants involved in digenic diseases, the simplest form of oligogenic inheritance. 

Available online: http://dida.ibsquare.be/ (accessed on Feb 21, 2019). 

33.  Gazzo, A.M.; Daneels, D.; Cilia, E.; Bonduelle, M.; Abramowicz, M.; Van Dooren, S.; Smits, G.; Lenaerts, T. 

DIDA: A curated and annotated digenic diseases database. Nucleic Acids Res. 2016, 44, D900-907. 

34.  Lee, J.E.; Silhavy, J.L.; Zaki, M.S.; Schroth, J.; Bielas, S.L.; Marsh, S.E.; Olvera, J.; Brancati, F.; Iannicelli, M.; 

Ikegami, K.; et al. CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the 

cilium. Nat. Genet. 2012, 44, 193–199. 



Genes 2019, 10, 275 14 of 19 

 

35.  Schäffer, A.A. Digenic inheritance in medical genetics. J. Med. Genet. 2013, 50, 641–652. 

36.  Kim, A.; Savary, C.; Dubourg, C.; Carré, W.; Mouden, C.; Hamdi-Rozé, H.; Guyodo, H.; Douce, J.L.; FREX 

Consortium; GoNL Consortium; et al. Integrated clinical and omics approach to rare diseases: novel genes 

and oligogenic inheritance in holoprosencephaly. Brain J. Neurol. 2018. 

37.  Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, 

J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 

2016, 536, 285–291. 

38.  Dewey, F.E.; Murray, M.F.; Overton, J.D.; Habegger, L.; Leader, J.B.; Fetterolf, S.N.; O’Dushlaine, C.; Van 

Hout, C.V.; Staples, J.; Gonzaga-Jauregui, C.; et al. Distribution and clinical impact of functional variants 

in 50,726 whole-exome sequences from the DiscovEHR study. Science 2016, 354. 

39.  Chen, R.; Shi, L.; Hakenberg, J.; Naughton, B.; Sklar, P.; Zhang, J.; Zhou, H.; Tian, L.; Prakash, O.; Lemire, 

M.; et al. Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood 

diseases. Nat. Biotechnol. 2016, 34, 531–538. 

40.  Tarailo-Graovac, M.; Zhu, J.Y.A.; Matthews, A.; van Karnebeek, C.D.M.; Wasserman, W.W. Assessment of 

the ExAC data set for the presence of individuals with pathogenic genotypes implicated in severe 

Mendelian pediatric disorders. Genet. Med. 2017, 12, 1300. 

41.  Wenger, A.M.; Guturu, H.; Bernstein, J.A.; Bejerano, G. Systematic reanalysis of clinical exome data yields 

additional diagnoses: Implications for providers. Genet. Med. 2017, 19, 209–214. 

42.  Short, P.J.; McRae, J.F.; Gallone, G.; Sifrim, A.; Won, H.; Geschwind, D.H.; Wright, C.F.; Firth, H.V.; 

FitzPatrick, D.R.; Barrett, J.C.; et al. De novo mutations in regulatory elements in neurodevelopmental 

disorders. Nature 2018, 555, 611–616. 

43.  Guéant, J.-L.; Chéry, C.; Oussalah, A.; Nadaf, J.; Coelho, D.; Josse, T.; Flayac, J.; Robert, A.; Koscinski, I.; 

Gastin, I.; et al. APRDX1 mutant allele causes a MMACHC secondary epimutation in cblC patients. Nat. 

Commun. 2018, 9, 67. 

44.  Falkenberg, K.D.; Braverman, N.E.; Moser, A.B.; Steinberg, S.J.; Klouwer, F.C.C.; Schlüter, A.; Ruiz, M.; 

Pujol, A.; Engvall, M.; Naess, K.; et al. Allelic Expression imbalance promoting a mutant PEX6 allele causes 

Zellweger spectrum disorder. Am. J. Hum. Genet. 2017, 101, 965–976. 

45.  Ece Solmaz, A.; Onay, H.; Atik, T.; Aykut, A.; Cerrah Gunes, M.; Ozalp Yuregir, O.; Bas, V.N.; Hazan, F.; 

Kirbiyik, O.; Ozkinay, F. Targeted multi-gene panel testing for the diagnosis of Bardet Biedl syndrome: 

Identification of nine novel mutations across BBS1, BBS2, BBS4, BBS7, BBS9, BBS10 genes. Eur. J. Med. 

Genet. 2015, 58, 689–694. 

46.  Saudi Mendeliome Group. Comprehensive gene panels provide advantages over clinical exome 

sequencing for Mendelian diseases. Genome Biol. 2015, 16, 134. 

47.  Matthews, A.M.; Tarailo-Graovac, M.; Price, E.M.; Blydt-Hansen, I.; Ghani, A.; Drögemöller, B.I.; Robinson, 

W.P.; Ross, C.J.; Wasserman, W.W.; Siden, H.; et al. A de novo mosaic mutation in SPAST with two novel 

alternative alleles and chromosomal copy number variant in a boy with spastic paraplegia and autism 

spectrum disorder. Eur. J. Med. Genet. 2017, 60, 548–552. 

48.  Ragotte, R.J.; Dhanrajani, A.; Pleydell-Pearce, J.; Del Bel, K.L.; Tarailo-Graovac, M.; van Karnebeek, C.; 

Terry, J.; Senger, C.; McKinnon, M.L.; Seear, M.; et al. The importance of considering monogenic causes of 

autoimmunity: A somatic mutation in KRAS causing pediatric Rosai-Dorfman syndrome and systemic 

lupus erythematosus. Clin. Immunol. 2017, 175, 143–146. 



Genes 2019, 10, 275 15 of 19 

 

49.  Boycott, K.M.; Rath, A.; Chong, J.X.; Hartley, T.; Alkuraya, F.S.; Baynam, G.; Brookes, A.J.; Brudno, M.; 

Carracedo, A.; den Dunnen, J.T.; et al. International cooperation to enable the diagnosis of all rare genetic 

diseases. Am. J. Hum. Genet. 2017, 100, 695–705. 

50.  Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of 

developmental disorders. Nature 2015, 519, 223–228. 

51.  Tarailo-Graovac, M.; Wasserman, W.W.; Van Karnebeek, C.D.M. Impact of next-generation sequencing on 

diagnosis and management of neurometabolic disorders: Current advances and future perspectives. 

Expert Rev. Mol. Diagn. 2017, 17, 307–309. 

52.  Van Kuilenburg, A.B.P.; Tarailo-Graovac, M.; Meijer, J.; Drogemoller, B.; Vockley, J.; Maurer, D.; 

Dobritzsch, D.; Ross, C.J.; Wasserman, W.; Meinsma, R.; et al. Genome sequencing reveals a novel genetic 

mechanism underlying dihydropyrimidine dehydrogenase deficiency: A novel missense variant 

c.1700G>A and a large intragenic inversion in DPYD spanning intron 8 to intron 12. Hum. Mutat. 2018, 39, 

947–953. 

53.  Gilissen, C.; Hehir-Kwa, J.Y.; Thung, D.T.; van de Vorst, M.; van Bon, B.W.M.; Willemsen, M.H.; Kwint, 

M.; Janssen, I.M.; Hoischen, A.; Schenck, A.; et al. Genome sequencing identifies major causes of severe 

intellectual disability. Nature 2014, 511, 344–347. 

54.  Alfares, A.; Aloraini, T.; Subaie, L.A.; Alissa, A.; Qudsi, A.A.; Alahmad, A.; Mutairi, F.A.; Alswaid, A.; 

Alothaim, A.; Eyaid, W.; et al. Whole-genome sequencing offers additional but limited clinical utility 

compared with reanalysis of whole-exome sequencing. Genet. Med. 2018, 20, 1328. 

55.  Lionel, A.C.; Costain, G.; Monfared, N.; Walker, S.; Reuter, M.S.; Hosseini, S.M.; Thiruvahindrapuram, B.; 

Merico, D.; Jobling, R.; Nalpathamkalam, T.; et al. Improved diagnostic yield compared with targeted gene 

sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet. Med. 

2018, 20, 435–443. 

56.  Ostrander, B.E.P.; Butterfield, R.J.; Pedersen, B.S.; Farrell, A.J.; Layer, R.M.; Ward, A.; Miller, C.; DiSera, T.; 

Filloux, F.M.; Candee, M.S.; et al. Whole-genome analysis for effective clinical diagnosis and gene 

discovery in early infantile epileptic encephalopathy. NPJ Genom. Med. 2018, 3, 22. 

57.  Ishiura, H.; Doi, K.; Mitsui, J.; Yoshimura, J.; Matsukawa, M.K.; Fujiyama, A.; Toyoshima, Y.; Kakita, A.; 

Takahashi, H.; Suzuki, Y.; et al. Expansions of intronic TTTCA and TTTTA repeats in benign adult familial 

myoclonic epilepsy. Nat. Genet. 2018, 50, 581–590. 

58.  Nakagawa, H.; Fujita, M. Whole genome sequencing analysis for cancer genomics and precision medicine. 

Cancer Sci. 2018, 109, 513–522. 

59.  Rhoads, A.; Au, K.F. PacBio Sequencing and Its Applications. Genom. Proteom. Bioinform. 2015, 13, 278–289. 

60.  Loose, M.W. The potential impact of nanopore sequencing on human genetics. Hum. Mol. Genet. 2017, 26, 

R202–R207. 

61.  Laver, T.; Harrison, J.; O’Neill, P.A.; Moore, K.; Farbos, A.; Paszkiewicz, K.; Studholme, D.J. Assessing the 

performance of the Oxford Nanopore Technologies MinION. Biomol. Detect. Quantif. 2015, 3, 1–8. 

62.  Leggett, R.M.; Clark, M.D. A world of opportunities with nanopore sequencing. J. Exp. Bot. 2017, 68, 5419–

5429. 

63.  Chiu, C.-Y.; Su, S.-C.; Fan, W.-L.; Lai, S.-H.; Tsai, M.-H.; Chen, S.-H.; Wong, K.-S.; Chung, W.-H. Whole-

genome sequencing of a family with hereditary pulmonary alveolar proteinosis identifies a rare structural 

variant involving CSF2RA/CRLF2/IL3RA gene disruption. Sci. Rep. 2017, 7, 43469. 



Genes 2019, 10, 275 16 of 19 

 

64.  Borràs, D.M.; Vossen, R.H.A.M.; Liem, M.; Buermans, H.P.J.; Dauwerse, H.; van Heusden, D.; Gansevoort, 

R.T.; den Dunnen, J.T.; Janssen, B.; Peters, D.J.M.; et al. Detecting PKD1 variants in polycystic kidney 

disease patients by single-molecule long-read sequencing. Hum. Mutat. 2017, 38, 870–879. 

65.  Cretu Stancu, M.; van Roosmalen, M.J.; Renkens, I.; Nieboer, M.M.; Middelkamp, S.; de Ligt, J.; Pregno, 

G.; Giachino, D.; Mandrile, G.; Espejo Valle-Inclan, J.; et al. Mapping and phasing of structural variation 

in patient genomes using nanopore sequencing. Nat. Commun. 2017, 8, 1326. 

66.  Tavares, E.; Tang, C.Y.; Vig, A.; Li, S.; Billingsley, G.; Sung, W.; Vincent, A.; Thiruvahindrapuram, B.; Héon, 

E. Retrotransposon insertion as a novel mutational event in Bardet-Biedl syndrome. Mol. Genet. Genom. 

Med. 2018, doi: 10.1002/mgg3.521. 

67.  Cowley, M.J.; Liu, Y.-C.; Oliver, K.L.; Carvill, G.; Myers, C.T.; Gayevskiy, V.; Delatycki, M.; Vlaskamp, 

D.R.M.; Zhu, Y.; Mefford, H.; et al. Reanalysis and optimisation of bioinformatic pipelines is critical for 

mutation detection. Hum. Mutat. 2018. 40, 374–379. 

68.  Miao, H.; Zhou, J.; Yang, Q.; Liang, F.; Wang, D.; Ma, N.; Gao, B.; Du, J.; Lin, G.; Wang, K.; et al. Long-read 

sequencing identified a causal structural variant in an exome-negative case and enabled preimplantation 

genetic diagnosis. Hereditas 2018, 155, 32. 

69.  Merker, J.D.; Wenger, A.M.; Sneddon, T.; Grove, M.; Zappala, Z.; Fresard, L.; Waggott, D.; Utiramerur, S.; 

Hou, Y.; Smith, K.S.; et al. Long-read genome sequencing identifies causal structural variation in a 

Mendelian disease. Genet. Med. 2018, 20, 159–163. 

70.  Sanchis-Juan, A.; Stephens, J.; French, C.E.; Gleadall, N.; Mégy, K.; Penkett, C.; Shamardina, O.; Stirrups, 

K.; Delon, I.; Dewhurst, E.; et al. Complex structural variants in Mendelian disorders: Identification and 

breakpoint resolution using short- and long-read genome sequencing. Genome Med. 2018, 10, 95. 

71.  Mizuguchi, T.; Toyota, T.; Adachi, H.; Miyake, N.; Matsumoto, N.; Miyatake, S. Detecting a long insertion 

variant in SAMD12 by SMRT sequencing: Implications of long-read whole-genome sequencing for repeat 

expansion diseases. J. Hum. Genet. 2019, 64, 191–197. 

72.  Narzisi, G.; Schatz, M.C. The challenge of small-scale repeats for indel discovery. Front. Bioeng. Biotechnol. 

2015, 3, 8. 

73.  Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing 

technologies. Nat. Rev. Genet. 2016, 17, 333–351. 

74.  Dolzhenko, E.; van Vugt, J.J.F.A.; Shaw, R.J.; Bekritsky, M.A.; van Blitterswijk, M.; Narzisi, G.; Ajay, S.S.; 

Rajan, V.; Lajoie, B.R.; Johnson, N.H.; et al. Detection of long repeat expansions from PCR-free whole-

genome sequence data. Genome Res. 2017, 27, 1895–1903. 

75.  Hannan, A.J. Tandem repeats mediating genetic plasticity in health and disease. Nat. Rev. Genet. 2018, 19, 

286–298. 

76.  De Koning, A.P.J.; Gu, W.; Castoe, T.A.; Batzer, M.A.; Pollock, D.D. Repetitive elements may comprise 

over two-thirds of the human genome. PLoS Genet. 2011, 7, e1002384. 

77.  Tarailo-Graovac, M.; Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. 

Curr. Protoc. Bioinform. 2009, 25, 4–10. 

78.  Mousavi, N.; Shleizer-Burko, S.; Gymrek, M. Profiling the genome-wide landscape of tandem repeat 

expansions. bioRxiv 2018, doi:10.1101/361162. 

79.  Sudmant, P.H.; Rausch, T.; Gardner, E.J.; Handsaker, R.E.; Abyzov, A.; Huddleston, J.; Zhang, Y.; Ye, K.; 

Jun, G.; Fritz, M.H.-Y.; et al. An integrated map of structural variation in 2,504 human genomes. Nature 

2015, 526, 75–81. 



Genes 2019, 10, 275 17 of 19 

 

80.  Weischenfeldt, J.; Symmons, O.; Spitz, F.; Korbel, J.O. Phenotypic impact of genomic structural variation: 

insights from and for human disease. Nat. Rev. Genet. 2013, 14, 125–138. 

81.  Bergman, C.M.; Quesneville, H. Discovering and detecting transposable elements in genome sequences. 

Brief. Bioinform. 2007, 8, 382–392. 

82.  Tarailo-Graovac, M.; Drögemöller, B.I.; Wasserman, W.W.; Ross, C.J.D.; van den Ouweland, A.M.W.; Darin, 

N.; Kollberg, G.; van Karnebeek, C.D.M.; Blomqvist, M. Identification of a large intronic transposal 

insertion in SLC17A5 causing sialic acid storage disease. Orphanet J. Rare Dis. 2017, 12, 28. 

83.  Gross, A.M.; Ajay, S.S.; Rajan, V.; Brown, C.; Bluske, K.; Burns, N.J.; Chawla, A.; Coffey, A.J.; Malhotra, A.; 

Scocchia, A.; et al. Copy-number variants in clinical genome sequencing: Deployment and interpretation 

for rare and undiagnosed disease. Genet. Med. 2018, doi:10.1038/s41436-018-0295-y. 

84.  Roller, E.; Ivakhno, S.; Lee, S.; Royce, T.; Tanner, S. Canvas: Versatile and scalable detection of copy number 

variants. Bioinformatics 2016, 32, 2375–2377. 

85.  Ivakhno, S.; Roller, E.; Colombo, C.; Tedder, P.; Cox, A.J. Canvas SPW: Calling de novo copy number 

variants in pedigrees. Bioinformatics 2018, 34, 516–518. 

86.  Becker, T.; Lee, W.-P.; Leone, J.; Zhu, Q.; Zhang, C.; Liu, S.; Sargent, J.; Shanker, K.; Mil-Homens, A.; 

Cerveira, E.; et al. FusorSV: An algorithm for optimally combining data from multiple structural variation 

detection methods. Genome Biol. 2018, 19, 38. 

87.  Antaki, D.; Brandler, W.M.; Sebat, J. SV2: Accurate structural variation genotyping and de novo mutation 

detection from whole genomes. Bioinformacs 2018, 34, 1774–1777. 

88.  Abyzov, A.; Urban, A.E.; Snyder, M.; Gerstein, M. CNVnator: An approach to discover, genotype, and 

characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011, 

21, 974–984. 

89.  Rausch, T.; Zichner, T.; Schlattl, A.; Stütz, A.M.; Benes, V.; Korbel, J.O. DELLY: Structural variant discovery 

by integrated paired-end and split-read analysis. Bioinformatics 2012, 28, i333–i339. 

90.  Calabrese, C.; Simone, D.; Diroma, M.A.; Santorsola, M.; Guttà, C.; Gasparre, G.; Picardi, E.; Pesole, G.; 

Attimonelli, M. MToolBox: A highly automated pipeline for heteroplasmy annotation and prioritization 

analysis of human mitochondrial variants in high-throughput sequencing. Bioinformatics 2014, 30, 3115–

3117. 

91.  Layer, R.M.; Chiang, C.; Quinlan, A.R.; Hall, I.M. LUMPY: A probabilistic framework for structural variant 

discovery. Genome Biol. 2014, 15, R84. 

92.  Chen, X.; Schulz-Trieglaff, O.; Shaw, R.; Barnes, B.; Schlesinger, F.; Källberg, M.; Cox, A.J.; Kruglyak, S.; 

Saunders, C.T. Manta: Rapid detection of structural variants and indels for germline and cancer 

sequencing applications. Bioinformatics 2016, 32, 1220–1222. 

93.  Ebler, J.; Schönhuth, A.; Marschall, T. Genotyping inversions and tandem duplications. Bioinformatics 2017, 

33, 4015–4023. 

94.  Liang, Y.; Qiu, K.; Liao, B.; Zhu, W.; Huang, X.; Li, L.; Chen, X.; Li, K. Seeksv: An accurate tool for somatic 

structural variation and virus integration detection. Bioinformatics 2017, 33, 184–191. 

95.  Kim, S.; Scheffler, K.; Halpern, A.L.; Bekritsky, M.A.; Noh, E.; Källberg, M.; Chen, X.; Kim, Y.; Beyter, D.; 

Krusche, P.; et al. Strelka2: Fast and accurate calling of germline and somatic variants. Nat. Methods 2018, 

15, 591–594. 

96.  Ye, K.; Schulz, M.H.; Long, Q.; Apweiler, R.; Ning, Z. Pindel: A pattern growth approach to detect break 

points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 2009, 25, 

2865–2871. 



Genes 2019, 10, 275 18 of 19 

 

97.  Ye, K.; Guo, L.; Yang, X.; Lamijer, E.-W.; Raine, K.; Ning, Z. Split-read indel and structural variant calling 

using PINDEL. Methods Mol. Biol. 2018, 1833, 95–105. 

98.  Wala, J.A.; Bandopadhayay, P.; Greenwald, N.F.; O’Rourke, R.; Sharpe, T.; Stewart, C.; Schumacher, S.; Li, 

Y.; Weischenfeldt, J.; Yao, X.; et al. SvABA: Genome-wide detection of structural variants and indels by 

local assembly. Genome Res. 2018, 28, 581–591. 

99.  E pluribus unum. Nat. Methods 2010, 7, 331–331. 

100. Jain, M.; Koren, S.; Miga, K.H.; Quick, J.; Rand, A.C.; Sasani, T.A.; Tyson, J.R.; Beggs, A.D.; Dilthey, A.T.; 

Fiddes, I.T.; et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. 

Biotechnol. 2018, 36, 338–345. 

101. Scherer, S. A short guide to the human genome; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 

NY, USA, 2008; ISBN 978-0-87969-791-4. 

102. Ameur, A.; Che, H.; Martin, M.; Bunikis, I.; Dahlberg, J.; Höijer, I.; Häggqvist, S.; Vezzi, F.; Nordlund, J.; 

Olason, P.; et al. De novo assembly of two Swedish genomes reveals missing segments from the human 

grch38 reference and improves variant calling of population-scale sequencing data. Genes 2018, 9, 486. 

103. Magi, A.; D’Aurizio, R.; Palombo, F.; Cifola, I.; Tattini, L.; Semeraro, R.; Pippucci, T.; Giusti, B.; Romeo, G.; 

Abbate, R.; et al. Characterization and identification of hidden rare variants in the human genome. BMC 

Genom. 2015, 16, 340. 

104. Dewey, F.E.; Chen, R.; Cordero, S.P.; Ormond, K.E.; Caleshu, C.; Karczewski, K.J.; Whirl-Carrillo, M.; 

Wheeler, M.T.; Dudley, J.T.; Byrnes, J.K.; et al. Phased whole-genome genetic risk in a family quartet using 

a major allele reference sequence. PLoS Genet. 2011, 7, e1002280. 

105. Novak, A.M.; Hickey, G.; Garrison, E.; Blum, S.; Connelly, A.; Dilthey, A.; Eizenga, J.; Elmohamed, M.A.S.; 

Guthrie, S.; Kahles, A.; et al. Genome Graphs. bioRxiv 2017, doi:10.1101/101378. 

106. Smigielski, E.M.; Sirotkin, K.; Ward, M.; Sherry, S.T. dbSNP: A database of single nucleotide 

polymorphisms. Nucleic Acids Res. 2000, 28, 352–355. 

107. NHLBI Trans omics for precision medicine. Available online: https://www.nhlbiwgs.org/ (accessed on Jan 

7, 2019). 

108. Iranome. Available online: http://www.iranome.com/about (accessed on Jan 7, 2019). 

109. Lencz, T.; Yu, J.; Palmer, C.; Carmi, S.; Ben-Avraham, D.; Barzilai, N.; Bressman, S.; Darvasi, A.; Cho, J.H.; 

Clark, L.N.; et al. High-depth whole genome sequencing of an Ashkenazi Jewish reference panel: 

Enhancing sensitivity, accuracy, and imputation. Hum. Genet. 2018, 137, 343–355. 

110. Oleksyk, T.K.; Brukhin, V.; O’Brien, S.J. Putting Russia on the genome map. Science 2015, 350, 747. 

111. Oleksyk, T.K.; Brukhin, V.; O’Brien, S.J. The Genome Russia project: Closing the largest remaining omission 

on the world Genome map. GigaScience 2015, 4, 53. 

112. Silent Genomes Project. Available online: https://www.bcchr.ca/silent-genomes-project (accessed on Jan 7, 

2019). 

113. Stenson, P.D.; Mort, M.; Ball, E.V.; Evans, K.; Hayden, M.; Heywood, S.; Hussain, M.; Phillips, A.D.; Cooper, 

D.N. The Human Gene Mutation Database: Towards a comprehensive repository of inherited mutation 

data for medical research, genetic diagnosis and next-generation sequencing studies. Hum. Genet. 2017, 

136, 665–677. 

114. Pawliczek, P.; Patel, R.Y.; Ashmore, L.R.; Jackson, A.R.; Bizon, C.; Nelson, T.; Powell, B.; Freimuth, R.R.; 

Strande, N.; Shah, N.; et al. ClinGen Allele Registry links information about genetic variants. Hum. Mutat. 

2018, 39, 1690–1701. 



Genes 2019, 10, 275 19 of 19 

 

115. Phan, L.; Hsu, J.; Tri, L.Q.M.; Willi, M.; Mansour, T.; Kai, Y.; Garner, J.; Lopez, J.; Busby, B. dbVar structural 

variant cluster set for data analysis and variant comparison. F1000Research 2016, 5, 673. 

116. Preste, R.; Vitale, O.; Clima, R.; Gasparre, G.; Attimonelli, M. HmtVar: A new resource for human 

mitochondrial variations and pathogenicity data. Nucleic Acids Res. 2018, 47, D1202–D1210. 

117. Köhler, S.; Carmody, L.; Vasilevsky, N.; Jacobsen, J.O.B.; Danis, D.; Gourdine, J.-P.; Gargano, M.; Harris, 

N.L.; Matentzoglu, N.; McMurry, J.A.; et al. Expansion of the Human Phenotype Ontology (HPO) 

knowledge base and resources. Nucleic Acids Res. 2018. 

118. Haendel, M.A.; Chute, C.G.; Robinson, P.N. Classification, ontology, and precision medicine. N. Engl. J. 

Med. 2018, 379, 1452–1462. 

119. Sobreira, N.; Schiettecatte, F.; Valle, D.; Hamosh, A. GeneMatcher: A matching tool for connecting 

investigators with an interest in the same gene. Hum. Mutat. 2015, 36, 928–930. 

120. Buske, O.J.; Girdea, M.; Dumitriu, S.; Gallinger, B.; Hartley, T.; Trang, H.; Misyura, A.; Friedman, T.; 

Beaulieu, C.; Bone, W.P.; et al. PhenomeCentral: A portal for phenotypic and genotypic matchmaking of 

patients with rare genetic diseases. Hum. Mutat. 2015, 36, 931–940. 

121. Philippakis, A.A.; Azzariti, D.R.; Beltran, S.; Brookes, A.J.; Brownstein, C.A.; Brudno, M.; Brunner, H.G.; 

Buske, O.J.; Carey, K.; Doll, C.; et al. The Matchmaker Exchange: A platform for rare disease gene 

discovery. Hum. Mutat. 2015, 36, 915–921. 

122. Consortium, U.; Walter, K.; Min, J.L.; Huang, J.; Crooks, L.; Memari, Y.; McCarthy, S.; Perry, J.R.B.; Xu, C.; 

Futema, M.; et al. The UK10K project identifies rare variants in health and disease. Nature 2015, 526, 82–

90. 

123. Splinter, K.; Adams, D.R.; Bacino, C.A.; Bellen, H.J.; Bernstein, J.A.; Cheatle-Jarvela, A.M.; Eng, C.M.; 

Esteves, C.; Gahl, W.A.; Hamid, R.; et al. Effect of genetic diagnosis on patients with previously 

undiagnosed disease. N. Engl. J. Med. 2018, 379, 2131–2139. 

124. Collins, F.S. 2005 William Allan Award address. No longer just looking under the lamppost. Am. J. Hum. 

Genet. 2006, 79, 421–426. 

 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons 

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


