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Solutions in open-ended tasks by elementary school students with 

different achievement levels in mathematics  
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The diversity of students in elementary school poses a challenge to the teaching and learning of 

mathematics. Differentiation is discussed as a useful approach to dealing with a heterogeneous group 

of students in a class. In this paper, we report on a part of a study that investigates a concept of 

differentiation for mathematics education in heterogeneous classes. This concept is based on open-

ended tasks that can be solved on different levels of difficulty and therefore allow all students to work 

on the same tasks. For our study, we developed the open-ended task "Inventing Equations and 

Equation Sets" (IE-IES) and investigated the solution of 153 third graders with different achievement 

levels in mathematics. The exploratory cluster analysis reveals three groups that differed in terms of 

processing levels. Furthermore, data analysis suggests that students’ achievement level influences 

the solution. 

Keywords: Diversity in elementary mathematics classrooms, differentiation, open-ended tasks, 

inventing equations and equation sets, students’ solutions. 

Introduction 

In elementary school, classes are characterized by the diversity of students. Diversity not only refers 

to different learning abilities and achievement levels but also to dimensions such as native language, 

race, ethnicity, age, and physical abilities. Teaching mathematics in elementary school comes with 

the challenge to cope with heterogeneous learning groups and to provide a learning environment for 

students with different learning conditions and achievement levels. To offer learning opportunities 

for all students based on their individual dispositions, differentiation is discussed as a meaningful 

approach (Demo, Garzetti, Santi & Tarini, 2021). Referring to the literature review of Graham, de 

Bruin, Lassig, and Spandagou (2021), there is no common understanding of differentiation, but rather 

“so many misconceptions and definitional inconsistencies that it is difficult to know what is being 

enacted in the name of differentiation“ (Graham et al., 2021, p. 161). The spectrum ranges from 

differentiation as a teacher’s strategy to provide students with specific needs with anything different 

in the class to differentiation as a framework for teaching and learning which is based on social 

constructivist ideas.  

In mathematics education, the concept of differentiation as an approach to teaching and learning in 

heterogeneous or inclusive classrooms is broadly discussed in connection with tasks that allow 

differentiation (Bardy, Holzäpfel & Leuders, 2021). If there is a narrow perspective on differentiation 

as a special treatment for one student with special needs, the task is supposed to be adapted to their 

achievement level (Demo et al., 2021). If differentiation is rather understood as a framework for 

teaching and learning in heterogeneous classrooms, one of the most important goals is to respond to 

the different needs of learners with tasks that allow various approaches, solution processes, and 

strategies (Small, 2017) and to enable students with different achievement levels to participate and 

work on these tasks. In the literature, these tasks are named differently. Small (2017) uses the term 
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“open questions” for the questions which are “framed in such a way that a variety of approaches or 

responses are possible” (p.7). Hashimoto and Becker (1999) distinguish three types of problems 

regarding the characteristic of openness. Firstly, problems for which the process of solution is open, 

and therefore a variety of approaches are encouraged. Secondly, problems in which the end products 

are open, and therefore various solutions are allowed. Thirdly, problems are formulated by students 

independently. This means that after a problem is solved, the students invent a similar one. Bardy et 

al. (2021) use the term adaptive task and emphasize that these tasks intend to cognitively activate all 

students and facilitate the work on their achievement level.  In this paper, we use the term open-ended 

task with a broader understanding of open-endedness than Hashimoto and Becker (1999). Referring 

to Bardy et al. (2021) and Small (2017), we define open-ended tasks as tasks that bear the potential 

to cognitively activate students, allow different starting points, various approaches, and multiple 

solutions, and enable students with different ability levels to participate and work on the same tasks. 

Our definition of open-ended tasks is in line with a concept of differentiation which is broadly known 

among German researchers in mathematics education and called – literally translated – “natural 

differentiation” (Scherer, 2013, p. 102). Natural differentiation means that differentiation is naturally 

given by the characteristics of the task, and students can choose their level of working. The concept 

of natural differentiation is a framework for teaching and learning mathematics in heterogeneous 

classrooms, which is built upon ideas of social constructivism and based on the assumption that open-

ended tasks allow all students to work on the same task according to their learning and achievement 

level. So far, few qualitative studies suggest that students exhibit different levels of performance 

when solving open-ended tasks (e.g., Weskamp, 2019; Scherres, 2013). To our knowledge, the 

assumption that students work on open-ended tasks according to their learning and achievement level 

has not been tested systematically and empirically yet. With our research, we intend to contribute to 

filling this gap by investigating students’ solutions to an open-ended task in arithmetic.  

In our broad study, we analyzed whether third-grade students worked on the open-ended task 

“Inventing Equations and Equation Sets” (IE-IES) according to their learning potential, including 

cognitive and affective prerequisites (Friedrich, 2023). In this paper, we report a small part of the 

whole study by focusing on the following research questions: (RQ1) To what extent do third graders 

from heterogeneous classrooms show different levels of processing and solutions when completing 

the open-ended task IE-IES? (RQ2) To what extent do third graders with different achievement levels 

in mathematics show differences in solving the open-ended task IE-IES? 

The design of the study is built on the supply-use model of Helmke (2009) which describes the 

complex processes of teaching and learning and all influencing factors in a simplified way (for the 

English equivalent see Brühwiler and Blatchford, 2011). To explain the effects of teaching and 

learning success, the model gives a compact overview of the most important variable clusters. In our 

study, we investigate two variable clusters: the provided open-ended task which represents the offer, 

and the students’ solution which represents the use.  



 

 

Methods 

To answer the research questions, we designed a quantitative study and collected data in the third 

grade of elementary school using different instruments. In the following sections, we describe our 

sample, the utilized instruments, and materials, the process of data coding, and data analysis. 

Sample 

The sample includes 153 third-grade students from different heterogeneous classes of four different 

schools. The schools were randomly chosen and are in the city center of Kassel and the county. Due 

to the different locations, we ensured the sample comprises students with multilingual backgrounds 

(29%) and various socioeconomic statuses. The classes used different math textbooks and the students 

were not explicitly familiar with open-ended tasks. 

Instruments and Materials 

We used a standardized math test for third graders (May & Bennöhr, 2021) to measure students’ 

achievement levels in mathematics and to ensure the heterogeneity of our sample in this field. The 

math achievement test is timed, presented in a booklet, and comprises 74 items. The test is divided 

into two subtests: one for basic knowledge of arithmetic and computational abilities (56 items) and 

one for abilities in solving word problems (18 items). The reliability of the test is excellent with α = 

0.93 for the whole test, α = 0.91 for the first subtest, and α = 0.81 for the second subtest (May & 

Bennöhr, 2021). 

To measure students’ solutions to an open-ended arithmetic task, we developed a task that encourages 

students to invent and systematize equations. This task which we subsequently call “Inventing 

Equations and Equation Sets” (IE-IES) includes two different activities. The first activity consists of 

inventing various equations in which the equal sign is relationally used (IE: e.g., 2 + 7 – 3 = 10 – 4) 

(Harbour, Karp & Lingo, 2016). The second activity was about inventing a set of equations (IES: 2 

+ 7 – 3 = 10 – 4, 2 + 7 – 2 = 10 – 3, 2 + 7 – 1 = 10 – 2). Here, we ask students to take one already 

invented equation, try to vary it to get another equation that is related to the first one, and then vary 

the second equation, etc. The students had a set of cards with numbers from 0 to 9 and operation signs 

for addition, subtraction, multiplication, and division (see Figure 1). 

 

Figure 1: Material for the open-ended task IE-IES 

All cards were multiple times available. The open-ended task IE-IES allows various approaches and 

solutions and enables students to work on their individual learning and achievement level. Students 

can invent equations and equation sets of different complexity by varying the size of the numbers, 

the arithmetic operations, and the operation steps. Additionally, they can combine numbers that stay 



 

 

inside the ten boundaries (e.g., 15 + 12, 26 – 14) or cross the ten boundaries (e.g., 15 + 17, 26 – 18). 

Similarly, they can vary systematically within an equation to come from one side to the other side 

(e.g., inverse change such as 10 + 15 = 12 + 13) or between equations to come from one equation to 

another equation (e.g., from 10 + 15 = 12 + 13 to 12 + 15 = 14 + 13). With this open-ended task IE-

IES we intended a deeper understanding of arithmetic and algebraic relationships. 

Data collection 

In each class, data were collected at two different times. First, we conducted the math test with all 

students in one class. Together with the introduction and instruction, this lasted about 45 minutes 

which equals the period of one lesson in German classrooms. Secondly, we conducted two math 

lessons (90 minutes) using the open-ended task IE-IES. The lesson was carried out along a script by 

one of the authors (Silke Friedrich). In this way, we were able to ensure a similar course of lessons 

in all classes. The lesson started with an introduction of the first activity IE for all students. For 

visualizing the process of inventing equations, we used a scale and colored cubes (see Figure 1).  This 

was followed by an individual work phase which gave all students enough time to invent equations 

independently. This phase of students’ work was followed by a short communication with the whole 

class, in which the second activity was introduced. Afterward, the students had enough time to invent 

sets of equations independently. During each work phase, we invited students to record their work 

with paper and pencil. Each activity (IE and IES) was documented on a separate sheet of paper; 

worksheet one (WS1, n=153) and worksheet two (WS2, n=153). The worksheets provided the 

database for our analysis. 

WS1: Inventing equations WS2: Inventing equation sets 

  

Figure 2: Students’ worksheets 

Data Analysis 

To assess whether our sample is heterogeneous in terms of math achievement, the standardized math 

test was analyzed descriptively. We determined the total score of correctly solved items and computed 

the solution frequencies, mean values, and standard deviation. 

The students’ solutions to the open-ended task IE-IES were analyzed based on the method of 

structured qualitative content analysis. The aim was to develop a coding system that allows to convert 

the mathematical content of the students’ worksheets into numerical measurement values. For the 

coding process, we defined three units of analysis: the document with all notations of one activity, 

one correct equation, and one equation set with at least two equations in a row that shows a 



 

 

mathematical relationship (e.g., 6 ∙ 6 = 9 ∙ 4; 6 ∙7 = 9 ∙ 4 + 6; 6 ∙ 8 = 9 ∙ 4 + 6 + 6; the set was invented 

by a student). We coded both activities (IE and IES) separately. For the analysis unit “document”, we 

captured all invented equations/equation sets (incorrect and correct separately) and all 

equations/equation sets with the relational use of the equal sign. For the units of analysis equation 

and equation sets, we deductively developed a coding system to capture the complexity regarding the 

components and the used systematic (Table 1). The codes were the same although the examples 

differed in the coding guide. 

Table 1: Codes for components within an equation and for systematics within an equation 

Codes for components within an equation  Codes for systematics within an equation 

Code Code names Examples Code Code names Examples 

NOS Number of 

operational steps 

(Steps are 

counted) 

3 = 3 (0) 

20 + 30 = 10 + 40 (2) 

2 + 3 = 11 - 2 - 4 (3) 

5 ∙ 9 - 7 = 35 : 5 + 31 (4) 

Co Commutativity  8 + 7 = 7 + 8 

Ic(1) Inverse change of 

numbers in addition 

(+1 and –1) 

5 + 7 = (5 + 1) + 

(7 – 1) = 6 + 6 

TO Type of 

arithmetic 

operation 

(Different types 

are counted such 

as addition, 

subtraction, etc.) 

3 = 3 (0) 

20 + 30 = 10 + 40 (1) 

2 + 3 = 11 - 2 - 4 (2) 

5 ∙ 9 - 7 = 35 : 5 + 31 (4) 

Ic(>1) Inverse change (+ 

>1 and – >1) 

5 + 7 = (5 + 5) + 

(7 – 5) = 10 + 2  

Cc(1) Concurrent change 

of numbers in 

subtraction 

problems (+1 and 

+1 or –1 and –1) 

13 – 6 = (13 + 1) 

– (6 + 1) = 14 – 7 

  

13 – 6 = (13 – 1) 

– (6 – 1) = 12 – 5    

SN Size of numbers 

(All digits ≥1 are 

counted) 

20 + 30 = 10 + 40 (1) 

5 ∙ 9 - 7 = 35 : 5 + 31 (2) 

Cc(>1) Concurrent change 

(>1) 

13 – 6 = (13 – 3) 

– (6 – 3) = 10 – 3  

Pw Part-whole 4 + 5 + 1 = 9 + 1 

TR Transitions in 

addition and 

subtraction 

5 + 8 = 6 + 7 (2) 

23 - 8 = 34 – 19 (2) 

Mr Multiplicative 

relationship 
5 ∙ 6 + 6 = 6 ∙ 6 

In the process of coding the complexity of an equation or an equation set, we applied the rule to look 

at the one equation respective equation set in which the coding feature occurred most frequently. 

Hereby, we received a maximum value for each code related to a student’s solution. Finally, we 

summed the individual values of the codes for the components and the systematics used into two 

totals. For example, the student’s solution to IE (see Figure 2, WS1) was coded as follows:  

• The number of correctly invented equations (NIE_WS1): 7 

• The maximum sum of components (MSC_WS1): 5 (NOS 2, TO 2, SN 1, TR 0) 

• The sum of different systematics (SVS_WS1): 3 (Co 0, Ic(1) 3, Ic(x) 1, Cc(1) 0, Cc(>1)1, Pw 

0, Mr 0) 

To answer RQ1 and to identify different groups in terms of task processing and level of processing, 

we decided on an explorative cluster analysis. For this purpose, we used variables that represent the 

processing level of the open-ended task IE-IES such as the number of invented equations/equation 

sets, the number of components, and the number of systematics. Finally, the cluster analysis was 

conducted based on eight variables which partly include various codes: 

• The NIE_WS1: Number of invented equations (correct and relational) 

• The MSC_WS1: Maximum sum of components (includes all codes from Table 1, left side) 

• The SVS_WS1: Sum of different systematics (refers to all codes from Table 1, right side) 

• The NIE_WS2: Number of invented equations (correct and relational) 



 

 

• The NIES_WS2: Number of invented equation sets 

• The MNES_WS2: Maximum number of equations in one set 

• The MSCS_WS2: Maximum sum of components in one set (all codes from Table 1, left side) 

• The SVS_WS2: Maximum sum of different systematics (all codes from Table 1, right side) 

The conditions for a cluster analysis were given in the data since the eight variables showed a normal 

distribution in the students’ solution (this was tested by Shapiro-Wilk-Test). To make the variables 

comparable, the z-score was calculated before the cluster analysis. For the cluster analysis, we used 

three methods: The Nearest-Neighbor-Method to identify outliers, the Ward-Method to determine the 

number of clusters, and the K-Means-Method to evaluate the determined number of clusters 

(Schendera, 2010). 

To answer RQ2 and gain insight into the relationship between math achievement and the level of 

processing when solving the open-ended task, we also calculated correlation (Pearson's r; two-sided 

test). Here, we referred to the same variables as in the cluster analysis. 

Results 

The analysis of the standardized math test (max. test score 74) confirmed the heterogeneity of our 

sample regarding achievement levels in mathematics. Based on the raw values (test scores), the entire 

sample (n = 153) reached a mean value of M = 36.16 with a standard deviation of SD = 14.16. The 

Shapiro-Wilks test showed normal distribution for math achievement in our sample. 

 

Figure 3: Graphical representation of the clusters 

Figure 3 visualizes the result of the cluster analysis revealing that students’ solutions to the open-

ended task IE-IES can be clustered into three different groups. Thereby, analysis of the composition 

of the groups suggests three different levels of processing. Group 3 displays the highest level of 

processing regarding all variables except for the maximum sums of components in one set 

(MSCS_WS2). Groups 1 and 2 cannot be classified in the hierarchy. However, we assume the 

processing level of Group 1 to be higher than the processing level of Group 2. Group 1 shows 

significantly more extensive solutions, especially regarding the second activity IES. The 

interpretation of the statistical and content-related observation suggests a hierarchy of the processing 

levels from Group 2 via Group 1 to Group 3. 



 

 

Table 2: Correlations between mathematics achievement and variables of students’ solution 

  NIE_WS1 MSC_WS1 SVS_WS1 NIE_WS2 NIES_WS2 MNES_WS2 MSCS_WS2 SVS_WS2 

 

MA 

r 0,29** 0,39** -0,05 0,32** 0,20* 0,21** 0,20* 0,11 

p < 0,001 < 0,001 0,576 < 0,001 0,011 0,009 0,012 0,178 

N 153 153 153 153 153 153 153 153 

** correlation is 2-sided significant at the level of p<0,01; * correlation is 2-sided significant at the level of p<0,05 

Table 2 displays the results of the correlation analysis. The first activity (IE) shows a highly 

significant but relatively weak correlation between math achievement (MA) and the number of 

invented equations (NIE_WS1, r = 0,29**). On the other hand, a medium correlation can be observed 

between math achievement (MA) and the maximum sum of components in the invented equations 

(MSC_WS1, r = 0,39**). 

For the second activity (IES) significant but relatively weak correlations exist between math 

achievement (MA) and the number of invented equation sets (NIES_WS2, r = 0,20*), the maximum 

number of equations in one set (MNES_WS2, r = 0,21**), and the maximum sum of components in 

one equation set (MSCS_WS2, r = 0,20*). As with the first activity, a medium correlation appears 

between math achievement (MA) and the number of invented equations (NIE_WS2, r = 0,32**). 

Conclusion 

In general, our results confirm the assumption that the concept of “natural differentiation” with open-

ended tasks is suitable for mathematics education in heterogeneous classes. In this vein our results 

are in line with the qualitative results of Weskamp (2019) and Scherres (2013) that suggest students 

exhibit different levels of performance when solving open-ended tasks.  Concerning the investigated 

open-ended task on inventing equations and equation sets (IE-IES), data analysis suggests that all 

students from our heterogeneous sample were able to work independently on this task and to develop 

profound solutions which can be clustered in three different groups of processing and achievement 

level (RQ1). Furthermore, our results reveal differences in solutions depending on students’ 

achievement levels in mathematics (RQ2). Even if the correlations are not high, the results show that 

students with higher achievement levels in mathematics worked more intensively on the task and 

invented not only a higher number of equations (single equations or in a set) but also more complex 

equations in terms of the inherent components.  There is no difference in students’ solutions regarding 

the use of systematics. This was surprising since we assumed that students with a higher achievement 

level are more likely to show systematic approach.  

The presented study provides promising results regarding the use of open-ended tasks as a 

differentiation concept in heterogeneous mathematics classrooms. However, there are also 

limitations. Only one open task is examined in the study. Even though this task was designed as an 

example for many arithmetic content areas, it is not possible to conclude from the results to all 

arithmetic tasks and other content areas. Therefore, further research is needed. 

References 

Bardy, T., Holzäpfel, L., & Leuders, T. (2021). Adaptive tasks as a differentiation strategy in the 

mathematics classroom: Features from research and teachers' views. Mathematics teacher 

education and development, 23(3), 26–53. 



 

 

Brühwiler, C., & Blatchford, P. (2011). Effects of class size and adaptive teaching competency on 

classroom processes and academic outcome. Learning and instruction, 21(1), 95–108. 

https://doi.org/10.1016/j.learninstruc.2009.11.004  

Demo, H., Garzetti, M., Santi, G., & Tarini, G. (2021). Learning mathematics in an inclusive and 

open environment: An interdisciplinary approach. Education sciences, 11(5), 199. 

https://doi.org/10.3390/educsci11050199  

Friedrich, S., (2023). Natürliche Differenzierung im Arithmetikunterricht. Angebot und Nutzung von 

Lernangeboten in heterogenen Grundschulklassen.  [[Natural differentiation in arithmetic 

instruction. Offer and use of learning tasks in heterogeneous primary school classes.]]. Springer 

Nature 

Graham, L. J., de Bruin, K., Lassig, C., & Spandagou, I. (2021). A scoping review of 20 years of 

research on differentiation: Investigating conceptualization, characteristics, and methods used. 

Review of Education, 9(1), 161–198. https://doi.org/10.1002/rev3.3238  

Harbour, K. E.; Karp, K. S., & Lingo, A. S. (2016). Inquiry to action: Diagnosing and addressing 

students' relational thinking about the equal sign. Teaching exceptional children, 49(2), 126–133. 

https://doi.org/10.1177/0040059916673310  

Hashimoto, Y., & Becker, J. (1999). The open approach to teaching mathematics - creating a culture 

of mathematics in the classroom: Japan. In L. Sheffield (Ed), Developing mathematically 

promising students (pp. 101–120). National Council of Teachers of Mathematics. 

Helmke, A. (2009). Unterrichtsqualität und Lehrerprofessionalität - Diagnose, Evaluation und 

Verbesserung des Unterrichts [Quality of teaching and teacher professionalization – Diagnosis, 

evaluation, and improvement of education.]. Friedrich/ Klett/ Kallmeyer. 

May, P., & Bennöhr, J. (2021). KEKS 3 Mathematik. Kompetenzerfassung in Kindergarten und 

Schule. [Test for math achievement in kindergarten and primary school]. Cornelsen.  

Schendera, C. F. (2010). Clusteranalyse mit SPSS. Oldenbourg Verlag. 

Scherer, P. (2013). Natural differentiation in the teaching of mathematics to children starting school. 

South African journal of childhood education, 3(1), 100–116. 

https://doi.org/10.4102/sajce.v3i1.33    

Scherres, C. (2013). Niveauangemessenes Arbeiten in selbstdifferenzierenden Lernumgebungen. 

[Student work in self-differentiating learning environments]. Springer Spektrum. 

Small, M. (2017). Good questions. Great ways to differentiate mathematics. Instruction in the 

standard-based classroom. Teachers college press. 

Weskamp, S. (2019). Heterogene Lerngruppen im Mathematikunterricht der Grundschule. 

[Heterogeneous groups in elementary school mathematics classrooms]. Springer Spektrum. 

https://doi.org/10.1016/j.learninstruc.2009.11.004
https://doi.org/10.3390/educsci11050199
https://doi.org/10.1002/rev3.3238
https://doi.org/10.1177/0040059916673310
https://doi.org/10.4102/sajce.v3i1.33

	Solutions in open-ended tasks by elementary school students with different achievement levels in mathematics
	Introduction
	Methods
	Sample
	Instruments and Materials
	Data collection
	Data Analysis

	Results
	Conclusion
	References


