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Abstract
With Artificial Intelligence (AI) influencing the decision-making

process of sensitive applications such as Face Verification, it is fun-
damental to ensure the transparency, fairness, and accountability of
decisions. Although Explainable Artificial Intelligence (XAI) tech-
niques exist to clarify AI decisions, it is equally important to pro-
vide interpretability of these decisions to humans. In this paper,
we present an approach to combine computer and human vision to
increase the explanation’s interpretability of a face verification algo-
rithm. In particular, we are inspired by the human perceptual pro-
cess to understand how machines perceive face’s human-semantic ar-
eas during face comparison tasks. We use Mediapipe, which provides
a segmentation technique that identifies distinct human-semantic fa-
cial regions, enabling the machine’s perception analysis. Addition-
ally, we adapted two model-agnostic algorithms to provide human-
interpretable insights into the decision-making processes.

∗work supported by the ARIAC project (No. 2010235), funded by the Service Public
de Wallonie (SPW Recherche).
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1 Introduction

Face verification [1] aims to confirm an individual’s identity based on fa-
cial features, with applications in law enforcement [2], border control [3], or
smartphone security [4]. As AI becomes prevalent in decision-making [5],
ensuring model fairness, accountability, confidentiality, and transparency is
crucial [6]. However, complex ML models are often seen as ’black boxes’
[7]. Explainable AI (XAI) [8] addresses this challenge by enhancing AI inter-
pretability to make AI systems transparent and understandable to humans,
thereby increasing trust in their decisions.

Saliency maps have become the most popular XAI solution in computer
vision, offering insights into the critical features considered in the decision-
making process. However, in face verification, decisions often rely on ad-
justable thresholds based on the specific application rather than understand-
able semantic classes. This raises questions about the adequacy of identifying
the most important features in an image as the only explanation [9]. Taking
inspiration from the human perceptual process, we propose a model-agnostic
approach capable of determining how the machine perceives similar semantic
areas of the face when comparing two faces. Our primary objective is to
translate the XAI solution into human decision-making meaningfully. How-
ever, incorporating human-based semantics in the models’ explanation pro-
cess can also introduce human bias to these same explanations. To increase
human interpretability, we must also assure the Faithfulness of explanations
to the model’s reasoning. Faithfulness refers to whether a feature, considered
important for the model, changes the model’s decision [10].

For face verification, the model extracts features for each face that will
be compared. Modifications in the features will also impact how similar are
the two faces. Therefore, it is essential to understand how face parts, such
as an eye, would impact the final features.

To translate the model’s knowledge to human knowledge as smoothly as
possible, we first perform the segmentation of face parts based on human
semantics. By considering the impact of those face parts on a set of face
images, we can have a global view of the model’s knowledge. Following the
features’ extraction (through the model), we verify if two people are the
same by comparing their facial features. To understand the contribution

2



of the chosen concepts to the relation between two compared faces, we in-
troduce an algorithm grounded in the perturbation of facial regions linked
to the extracted concepts, mirroring the human perceptual process of face
recognition. It encompasses evaluating corresponding semantic areas along
a spectrum of similarities, providing interpretation and contextualisation.

We structured this paper as follows: in Section 2, we present state-of-the-
art methods for explaining the face verification task; in Section 3, we describe
our framework, including the model concept’s extraction and the perturba-
tion methods for face comparison; in Section 4 we include the experimental
results and limitations; in Section 5 we conclude the work.

2 Related work

Saliency maps, such as CAMs [11, 12] and RISE [13], are crucial for inter-
preting deep-learning models, revealing their inner workings. However, their
primary development has centered on object recognition, leaving the field of
face analysis relatively unexplored.

Despite its critical applications, research in face analysis has been lim-
ited. Works by [14, 15, 16] mainly focus on individual pixel or low-level
feature significance, which can be challenging for human analysts and may
not align with intuition. Conversely, LIME [17] employs superpixels within
the image, providing a user-friendly, concept-driven explanation. However,
this technique relies on a new model approximating the original, potentially
obscuring the actual reasons for the original model’s behavior [18].

Alternative approaches, such as TCAV [19] and knowledge graphss [20],
prioritize low-level importance from pixels and aim to represent the model’s
knowledge through concepts. TCAV employs semantic concepts defined by
users or discovered through image segment activations (with method ACE [21]),
while knowledge graphs identify repeating patterns across network layers.
Additionally, Tan et al. [22] introduced the Locality Guided Neural Network
(LGNN), designed to induce filter topology that enhances the visualization
of concepts.

Inspired by these methods, our approach combines human and model per-
spectives to identify essential concepts for face verification. We acknowledge
that relying solely on human concepts can introduce bias while relying solely
on the model can complicate interpretation.
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3 Proposed Method

Figure 1: Face verification adaptation of XAI Perceptual processing frame-
work proposed by [23] and inspired by how humans process stimuli (select,
organize, interpret and compare)

To help humans understand how AI systems make decisions, it is essen-
tial to present the information in a way that aligns with human cognitive
processes. Cognitive psychology provides valuable insights into how people
perceive and process information when identifying faces. Taking inspiration
from the flowchart proposed by [23], we aim to apply a similar method to face
verification (see Figure 1). The human perceptual process consists of three
key phases: selection, organization, and interpretation [24]. Cognitive psy-
chology has shown that when recognizing faces, our attention is particularly
drawn to particular facial areas, such as the eyes and nose [25, 26, 27]. Sub-
sequently, in the perceptual process, these facial stimuli are organized into
meaningful concepts, adding semantics to the process. Our brains compare
these higher-level concepts to assess the similarity between items, facilitating
face categorization. This comparative analysis may involve matching a face
to a remembered image or with another face in front of us. In this context,
we question the adequacy of salience maps used in computer vision as an
explanation and their alignment with our human reasoning processes.

Based on cognitive psychology, we have developed a general flowchart
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Figure 2: Proposed flowchart. We extract concepts from the face verification
model (using KernelSHAP) and input them into a Semantic Face perturba-
tion phase. In this phase, the two images’ perturbation is made in the same
regions to evaluate similarities and dissimilarities. We propose three algo-
rithms for the perturbations: Single removal, greedy removal, and average
similarity map.

shown in Figure 2. Generally, face verification systems rely primarily on
a matching score between two face images A and B. This score, SA

B , is
computed using cosine similarity, which compares the feature vectors fA and
fB extracted from each image as follows:

SA
B =

fA · fB
||fA|| ||fB||

(1)

The resulting score ranges from 0 to 1, with a score of 1 indicating iden-
tical images (A = B). As our approach is model-agnostic, we aim to explain
the algorithm by perturbing the inputs to study the system’s decision be-
haviour concerning the input-output relationship. Inspired by the work of
[16], our desired output is a similarity map indicating which face areas are
considered similar or dissimilar for both images, using an AI model as a
feature extractor. To achieve this, we perform semantic perturbation on im-
ages A and B, resulting in new images denoted as A(n) and B(n) where the
n section is removed in both images. We obtain a new SA(n)

B(n) score from
these perturbed images. By fairly masking the images, we can assess if the
system perceives semantic areas, such as the eyes, as similar or dissimilar.
Considering ∆S the difference between original and new scores represented
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by Equation 2, if the SA(n)

B(n) decreases compared to SA
B , it suggests that the

removed parts positively contribute to the similarity (∆S ≥ 0). Conversely,
its increase indicates a negative contribution (∆S < 0).

∆S = SA
B − SA(n)

B(n) (2)

Compared to [16], our objective is to incorporate semantic masking in
the perturbation process to increase interpretability by providing not only a
map but also a chart related to the semantic areas. We apply two types of
perturbation algorithms inspired by [15], allowing us to study the face section
area’s single or collaborative contributions and then incorporate this infor-
mation within an average similarity map. This single/collaborative approach
aligns with the notion that humans perceive and interpret faces in a relation-
al/configurational way [28] (see Figure 3). First-order features concern in-
dividual components that can be processed independently (e.g., eyes, nose).
Second-order features involve information acquired when simultaneously pro-
cessing two or more parts together (e.g., spacing between eyes). Furthermore,
higher-order features emerge from combinations of multiple first-order and/or
second-order features. In our case, the single removal procedure models the
information associated with first-order or single features, and the greedy re-
moval procedure addresses the second-order features, wherein multiple parts
are processed collectively.

Figure 3: An interpretation of a relational/configural model of face percep-
tion.

3.1 Semantic Extraction

To incorporate semantics, we employ Mediapipe Face masks, a versatile open-
source framework by Google, widely recognized for its face detection and
landmark estimation capabilities. By extracting landmarks from Mediapipe,
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Figure 4: In the image (a) Mediapipe landmarks are plotted on the sample
image. In the image (b), the 13 semantic sections are defined through the
landmarks

we defined 13 polygons corresponding to distinct semantic areas of the face
(see Figure 4.a). The landmark estimation provided by Mediapipe is limited
to specific facial regions, and hair or ears were not included in the earlier facial
subdivisions. Nevertheless, this decision is consistent with previous research
[29], which demonstrated that some areas of the face are more influential than
others. For example, removing the ears has less impact on the final score than
the eye area. Hence, we assumed these areas were not primarily influential
and did not include them in our face classes. Additionally, face verification
algorithms typically apply a preprocessing step for extracting the face area.
Therefore, we reduce the area outside the face by applying MCTNN [30], a
deep learning-based face detection algorithm. Overall, our subdivision of the
face detected 13 distinct semantic classes, including the background (figure
4.b). With this approach, the semantic areas vary in size, resulting in larger
maps having a more significant influence on the score than smaller ones. To
mitigate this undesired effect, we introduce a weight, denoted as wA,n related
to the section n ∈ [1,m] with m = 13. The wA,p is defined as the rapport be-
tween the total area of the image A (AreaA) and the area of the mask M (A,n),
AreaM(A,n) , indicating region p (white pixels in the mask). This weight serves
to counterbalance the differences in magnitude. Moreover, due to the precise
face positioning achieved by Mediapipe, the masks obtained on images A and
B may only partially match. This discrepancy arises because the depicted
faces may not have the same position and expressiveness. For this reason,
we define two weight wA,n = W (A,M (A,n)) = AreaA

Area
M(A,n)

associated to A and

wB,n = W (B,M (B,n)) = AreaB

Area
M(B,n)

to B.
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Ŵ(A,B)n =
wA,n.wB,n∑m
i=1wA,i.wB,i

(3)

Cn = ∆S · Ŵ(A,B)n (4)

In this manner, the contribution of the mask, defined as Cn, is weighted by
wA,n and wB,n, representing the relative weights associated with M (A,n) and
M (B,n) masks, respectively.

3.1.1 Concepts Extraction

Using Mediapipe for face part extraction provides a human-based semantic
segmentation, yet it may not align with how models perceive faces. To bridge
this gap we introduce a model’s concept extraction process. This involves
filtering machine-important parts based on human semantics. For evaluating
the importance of facial parts, we employ KernelSHAP [31], which combines
LIME [17]’s interpretable components with Shapley values [32] from game
theory which look for each feature contribution to the final result. We extract
model importance scores for each of semantic parts. In face final represen-
tations with 512 features, for example, we will have 512 importance scores
per human-semantics part. In the process of face verification, every feature
change, negative or positive, is significant to determine faces’ similarity, with
emphasis on the magnitude of the change, instead of on the signal. If one
feature of a human-semantic part obtained a negative Shap value, the lack of
this part reduced the feature value, and vice versa. Therefore, negative and
positive Shap values are equally important in our context. For this reason,
sum the absolute Shap values throughout all the representation features to
obtain a single importance value per part.

Ultimately, we will have one importance value per semantic part (see Fig-
ure 5). However, this remains a local importance, i.e., an importance score
according to a single image dataset. To increase globalism in the concepts’
extraction, we need to include information from multiple images. Our solu-
tion is to combine the importance levels from a set of images by a ranking
combination strategy. Each image obtains 13 importance scores (one per
human-semantics part) that we can order. More significant scores are at the
top of a ranking, as they were considered more important for the model. We
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(a) (b)

(c) (d)

Figure 5: Examples of two images’ human-semantics part importance scores
using KernelSHAP [31]. We analyse two models: CasiaNet [33] in (a) and
(c), and VGGfaces2 [34] in (b) and (d). Green parts are more important
according to Shap scores. There are differences between important parts for
different images, especially for VGGfaces2. That is why we aggregate ranked
importance over 200 images.

use 200 images from CelebA [35] dataset to obtain 200 rankings. From these
rankings’ combinations, by a vote-based technique using BORDA count [36],
we obtain a final ranking with more globally important concepts at the top.

The experiments will focus on the model’s top eight concepts determined
by this process.

3.1.2 Proposed similarity maps

The algorithm used to generate the similarity maps draws inspiration from
the work of [15], where six algorithms were presented to create saliency maps.
Specifically, we will employ the single removal approach (S0) and the greedy
removal approach (S1), with the possibility of creating an average map of
these two approaches (SAVG). Our approach incorporates significant changes
compared to previous research. First and foremost, we utilize semantically
meaningful masks to perturb the images, diverging from conventional circular
or square masks with a fixed shape. Moreover, since our objective is to
generate community similarity maps between the two images, both images
undergo perturbation, contrary to previous approaches that typically perturb
only one of the images, thus aligning more closely with the strategy proposed
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by [16].

3.1.3 Single Removal - S0

Figure 6: Samples of single removal where SA(n)

B(n) is the cosine similarity be-
tween image A and image B with the n semantic part removed.

We define the two perturbed images as the pixel-wise multiplication of the
images and the relative semantic section mask of the same size with values
between 0 and 1.

A′ = A ·M (A,n) and B′ = B ·M (B,n) (5)

The single removal operation is computed for all the semantic areas. For
each mask, the value of the contribution map H0 is initialized with the Cn

contribution associated with the mask:

H0(A,n) = Cn ·M (A,n) (6)

The similarity map is defined as the sum of the negative and the positive
contributions normalized by Equation 7 for all n ∈ [1,m], to obtain S0A.

H0±(A,n) =


H0(A,n)∑

H0(A,m)≥0|H0(A,m)|
if H0(A,n) ≥ 0

H0(A,n)∑
H0(A,m)<0|H0(A,m)|

otherwise.

S0A = S0A + (H0+(A,n) +H0−(A,n)) ·M
(A,n)

(7)

We use the same Equations 6 and 7 to obtain H0(B,n), H0+(B,n), H0−(B,n)

and S0B. This means negative contributions are seen as dissimilar areas in
the face image, while positive ones are similar. The algorithm 1 gives us the
similarity maps S0A and S0B as a result of single removal.
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Algorithm 1 Calculate H0 and H1
1: Input:

2: A -Face image A

3: B -Face image B

4: SA
B -Initial Score

5: θ -Minimal increment allowed
6: tmax -Max number of iteration

7: N, M ← size(A) ▷ height and width of face images

8: A0 ← A ▷ initialization of the image

9: B0 ← B ▷ initialization of the image

10: H0A ← zeros(N, M) ▷ initialization of the maps

11: H0B ← zeros(N, M) ▷ initialization of the maps

12: H1-A ← zeros(N, M) ▷ initialization of the maps

13: H1-B ← zeros(N, M) ▷ initialization of the maps

14: BestMA
← zeros(N, M) ▷ initialization of mask A

15: BestMB
← zeros(N, M) ▷ initialization of mask B

16: t = 0 ▷ initialization of iteration counter
17: st−1 ← SA

B ▷ initial matching score

18: ∆s ← 1 ▷ initialization of difference of scores

19: while t ¡ tmax and ∆s ¿ θ do

20: st ← 1

21: t← t + 1

22: for n in FaceSections do

23: M(At) ← M(At,n) + BestMA

24: M(Bt) ← M(Bt,n) + BestMB

25: A′= At − 1 · M(At)

26: B′ = Bt − 1 · M(Bt)

27: s′ ← SA
′

B
′

28: if s′ < st then

29: st = s′

30: BestMA
← M(At)

31: BestMB
← M(Bt)

32: BestwA
← W(A,BestMA

)

33: BestwB
← W(B,BestMB

)

34: At ← A′

35: Bt ← B′

36: ∆st = st−1 − st

37: if t = 0 then
38: for n in FaceSections do

39: Cn = ∆st · Ŵ(A,B)n

40: H0A[M(A,n) = 1] ← Cn

41: H0B [M(B,n) = 1] ← Cn

42: CBest ← ∆st · Ŵ(A,B)Best

43: H1-A[BestMA
=1] ← CBest

44: H1-B [BestMB
=1] ← CBest

45: Output: H0A,H1-A,H0B ,H1-B

11



Figure 7: Greedy removal for image A and image B in n steps (t = n − 1),

where SA(n)

B(n) is the cosine similarity between the two images and n is the best
part removed (BestMA

and BestMB
) at t-step.

3.1.4 Greedy Removal-S1

The iterative approach of the greedy algorithm involves repeatedly perform-
ing a single removal procedure. In each iteration, the section of the face with
the greatest impact is removed from images A and B. In particular, the
initial images are represented as A0 = A and B0 = B, and at each iteration,
At and Bt are obtained by removing the principal parts of At−1 and Bt−1,
respectively. This means that at each iteration, the mask removed will be
defined as the actual section mask sum with the previous best mask removed:

M (At) = M (At,n) + BestMA
and M (Bt) = M (Bt,n) + BestMB

(8)

In greedy removal, calculating positive and negative contribution maps fol-
lows distinct procedures. We also use Equations 6 and 7 to obtain H1(.,n),
H1+(.,n), H1−(.,n), S1A and S1B. To be more concise, in algorithm 1, the presen-
tation primarily focuses on calculating the negative contribution map H1-.
Indeed, in each iteration, the st value is set to 1. Consequently, the removed
areas correspond to those exhibiting negative contribution, as the condition
s′ < st dictates. Conversely, H1+ is computed, setting st value to 0 at each
iteration with the condition s′ > st. In our example, the iteration stops when
the maximum number of iterations is reached or when the score difference
reaches a low enough point. In this case, that occurs at t = 7, where the
score difference is only 0.009. After obtaining H1+ and H1-, the similarity
map S1 is obtained following the equation 7.

3.1.5 Average Similarity map SAVG

In subsection 3.1.3 and 3.1.4, the processes for determining similarity maps
are outlined. Using single and greedy removal techniques makes it possible

12



to assess the significance of each facial feature individually or in conjunction
with others. Considering this, analyzing an average map can provide valuable
comprehension of the significance of each facial feature. Incorporating this
information within an average similarity map of maps S0 (Single removal)
and S1 (Greedy removal) which is called SAV G aligns with the notion that
humans perceive and interpret faces in a relational/configurational manner
[28] (see Figure 3).

4 Experimental results

Figure 8: Similarity maps for each algorithm proposed in the case of VG-
Gface2. Respectively S0 is the output of the single removal, S1 is the greedy
removal ones, and SAVG is the average map generated from S0, and S1. The
plot chart considers the contribution values (Cn) for each section in the per-
turbation.

This section shows the experimental results for a selected number of sam-
ples extracted by the CelebA dataset [35] and tested for the FaceNet [37]
model trained on Casia-WebFace [33] and VGGfaces2 [34]. In Figure 8, we
show the output generated by the proposed method. It comprises three
maps: the initial single removal map S0, the greedy removal map S1, and
the ultimate average map SAVG. The visualization uses orange to represent
semantic areas that are similar, while purple indicates differences in facial
features. After the concept extraction, a group of semantic areas is selected

13



based on their importance. The table 1 displays the n-selected semantic ar-
eas ranked by their importance. In our study n = 8, this number can be
changed as needed.

Table 1: Concept extraction output of each model’s top n semantic areas
(n=8). Area names are abbreviated with the initial or the first two letters
(i.e., E = eye). R and L are associated with the right and left sides.

VGGFace2 ”B”, ”CHER”, ”MOL”, ”ER”, ”MOR”, ”NR”, ”FR”, ”EL”
Casia Net ”B”, ”ER”, ”MR”, ”ML”, ”EL”, ”CHER”, ”FR”, ”CHEL”

Figure 8 also features a table showcasing the sections of the face catego-
rized as similar (orange) and dissimilar (purple), along with their respective
contribution values to the final similarity map. We will focus on analyzing the
mean map SAVG, which utilizes the same color scale. Regarding the nature
of masking applied during perturbation, we investigated how it impacted the
algorithm’s output. In figure 9, we present two distinct case studies for both
models. The examined masking types encompass black masking, random
noise masking, and white masking. Upon observing the images, it becomes
evident that, in general, there is minimal sensitivity to the type of masking,
especially between black and white masking. The most notable deviation
is associated with random noise masking, although this divergence remains
relatively modest. The maps reported in this study exclusively employ black
masking. Figure 10 presents several instances of the algorithm’s output for
both tested models. Specifically, sections (a) and (c) demonstrate examples
where facial comparisons are made between samples of the same individ-
ual, while sections (b) and (d) involve comparisons with imposters. Even
when comparing faces of the same individual, certain areas are assessed as
dissimilar, while conversely, when confronting imposters, not all areas are
consistently regarded as dissimilar. The final score can offer additional in-
sights by contextualizing which facial regions can be modified to influence
the outcome.

4.1 Experiments with Cut-and-Paste Patches

We conducted a “Cut-and-Paste Patches” test to validate this outcome, as
previously introduced by [16]. This experiment assesses whether replacing
specific facial regions in one image with a corresponding region from another

14



Figure 9: The SAVG map for pair examples from the CelebA dataset, gener-
ated using different patch coloring for the models VGGface2 and CasiaNet
Orange hues denote similar facial regions, while purple highlights dissimilar
ones

is effectively detected by our algorithm and described with high similarity
in the similarity maps. We present the results in Figure 11. Specifically, in
column (a), we display the average similarity map of the two original images.
In column (b), one of the two images has been altered with a patch from
the other (highlighted in green-yellow). Finally, in column (c), we present
the resultant output. Overall, we observe that regions previously deemed
dissimilar are now perceived as similar in the modified area, accompanied
by an increase in the final score. Additionally, we notice instances where
semantic areas change in their contribution despite not being included in
the modification patch. The explanation for this can be that the patches
do not fit the exact dimensions as the semantic areas, and in some cases,
a rectangular patch, mainly centered on one point, may intersect multiple
subsequently affected semantic areas. This observation underscores the sen-
sitivity of the proposed method, particularly the segmentation carried out by
Mediapipe, to facial regions. It is also noteworthy that certain areas change
in color even when they have not been directly modified – for instance, the
right eye in Case I, the left cheek in Case II, the left eye in Case III, and in
Case IV, the patch is not entirely recognized as similar. This discrepancy can
be attributed to the fact that while the test follows a part-based approach,
network models tend to perceive faces holistically, implying that altering a
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Figure 10: The SAVG map for pair examples. In sections (a) and (c), the
similarity maps are generated for genuine cases, while in sections (b) and (d)
for impostor ones. The examples are generated from VGGface2 (a,d) and
Casia Net (b,c).

specific patch may lead to a change in perception of the entire face and not
just the modified area. This explanation aligns with the study of Jacob et
al.[38], which demonstrated that models trained on various datasets with the
Thatcher effect [39] internalize a holistic perception of faces. Moreover, it is
essential to note that the maps under consideration focus solely on the most
influential areas, albeit their influence on the final score is limited.

4.2 Method limitations

While Mediapipe offers valuable tools for semantically segmenting facial fea-
tures, it displays a notable sensitivity to variations in facial orientation. Sub-
stantial deviations in facial pose result in increasingly dissimilar masks, lead-
ing to proportionally divergent contributions. When the masks exhibit high
similarity, the simultaneous occlusion method gains coherence as it conceals
identical portions of the image. Another limitation arises when comparing
a profiled face with a frontal one. In such instances, Mediapipe can still
identify facial features; however, the application of occlusion to both pro-
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Figure 11: Cut-and-Paste patches test inspired by [38] for two samples out-
put. In (a) the originals SAVG, in (b) the pairs after applying the Cut-and-
Paste Patches test, and in (c) the new average similarity maps.

files loses its contextual relevance, rendering the affected areas visually less
comprehensible. Consequently, the most suitable application of the method
pertains to front-facing subjects with poses as closely aligned as possible.

5 Conclusion and Future directions

In this paper, we have initiated an effort to bridge the gap between computer
and human vision, with the primary goal of improving the interpretability of
facial verification algorithms. We sought to gain insight into how machines
perceive the semantic aspects of human faces during verification, ultimately
aligning the system’s output score more closely with human reasoning.

We employed the Mediapipe tool to identify distinct semantic regions
on the human face to achieve this. These regions, representing human-
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conceptual knowledge, provided a comprehensive view of the critical concepts
for our models. Leveraging this knowledge, we selected a subset of the most
significant semantic areas for the models. We also introduced a perturbation
algorithm that generated similarity maps, revealing how the models under
examination perceived these concepts as either similar or dissimilar.

By contextualizing the system’s output score, we can align it more closely
with human reasoning. However, it is essential to note that our work is cur-
rently limited to experimentation. As a result, future research directions
could include exploring different segmentation methods, conducting experi-
ments across diverse models, comparing various methods to ours, or adapting
them to our approach. Additionally, including a user evaluation component
could further validate and enhance the effectiveness of our work.
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