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Digital technologies have the potential to support the assessment of students’ mathematical 

understanding, but they are rarely used to support students in self-assessment. For this reason, the 

BASE project is developing and researching a digital self-assessment tool (BASE tool) that focuses 

on self-assessment of basic arithmetic knowledge. This paper describes a case study investigating 

how a dynamic and interactive sample solution in the BASE tool affects a student’s multiplicative 

understanding and activation of metacognitive activities. It turns out that the student develops a 

multiplicative understanding that is strongly related to the sample solution, even if it is only one of 

two possible solutions. Regarding metacognitive activities, the sample solution causes the student to 

doubt his mathematically correct answer on the one hand and to correctly evaluate his self-

assessment on the other. 

Keywords: Feedback, Educational Assessment, Technology, Multiplication, Metacognition. 

Introduction 

As Black and Wiliam (2009) described, formative assessment is widely recognised as a crucial aspect 

of effective teaching in the classroom. With the rise of digital technologies, opportunities for digital 

assessment are also increasing. Referring to previous research, Drijvers identifies several arguments 

favouring digital assessments. For example, he sees potential for digital assessment in rich interactive 

tasks or automatic feedback (Drijvers, 2018). However, many digital formative assessment 

environments lack student-centred practices like self-assessment, which can significantly enhance 

students’ mathematical understanding and metacognition (Ruchniewicz & Barzel, 2019). 

Furthermore, as digital self-assessment environments are limited, we know little about how dynamic 

and interactive sample solutions provided in such environments are interpreted and used by students 

in their self-assessment process and how the sample solutions affect students’ learning.  

The BASE project addresses this need for development and research. It aims to design and investigate 

a digital self-assessment tool (BASE tool) that helps students to self-assess their basic arithmetic 

knowledge.  

Potentials of digital technologies for formative self-assessment 

“Self-assessment is a process of formative assessment during which students reflect on the quality 

of their work, judge the degree to which it reflects explicitly stated goals or criteria, and revise 

their work accordingly” (Andrade & Valtcheva, 2009, p. 13). 

Self-assessments promote metacognitive skills, such as self-observation or self-reflection. 

Encouraging students to engage metacognitively with their learning through self-assessments makes 

them more involved with the mathematical contents (Andrade, 1996). 
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Digital technologies provide various potentials to enhance self-assessment processes (Ruchniewicz 

& Barzel, 2019). The following three potentials merit particular consideration (2018, pp. 47-48): 

(1) Rich items: Digital learning environments can include dynamic elements, for example, videos 

or animations and interactive items.  

(2) Adaption: Digital learning environments enable the automatic assignment of assessment items 

to students’ learning levels, allowing real-time adjustment of the difficulty of subsequent 

exercises based on responses to earlier tasks.  

(3) Automatic feedback: Digital learning environments can provide automatic feedback, for 

instance, on the correctness of the task solution or self-assessment. 

For example, Ruchniewicz and Barzel (2019) developed the SAFE tool, a digital self-assessment tool 

in the area of functional thinking that uses dynamic sample solutions to support students’ self-

assessments. In the SAFE tool, students complete a digital assessment task, receive a dynamic sample 

solution and subsequently assess their solution with the help of a task-specific checklist “to guide the 

student’s reflection on his/her own solution” (Ruchniewicz & Barzel, 2019, p. 50). However, in 

addition to the potential to support students’ mathematical understanding and metacognition, the 

research on the SAFE tool revealed that students would like to get feedback on the correctness of 

their self-assessment and task performance (Ruchniewicz & Barzel, 2019).  

The BASE tool 

The BASE tool is a self-learning tool that targets fourth- and fifth-grade students transitioning from 

primary to secondary school. The tool enables students to practice their basic arithmetic skills from 

primary school individually and self-directedly. In the following, we will briefly elaborate on the 

design of the BASE tool using a multiplication task as an example. A detailed description of the 

design principles and structure of the BASE tool can be found in Graewert et al. (2023). 

There are various assessment tasks in the BASE tool, each focusing on basic arithmetic knowledge, 

e.g., representing numbers in the place value chart or column addition. In the task used in the present 

study, the students had to represent the calculation 6 × 4 by jumps on a given number line. As 

multiplication is a binary commutative combination, the solution of the task can be done by 

calculating 6 × 4 or 4 × 6. Thus, for a correct solution, it is possible to draw six jumps of length four 

or four jumps of length six.  

After the students have submitted their solution (Figure 1, left, “My Solution”), they have to assess 

themselves using a task-specific checklist (Figure 1, left, “Self-Assessment”). To support their self-

assessment, the students receive a dynamic and interactive sample solution (Figure 1, left, “Possible 

Solution”). To avoid cognitive overload of the students, only one of the two possible solutions is 

presented. Since the standard interpretation in Germany is that the first number indicates the number 

of jumps and the second number the length of the individual jumps, it was decided to present the 

corresponding sample solution. In the sample solution, the students can play the jumps by clicking 

on the “Play button” so that the jumps appear one after the other on the number line. Additionally, 

they can select visual hints that highlight and explain features of the sample solution (e.g., selecting 

“length of each jump”).  



 

 

 

After self-assessing their solution, students receive automatic feedback on the correctness of their 

self-assessment (Figure 1, right). Based on the correctness of the task solution and the self-

assessment, the BASE tool adaptively assigns subsequent exercises to the students. 

Figure 1: Self-assessment of a submitted task (left) and feedback on the self-assessment (right) 

Research question and methodology 

In the present paper, we focus on the following research questions: 

1) To what extent are the sample solution and its dynamic and interactive elements used? 

2) How does using the sample solution affect a student’s multiplicative understanding and 

metacognitive activities in a self-assessment process?  

3) What can be inferred from 1) and 2) for the further development of the BASE tool? 

Data collection 

As part of the study, we collected video recordings from 12 students attending the fifth grade of a 

German upper secondary school, who were thus about ten years old. The students were selected 

according to whether they and their parents agreed to participate in the survey. Other selection criteria, 

such as mathematics performance, did not play a role in selecting the participants. The students were 

supposed to independently practice their primary school knowledge of multiplication on the number 

line with the help of the abovementioned task. After completing the task, the students self-assessed 

their solutions. To capture the students’ understanding and metacognitive activities, they were asked 

by an interviewer to think aloud and explain their actions and thoughts (Leighton, 2017). Lorenz’s 

case was chosen for in-depth analysis because it shows a typical case that occurred several times. 

Data analysis 

The data analysis is based on Rezat’s theoretical framework (2021, p. 1436), incorporating the theory 

of instrumental genesis (Rabardel, 2002) and the concept of scheme (Vergnaud, 2009) (Figure 2). 

According to Vergnaud, a scheme “is the invariant organization of activity for a certain class of 

situations” (2009, p. 88, emphasis original). It comprises various components, where operational 

invariants represent the implicit knowledge in schemes (Rezat, 2021). These operational invariants 

consist of concepts-in-action and theorems-in-action. Concepts-in-action are mathematical objects 

considered relevant or less relevant (e.g., factor, number of jumps), thus playing a crucial role in 



 

 

 

identifying and selecting information. Theorems-in-action are mathematical statements that students 

believe to be true but may be mathematically false (Vergnaud, 2009). 

Instrumental genesis describes a twofold process in which a subject transforms an artefact into a 

helpful instrument through its actions. The discovery and use of artefact properties and the assignment 

of functions to it are referred to as instrumentalisation. The use of artefacts shapes utilisation schemes 

(= schemes linked to the utilisation of an artefact), and the development and acquisition of these 

schemes is called instrumentation (Rabardel, 2002). As Drijvers and Trouche (2008, p. 28) noted, the 

instrumental genesis process can be time-consuming and laborious. Since we will focus on the 

processing of a single task in the following case analysis, we will only consider a small part of 

instrumental genesis. Furthermore, given that the student is using the BASE tool for the first time, it 

can be assumed that the use of the tool is rather explorative, and the development of schemes is 

preliminary. 

Figure 2: Theoretical framework based on Rezat (2021, p. 1436) 

In the following, concepts-in-action will be highlighted with double lines ||...||, theorems-in-action 

with greater-than or less-than symbols >...< and metacognitive activities with asterisks *...*. 

Results: The case of Lorenz 

When solving the task, Lorenz initially draws a jump from zero to five but corrects his solution to 

five jumps of length six starting at zero. When the interviewer asks for an explanation, Lorenz 

explicates his solution and notices that he has drawn one jump too many. So Lorenz removes the last 

jump, resulting in four jumps of length six: 

4 Interviewer: Why does it have to be removed? 

5 Lorenz: Because that must be four (points to the 4 in the task). That (must be?) times 

four, so four jumps, I guess. 

6 Interviewer: Mm, ok. 

7 Lorenz:  Yes, and I have just drawn the jumps till six. 

Lorenz submits his solution with four jumps of length six and is then directed to the self-assessment 

screen: 

11 Lorenz: (Reads the hint in the sample solution and clicks on PLAY) 

  Six jumps of length four are played on the number line. 



 

 

 

12 Lorenz: Ah. I had to make four, not six. (I have to draw something here starting 

from four?) (points to the jumps in the sample solution one after the other) 

One, two, three, four, five, six. Six jumps, then. (Reads through the first 

checklist statement and clicks NO) I did NO because instead of doing six 

jumps (points to the 6 in the task and then to his solution), I did four jumps 

and instead of up to four (points first to the 4 in the task and then to the 4 on 

the number line in his solution) I did up to six (points to the 6 on the number 

line in his solution) because I thought that is how you have to do it. 

13 Interviewer: Mm. 

14 Lorenz: The second factor in the calculation corresponds to the length - also NO 

because, as I already said, I have also mixed it up there (points to his 

solution). The result of the calculation corresponds to the…(points to the 

last jump in the sample solution and selects YES). 

15 Interviewer:  Why YES? 

16 Lorenz: Because I just quickly calculated four – six times four, and if that is the total 

length of all my jumps and the solution also came up with 24 (points to the 

24 on the number line in the sample solution), then I calculated that. So my 

answer here was true (points to the third checklist statement, which he 

answered YES). (Reads through the fourth checklist statement and answers 

YES). My solution was wrong (points to his solution), but with the solution 

(points to the sample solution), I understood it (clicks on I AM DONE). 

Instrumentalisation 

Lorenz instrumentalises the sample solution to identify supposed errors in his solution. He concludes 

that his solution needs to be corrected because he mixed up the number and the length of the jumps 

compared to the sample solution (l. 12). However, Lorenz uses the “play function” of the sample 

solution only once.  

Instrumentation 

After correcting his solution twice, Lorenz submits a final solution of four jumps of length six. 

Referring to the four in the task, he states, “that must be four...so four jumps, I guess” (l. 5). Thus, 

the first theorem-in-action can be explicated as: 

(TA 1) >If I want to determine the number of jumps, then I must consider the second factor 

and draw the corresponding number of jumps< 

This theorem-in-action is guided by the concepts-in-action ||number of jumps|| and ||second factor||. 

Concerning the length of the jumps, Lorenz points out that he has “just drawn the jumps till six” (l. 

7), which results in the second theorem-in-action: 

(TA 2) >If I want to determine the jump length, then I must consider the first factor and draw 

jumps of the corresponding length< 

For this theorem-in-action, the concepts-in-action ||jump length|| and ||first factor|| are relevant. 

Playing and looking at the sample solution leads Lorenz then to *evaluate his solution as incorrect*. 

He says, “Ah. I had to make four, not six” (l. 12). Later, it becomes apparent that he meant “six, not 

four” since he continues saying, “One, two, three, four, five, six. Six jumps, then” (l. 12). Viewing 

the sample solution and the evaluation of his solution as incorrect lead to a change in the first theorem-



 

 

 

in-action (TA 1). This is because instead of relating the concept-in-action ||number of jumps|| to that 

of the ||second factor||, Lorenz relates it to the ||first factor||. The adapted theorem-in-action can be 

formulated as follows: 

(TA 1.2) >If I want to determine the number of jumps, then I must consider the first factor 

and draw the corresponding number of jumps< 

This theorem-in-action is also evident when Lorenz explains why he chose NO for the first checklist 

statement: “I did NO because instead of doing six, I did four jumps” (l. 12). Additionally, he states: 

“Instead of up to four I did up to six” (l. 12), referring to the four and six on the number line in his 

solution. Here, the theorem-in-action changes, which refers to the jump length (TA 2). It now can be 

expressed as follows:  

(TA 2.2) >If I want to determine the jump length, then I must consider the second factor and 

draw jumps of the corresponding length< 

Lorenz now associates the concept-in-action ||jump length|| with the ||second factor|| instead of the 

||first factor||. The repeated use of “instead of” indicates that in Lorenz’s case, answering NO to the 

first checklist statement is accompanied by an *evaluation of his own solution as incorrect*. This is 

also the case with the second checklist statement, which Lorenz answers with NO. He justifies his 

answer with “I have also mixed it up there” (l. 14). However, Lorenz answers the third checklist 

statement with YES. Lorenz explains: “I just quickly calculated four – six times four, and if that is 

the total length of all my jumps and the solution also came up with 24, then I calculated that”. Here, 

he refers to the sample solution and points to the endpoint of the last jump, that is, to 24 on the number 

line (l. 15, 16). It can be seen that Lorenz equals the ||total length of all jumps|| with the ||last jumps’ 

endpoint|| and equates these concepts-in-action with the ||product of the first and second factors||, 

leading to the following theorem-in-action: 

(TA 3) >If I want to check the total length of all jumps, then I must calculate the product of 

the first and second factors and compare it to the endpoint of the last jump< 

Based on this theorem-in-action, Lorenz comes to *evaluate his answer to the third checklist 

statement as correct*: “So my answer here was true” (l. 16). After reading the fourth checklist 

statement, Lorenz summarily *evaluates his solution as incorrect* but notes that the sample solution 

helped him to understand the task: “My solution was wrong, but with the solution, I understood it” 

(l. 16). 

Conclusion and outlook 

In our study, we investigated to what extent a student uses the sample solution and its dynamic and 

interactive elements and how using the sample solution affects the student’s multiplicative 

understanding and metacognitive activities in a self-assessment process. 

Use of the dynamic and interactive sample solution 

Concerning using the dynamic and interactive sample solution (instrumentalisation), we find that 

Lorenz only plays the jumps once. This could be because the dynamic sample solution has no added 

value for Lorenz compared to a static sample solution. The interactive visual cues in the sample 



 

 

 

solution were not used by Lorenz at all. A possible explanation could be that Lorenz was working 

with the BASE tool for the first time and was unfamiliar with its functionalities. 

Impact of the sample solution on multiplicative understanding and metacognitive activities 

Concerning the impact of the sample solution on Lorenz’s multiplicative understanding 

(instrumentation), it turns out that the sample solution contributed to developing theorems-in-action, 

which are closely connected to the sample solution. When solving the task, Lorenz associated the 

number of jumps with the second factor (TA 1) and the length of the jumps with the first factor (TA 

2). Looking at the sample solution, where the number of jumps is associated with the first and the 

length of the jumps with the second factor, resulting in a corresponding adaptation of Lorenz’s 

theorems-in-action (TA 1.2 and TA 2.2). The sample solution did not support that Lorenz recognised 

multiplication as a binary commutative combination. 

The sample solution affected not only Lorenz’s multiplicative understanding but also his 

metacognitive activities. Looking at the sample solution led Lorenz to negatively evaluate his 

mathematically correct solution. Similar results were observed in a study conducted by Safadi and 

Yerushalmi (2013), in which students interpreted the sample solution as an “ultimate template and 

simply considered their deviation from it as mistakes” (p. 205). However, the sample solution also 

helped Lorenz to correctly evaluate his answer (YES) to the third checklist statement (“The result of 

the calculation 6 × 4 corresponds to the total length of all my jumps”). It becomes apparent that the 

sample solution can encourage not only the evaluation of one’s own solution but also one’s self-

assessment.  

Inferences for the further development of the BASE tool 

Building on the results mentioned above, we have further developed the BASE tool as described in 

the following.  

To support students in recognising multiplication as a binary commutative combination, we have 

reformulated the checklist statements (Figure 1, left, “Self-Assessment”). Instead of relating the 

checklist statements to the properties of the sample solution, the statements are formulated to apply 

to both possible solutions. For example, we reformulated the first statement: “One of the two factors 

in the calculation corresponds to the number of my jumps”. In addition, we have included feedback 

on the task level, which means that the students also get feedback on whether their solution to the 

task was correct or incorrect. Given that Lorenz considered his mathematically correct solution to be 

incorrect, it would have been interesting to see how the feedback that his solution was correct would 

have affected his multiplicative understanding and metacognition. Regarding the dynamic and 

interactive sample solution, minor adjustments have been made concerning the design and 

arrangement of the buttons for selecting the interactive visual hints, which we hope to support that 

students use them more.  

In summary, the results of this study illustrate the complexity of developing self-assessment 

environments that rely on interactive and dynamic sample solutions. Next, we will conduct a study 

with the revised tool and a larger group of students. We hope this research will contribute to a deeper 



 

 

 

understanding of how artefacts affect students’ mathematical understanding and metacognition in 

self-assessment processes. 
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