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ABSTRACT

In applications like noise cancellation and virtual reality,
precise sound source localization is crucial. Existing data-
driven binaural systems offer high performance in adverse
conditions such as noise and reverberation but face limita-
tions with real-time operation and performance degradation
in HRTF mismatch scenarios. Our work introduces a compact
Vision Transformer tailored to address these issues, with a
primary focus on horizontal speech localization. Inspired by
the auditory cortex, our model uniquely incorporates spectral
attention mechanisms using encoded speech representations.
This architecture enhances generalization on the azimuth
plane under mismatched HRTFs. Our empirical results show
a marked improvement over conventional DNN, CNN-based
and Transformer-based models, both in noisy and noise-free
environments. Significantly, the proposed model maintains
high accuracy in localizing adjacent azimuths, ideal for real-
world applications.

Index Terms— sound source localization, binaural audi-
tion, HRTF mismatch, attention modulation

1. INTRODUCTION

Binaural sound source localization (BSSL) is an important
subsystem that enhances performance in various audio pro-
cessing domains, such as speech enhancement and speaker
identification. For a full review, please see [1]. BSSL is
increasingly emphasized, particularly in two-sensor applica-
tions like humanoid robots, hearing aids, and virtual reality,
where array-based sensors are probably not suitable.

Most BSSL methods rely on the Duplex Theory of binau-
ral cues, such as Interaural Time/Phase Difference (ITD/IPD)
and Interaural Level Difference (ILD) [2]. These cues are de-
rived from Head-Related Transfer Functions (HRTFs), which
mathematically describe how sound is filtered by an individ-
ual’s head, ears, and torso. Thus, the notable challenge in
BSSL algorithms, aside from noise and reverberation, is that
most algorithms perform well only when the same HRTF that
was used during simulated training is applied. Recent studies
have seldom tackled the issue of HRTF mismatch [3]. Our
research aims to address this gap.

2. RELATED WORK

Efforts to enhance targeting accuracy in BSSL primarily fo-
cus on improving generalization in noisy and reverberant
conditions [4]. These strategies are versatile, designed to
function effectively across various environments, whether
in full-sphere or on vertical/horizontal planes. Recently,
researchers have utilized a diverse set of data-driven tech-
niques, ranging from Deep Feedforward Neural Networks
(DNNs) [5] and Convolutional Recurrent Neural Networks
(CRNNs) [6], to specialized variants like Transformer-based
models [7]. While these models perform well with matched
HRTFs, their efficacy in cases of HRTF mismatch remains
unexplored.

The generalized parametric models [8] and HRTF tem-
plate matching techniques [9] could potentially serve as pre-
liminary approaches for addressing HRTF mismatches. How-
ever, these models may lack adequate parameter fine-tuning
for individual variations, especially in real-world localization
of unseen HRTFs. On the other hand, the DNN-based ap-
proach proposed by [3] aims to improve HRTF generaliza-
tion by clustering HRTF databases to identify representative
HRTFs. These selected representations are then used to en-
hance localization accuracy, obviating the need for training
on multiple HRTF subjects. Nevertheless, this methodology
does not take into account the impact of HRTF mismatches in
noisy environments. Similar clustering approaches have also
been proposed by [10, 11].

3. PROPOSED ARCHITECTURE

Our objective is to enhance BSSL performance under con-
ditions of HRTF mismatches and noisy environments, while
also adhering to computational efficiency constraints to en-
sure applicability in real-world scenarios.

Inspired by the selective attention mechanisms of the au-
ditory cortex during cocktail parties [12], selective attention
provides us with the cognitive flexibility to either focus on a
particular sound source in a noisy environment or to assess the
entire auditory scene. This capability is enhanced by our top-
down regulation of cortical circuits, a phenomenon substanti-
ated by both empirical research and computational models in



neuroscience [13, 14]. Prior BSSL models, inspired by this
top-down attention to target sounds in noisy and reverberant
environments, utilize masking techniques to filter out interfer-
ence. These techniques include both shallow integration and
layer modulation, as seen in works such as [5, 15]. Never-
theless, such masking approaches may inadvertently discard
important information during the localization process [16].

Several studies highlight the importance of spectral tuning
for focus in selective attention tasks, using quick changes in
spectrotemporal receptive fields [14, 16, 17]. Our model, the
Attention Modulation Vision Transformer (AMViT), builds
on these findings. It uses a data-driven encoder to learn
speech representations as top-down information in both noisy
and clear settings. It then dynamically modulates this top-
down information in each time-frequency bin, guided by
bottom-up binaural cues, thereby moving beyond the sole
reliance on masking to access top-down information.

The development of AMViT is an extension of our pre-
vious work on Frequency-based Audio Vision-Transformers
(FAViT) for BSSL [7]. Compared to other architectures,
FAViT features strong time-frequency bin selectivity, enabled
by its self-attention mechanism, to localize sound while main-
taining a relatively low parameter count. We have therefore
refined FAViT to serve as an efficient and effective encoder,
optimized for implementing spectral attention modulation.

The key to improving performance in HRTF mismatch
scenarios lies in our hypothesis that integrating encoded
speech as top-down information with bottom-up binaural
cues will enhance the model’s accuracy. We propose that the
model will learn the interplay between these cues, thereby
increasing its adaptability to unfamiliar HRTFs.

Fig. 1. Adaptation of auditory-inspired attention in AMViT

3.1. Binaural and Spectral Features

Our scheme aims to localize horizontal sound using azimuth
angles θs, measured in radians. As depicted in Figure 1, both
the speaker signal s(t) and ambient noise n(t) are captured
relative to a binaural sensor located at coordinates (d, θs),
which are relative to the center of the head. The signal s(t)
is divided into the left yl(t) and right yr(t) channels due to
the influence of the head. We establish a correlation between
these channels and θs through their Short-Time Fourier Trans-
form (STFT) spectra Yl/r defined as

Yl(k, n) = STFT (hl(θs, t) ∗ yl(t) + nl(t)) ,

Yr(k, n) = STFT (hr(θs, t) ∗ yr(t) + nr(t)) .
(1)

The STFT spectra Yl(k, n) and Yr(k, n), with frequency
index k and time index n, are computed using a Hamming
window and a 50 ms overlap from 640 samples and 320 fre-
quency bins at a 16 kHz sampling rate. The Head-Related
Impulse Responses hl(θs, t) and hr(θs, t) affect the left and
right channels, respectively, while nl(t) and nr(t) represent
noise. The asterisk ∗ signifies convolution.

Our architecture extracts four principal features: two top-
down from left/right spectrograms, and two bottom-up from
IPD and ILD. SPL (Spectral-feature Left) and SPR (Spectral-
feature Right) are derived from Yl(k, n) and Yr(k, n) by sep-
arating their real and imaginary parts, with

SPL(k, n, 2) = (Re(Yl(k, n)), Im(Yl(k, n)),

SPR(k, n, 2) = (Re(Yr(k, n)), Im(Yr(k, n)),

ILD(k, n) = 20 log10

(
|Yl(k, n)|
|Yr(k, n)|

)
,

IPD(k, n) = ̸
Yl(k, n)

Yr(k, n)
.

(2)

3.2. Patches and Vision Transformer Encoder

The position embedding and attention mechanism remain
consistent with FAViT [7]. However, we have modified the
architecture: FAViT’s single Transformer is now turned into
four distinct encoder blocks, each specialized for one of the
four features. These encoders accept input shapes (k, n) or
(k, n, 2) and map them to dimensions (f, 20), where f is the
number of frequency patches calculated as f = k

n (see Eq. 3).
With all these modifications, we anticipate achieving superior
performance compared to FAViT in terms of both HRTF and
noise mismatch.

In our configuration, k = 320 is based on STFT discussed
in the previous section, while n = 16 frames, corresponding
to a total time span of 640 ms. These brief time frames could
potentially offer advantages for real-time sound localization.
Overall, the extended Transformer blocks in our model col-
lectively comprise 0.25 million parameters. Each encoder
block employs a 4-layer Multi-Head Self-Attention (MSA)



followed by a Multilayer Perceptron (MLP) as a self-attention
mechanism, iterated eight times (iter = 8). The MLP layers
use a 0.005 learning rate, 0.0001 weight decay, batch size of
16, and the Adam optimizer. This turns each patch into a 20-
dimensional vector. The dot products of encoded ILD and
IPD features form a bottom-up representation (RPBU). Sim-
ilarly, the dot products of encoded spectrograms for the left
and right audio channels generate a top-down representation
(RPTD). We chose dot products based on evidence showing
they are robust and do not improve accuracy with alternative
methods in our experiments. In the end, the parameters used
in this paper are defined along

RPfeature(f, 20) = Encoderiter=8(Feature(shape)),
RPBU(f, 20) = RPILD(f, 20) · RPIPD(f, 20),

RPTD(f, 20) = RPSPL(f, 20) · RPSPR(f, 20).

(3)

3.3. Modulation and Classification

The next step focuses on modulating RPBU and RPTD, both of
which serve as frequency-distributed representations. Con-
ventional top-down attention mechanisms within the auditory
cortex are more closely associated with nonlinear spike ac-
tivities than with the actual auditory stimuli. While the mod-
ulation of these spike activities is still an active area of re-
search [16, 14], our approach takes cues from these neural
behaviors to enhance our time-frequency representation. Var-
ious mathematical techniques, such as addition and subtrac-
tion, have been explored for the purpose of modulating binau-
ral cues [18]. Furthermore, numerous neuroscientific studies
advocate for the inclusion of an additional layer to unify these
diverse representations [16, 14].

Building on the methods described above, our study eval-
uates five modulation methods denoted as ⊕ in the following:
addition, subtraction, element-wise multiplication, dot prod-
uct, and a 125-neurons MLP layer. Our objective is then to
identify the optimal modulation technique for our represen-
tations. The classifier features a 3-layer MLP head with di-
mensions [512, 256, 100]. An L2 regularizer is applied to the
MLP weights for regularization. The output layer uses a Soft-
max function to normalize the final representation, which is
denoted as Modtype and defined according to

Modtype =

{
RPBU ⊕ RPTD, ⊕ ∈ {+,−,×, ·}
MLP(RPBU,RPTD)

,

CL(θs) = Softmax(MLPHead(Modtype)),

(4)

where CL(θs) are class probabilities computed from Modtype
for each localization azimuth. A Cross-Entropy Loss function
is used for optimization. The addition of this classification
layer increases the model’s total parameter count by approxi-
mately one million.

4. EXPERIMENTS

4.1. Experimental Design and Evaluation

The experiment localizes a single simulated sound source to
one of 25 azimuth angles on a horizontal plane. These angles
are specified at intervals that include −80◦,−65◦,−55◦, as
well as −45◦ to 45◦ in 5◦ increments, and 55◦, 65◦, 80◦.

We evaluate the performance of our proposed model us-
ing five different modulation methods, as described in Sec-
tion 3.3. These methods are denoted as AMViT1 for addi-
tion, AMViT2 for subtraction, AMViT3 for multiplication,
AMViT4 for dot product, and AMViT5 for an additional MLP
layer. These evaluations are carried out under varying con-
ditions of noise, speakers, and both the same and different
HRTFs. We also compare our model’s performance against
benchmark models, including a replicated DNN model [3],
CNN model [15], and the original FAViT model [7]. The
DNN model was chosen as it was used to address HRTF mis-
match, while the CNN model was selected to represent recent
top-down modulation techniques using masking. All spatial-
ized training and testing data were prepared once and kept
consistent across all experiments.

The proposed metrics include classification accuracy, and
both a tolerant accuracy allowing ±1 class deviation and
RMSE in degrees, defined as

Tolerant Accuracy =
1

N

N∑
s=1

1
(
|Cs − Ĉs| ≤ 1

)
,

RMSE =

√√√√ 1

N

N∑
s=1

(
g(Cs)− g(Ĉs)

)2

,

(5)

where g is a function defined to map classes to azimuth angles
for RMSE calculations, N is the sample count, Cs is the true
class, and Ĉs = argmax(CL(θs)) is the predicted class.

4.2. Data and Acoustic Elements

We utilized the TIMIT database [19] for speech data, choos-
ing 40 audio signals for training and a distinct set of 16 for
testing, with an equal gender distribution. These sets were
spatialized based on Eq. 1, using 45 HRTF subjects from
the CIPIC database [20] for training and 5 from the REIC
database [21] for testing. These HRTFs simulated sound
source locations at 25 angular positions, as outlined in Sec-
tion 4.1. Audio was resampled to 44.1 kHz for convolution
with HRIR, then downsampled to 16 kHz.

For additive noise, we selected four types each from the
spatially uncorrelated Noisex92 [22] and non-stationary noise
databases [23] for training and testing, respectively, in line
with [7]. The model was trained and tested at various SNRs:
[−5, 5, 15, 25] dB for training and [0, 10, 20] dB for testing,
with the aim of enhancing generalization performance across
different SNRs, noise types, and HRTF conditions.



Models Parameters Seen HRTFs Unseen HRTFs
Unseen Noises Seen Noises Unseen Noises
Acc. RMSE Acc. RMSE Acc. RMSE Tolerant Acc. RMSE

DNN (Wang et al.) 2.0 M 81.6 2.5 59.1 8.7 43.3 11.5 70.9 5.8
CNN (Hu et al.) 0.8 M 89.4 2.3 58.6 8.8 47.6 11.2 72.4 5.5
FAViT 0.6 M 89.2 2.4 59.4 8.5 49.3 11.3 73.8 5.4
AMViT1 (+) 1.3 M 88.5 2.4 44.1 12.5 33.1 16.0 41.4 9.2
AMViT2 (-) 1.3 M 87.6 2.5 45.6 12.2 28.4 17.0 40.7 9.5
AMViT3 (×) 1.3 M 93.5 2.0 63.4 7.5 53.5 11.0 89.6 4.5
AMViT4 (·) 1.3 M 82.6 2.6 40.5 13.0 26.4 17.5 33.5 10.0
AMViT5 (MLP) 1.4 M 93.4 2.1 61.2 8.0 51.2 11.8 89.5 4.4

Table 1. The table shows localization accuracy (%), parameters, and RMSE for seen/unseen HRTFs and noise conditions.

5. RESULTS AND DISCUSSION

5.1. Modulation and Efficiency Performance

As illustrated in Table 1, our newly proposed model AMViT3,
which employs multiplication-based modulation, performs
the best in all scenarios and marginally outperforms its MLP-
based equivalent AMViT5. It achieves an accuracy of 53.5%
compared to AMViT5’s 51.2%, particularly excelling in the
most challenging tasks, unfamiliar noise and HRTFs. Al-
ternative modulation methods like addition and dot products
are less effective, suggesting they could dilute key informa-
tion. Nonetheless, it is worth considering that fine-tuning the
hyperparameters of the MLP layers or exploring other layer
options for modulation may yield further improvements.

Our AMViT3 model approximately doubles the parameter
count of the original FAViT due to the inclusion of three new
encoders. Despite this, it remains more parameter-efficient
than other large deep-learning models (over 20 M.). AMViT3
demonstrates robust performance in both familiar and unfa-
miliar HRTF conditions, peaking at 93.5% accuracy in sce-
narios with unfamiliar noise but known HRTFs. These results
indicate that our top-down modulation of speech representa-
tion enhances localization capabilities in noisy environments,
aligning well with our human-inspired objectives.

5.2. HRTF Generalization

Addressing HRTF mismatch is a significant challenge due to
individual variability. This is evident as all models perform
similarly under the same or different HRTF conditions in both
noisy and noise-free environments. Although our best model,
AMViT3, achieves a higher accuracy rate of 65.4% in identi-
cal noise conditions, it underscores the persistent challenges
in the field. Although our model fell short of the 80% accu-
racy goal, it did substantiate our hypothesis: combining au-
ditory traits and binaural cues improves resilience. It outper-
formed existing benchmarks and excelled in HRTF general-
ization in both seen and unseen noise conditions. With more
HRTF data, we expect the model could improve further.

AMViT3 and FAViT exhibit relatively similar accuracy
in determining the exact locations of unseen HRTFs. How-
ever, as Figure 2 clearly demonstrates, the distribution pat-
terns of their confusion matrices differ significantly. This
distinction enables AMViT3 to outperform FAViT in terms
of tolerance with an accuracy rate of 89.6% ± 1 within a
one-class range, making it suitable for real-world applica-
tions. This suggests that AMViT3’s top-down modulation en-
hances performance in HRTF mismatches. Please note that
our AMViT3 and benchmark models could perform better
with more speech data. However, limited computational re-
sources constrain us, as we trained on 45 HRTF subjects. De-
spite this, AMViT3 shows strongest localization accuracy in
the same environment.

To boost HRTF generalization, future work could explore
better time-frequency speech features and consider dimen-
sionality reduction like PCA. Extensions to reverberant con-
ditions and elevation mismatches are also worth investigating.

(a) AMViT3: Acc. 53.5% (b) FAViT: Acc. 49.3%

Fig. 2. Confusion matrices: AMViT3 (diagonal-dominant)
vs. FAViT (scattered) under unseen noises and HRTFs

6. CONCLUSION

Our experiment confirms our hypotheses: top-down spec-
tral modulation enhances sound localization amid unfamiliar
noises and HRTF mismatches. Element-wise multiplication
and an extra MLP layer excel in our binaural and spectral
setups. While our AMViT model is not perfect at pinpointing
exact azimuths, its strong performance in adjacent positions
suggests real-world utility.
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Alexandre Guérin, “A survey of sound source localization with
deep learning methods,” The Journal of the Acoustical Society
of America, vol. 152, no. 1, pp. 107–151, 2022.

[5] Ning Ma, Jose A Gonzalez, and Guy J Brown, “Robust binau-
ral localization of a target sound source by combining spectral
source models and deep neural networks,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 26,
no. 11, pp. 2122–2131, 2018.

[6] Paolo Vecchiotti, Ning Ma, Stefano Squartini, and Guy J
Brown, “End-to-end binaural sound localisation from the raw
waveform,” in ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 451–455.

[7] Waradon Phokhinanan, Nicolas Obin, and Sylvain Argentieri,
“Binaural Sound Localization in Noisy Environments Using
Frequency-Based Audio Vision Transformer (FAViT),” in
Proc. INTERSPEECH 2023, 2023, pp. 3704–3708.

[8] Martin Raspaud, Harald Viste, and Gianpaolo Evangelista,
“Binaural source localization by joint estimation of ild and
itd,” Ieee transactions on audio, speech, and language pro-
cessing, vol. 18, no. 1, pp. 68–77, 2009.

[9] Fakheredine Keyrouz, Youssef Naous, and Klaus Diepold, “A
new method for binaural 3-d localization based on hrtfs,” in
2006 IEEE International Conference on Acoustics Speech and
Signal Processing Proceedings. IEEE, 2006, vol. 5, pp. V–V.

[10] Hugh O’Dwyer and Francis Boland, “Hrtf clustering for ro-
bust training of a dnn for sound source localization,” Journal
of the Audio Engineering Society, vol. 70, no. 12, pp. 1015–
1026, 2022.

[11] Kai Qian, Jing Wang, Wenjing Yang, and Miao Liu, “Bin-
aural sound source localization based on neural networks in
mismatched hrtf condition,” in Proceedings of the 8th Inter-
national Conference on Computing and Artificial Intelligence,
2022, pp. 62–67.

[12] Josh H McDermott, “The cocktail party problem,” Current
Biology, vol. 19, no. 22, pp. R1024–R1027, 2009.

[13] Xiao-Jing Wang and Guangyu Robert Yang, “A disinhibitory
circuit motif and flexible information routing in the brain,”
Current opinion in neurobiology, vol. 49, pp. 75–83, 2018.

[14] Kenny F Chou and Kamal Sen, “Aim: A network model of
attention in auditory cortex,” PLoS Computational Biology,
vol. 17, no. 8, pp. e1009356, 2021.

[15] Qi Hu, Ning Ma, and Guy J Brown, “Robust binaural sound
localisation with temporal attention,” in ICASSP 2023-2023
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). IEEE, 2023, pp. 1–5.

[16] Jordan D Chambers, Diego Elgueda, Jonathan B Fritz, Shi-
hab A Shamma, Anthony N Burkitt, and David B Grayden,
“Computational neural modeling of auditory cortical receptive
fields,” Frontiers in computational neuroscience, vol. 13, pp.
28, 2019.

[17] Jennifer K Bizley and Yale E Cohen, “The what, where and
how of auditory-object perception,” Nature Reviews Neuro-
science, vol. 14, no. 10, pp. 693–707, 2013.

[18] Kiki van der Heijden and Siamak Mehrkanoon, “Goal-driven,
neurobiological-inspired convolutional neural network mod-
els of human spatial hearing,” Neurocomputing, vol. 470, pp.
432–442, 2022.

[19] John S Garofolo, Lori F Lamel, William M Fisher, Jonathan G
Fiscus, and David S Pallett, “Darpa timit acoustic-phonetic
continous speech corpus cd-rom. nist speech disc 1-1.1,”
NASA STI/Recon technical report n, vol. 93, pp. 27403, 1993.

[20] V Ralph Algazi, Richard O Duda, Dennis M Thompson, and
Carlos Avendano, “The cipic hrtf database,” in Proceedings
of the 2001 IEEE Workshop on the Applications of Signal Pro-
cessing to Audio and Acoustics (Cat. No. 01TH8575). IEEE,
2001, pp. 99–102.

[21] Kanji Watanabe, Yukio Iwaya, Yôiti Suzuki, Shouichi Takane,
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