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In Honduras, mathematics teachers receive formal mathematics training at university, which does 
not prepare them to integrate extra-mathematical modelling in their practice, as it demanded in high 
school curriculum. This corresponds to Klein’s second discontinuity. To address this issue, we 
propose analysing the dimension of extra-mathematical modelling (university vs high school). We 
report here the analysis of a university differential equations textbook. We found that usefulness of 
Laplace transform in solving differential equations is unrelated to a mathematical (or an extra-
mathematical) modelling activity. A complementary control theory textbook analysis showed the 
crucial role of the Laplace transform in solving mathematical modelling tasks in engineering, e.g., 
controlling systems represented by circuits, which are taught in high school, being an extra-
mathematical modelling activity can be integrated into math courses to pre-service mathematics 
teachers. 

Keywords: Differential equations, Klein’s second discontinuity, Laplace transform, mathematical 
modelling, mathematics teachers. 

Introduction 
Mathematical modelling ability is one of the goals to be taught in the high school curriculum of many 
countries (Frejd, 2013; Jessen & Kjeldsen, 2021; Rodríguez, 2010). The Organisation for Economic 
Co-operation and Development (OECD), in its international assessments (e.g., PISA) has promoted 
the integration of modelling in elementary mathematics teaching to develop citizens with the ability 
to understand, question and modify their world, which has led to changes in the curriculum. However, 
not only teachers do not prioritise its development in the classroom for epistemological and systemic 
reasons (Frejd, 2013) or because of “insufficient previous experience with modelling tasks” (Sen 
Zeytun et al., 2023, p. 12). But also, because their formal university mathematics training does not 
provide them with the tools to integrate modelling into their teaching practice, and even less so in 
non-mathematical contexts (Ibidem). This corresponds to Klein’s second discontinuity, identified 
more than a hundred years ago (Kilpatrick, 2019). Klein (2016/1933) argues that when an 
undergraduate student becomes a teacher, he is expected to “teach the traditional elementary 
mathematics according to school practice; and, since he will be scarcely able, unaided, to discern any 
connection between this task and his university mathematics” (p. 1). This issue has been taken up 
again, showing the validity of its essence and the particularities imposed by current conditions (e.g., 
Barquero & Winsløw, 2022; Eichler & Isaev, 2023). Winsløw and Grønbæk (2014) consider Klein’s 
second discontinuity from an institutional approach –the Anthropological Theory of the Didactic 
(ATD)– analysed in three dimensions, namely, “[t]he institutional context (of university vs. school); 
[t]he difference in the subject’s role within the institution (a student in university or school, vs. a 
teacher of school mathematics); [t]he difference in mathematical contents (elementary vs. advanced)” 
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(p. 64), through relations between subjects with praxeologies or knowledge in a certain institution. 
This model allows us to propose a fourth dimension: extra-mathematical modelling in context 
(university vs. high school). Klein argues that students should learn to contemplate mathematical 
phenomena from their environment instead of applying mathematics to artificial contexts (Mattheis, 
2019). With the aim of contributing to the study of this fourth dimension, we analyse characteristics 
of the teaching of mathematical modelling at university through a differential equations (DE) 
textbook and a control theory textbook and the way in which this analysis can be considered to 
generate a mathematical modelling proposal for a module of a DE course. And thus, to provide pre-
service teachers with tools to integrate mathematical modelling in non-mathematical contexts into the 
high school. 

Elements of the anthropological theory of the didactic 
Institutions are stable social organisations that make possible human activities, e.g., mathematical 
activities and mathematical modelling, which are similar in that in TAD “doing mathematics mostly 
consists in producing, transforming, interpreting and developing mathematical models” (Barquero et 
al., 2019, p. 321). Human activities can be analysed through a unique model: praxeology. Its four 
elements are task type (𝑇𝑇, what is to be done), technique (𝜏𝜏, how it is to be done), technology (𝜃𝜃, is a 
discourse that produces, justifies and explains the 𝜏𝜏) and theory (𝛩𝛩, more generally what produces, 
justifies and explains the 𝜃𝜃). Praxeologies can be created, taught and used in any academic or non-
academic institution and can circulate between institutions (Chevallard, 1999), undergoing, in effect, 
transpositional processes, i.e. transformations. Turning a praxeology from an academic (e.g., 
mathematics) or non-academic (e.g., a workplace) institution into a teaching object implies a process 
of didactic transposition involving several institutions: academia and others (workplace), educational 
system, classroom and community of study, as illustrated by Gascón and Nicolás (2022, p. 16): 

 
Figure 1. Institutions and phases involved in didactic transposition 

According to Barquero et al. (2019) the process of transposing a praxeology from academia or other 
institutions to the classroom corresponds to the unit of analysis in this theory, which involves studying 
academia or other institutions (mathematics discipline, workplace, everyday life), the educational 
system (curriculum, educational model) and the classroom (mathematics courses). 

Methodology 
This paper presents part of the unit of analysis of this research, which corresponds to the curriculum 
of pre-service mathematics teachers and university courses, DE and control theory with the aim of 
recognising the place given to mathematical modelling in non-mathematical contexts. 

Stage 1. The pre-service mathematics teacher's programme 

The pre-service mathematics teachers programme at the Universidad Pedagógica Nacional Francisco 
Morazán in Honduras was analysed in this phase. Three curricular areas were identified: (a) General 



 

 

and pedagogical foundations; (b) Didactics of mathematics; and (c) Specialisation in mathematics. 
The mathematical knowledge to be taught includes, in the third year, a DE course in which the 
techniques for solving first and second-order DE and their applications in the real world are taught. 
Educators design their didactic proposals. 

Stage 2. Analysis of mathematics taught in textbooks: DE and control theory 

To recognise the role given to mathematical modelling in the DE course, two textbooks were 
analysed. The first one is Zill (2013), as it is the basis of the DE course for pre-service teachers, while 
the second one (Ogata, 2010) is used in university education for teaching extra-mathematical tasks. 
This analysis was guided by the question 𝑄𝑄0: How does it teach a task of type T: solving a DE using 
the Laplace transform (LT)? A process of modelling with DE, suggested by Zill (2013), was 
identified. Subsequently, four analytical questions were answered, representing the elements of a 
praxeology. First, the question What is done? was asked in order to identify the type of task, focus 
on the proposed activities (e.g., exercises, problems). Then, to identify the technique taught, the 
question was asked: what procedures were presented to solve the tasks? These procedures were 
described through the steps to perform the tasks. Finally, to identify the technology, the focus was on 
the definitions, theorems and properties that justify each of the steps of the technique, i.e., what 
justifications are presented to support each procedure, while the theory was identified by answering: 
what mathematical theory is presented to support these justifications? Zill’s (2013) textbook analyses 
a whole chapter on teaching the LT as a method for solving DE, while Ogata (2010) only one task in 
context was analysed. This made it possible to propose a local praxeology of teaching the LT in Zill 
(2013) and a local praxeology of modelling electrical systems in Ogata (2010). 

Results  
Analysis of the LT teaching in a DE textbook 

In Zill’s textbook (2013), explicit expressions allude to mathematical modelling (e.g., real life, real 
world, model, mathematical model). In introducing DE as mathematical models, the author points 
out their importance: “It is often desirable to describe the behavior of some real-life system or 
phenomenon, whether physical, sociological, or even economic, in mathematical terms” (p. 20). The 
analysis focused on solving DE and DE systems and their applications presented in chapter 7 of Zill's 
(2013) textbook. Three types of tasks were identified, 𝑇𝑇: solving a DE of the form 𝑎𝑎2𝑦𝑦′′ + 𝑎𝑎1𝑦𝑦′ +
𝑎𝑎0𝑦𝑦 = 𝑓𝑓(𝑡𝑡); 𝑇𝑇′: solving a system of DE; and 𝑇𝑇′′: solving a DE in context of the form 𝑎𝑎2𝑦𝑦′′ + 𝑎𝑎1𝑦𝑦′ +
𝑎𝑎0𝑦𝑦 = 𝑓𝑓(𝑡𝑡). A general technique for solving tasks of these three types (𝑇𝑇, 𝑇𝑇′, 𝑇𝑇′′) is presented, which 
consists of four steps and is based on LT. In his textbook, Zill (2013) highlights the potential of this 
technique by pointing out: “Yes, there is a lot of algebra inherent in the use of the Laplace transform, 
but observe that we do not have to use variation of parameters or worry about the cases and algebra 
in the method of undetermined coefficients” (p. 287). The local praxeology1 is schematised in Figure 
2: 

 
1 It has only one technology that produces several techniques to solve different types of tasks. In this case, the technology 
is a Laplace transform. 



 

 
 

 
Figure 2: Praxeology for solving a DE using the LT 

Were identified four tasks of type 𝑇𝑇 (𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4), one of type 𝑇𝑇′ and one of type 𝑇𝑇′′ (Figure 3). 𝑇𝑇 
and 𝑇𝑇′′differ from each other by the function 𝑓𝑓(𝑡𝑡) of the DE given (e.g., algebraic function, 
trigonometric function, 𝑒𝑒-based exponential, product of two such functions, unit step, Dirac delta). 
The definition is not used to find the LT of these functions. Still, LT theorems organised in tables or 
previously stated (e.g., first and second-translation theorems) are used to justify the technique. In 𝑇𝑇′′, 
𝑓𝑓(𝑡𝑡) is an integrodifferential equation, its transform is found using the convolution theorem; finally, 
𝑇𝑇′ consists of solving a system of DE using the steps of the general technique (step 1) and then solving 
the resulting system of algebraic equations. 

 
Figure 3: Praxeology of the DE using the LT 

An example of a task of type 𝑇𝑇′′ is to determine the current 𝑖𝑖(𝑡𝑡) in a single-loop LRC-series circuit 
with 𝐿𝐿, 𝑅𝑅 and 𝐶𝐶 known, with 𝑖𝑖(0) = 0 and 𝐸𝐸(𝑡𝑡) given. Zill (2013) explains that an LRC circuit is a 
physical system with an inductor 𝐿𝐿, a resistor 𝑅𝑅 and a capacitor 𝐶𝐶 (Figure 4a), with the switch closed 
where 𝐿𝐿, 𝑅𝑅 and 𝐶𝐶 are generally constant. Thus, the mathematical model 𝐿𝐿 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝑖𝑖𝑖𝑖 +

1
𝐶𝐶 ∫ 𝑖𝑖(𝜏𝜏)𝑑𝑑𝑑𝑑 = 𝐸𝐸(𝑡𝑡)𝑡𝑡

0  is constructed by means of Kirchhoff’s second law. This is a first-order DE with 
constant coefficients, with initial conditions all zero, similar to T-type of task. In the context of the 
LRC circuit, the function 𝑓𝑓(𝑡𝑡) has an integrodifferential equation. The author suggests, as an initial 
step, substituting the given data in the mathematical model above, i.e., DE becomes 0.1 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 2𝑖𝑖 +

10∫ 𝑖𝑖(𝜏𝜏)𝑑𝑑𝑑𝑑 = 120𝑡𝑡 − 120𝑡𝑡𝑡𝑡(𝑡𝑡 − 1)𝑡𝑡
0 ; subsequently, the general technique (Figure 2) is shown 



 

 

applying the LT to each term, by using partial fractions and applying the inverse LT to 𝐼𝐼(𝑠𝑠), the 
current 𝑖𝑖(𝑡𝑡) is obtained as a solution, the graph of which is Figure 4b:  

 

 

(a) (b) 

Figure 4: (a) LRC-series circuit. (b) Graph of current 𝒊𝒊(𝒕𝒕) (Zill, 2013, pp. 305–306)  

According to Zill (2013), mathematicians have adopted some engineering words as their own that 
they consider appropriate when describing a phenomenon. Examples are the input or driving function 
and output or response function, the transient term, and the steady state of the solution. In this same 
problem, the author presents the graph of the solution (Figure 4b) and comments, very superficially, 
that the output 𝑖𝑖(𝑡𝑡) is a continuous function. However, the input function 𝐸𝐸(𝑡𝑡) is discontinuous. In 
another circuit example, in interpreting the solution 𝑖𝑖(𝑡𝑡) = 𝐸𝐸0 𝑅𝑅 + 𝑐𝑐𝑒𝑒−(𝑅𝑅 𝐿𝐿⁄ )𝑡𝑡⁄ , he mentions that the 
transient term 𝑐𝑐𝑒𝑒−(𝑅𝑅 𝐿𝐿⁄ )𝑡𝑡 is an often-important concept in applied problems. In this case, 𝑖𝑖(𝑡𝑡) → 𝐸𝐸0 𝑅𝑅⁄ , 
when 𝑡𝑡 → ∞. This allows relationships such as Ohm’s law (𝐸𝐸 = 𝑖𝑖𝑖𝑖) to be established for large values 
of time. Therefore, the term 𝐸𝐸0 𝑅𝑅⁄  is the steady state current. According to the technique of the task 
of type 𝑇𝑇′′ exemplified, its solution consists of substituting the data in the given mathematical model 
(in real life, this is not always the case) and then solving the first-order DE without any need to reflect 
on the meaning of the parameters 𝑅𝑅, 𝐶𝐶 and 𝐿𝐿 or of the current 𝑖𝑖 and the voltage 𝐸𝐸. This is a task that 
fulfils only steps 3 and 4 of the modelling process with DE proposed by Zill (2013): “(1) Assumptions 
and hypotheses, (2) mathematical formulation, (3) Solve the EDs, (4) Display predictions of model” 
(p. 21). This seems to limit the teaching of mathematical modelling in non-mathematical contexts. 
 
Analysis of the LT teaching in a control theory textbook 
In Ogata’s (2010) control theory textbook, a task was analysed in Chapter 2, which is structured in 
sections. The first section introduces the notions of control theory. In the second section, the transfer 
function and impulse response are studied. LT is presented as a powerful tool for solving control 
system problems (although the teaching of LT is cursory, its review in a DE textbook is suggested), 
whose behaviour is modelled by a transfer function (defined as the ratio of the LT of the output 
function and the LT of the input function of a system). The following sections study automatic control 
systems, block diagrams and the Matlab software for calculating the transfer function. This function 
is a key concept in a system since its determination allows us to know its stability. Ogata (2010) 
mentions that if the transfer function of a system is known, the output or response to various forms 
of input is studied to understand the nature of the system. In school, the first step in analysing and 
controlling a system is to determine its mathematical model. However, in the real world, the input 
signal of a system is usually not known in advance, and the instantaneous input cannot be expressed 
analytically. However, it can be known or determined in certain cases from typical tests using input 
functions (e.g., unit step, ramp, impulse, parabola). According to Ogata (2010), the response of a 
control system consists of two parts, transient and steady-state (this is briefly noted in Zill, 2013). 
Designing a control involves predicting the system's behaviour from the knowledge of its 
components. The most important characteristic is the absolute stability of the system: stable or 
unstable, but it has other behaviours, such as relative stability and steady-state error. A similar task 



 

 

to 𝑇𝑇′′ was analysed and called 𝑇𝑇∗′′: modelling electrical system, which includes three tasks: 𝑡𝑡1∗, finding 
the transfer function 𝐺𝐺(𝑠𝑠) of an electrical system; 𝑡𝑡2∗, finding the output signal 𝑐𝑐(𝑡𝑡); and 𝑡𝑡3∗, analysing 
the absolute stability of a system. The techniques to solve these tasks are based on the LT described 
in Figure 5. There is a partial relation between 𝑡𝑡1∗, 𝑡𝑡2∗ and 𝑡𝑡3∗ because 𝑡𝑡2∗ and 𝑡𝑡3∗ require the 𝜏𝜏1∗ in their 
steps (Figure 5). The transfer function allows to analyse the absolute and relative stability of the 
system, which involves an energy exchange. The output of the system at a given input function 
exhibits a transient response before reaching a steady state. In 𝑡𝑡3∗, some of the steps of the 𝜏𝜏1∗ and 𝜏𝜏2∗ 
are necessary to examine and quantitatively describe the system and the method of zeros and poles 
can be used. To find the poles, one can use Matlab software and plot these points on the complex 
plane and thus conclude whether the system is stable or unstable. 
 

 
Figure 5: Praxeology of the LT in control theory 

An example of 𝑡𝑡2∗: determine the output function of a closed-loop first-order system (Figure 6a) given 
the unit step input function 𝑅𝑅(𝑠𝑠) = 1/𝑠𝑠, whose transfer function is: 𝐶𝐶(𝑠𝑠) 𝑅𝑅(𝑠𝑠) = 1 (𝑇𝑇𝑇𝑇 + 1)⁄⁄ . 
Which consists of calculating the LT of each term, decomposing it into partial fractions and applying 
the inverse LT, and the output 𝑐𝑐(𝑡𝑡) = 1 − 𝑒𝑒−𝑡𝑡/𝑇𝑇. 

 

 

(a) (b) 

Figure 6: a) Block diagram of a first-order system. b) Unit step response. (Ogata, 2010, pp. 161–162) 

The output function 𝑐𝑐(𝑡𝑡) behaves like the input function (the unit step function) when 𝑡𝑡 → ∞, since 
the slope decreases as the value of 𝑡𝑡 increases, i.e., the steady state is mathematically reached at 
infinite time. However, in the real world, a reasonable estimate is the value of 𝑡𝑡 = 4𝑇𝑇 (Figure 6b), to 
ensure that the system’s behaviour is stationary. Hence, the response is kept within 2% of the final 
value. This analysis shows the crucial role of differential equations in modelling and controlling the 
behaviour of physical systems. The LT is fundamental to converting DE into algebraic equations and 



 

 

moving from the temporal study of the phenomenon to the algebraic one. It is an authentic extra-
mathematical context that can be used in a didactic modelling proposal for the DE course.  

Conclusion 
The analyses suggest that the main objective of Zill (2013) is to solve a DE using LT where technical 
(intra-mathematical) expertise is privileged. That is, the tasks are focused on the application of LT as 
a technique to solve certain types of DE, but no reflection is made on whether they allow modelling 
real phenomena and whether or not this is a limited view of reality (Frejd, 2013; Jessen & Kjeldsen, 
2021). In Ogata (2010), a notion of control theory is appreciated: the transfer function, which allows 
the study and control of physical systems modelled with DE. That is, to determine the stability of the 
system. LT is fundamental in defining the transfer function, a mathematical function that models the 
system's output for each possible input, and in the resolution of extra-mathematical modelling tasks. 
Integrating tasks in non-mathematical contexts to mathematics courses is associated with great 
complexity since different types of mathematical and non-mathematical knowledge are involved, as 
well as different objectives in the use of modelling techniques and different disciplinary logic 
underlying mathematical modelling. Because of this, the real world often does not seem to play a role 
in modelling problems in mathematics education (Jessen & Kjeldsen, 2021). It is, therefore, necessary 
to generate specific proposals for teaching to integrate mathematical modelling in non-mathematical 
contexts into teacher education. To this end, it is necessary to generate an analysis of the teaching of 
mathematical modelling in high school, of the extra-mathematical contexts used, e.g., physical 
(electrical circuits), which contributes elements to the fourth dimension of Klein’s second 
discontinuity studied here and how it can be approached in pre-service mathematics teacher 
education. Also, looking ahead for this research, we need to pay attention to whether teacher 
education is producing modelling skills or competencies or capabilities, which are relevant and linked 
to those of high school and in what ways education in these institutions is imitating real-world 
practices (engineering, data science, physics, etc.) (Rodríguez, 2010). Pre-service teachers must have 
experience with modelling task design throughout their careers. These experiences and research could 
provide them with helpful tools for supporting the implementation of such tasks in real classrooms, 
considering the conditions and constraints that may impact their viability. 
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